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Abstract

This thesis is concerned with outer boundary conditions in numerical relativity.

In numerical simulations, the spatially infinite universe is typically modelled

using a finite spatial domain, on the edge of which boundary conditions are

imposed. These boundary conditions should mirror the unbounded physical

domain as closely as possible. They should be transparent to outgoing grav-

itational radiation and should not introduce spurious incoming radiation via

reflections of outgoing radiation off the boundary.

The concepts of incoming and outgoing gravitational radiation are only

well understood in certain specific charts and tetrads. The first half of this

thesis investigates the relationship between these charts and tetrads and those

used in numerical relativity.

We begin by studying a previous calculation [134], in which quantities

such as the Bondi mass and the news function were expressed in terms of the

Newman-Penrose scalars in an axisymmetric spacetime. The calculation is

generalized to spacetimes with no symmetries.

The results above still require a specific choice of tetrad. By supposing that

the region of spacetime far from an isolated gravitating source is in some sense

Minkowskian, we demonstrate how to transform between the charts and tetrads

used in theoretical studies of gravitational radiation and the charts and tetrads

used in numerical relativity. This enables us to provide “numerical relativity

recipes” in which the Weyl scalars, the Bondi mass and news function are

expressed in terms of the metric variables in a numerical chart.

The second half of this thesis addresses the problem of absorbing boundary

conditions in numerical relativity. Using Hertz potentials, the far-field region

of a spacetime can be expressed as a linear perturbation about Minkowski,

Schwarzschild or Kerr backgrounds. The resulting field equations enable us

to investigate the propagation of linearized gravitational radiation. On a

Minkowski background, incoming and outgoing waves propagate independently.

The presence of a curved background creates a “gravitational tail” whose be-

haviour near future null infinity we are able to estimate. This enables us to

formulate absorbing boundary conditions for numerical relativity.

Finally, we link the two threads mentioned above. The boundary conditions

are expressed in terms of the metric variables in a numerical relativity chart.
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Chapter 1

Introduction

Albert Einstein’s theory of general relativity [42,43] changed the way we view

space and time. In previous physical theories, fields evolved on a fixed space-

time geometry. In general relativity, the geometry itself forms part of the field

equations and evolves dynamically. The geometry of the spacetime is related

to the presence of matter by a set of field equations. The curvature of the

spacetime in turn determines the motion of matter. Newton’s notion of a

gravitational force then becomes an essentially geometric concept.

In general relativity, the spacetime is described by a four dimensional

pseudo-Riemannian manifold M admitting a Lorentzian metric gik. The Ein-

stein field equations are

Rik −
1

2
Rgik = κTik, (1.1)

where Rik is the Ricci curvature tensor, R is the Ricci scalar, κ is a constant and

Tik is the stress-energy tensor of any matter or energy present. In a vacuum,

the field equations reduce to

Rik = 0. (1.2)

In the tensor notation used above, the field equations appear deceptively sim-

ple. In fact they form a complicated set of ten coupled, nonlinear, second-order

partial differential equations for the ten independent metric variables. This

makes them exceedingly difficult to solve in all but the simplest of scenarios.

Hence, in the century since its discovery by Einstein, general relativity remains

at the forefront of research in theoretical physics.

Obtaining analytical closed-form solutions to the field equations coupled
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Chapter 1. Introduction

to matter (1.1) is particularly difficult, and even in a vacuum the problem is

non-trivial. Simplifications must be made by, for example, considering space-

times with symmetries, or by perturbing the spacetime about a known back-

ground solution. Many such solutions are known (see e.g. [132]), but each one

corresponds to a particular special case of the field equations. The field equa-

tions corresponding to more general dynamical situations, spacetimes with no

symmetries, or exotic types of energy-momentum tensor remain analytically

intractable. However, the advent of computers and the rapid increase in com-

puting power and memory in the past few decades mean that it is now possible

to try to solve the field equations numerically. This field is known as numerical

relativity.

1.1 An Overview of Results Obtained in Nu-

merical Relativity

Only very modest computing power was available in the 1960s. Early sim-

ulations in the nascent field of numerical relativity focused on either spher-

ically symmetric or axisymmetric spacetimes. The symmetries significantly

reduced the computational cost of the simulations since “dimensional reduc-

tion” could be used to reduce the number of field equations to be solved. The

first documented numerical study in relativity appears to be that of Hahn &

Lindquist [69], followed several years later by Eppley [44]. The first realistic

numerical study of gravitational collapse was performed in 1985 [131], using

axisymmetry.

Axisymmetric evolutions are particularly interesting because they reduce

the computational effort required, whilst still permitting the study of gravi-

tational radiation (Birkhoff’s theorem [15] implies that spherically symmetric

spacetimes do not contain gravitational waves). However, if standard cylin-

drical polar coordinates are used, then a coordinate singularity is present on

the axis. This problem has only recently been solved [118]. This has led to

improved simulations of axisymmetric gravitational waves (Brill waves) [115].

The speed and memory of computers today is such that many simulations

are now carried out in spacetimes with no symmetries at all. For example,

in [2], highly nonlinear gravitational radiation was modelled in three spatial
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Chapter 1. Introduction

dimensions. Waves were found that were strong enough to undergo gravita-

tional collapse and form black holes due to their own self-gravity.

The importance of numerical relativity became apparent in the 1990s with

the discovery of critical phenomena in gravitational collapse [28]. Numerical

relativity had uncovered behaviour that had never before been seen in analyt-

ical studies of general relativity. The central ideas of critical collapse are as

follows. Consider a one parameter family of asymptotically flat, smooth initial

data. Let p∗ be the critical value of the parameter p separating solutions whose

fields disperse from solutions which form black holes. For slightly supercritical

data, the mass M of the resulting black hole obeys the relation

M ∝ (p− p∗)γ, (1.3)

where γ is independent of the family of initial data chosen. In addition, the

critical solution itself is independent of the initial data and exhibits self-similar

behaviour. The study of critical phenomena has since developed into a thriv-

ing field of research in its own right. We refer the reader to the recent review

article by Gundlach & Martin-Garcia [63] for more information.

Current research in numerical relativity can be divided into two main areas.

The astrophysical community focuses on modelling the Einstein field equations

coupled to various types of matter. By seeking realistic equations of state for

the matter, the general relativistic behaviour of celestial bodies can be investi-

gated. For example, in relativistic hydrodynamics and magnetohydrodynamics

accurate models of self-gravitating fluids are studied [46]. This has increased

our understanding of the interiors of stars and neutron stars, and the behaviour

of accretion discs.

This thesis, however, is concerned primarily with the second branch of nu-

merical relativity; the study of the geometry of spacetime. Solutions to the

field equations are investigated in the absence of matter, typically by consider-

ing vacuum black hole spacetimes. Many numerical relativity groups are now

focusing on evolving binary systems of black holes, white dwarves and neutron

stars and obtaining the resulting gravitational wave signatures.

The evolution of a binary black hole system can be divided into three

phases. Initially the black holes orbit each other, the distance between them
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Chapter 1. Introduction

decreasing. This is known as “inspiral”. The second phase is known as the

“merger”. The two black holes coalesce into a single highly-deformed black

hole. The “no hair” theorem [70,119,120] states that a black hole is completely

characterized by only three externally observable parameters: mass, charge

and angular momentum. Therefore, the new black hole will now rid itself of

its deformity by emitting gravitational radiation characteristic of the mass and

angular momentum of the final state of the black hole. This process is known

as “ringdown”.

The study of binary black hole systems was pioneered by Smarr [130], who

studied the head-on collision of two black holes in axisymmetry. The full three-

dimensional problem has proved considerably more difficult to solve. The first

long term, stable evolution of a binary black hole system in three spatial di-

mensions was achieved by Pretorius [108]. The collision of two non-rotating,

equal-mass black holes was simulated through inspiral, merger and ringdown.

Recent investigations have extended these results [24, 72, 127]. Numerical rel-

ativity groups around the world are performing increasingly accurate simula-

tions, and there is now a wealth of literature on the subject. For a very recent

summary we direct the reader to the study of Scheel et al. [126].

The numerical study of binary black holes is of interest to experimental

physicists as well as theorists. The first generation of gravitational wave de-

tectors has been gathering data for several years now. These detectors (such as

LIGO, VIRGO and TAMA 300) usually use “laser interferometry” and each

detector is designed to detect a different range of frequencies of radiation.

The resolution of these instruments is not currently high enough to detect

gravitational radiation with any degree of certainty. However, as the second

generation of gravitational wave detectors begins to take over (for example

Enhanced LIGO and LISA), gravitational wave observations are expected in

the coming years. Sathyaprakash & Schutz [125] have written a recent review

article summarising this area of research.

The most likely source of measurable gravitational radiation is from large-

scale astrophysical events such as binary black hole merger or the collision of

neutron stars (other sources of radiation are too weak to be detected on Earth).

There is therefore a strong demand for waveform templates from these events,

to enable gravitational wave detectors to correctly interpret their data. Hence,

as well as investigating the evolution of binary systems of massive objects, nu-
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Chapter 1. Introduction

merical relativists are also attempting to calculate the resulting gravitational

waveforms which propagate into the far-field region. The detection of gravita-

tional waves from the coalescence of two black holes would provide one of the

best experimental verifications to date of the strong-field predictions of general

relativity.

1.2 Techniques used in Numerical Relativity

Numerical relativity calculations are typically based on either the Cauchy prob-

lem or the characteristic initial value problem.

In the Cauchy problem the spacetime is foliated with spacelike hypersur-

faces. Initial data are specified on one such hypersurface (see e.g. [35]) and

the system is evolved from one hypersurface to the next. The evolution is per-

formed by decomposing the Einstein field equations into spatial and temporal

parts. This results in a set of “constraint equations” which are imposed on

each spacelike hypersurface, and a set of “evolution equations” governing the

evolution of the system between hypersurfaces. The first such decomposition

was the Arnowitt-Deser-Misner 3 + 1 formulation (see for example [5, 148])

in which the ten field equations were separated into six constraint equations

and four evolution equations. In reality this particular decomposition is rarely

used in numerical relativity due to stability issues, but many other formalisms

are available. For a general summary of the Cauchy problem in general rel-

ativity we refer the reader to Rendall’s review article [112]. Aspects of the

Cauchy problem pertinent to numerical relativity were studied in more detail

by Stewart [136]. This will be discussed in more detail shortly.

In a Lorentzian manifold, there is typically no preferred Cauchy foliation.

The alternative to the Cauchy problem is the characteristic initial value prob-

lem, which is more suited to the study of gravitational radiation. Data are

specified on two characteristic (null) hypersurfaces and the spacetime is foli-

ated accordingly. The characteristic initial value problem was used to carry

out the first stable numerical simulations of black holes moving in three dimen-

sions [58]. One of the drawbacks of this technique is the tendency for caustics

to develop and the subsequent loss of stability in the evolution. Winicour [147]

has written an up-to-date review on the use of the characteristic initial value

problem in numerical relativity.
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Chapter 1. Introduction

The characteristic initial value problem will be used later in this thesis

in order to study gravitational waves, but for the remainder of this chapter

we focus on the Cauchy problem, which is more commonly used in numerical

relativity. Before a particular formulation of the Cauchy problem can be used

numerically, the problems of “well-posedness” and “constraint violations” must

be addressed. These are discussed below.

If an analytical solution to the Cauchy problem is not known then one

must ask if the problem is “well-posed”. Does a solution even exist? If so, is

it stable under small perturbations of the initial data? Once well-posedness

has been established one must be able to ascertain that the simulation gives

an acceptably small numerical error. These rather imprecise conditions were

dealt with more rigorously by Stewart [136] who showed that they are satisfied

if the system of equations can be shown to have a strongly hyperbolic principal

part. Thus many studies have been devoted to developing strongly hyperbolic

formulations of the Cauchy problem. One such formulation is the Z4 formu-

lation [16] in which a covariant term is added to the Einstein equations such

that the resulting 3+1 decomposition is strongly hyperbolic. This was applied

in axisymmetry by Rinne & Stewart [113,118]. An alternative approach is the

first order formulation of Alvi [3] which is symmetrizable hyperbolic.

Recent attempts to find strongly hyperbolic formulations of the Cauchy

problem have focused on “generalized harmonic coordinates”. These are coor-

dinates which, when regarded as scalars, satisfy the wave equation, !xa = 0.

They enable terms in the Ricci tensor to be simplified so that symmetric hyper-

bolic decompositions of the Einstein field equations (1.1) can be obtained [90].

Unfortunately, many of the gauge choices which are useful in numerical relativ-

ity do not preserve the hyperbolicity of generalized harmonic representations

of the Einstein equations. The technique has recently been extended by Lind-

blom et al. [89] to circumvent this problem.

As described earlier in this section, in the Cauchy problem, the Einstein

field equations are decomposed into constraint equations and evolution equa-

tions. Constraint equations are defined on each spacelike hypersurface. If the

constraint equations are satisfied on one such hypersurface and the evolution

equations are satisfied, then analytically the constraint equations will be satis-

fied on all the hypersurfaces in the foliation. A numerical relativist can make

use of this fact by imposing the constraint equations on the initial data only.
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Chapter 1. Introduction

This is known as a “free” or “unconstrained evolution”. However, numerical

errors within the computational domain and the choice of boundary conditions

imposed on the edge of the computational domain can both cause constraint

violations to arise (see, for example, [74] for further details on the problem of

constraint violations). The alternative to an unconstrained evolution is to im-

pose the constraint equations on each hypersurface; a “constrained evolution”.

This is more accurate but computationally expensive. Attention has therefore

turned to obtaining strongly hyperbolic formulations of the field equations

with “constraint-damping” behaviour, so that any constraint violations decay

as the evolution progresses. For example, the Z4 formulation was extended by

Gundlach et al. [62], in which additional terms were added which dampen any

constraint violations. The evolution system of Lindblom et al. [90] also has

built in constraint-damping behaviour.

Once a suitable formulation of the Einstein field equations has been obtained,

the equations must be discretized in order to be programmed into a com-

puter. The most common method is the “finite difference technique” [64].

Here the spatial domain is covered by a discrete grid and differential operators

are translated into finite differences using Taylor expansions. The majority

of numerical relativity simulations use the finite difference method (for ex-

ample, some recent simulations of black holes [4] and Brill waves [113] have

successfully implemented the technique).

An alternative discretization method is to expand the numerical solution in

terms of a given set of basis functions, typically using a fast Fourier transform.

These techniques are known as “spectral methods”. They have excellent sta-

bility and error properties, but compared to the finite difference method they

do not cope well with shocks and non-smooth data. For an up-to-date and

comprehensive review of spectral methods in numerical relativity, we refer the

reader to the article by Grandclément et al. [60].

In order to increase numerical accuracy with a minimal increase in compu-

tational cost, many numerical relativity groups now use “adaptive mesh refine-

ment” (AMR) algorithms. The resolution of the computational grid is altered

dynamically as the evolution progresses. A finer grid is used in areas where

the solution is highly oscillatory in nature or contains interesting features, and

a coarser grid is used when the solution has fewer such features. Adaptive
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Chapter 1. Introduction

mesh refinement was originally devised by the computational physics commu-

nity [11–13]. It was first implemented in numerical relativity by Choptuik [28].

Finally in this section, we discuss singularities and horizons in numerical rel-

ativity. Most black hole simulations are only concerned with the region of

spacetime outside the event horizon. Since the interior of the horizon is not

causally connected to the exterior, it is possible in principle to remove this

region from any numerical simulation without affecting the resulting solution.

This process is known as “excision”, and requires the event horizon to be ac-

curately tracked during the evolution. Various methods have been devised to

locate event and apparent horizons numerically [144].

The excision process is not applicable to spacetimes containing naked sin-

gularities or to simulations of the interior of an event horizon. In these cases

the singularities must be dealt with explicitly [10].

1.3 Outer Boundary Conditions in Numerical

Relativity

The Cauchy problem is defined on a spatially unbounded domain. This poses

a severe problem for numerical relativists, since computers do not have the

luxury of an unbounded domain. The standard approach is to truncate the

spacetime M by considering the Cauchy problem on a “computational do-

main” Ω ∈ M, with an artificial boundary ∂Ω. There are however some

alternative approaches, which we briefly review below.

Rather than truncating the spatial domain, it is possible to compactify spa-

tial infinity, so that the entire domain is mapped into a finite region [51]. The

resulting Cauchy problem can then be solved numerically. Recent numerical

studies [29, 108] have successfully implemented this technique. However, the

disadvantage of this approach is the loss of resolution in the far-field region.

Alternatively, if hyperboloidal slices are used to foliate the spacetime (this

is known as the hyperboloidal initial value problem), then null infinity can

be compactified instead [48]. The theoretical study of Moncrief & Rinne [94]

suggests that this may be a fruitful area of research, circumventing the bound-
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Chapter 1. Introduction

ary condition problem. For a more detailed review of the Penrose conformal

approach and its applications in numerical relativity see [47].

Another alternative to truncating the spatial domain is “Cauchy-characteristic

matching”. The need for an artificial boundary is eliminated by “matching”

the Cauchy evolution to a characteristic evolution, in which the radiated wave-

form can be calculated at null infinity [147]. The technique combines the best

features of characteristic and Cauchy evolutions. To date, however, stability

issues have prevented this technique from being implemented in fully nonlinear

three-dimensional numerical relativity simulations.

This thesis is concerned with the standard technique in which an artificial

boundary ∂Ω is introduced. In order for the Cauchy evolution to be well

defined, outer boundary conditions must be imposed on ∂Ω. Obtaining appro-

priate boundary conditions is one of the outstanding problems in numerical

relativity.

Outer boundary conditions must have the following properties.

(i) The resulting initial boundary value problem should be well-posed (see

§1.2).

(ii) They should be constraint-preserving — constraint violations must not

be introduced on the boundary.

(iii) They should be absorbing. The boundary conditions should mirror as

closely as possible the physical problem on the spatially unbounded do-

main.

The goal of this thesis is to address the third item above.

The concept of absorbing boundary conditions is best understood by con-

sidering gravitational radiation. An astrophysical event such as the coalescence

of two black holes will produce gravitational radiation that will propagate out-

wards towards ∂Ω. The outer boundary conditions should allow all such radia-

tion to pass through the boundary without introducing any spurious incoming

radiation into Ω by reflection of the outgoing radiation off ∂Ω. Spurious incom-

ing radiation would significantly alter any gravitational waveform templates

produced by the numerical evolution.

In the far-field region, it is reasonable to suppose that gravitational radia-

tion is weak and that the spacetime geometry can accurately be described by
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Chapter 1. Introduction

a linear perturbation about a known background. Typically then, a solution

in the far field will consist of

(i) outgoing linearized gravitational waves originating from the source in the

near-field region,

(ii) the effect on these waves of the background Weyl curvature (this effect

will be made precise later),

(iii) incoming linearized gravitational waves caused by the reflection of out-

going waves off ∂Ω.

On a Minkowski background there is no Weyl curvature. Absorbing bound-

ary conditions should therefore remove all reflected, incoming radiation whilst

remaining transparent to outgoing radiation. However, on a curved back-

ground the notions of “incoming” and “outgoing” radiation are less clear. The

effect of the Weyl curvature on the propagation of gravitational waves must

be taken into consideration when formulating boundary conditions.

The boundary condition problem can then be divided into two parts. The

first is the study of gravitational radiation. What is meant by “incoming”

and “outgoing” radiation? How can we use these definitions to formulate

absorbing boundary conditions? Secondly there is the problem of “wave ex-

traction”. How do we obtain the radiative parts of the solution from a numeri-

cally calculated metric, so that the boundary conditions can actually be imple-

mented? To motivate our approach to these problems we will first review some

of the techniques currently in use by numerical relativity groups worldwide.

In the full nonlinear theory of general relativity, much is known about grav-

itational radiation. Bondi and his co-workers [18] considered asymptotic ex-

pansions of the vacuum field equations in the far-field region and were able

to demonstrate that gravitational waves carry energy. They quantified this

phenomenon by introducing the “news function” and the “Bondi mass” (see

chapters 2 and 3). Newman & Unti [100] adopted a different approach. They

used asymptotic expansions in the Newman-Penrose formalism of vacuum rel-

ativity [97,98] to describe gravitational radiation in terms of the Weyl scalars.

Gravitational radiation has also been investigated using linear perturba-

tions about fixed background spacetimes. For example Regge & Wheeler [111]

and Zerilli [149] considered perturbations on a Schwarzschild background. This
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work was later expressed in a gauge invariant form by Moncrief [93]. Nagar &

Rezzolla [95] have produced a recent review of these results. One of the restric-

tions of linearized theory is that in general it is not known a priori which fixed

background metric to choose. Nevertheless, the simplifications afforded by a

perturbative approach prove to be very fruitful when formulating absorbing

boundary conditions.

The investigations mentioned above all made use of very specific choices of

coordinate chart and tetrad, cleverly constructed to enable theoretical results

to be obtained. Similarly, the formulation of theoretically absorbing boundary

conditions will require a careful choice of chart and tetrad. However, the charts

and tetrads used in numerical relativity are chosen for completely different

reasons (see e.g. [17]). How do we relate theoretical results in one chart to

numerical results in another chart?

One approach is to seek gauge-invariant quantities which can be evaluated

in any coordinate chart. In [9], for example, a scalar curvature invariant is

found which vanishes in regions of spacetime which are free of gravitational

radiation. This idea has since been implemented numerically [25]. Although

they are chart-independent, such quantities are often tetrad-dependent. For

instance, the scalar invariant above uses a Kinnersley frame [79]. By construct-

ing a so called quasi-Kinnersley frame which approximates the background

Kinnersley frame when the spacetime is modelled as a perturbation about a

Kerr geometry, Nerozzi et al. [8,96] have demonstrated how to construct such

scalar invariants numerically.

Although there has been some success using quasi-Kinnersley frames, the

technique has some drawbacks. A perturbative approach only enables weak

field calculations to be performed. Furthermore a Kinnersley frame is not the

most natural frame in which to study gravitational radiation. These limita-

tions are found in many other studies of wave extraction methods in numerical

relativity (see, for example, [121] in which recent results on wave extraction

techniques were collated, all of which are only valid perturbatively and require

the numerical relativist to make an appropriate choice of tetrad). A more

desirable approach would be to describe gravitational radiation in terms of

gauge-invariant quantities in a Bondi-type frame, and to find a way of ex-

pressing such quantities in terms of the metric variables in a typical numerical

chart.

14
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Our approach to wave extraction (chapters 2 and 3) is motivated by the

desire to evaluate useful gauge-invariant quantities (such as the Bondi mass or

the Weyl scalars) in the full nonlinear theory of relativity, in a numerical chart.

The investigations of Bondi et al. [18] and Newman & Unti [100] suggest that

a method based on asymptotic expansions in an asymptotically flat spacetime

may be successful. This approach will enable us to relate a chart and tetrad

that might be used in numerical relativity to the Bondi chart and tetrad in

which gravitational radiation is best understood. The Weyl scalars in a Bondi

frame can then be expressed purely in terms of the metric variables in the

numerical chart. The use of asymptotic expansions will allow us to remain

in the full nonlinear theory of relativity and will highlight the limitations of

working in linearized theory.

Absorbing boundary conditions were first investigated by the computational

physics community. In 1980 Bayliss & Turkel [7] constructed a sequence of

absorbing boundary conditions for wave-like equations, with each boundary

condition in the hierarchy accurate to higher order than the previous one.

More recently, stable numerical implementations of these boundary conditions

have been obtained [66,67]. Higdon [73] adopted a different approach, in which

discrete boundary conditions for the finite difference approximation to the wave

equation were found. Sequences of Bayliss & Turkel-type boundary conditions

typically involve high radial derivatives, which are difficult to estimate numer-

ically. By defining a sequence of auxiliary variables on ∂Ω and expressing the

boundary conditions in terms of these variables, the radial derivatives can be

removed [54,55,68].

The construction of absorbing boundary conditions in numerical relativ-

ity is particularly difficult because the geometrical structure of the spacetime

varies dynamically during the evolution. The standard way of dealing with

this problem is to treat the spacetime near ∂Ω as a linear perturbation about

a known background. In the far-field region, this is a valid approximation

but, as we will see in chapter 3, it is nevertheless important to understand the

limitations of the perturbative approach.

As a first approximation when constructing absorbing boundary conditions,

one can “freeze” the value of the Weyl scalar Ψ0 (which, in linearized theory, is

dominated by incoming radiation, as illustrated in chapter 5) on ∂Ω to its ini-
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tial value [78,90,114,124]. The resulting boundary conditions, are not perfectly

absorbing; they are known as “radiation-controlling” boundary conditions.

The first use of absorbing boundary conditions in numerical relativity ap-

pears to be by Novak & Bonazzola [101], who considered the scalar wave

equation on a flat background. They obtained boundary conditions which

are perfectly absorbing for quadrupole radiation on a Minkowski background.

More recently, Buchman & Sarbach [22, 23] applied this idea to gravitational

multipole radiation on a Schwarzschild background. They were able to in-

corporate the first order contribution from the mass parameter M into their

boundary conditions. They analysed the initial boundary value problem for

Einstein’s field equations, treating the region near ∂Ω first as a perturbation

about flat space and then as a perturbation about a Schwarzschild spacetime.

By expanding the linearized Weyl tensor in terms of spherical tensor harmon-

ics, a wave equation was obtained which admits sensible definitions of in- and

out-going gravitational radiation. This enabled a hierarchy of boundary condi-

tions BL to be defined. The BL are perfectly absorbing for gravitational modes

with angular momentum number l ≤ L, when applied to Ψ0. The boundary

condition B1 corresponds to the freezing Ψ0 condition mentioned above.

As mentioned previously, due to the strict gauge choices that must be

made in theoretical studies of gravitational radiation, boundary conditions

are typically non-trivial to implement numerically. Ruiz et al. [122] showed

that the boundary conditions of Buchman & Sarbach form a well-posed initial

value problem. Recently, Rinne et al. [116] have taken this work further. The

boundary conditions of Buchman & Sarbach were reformulated in terms of

Regge-Wheeler-Zerilli scalars and imposed on the Einstein equations in har-

monic gauge. To leading order on a Minkowski background, the boundary

condition BL was shown to be perfectly absorbing.

On a Schwarzschild background, the boundary conditions of Buchman &

Sarbach are accurate to first order in M/R, where R is the radial coordinate. In

principle, their calculation could be extended to second order. However, if the

background spacetime is rotating (a Kerr background), then at second order,

the angular momentum of the background will also contribute. At present

their method cannot be applied to perturbations about a Kerr background.

Since it is dominated by incoming radiation near future null infinity, Ψ0

would appear to be the natural gauge-invariant quantity on which to base
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absorbing boundary conditions. However, in chapter 3 we will argue that Ψ0

cannot be estimated accurately using linearized theory, since nonlinear effects

arise in the leading order terms. Of the Weyl scalars, Ψ4 can most accurately be

obtained. However, we will show in chapter 5 that we would need to evaluate

Ψ4 to fifth order in order to use it in an absorbing boundary condition, since

incoming radiation is not present in the lower order terms. This is unlikely

to be possible numerically. Therefore a compromise is required. This can be

achieved by formulating boundary conditions in terms of Ψ2, in which incoming

and outgoing radiation are on an equal footing. In chapter 3 we will show that

the leading order term in Ψ2 can be estimated using linearized theory.

The ultimate goal of this thesis is to obtain absorbing boundary condi-

tions for Ψ2, which take into account the mass and angular momentum of

the background spacetime. Our approach is slightly different from that of

Buchman & Sarbach. Whereas they started from the initial boundary value

problem on a compact domain Ω, we will consider the propagation of linearized

gravitational radiation near future null infinity. In [116], the Regge-Wheeler-

Zerilli formalism was used to construct absorbing boundary conditions on a

Minkowski background. It can also be used to construct boundary conditions

on a Schwarzschild background [23]. However it cannot be used to describe

perturbations on a Kerr background. Instead of the Regge-Wheeler-Zerilli for-

malism, the use of Hertz potentials will enable us to describe perturbations

about Minkowski, Schwarzschild and Kerr backgrounds in a unified manner

and obtain boundary conditions for gravitational radiation linearized about

each of these backgrounds.
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1.4 Outline of this Thesis

The aim of this thesis is to obtain absorbing boundary conditions for numerical

relativity. Since these boundary conditions will be imposed in the far-field

region, away from any gravitational sources, we begin with an investigation

into the asymptotic behaviour of gravitational fields near future null infinity.

This enables us to establish a link between the charts and tetrads used in the

theoretical study of general relativity and those used in numerical relativity.

Next we use Hertz potentials to describe linearized gravitational perturbations

about known spacetime backgrounds. This enables us to obtain theoretically

absorbing boundary conditions in a specific choice of chart and tetrad. Using

the machinery developed earlier we are then able to express these boundary

conditions in terms of the metric variables in a numerical chart.

In chapter 2 we use a Bondi-type coordinate system, with a careful choice

of tetrad, to investigate the asymptotic behaviour of a gravitational field in the

far-field region of an asymptotically flat spacetime. This enables us to obtain

coordinate independent definitions of the Bondi mass and the news function. In

chapter 3, we generalize these results by considering the asymptotic expansion

of a chart and tetrad that might be used by a numerical relativist. The Weyl

scalars, the Bondi mass and the news function can be expressed in terms

of the metric variables in this chart and we are able to demonstrate how to

transform from the theoretical chart into the numerical one. By working in the

full nonlinear theory of relativity we are also able to investigate the limitations

of linearized theory. We find that the leading order terms in Ψ4, Ψ3 and Ψ2

can be evaluated in linearized theory but the leading order terms in Ψ1 and

Ψ0 cannot. This suggests that absorbing boundary conditions derived within

linearized theory should not be formulated in terms of Ψ0 or Ψ1.

Chapter 4 contains an introduction to Hertz potentials, which can be used

to describe linearized gravitational perturbations about background spacetimes

of Petrov type D. On a Minkowski background (chapter 5) the resulting field

equations can be solved exactly. The solutions consist of “incoming” and

“outgoing” radiative parts. We use these solutions to formulate absorbing

boundary conditions for linearized gravitational fields on a flat background.

We formulate a hierarchy of absorbing boundary conditions ÔL for Ψ2, which

are very similar in form to the boundary conditions obtained by Bayliss &
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Turkel [7], and are perfectly absorbing for gravitational waves with angular

momentum number l ≤ L.

In chapters 6 and 7, we generalize these results by considering linearized

gravitational radiation on Schwarzschild and Kerr backgrounds respectively.

Now, the non-vanishing Weyl curvature alters the propagation of the radia-

tion. The field equations can no longer be solved explicitly, but the leading

order behaviour in the region near future null infinity can be determined, and

boundary conditions can be obtained. In the Schwarzschild case, our choice

of coordinate chart results in logarithmic terms in the solution to the field

equation. The resulting boundary conditions are rather cumbersome and un-

likely to be useful for numerical relativity. A careful choice of coordinates in

chapter 7 circumvents this problem and we obtain a sequence of absorbing

boundary conditions for gravitational waves on a Kerr background, similar to

the boundary conditions of Bayliss & Turkel. These boundary conditions are

considerably simpler in form than those of chapter 6. Boundary conditions

on a Schwarzschild background can therefore be obtained by taking the limit

a→ 0, where a is the angular momentum parameter of the Kerr background.

In chapter 8 we express these boundary conditions in a chart that might

be used by a numerical relativist. This is done in two stages. Firstly, we use

the machinery of chapter 3 to evaluate Ψ2 in terms of the metric variables in

the numerical chart. Secondly, coordinate transformations are applied to the

boundary conditions themselves to express them in the numerical chart.
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1.5 Notation and Conventions

The Einstein summation convention is used for tensor indices, spinor indices

and tetrad indices.

In general, a quantity with lower case indices is a tensor, e.g. Rabcd. These

indices run over 0, 1, 2, 3 unless otherwise stated. A quantity with upper case

indices is a spinor, e.g. ΨABCD (the use of spinors is confined to chapter 4).

In addition, a dash (′) on the index and a bar (-) across the spinor denote its

complex conjugate. Thus ōA′
is the complex conjugate of oA. Greek letters

are used to denote tetrad indices. For example eα
a is the ath component of the

tetrad vector eα, and Rαβ = Rabeα
aeβ

b (the use of tetrad indices is confined to

chapter 3 and appendix A.2).

Round brackets on the indices denote symmetrization and square brackets

denote anti-symmetrization:

T(ab) =
1

2
(Tab + Tba),

T[ab] =
1

2
(Tab − Tba). (1.4)

Throughout this thesis we use a Lorentzian metric with signature (+−−−).

A comma (,) denotes partial differentiation, e.g. fa,b. A semicolon (;) denotes

covariant differentiation, e.g. fa;b.

We use geometric units in which Newton’s constant G and the speed of light

c are both equal to 1 so that in Einstein’s equations (1.1) we have κ = 8π.
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The Bondi Mass and the

Outgoing Radiation Condition

In the latter part of this thesis, the propagation, in the far-field region, of

gravitational waves linearized about various background spacetimes will be

investigated, in order to obtain absorbing boundary conditions. However, gen-

eral relativity is an intrinsically nonlinear theory. It is therefore important

to understand the restrictions of linearized theory before using it. Hence we

begin by investigating gravitational radiation in the full nonlinear theory of

general relativity. In the far-field region, this is made possible by expanding

the metric variables in powers of a dimensionless parameter ε = r0/r, where r

is a suitable radial coordinate and r0 is a suitable scale length. In the literature

it is customary to set r0 = 1.

The idea of making 1/r expansions in the asymptotic limit of spacetimes

proves to be a particularly fruitful one. In chapter 3 it will be used to in-

vestigate the link between the specific charts chosen to simplify theoretical

calculations and the charts and tetrads used in numerical relativity. The abil-

ity to move between theoretical and numerical charts and tetrads will enable us

to obtain general formulae for quantities such as the Bondi mass and the news

function in numerical relativity. Furthermore, it will allow us to formulate the

boundary conditions derived in chapters 5, 6 and 7 in a numerical chart.

We start by reviewing the theoretical approach to gravitational radiation.

It is widely believed that the region of spacetime far from an isolated gravi-

tating body is, in some sense, asymptotically Minkowskian. Already in 1962
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Chapter 2. The Bondi Mass and the Outgoing Radiation Condition

Bondi and his co-workers [18, 123] developed asymptotic expansions for the

solution of the full nonlinear vacuum field equations, leading to a rigorous

concept of gravitational radiation in the far-field. Soon afterwards Newman

and Unti [100] produced an alternative version using the NP null tetrad for-

malism [97,98]. A key ingredient in this and later work was the careful choice

of a suitable coordinate chart involving a “retarded time” coordinate u. Both

groups introduced a (u, r, θ, φ) chart, where θ and φ were spherical polar co-

ordinates. They both developed asymptotic expansions as r → ∞, holding

the other coordinates fixed. Subsequent work by Penrose [103] showed that

by a process of “conformal compactification”, infinity could be adjoined to

the spacetime manifold and then treated by standard methods. Most mod-

ern theoretical treatments use the Penrose conformal approach, and the “old-

fashioned” chart-based approach has fallen out of fashion. However it is closer

to what most numerical relativists are calculating, and for this reason we shall

use it here.

The two groups used different u and r coordinates and different dependent

variables. Bondi [18] chose a (u, r, θ, φ) chart where r was an area coordinate

and θ and φ were standard spherical polar coordinates (see below). Their

primary dependent variables were the metric components. Newman & Unti

[100] produced an alternative version using a null “retarded time” coordinate

u. Then the null vector la = gabu,b is geodesic and their coordinate r was

chosen to be an affine parameter for the integral curves of la, along which the

other three coordinates were fixed. Their primary dependent variables were

the tetrad connection components and the tetrad components of the Weyl

curvature tensor. The ten independent Weyl tensor components are usually

described by five complex scalar functions Ψn where n = 0, 1, . . . , 4. (For a

covariant physical interpretation of the Weyl tensor see e.g. [140].)

Both groups were considering the limit r →∞ with the other coordinates

fixed. In the Penrose geometrical picture [103] this region is called future null

infinity. Of course both groups could have considered an “advanced time”

coordinate v, where the corresponding limit is past null infinity. The Ψn in

that case have similar properties and interpretations to Ψ4−n near future null

infinity.

If one wants to consider an isolated system with no extrinsic incoming ra-

diation, then the natural place to impose this is past null infinity. However,
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both groups looked for a condition to be imposed near future null infinity.

Bondi [18] introduced an “outgoing radiation condition” which required the

vanishing of certain terms in the asymptotic expansion of two of the met-

ric components. This condition is stated more precisely below, and in §3.2.

Newman & Unti [100] made a “peeling assumption”: near future null infin-

ity Ψ0 = O(r−5), and with this assumption they were able to demonstrate

a so-called “peeling theorem”: Ψn = O(rn−5). Then Ψ4 = O(r−1) is inter-

preted as the leading term in the outgoing radiation. In the picture of Bondi

et al. [18], the equivalent role is taken by the “Bondi news function” built from

first derivatives of metric components. For a comparison of the conditions in

the two schemes, showing that the outgoing radiation condition implies the

peeling assumption see e.g. Valiente Kroon [81] and §3.4.

By reversing the direction of time, swapping advanced time for retarded

time, one could carry out an almost identical study near past null infinity.

There, assuming the analogous peeling condition, Ψ0 = O(r−1) is to be inter-

preted as the leading term in the extrinsic incoming radiation, and a natural

“incoming radiation condition” near past null infinity would be Ψ4 = O(r−5).

Both the “outgoing radiation condition” and the “peeling assumption” do

not actually preclude the presence of incoming radiation near future null in-

finity. Even within linearized theory the “peeling theorem” allows modest

amounts of incoming radiation (see §5.3.3). Note that the outgoing radiation

condition is in fact also a consistency condition on the type of asymptotic

expansion that is used to describe the spacetime (see for example [30] and

§3.5.1). Without it, logarithmic terms arise in the asymptotic expansions and

so the 1/r expansion is no longer valid.

Bondi et al. [18] originally studied only axisymmetric spacetimes. These

results were then generalized to non-axisymmetric spacetimes by Sachs [123].

Sachs wrote the metric in the form

ds2 =

(
V e2β

r
+ r2hABUAUB

)
du2 − 2e2βdudr

− 2r2hABUBdxAdu + r2hABdxAdxB, (2.1)
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where V, β, δ and γ are suitable functions of u, θ and φ, and

hAB =

(
1
2

(
e2γ + e2δ

)
sin θ sinh(γ − δ)

sin θ sinh(γ − δ) 1
2 sin2 θ

(
e−2γ + e−2δ

)
)

. (2.2)

The indices above run over θ and φ, so that (xθ, xφ) = (θ, φ). The coordinate

chart (u, r, θ, φ) will be defined more precisely later. The restriction to axisym-

metry is obtained by removing the φ−dependence from the metric variables

and setting γ = δ. Sachs found that the news function was now a complex

valued scalar function of the coordinates.

The outgoing radiation condition can now be stated more precisely. It

requires the vanishing of the O(r−2) terms in the asymptotic expansions of γ

and δ.

The Newman-Penrose formalism, used by Newman & Unti [100], casts

the vacuum Einstein field equations into a manifestly chart-independent (but

tetrad-dependent) form. Hence, a sensible first step, when working with grav-

itational radiation in numerical relativity, would be to express the results of

Bondi et al. [18] in Newman-Penrose language. This was first done by Stew-

art [134], who expressed the Bondi mass and the news function in terms of the

Newman-Penrose scalars and the Weyl scalars. However, the analogous cal-

culation based on Sachs’ approach (i.e. without axisymmetry) has never been

performed. The aim of this chapter is to perform this calculation.

Stewart [134] started from the axisymmetric metric used by Bondi et al.

[18], and chose a suitable Newman-Penrose (NP) tetrad. The leading order

terms in Ψ4, Ψ3 and Ψ2 were obtained, and the peeling property of the Weyl

scalars was shown to hold. Furthermore the leading order terms of various

NP scalars were calculated and formulae for the Bondi mass and the news

function in terms of the Weyl scalars and the NP scalars were then obtained.

A conformal transformation was made to show that these formulae were in

agreement with the Bondi-Sachs 4-momentum defined at null infinity [105].

In §2.1 we apply Stewart’s approach to a spacetime which is not necessarily

axisymmetric, taking Sachs’ form of the metric (2.1) as our starting point. It

is found that, when the assumption of axisymmetry is relaxed, we are unable

to estimate the leading order term in Ψ2 without using higher order terms

in the asymptotic expansions of the metric variables. In §2.2 these higher
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order terms are introduced. This enables us to express the Bondi mass in

terms of the NP scalars, confirming that the formulae obtained by Stewart

[134] apply in non-axisymmetric spacetimes. We are also able to calculate

the asymptotic behaviour of the Weyl scalars and explicitly demonstrate the

relationship between the outgoing radiation condition and the Newman-Unti

constraint Ψ0 = O(r−5). Imposing the Einstein field equations (i.e. demanding

that the Ricci curvature vanishes) provides us with a set of constraints for the

asymptotic expansions of the metric variables. Using these constraints, we

are able to show that the outgoing radiation condition is in fact a necessary

condition to avoid coordinate singularities at θ = 0 or θ = π in our particular

choice of chart.

The definitions of the Bondi mass and the news function derived in §2.2 are

still only valid in the tetrad introduced in §2.1. Therefore, in §2.3 we investigate

the effect of Lorentz transformations of the tetrad on these quantities. We find

that under spins, boosts or null rotations about l, the formulae remain valid.
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2.1 The Leading Order Calculation

We begin by introducing the framework used by Sachs [123]. Consider a space-

time foliated by null hypersurfaces, labelled by u = const., where u is a null

coordinate. The null geodesic generators of these hypersurfaces are labelled by

spherical polar coordinates (θ,φ). The coordinate r is a parameter along these

geodesics, and is chosen so that the area element of the surface u = const.,

r = const. is r2dS, where dS = sin θdθdφ is the area element of the unit sphere.

In this section, capital Latin indices range over the θ and φ coordinates. The

metric will be taken to be

ds2 =
(
V e2b − r2hABUAUB

)
du2 + 2e2bdudr

+ 2r2hABUBdxAdu− r2hABdxAdxB, (2.3)

where

hAB =

(
1
2

(
e2g + e2d

)
sin θ sinh(g − d)

sin θ sinh(g − d) 1
2 sin2 θ

(
e−2g + e−2d

)
)

,

and V , UA, g, b and d are functions of the coordinates. Note that we have

adopted a different signature from Sachs [123]. Furthermore, to avoid confusion

when calculating the NP scalars, the β, γ and δ found in (2.1) have been

replaced by b, g and d respectively, and V there has been replaced with rV

here.

Sachs argued that the following conditions are sufficient for asymptotic

flatness:

(i) the limit along a null geodesic generator (in our case r →∞ whilst u, θ

and φ are held constant) exists (this is called future null infinity),

(ii) under such a limiting process V → 1 and rUA, b, g, d→ 0,

(iii) V , UA, g, b and d can be expanded in powers of r−1.

This motivates the following asymptotic expansions:

V = 1− 2Mr−1 + O(r−2), b = b2r
−2 + O(r−3),

g = g1r
−1 + O(r−2), d = d1r

−1 + O(r−2),

U θ = U θ
2 r−2 + O(r−3), Uφ = Uφ

2 r−2 + O(r−3), (2.4)
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where M , g1, d1, b2, U θ
2 and Uφ

2 are functions of u, θ and φ only. Note that one

might expect b to contain a O(r−1) term but this can be removed by a suitable

coordinate transformation (as was done in [18]).

In the axisymmetric version of this calculation [134], g = d. Furthermore,

the freedom in the origin of r was used to remove the O(r−2) term in g. This

idea will be revisited later. Here we use the freedom in the origin of r to

eliminate the O(r−2) term in g + d.

Using the asymptotic expansions listed above, and the Newman-Penrose

tetrad

la = e−2b ∂

∂r
,

na =
∂

∂u
− 1

2
V

∂

∂r
+ U θ ∂

∂θ
+ Uφ ∂

∂φ
,

ma = 2−1/2r−1h−1/2
θθ

[
(1 + ihθφ csc θ)

∂

∂θ
− ihθθ csc θ

∂

∂φ

]
, (2.5)

the NP scalars are found to be

α = −2−3/2r−1 cot θ + O(r−2),

β = 2−3/2r−1 cot θ + O(r−2),

γ =
1

4
i∂u(g1 − d1)r

−1 + O(r−2),

ε = −1

4
i∂u(g1 − d1)r

−2 + O(r−3),

λ =
1

2
∂u(g1 + d1)r

−1 +
1

2
i∂u(g1 − d1)r

−1 + O(r−2),

µ = −1

2
r−1 +

(
M +

1

2
∂θU

θ
2 +

1

2
∂φU

φ
2 +

1

2
U θ

2 cot θ

)
r−2 + O(r−3),

π = −2−1/2(U θ
2 + iUφ

2 sin θ)r−2 + O(r−3),

ν = −2−1/2(∂θM + i∂φM)r−2 + O(r−3),

ρ = −r−1 + 2b2r
−3 + O(r−4),

τ = −2−1/2(U θ
2 − iUφ

2 sin θ)r−2 + O(r−3),

κ = 0,

σ =
1

2
(g1 + d1)r

−2 − 1

2
i(g1 − d1)r

−2 + O(r−3). (2.6)

Since we are performing the calculation in the far-field region we will as-
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sume that for large r we have a vacuum spacetime. We can therefore obtain

constraints on the metric variables by demanding that the Ricci tensor van-

ishes (1.2). In the Newman-Penrose formalism this equates to demanding that

the quantities Φij (for i, j = 0, 1, 2) and Λ all vanish. We impose Φij = 0 and

Λ = 0 at O(r−1) and O(r−2). This results in the following four independent

constraint equations:

b2 =− 1

8
(g2

1 + d2
1), (2.7)

U θ
2 =− (g1 + d1) cot θ − 1

2
∂θ(g1 + d1)−

1

2
∂φ(g1 − d1) csc θ, (2.8)

Uφ
2 =− (g1 − d1) cot θ csc θ

− 1

2
∂θ(g1 − d1) csc θ +

1

2
∂φ(g1 + d1) csc2 θ, (2.9)

0 =∂u

(
2M + U θ

2 cot θ + ∂θU
θ
2 + ∂φU

φ
2

)
+ (∂ug1)

2 + (∂ud1)
2 . (2.10)

As expected, all the metric variables are determined by the two functions g1

and d1. Thus we define the Bondi news function

N =
1

2
∂u(g1 + d1) +

1

2
i∂u(g1 − d1), (2.11)

which determines the leading order behaviour of the gravitational field as we

approach future null infinity. The news function can be expressed in terms of

an NP scalar:

N = lim
r→∞

rλ. (2.12)

Furthermore, on each hypersurface u = const., we define the Bondi mass

MB(u) by integrating over the sphere r = const.

4πMB(u) = lim
r→∞

∫ ∫
M(u, θ, φ)dS. (2.13)

Integrating the constraint (2.10) over the sphere (noting that several terms

vanish upon integration) results in the standard mass loss formula

4π∂uMB(u) = −
∫ ∫

|N |2dS

= − lim
r→∞

∫ ∫
r2|λ|2dS. (2.14)
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This was first obtained for axisymmetric spacetimes by Bondi et al. [18] and

subsequently by Sachs [123] for more general spacetimes. Here we have ex-

pressed the rate of mass loss in terms of NP scalars rather than the metric

variables.

Following Stewart’s calculation [134], we will attempt to express the Bondi

mass in terms of a combination of the NP scalars and the Weyl scalar Ψ2.

However, the lack of axisymmetry causes problems. Because we have only used

the leading order terms in the asymptotic expansions of the metric variables

(2.4), the only information we can obtain about the Weyl scalars is

Ψ4 = −1

2

{
∂2

u(g1 + d1) + i∂2
u(g1 − d1)

}
r−1 + O(r−2)

= −∂uN r−1 + O(r−2),

Ψ3 = 2−1/2∂u

{
−1

2
(g1 − d1) +

1

2
∂φ(g1 + d1) csc θ

− (g1 − d1) cot θ +
1

2
U θ

2

+ i

[
−1

2
(g1 + d1)−

1

2
∂φ(g1 − d1) csc θ

−(g1 + d1) cot θ +
1

2
Uφ

2 sin θ

]}
r−2 + O(r−3),

Ψ2 = O(r−3),

Ψ1 = O(r−4),

Ψ0 = O(r−4). (2.15)

We are unable to evaluate the leading order terms in Ψ2, Ψ1 or Ψ0. This

means that we are not able to find a definition for the Bondi mass in terms of

Ψ2, and we cannot investigate under what conditions the peeling property of

the curvature might hold. In order to make further progress we must look at

higher order terms in the expansions of the metric variables.
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2.2 The Second Order Calculation

In order to investigate the asymptotic behaviour of the Weyl scalars we refine

the 1/r expansions of the metric variables

V = 1− 2Mr−1 + M2r
−2 + O(r−3), g = g1r

−1 + g2r
−2 + g3r

−3 + O(r−4),

d = d1r
−1 − g2r

−2 + d3r
−3 + O(r−3), b = b2r

−2 + b3r
−3 + O(r−4),

U θ = U θ
2 r−2 + U θ

3 r−3 + O(r−4), Uφ = Uφ
2 r−2 + Uφ

3 r−3 + O(r−4).

(2.16)

Recall that we have already chosen the origin of r such that the O(r−2) term

in g + d vanishes, hence the presence of −g2r−2 in the asymptotic expansion

of d.

Calculating the Weyl scalars to second order is most easily done using a

computer algebra package (the author used a Reduce 3.8 script). Algorithms

are available to facilitate such a process [26]. The asymptotic expansion of Ψ2

is found to be

Ψ2 = Ψ(3)
2 r−3 + O(r−4), (2.17)

where

Ψ(3)
2 =−M +

1

6
(g1 + d1)−

1

3
(g1∂ug1 + d1∂ud1)−

1

4
cot θ ∂θ(g1 + d1)

− 1

6
∂φ(g1 − d1) cot θ csc θ − 1

12
∂2

θ (g1 + d1)−
1

6
csc θ ∂2

θφ(g1 − d1)

+
1

12
∂2

φ(g1 + d1) csc2 θ − 1

6
(∂θU

θ
2 + ∂φU

φ
2 + U θ

2 cot θ) +
2

3
∂ub2

+
1

2
i
[
g1∂ud1 − d1∂ug1 + Uφ

2 cos θ + sin θ ∂θU
φ
2 − ∂φU

θ
2 csc θ

]
.

(2.18)

Note that a very useful cancellation has occurred among the second order

terms so that Ψ(3)
2 only depends on the leading order terms in the expansions

of the metric variables (2.16).

Stewart’s definition of the Bondi mass in axisymmetry [134] involved the

combination Ψ2 + σλ. Motivated by this, we calculate the O(r−3) term in

Ψ2 + σλ. Applying the constraints (2.7)-(2.9), integrating over the sphere

(noting that the imaginary part of the integrand vanishes upon integration),
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and using the definition of the Bondi mass (2.13), we obtain

4πMB(u) = − lim
r→∞

∫ ∫
r3 (Ψ2 + σλ) dS (2.19)

= − lim
r→∞

∫ ∫ (
r3Ψ2 + r2σN

)
dS. (2.20)

Therefore the formula for the Bondi mass in terms of NP and Weyl scalars,

previously obtained for axisymmetric spacetimes, is also valid if the assump-

tion of axisymmetry is relaxed. A conformal transformation (as was carried

out in [134]) would show that these results are consistent with the Bondi-Sachs

4-momentum [105].

We now investigate the peeling property of the curvature. The Weyl scalar Ψ0

is found to be

Ψ0 = 2ig2r
−4 + O(r−5). (2.21)

In order to obtain the standard peeling result, Ψi = O(ri−5), we must therefore

set g2 = 0. This is precisely the same as imposing the outgoing radiation

condition. Valiente Kroon [81] showed that in general the outgoing radiation

condition implies that Ψi = O(ri−5) but the converse is not necessarily true.

However, for this particular choice of coordinate chart and tetrad, the outgoing

radiation condition and the condition Ψ0 = O(r−5) are equivalent to each other

and are necessary and sufficient for the peeling property of the Weyl curvature

to hold.

At first glance, the results of the previous paragraph would seem to contra-

dict Stewart’s calculation [134], in which the peeling property of the curvature

was obtained without imposing either of the two conditions mentioned above.

However, the choice of r which removed the O(r−2) terms in his g meant that

the outgoing radiation was automatically satisfied, so there is no contradiction.

Thus in the axisymmetric case, the outgoing radiation condition can be satis-

fied by a careful gauge choice. Any logarithmic terms that one might expect

to arise in the asymptotic expansion are also removed by this choice of gauge.

This is not true in the more general case considered in this chapter. Here

it appears that the outgoing radiation condition (and therefore the removal

of logarithmic terms in the asymptotic expansion) cannot automatically be

satisfied by a choice of gauge.
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By demanding that the Ricci curvature vanishes (so that the quantities

Φij and Λ vanish) and looking at higher order terms in 1/r, we obtain fur-

ther constraints on the additional variables defined in (2.16). Specifically, by

demanding Φ20 ± Φ02 = 0 and Φ10 = 0 and using (2.7)-(2.9) to simplify the

results, we obtain

∂ug2 = 0, (2.22)

∂φg2 = 0, (2.23)

∂θg2 = −2g2 cot θ, (2.24)

and we deduce

g2 ∝ csc2 θ. (2.25)

Unless we impose the outgoing radiation condition g2 = 0, the covariant form

of the metric will contain coordinate singularities at θ = 0, π. In our particular

choice of chart, the outgoing radiation condition can therefore be interpreted

as the condition that the covariant form of the metric on the unit 2−sphere

r = const. u = const. is well-behaved at θ = 0 and θ = π. Note, however, that

the coordinate singularities at θ = 0 and θ = π can easily be removed by a

coordinate transformation.
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2.3 Transformations of the Tetrad

The arguments presented in §2.2 are valid only in the tetrad (2.5). What

happens to the formulae (2.12), (2.14) and (2.19) if we perform a change of

tetrad (a Lorentz transformation) into a more general frame?

The most important characteristics of the tetrad (2.5) are that la is geodesic

(κ = 0) and asymptotically affinely parameterized (ε + ε̄ = O(r−3)). We will

consider only tetrad changes that preserve these properties. The behaviour

of the NP scalars under spins, boosts and null rotations about l and n can

be read off from appendix B of [135]. The following transformations preserve

κ = 0 and ε + ε̄ = 0:

(i) a null rotation about l, by a complex parameter c

l → l, n→ n + cm + c̄m̄ + cc̄l, m→ m + c̄l, (2.26)

(ii) a spin through an angle ψ

l → l, n→ n, m→ e2iψm, (2.27)

(iii) a boost by the real parameter a, where ∂ra = 0

l → a2l, n→ a−2n, m→ m. (2.28)

Under a null rotation c about l, the scalars Ψ2, λ and σ transform in the

following way:

Ψ2 → Ψ2 + 2cΨ1 + c2Ψ0,

λ→ λ + cπ + 2cα + c2(ρ + 2ε) + c3κ + clac;a + m̄ac;a,

σ → σ + c̄κ. (2.29)

Under a spin ψ and a boost a

Ψ2 → Ψ2,

λ→ a−2e−4iψλ,

σ → a2e4iψσ. (2.30)

33



Chapter 2. The Bondi Mass and the Outgoing Radiation Condition

Consider first the Bondi mass (2.19). Under spins and boosts, the integrand

in (2.19) is unchanged. We expect that c = O(r−1) as r → ∞. Then we find

that under a null rotation about l, the leading order term in Ψ2+σλ is invariant

and hence the right hand side of (2.19) is unchanged.

Consider now the news function, defined by (2.12). Under a null rotation

about l, with c = O(r−1) as r → ∞, the leading order term in λ will be

unchanged and so N will be invariant. Under a spin through an angle ψ, the

news will undergo a phase shift of e−4iψ. Under a boost a, the news will be

scaled by a factor of a−2. This is not unexpected, since l is also scaled, l → a2l.

Finally we discuss the mass loss formula (2.14). Under a null rotation about

l, if we once again demand that c = O(r−1) as r →∞, then the leading order

term in λ is unchanged and so the integrand in (2.14) is invariant. Under a spin

through an angle ψ, there is the phase shift λ→ e−4iψλ. Again, the integrand

in (2.14) is unchanged. Finally under a boost, λ → a−2λ, the integrand will

scale by a factor of a−4. This is expected, since la = (du)a and so the left-hand

side of (2.14) undergoes a similar transformation. We conclude that the mass

loss formula (2.14) remains valid under the spins, boosts and null rotations of

the tetrad that were considered above.

In summary, the Bondi mass, the news function and the rate of mass loss

are quantities which can be defined in terms of the Newman-Penrose scalars

and the Weyl scalars by (2.19), (2.12) and (2.14) respectively. The Newman-

Penrose scalars are evaluated in a very specific Bondi tetrad. If we perform a

Lorentz transformation of the tetrad which preserves the direction of l, then

the formulae (2.12), (2.14) and (2.19) will still apply when evaluated using the

NP scalars in the “new” frame, although the news function may undergo a

phase shift. In §3.4 we will extend this discussion to consider null rotations

about n.
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2.4 Some Preliminary Conclusions

The main results of this chapter are as follows.

(i) The expressions for the news function and the Bondi mass in terms of the

Weyl scalars and the Newman-Penrose scalars in an axisymmetric space-

time [134] can be generalized to a non-axisymmetric spacetime, but extra

terms in the asymptotic expansions of the metric variables are required

in order to perform the calculation. The expressions for the Bondi mass

(2.19), the rate of mass loss (2.14) and the news function (2.12) remain

valid under spins, boosts and null rotations about l (although the news

function will undergo a phase shift associated with the spin).

(ii) The Bondi mass, the news function and the Weyl scalars Ψ4, Ψ3, Ψ2 only

depend on the leading order terms in the 1/r expansions of the metric

variables. This lends credence to the idea that a numerical relativist

might be able to accurately calculate these quantities.

(iii) We have a clear illustration of Valiente Kroon’s result [81] on the re-

lationship between the outgoing radiation condition and the condition

Ψ0 = O(r−5). In the chart and tetrad used in this chapter, the condi-

tions are equivalent to each other and are necessary and sufficient for

peeling to occur.

(iv) In our particular choice of coordinate chart, the outgoing radiation con-

dition is a necessary condition to avoid coordinate singularities in the

covariant form of the metric at θ = 0 and θ = π (although these singu-

larities can be removed by a coordinate transformation).

The results of this chapter are still of limited use in numerical relativity.

We have taken a first step in linking theoretical studies of gravitational radi-

ation with numerical studies, by obtaining definitions of the Bondi mass and

the news function in terms of the Newman-Penrose and Weyl scalars. How-

ever these definitions still require a careful choice of tetrad, and it is still not

obvious how to evaluate such quantities in numerical relativity. Furthermore,

the limitations of linearized theory remain unclear. Chapter 3 examines these

problems in more detail.
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Chapter 3

Numerical Relativity and

Asymptotic Flatness

In this chapter [40], we investigate the link between theoretical studies of grav-

itational radiation (such as the study in chapter §2) and numerical relativity.

In recent years, researchers have expended considerable effort on the nu-

merical evolution of asymptotically flat spacetimes. A minority of researchers

have adopted the Penrose conformal approach, but most have chosen to evolve

the spacetime as far out (both in space and time) as is feasible, truncating

the spatial domain with an artificial boundary ∂Ω (see §1.3). Then some

matching process is required to interpret their numerical data in the Bondi

or Newman-Unti pictures in which gravitational radiation is best understood.

This, the goal of this chapter, turns out to be far from trivial. The choice of

a coordinate chart is an intrinsic part of the numerical evolution and the final

data are available only in this chosen chart. Each numerical relativity group

has its own favoured chart or charts and they usually bear little resemblance

to the Bondi or Newman-Unti ones. Furthermore the numerical data do not

contain complete information because the inevitable occurrence of numerical

errors will corrupt the values of higher derivatives—from it one can construct

reliably only a few leading terms in the asymptotic expansions1.

1Consider an asymptotic expansion, as r →∞,

f(r) = f0 + f1r
−1 + f2r

−2 + . . . .

We interpret this as the Taylor series for f(q) about q = 0, where q = r−1. Then the fn are,
up to numerical factors, the nth-derivatives of f with respect to q, evaluated at q = 0.
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The usual approach adopted by numerical relativists is to argue that, far

from the isolated source, the gravitational field is weak, and so linearized

theory can be used to match the numerical and the Bondi or Newman-Unti

pictures. Bondi argued strongly against such an approximation, pointing out

the fundamental nonlinearity of general relativity. Even if plausible arguments

in its favour could be found, linearization carries its own difficulties. The first

is that, in a non-compactified spacetime, the matching process is a global one.

Furthermore, given a spacetime, the choice of a simpler second spacetime of

which the first can be considered a linearized perturbation, is not unambiguous.

Even if such a choice could be justified, the transformation between the charts

in the two spacetimes would not, in general, be smooth.

As a concrete example illustrating these points, consider the well-known

Schwarzschild metric in the standard (t, r, θ, φ) chart

gS
ab = diag(F,−F−1,−r2,−r2 sin2 θ), (3.1)

where F = 1− 2M/r. In the region where r ' 2M this might appear to be a

small perturbation of Minkowski spacetime with metric

gM
ab = diag(1,−1,−r2,−r2 sin2 θ), (3.2)

but this is deceptive. Consider the scalar wave equation gabΨ;ab = 0 on the

two spacetimes. We would measure outgoing radiation at future null infinity

by taking the limit r → ∞ holding u constant, where u is a retarded time

coordinate. Two standard choices for u are

uM = t− r, uS = t− r∗, (3.3)

where

r∗ =

∫
F−1 dr = r + 2M log

∣∣∣
r

2M
− 1

∣∣∣ + const. (3.4)

Thus

uM = uS + 2M log
∣∣∣

r

2M
− 1

∣∣∣ + const. (3.5)

The Schwarzschild null infinity is given by r →∞ holding uS constant, which

implies uM →∞. This is known as future timelike infinity for the Minkowski

spacetime. Equivalently the Minkowski null infinity involves taking the limit
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r →∞ with uM constant, which corresponds to r →∞, with uS → −∞. This

is known as spacelike infinity for the Schwarzschild spacetime. Thus the limits

in the two charts are different. This happens because of the global nature of

the limiting process.

In order to achieve comparable limiting processes we need to redefine the

two charts. Here, both spacetimes are static and so it is simplest to retain the

t-coordinate. Suppose we invert (for r > 2M) the relation (3.4), r∗ = r∗(r)

giving r = r(r∗) and introduce a new chart (t, r∗, θ, φ). Then the Schwarzschild

line element (3.1) becomes

gS
ab = diag(F,−F,−r2,−r2 sin2 θ). (3.6)

Using the same chart the Minkowski line element is

gM
ab = diag(1,−1,−r2,−r2 sin2 θ). (3.7)

Now the two metrics (3.6) and (3.7) are not only small perturbations of each

other (for large r∗), but they share the same causal structure, u = t − r∗ in

both cases. (There are of course many other ways of doing this, e.g. retain the

r’s and change the t’s, which is the approach to be adopted in this chapter.)

Note also the appearance of logarithms, which means that the transformations

are not smooth.

The purpose of this chapter is to examine in more detail these issues from

the point of view of the numerical relativist. In §3.1 we state what information

we believe is available in a typical numerical evolution, and we assume that

this information is expressed in terms of a given chart Xa = (T, R, Θ, Φ) which

is asymptotically Minkowskian. Section 3.2 addresses the construction of an

approximate Bondi-like chart xa = (u, r, θ, φ) using this information. This

circumvents the problem referred to above. We write down here the explicit

form of the Bondi et al. outgoing radiation condition. We introduce a Newman-

Penrose (NP) tetrad [97] adapted to the problem by Newman & Unti [100] in

§3.3. At leading order this is the usual NP tetrad for Minkowski spacetime.

At each order, r−1, r−2, . . . , there are 16 real coefficients describing the tetrad.

However from §3.2 we know that only 10 coefficients are needed to describe

the metric. There are six coefficients which describe an infinitesimal Lorentz

transformation at each order, and, for the moment, we do not make a particular
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choice for them.

In §3.4 we obtain the asymptotic solution of the full nonlinear vacuum

Einstein equations. The vanishing of the Ricci curvature provides us with

constraints on the metric variables in a similar manner to §2.1 and §2.2. As

we obtain the asymptotic solution of the field equations, we fine-tune our chart

and NP tetrad to make them closer to those of Bondi et al. and Newman-Unti.

Once we have set the Ricci curvature, to the best of our abilities, to zero,

we turn to the Weyl curvature described by the Weyl scalars Ψn referred to

earlier. We find that Ψn = O(rn−5) for n = 4, 3, 2, 1, but Ψ0 = O(r−4),

which would appear to violate the Newman-Unti peeling assumption. However

using the information gleaned from solving the vacuum field equations and the

fine-tuning of the chart and tetrad, we can show that the Bondi outgoing

radiation condition implies the Newman-Unti peeling condition so that the

peeling theorem then holds. These results are consistent with those of the

previous chapter.

The bad news is that the leading order terms in the Weyl scalars Ψ0 =

O(r−5) and Ψ1 = O(r−4) cannot be estimated using the information we judge

to be available from the numerical data in §3.1. Although these scalars can

be computed in linearized theory, the results would appear to be inconsistent

with the full nonlinear theory of relativity near future null infinity.

The good news is that we can compute the leading terms in Ψ4 = O(r−1),

equivalent to the “Bondi news function” (and we can compute this scalar ac-

curately within linearized theory). The same holds for Ψ3 = O(r2), which

involves nonlinear terms, but these can be removed by the fine-tuning process.

We can also compute Ψ2 = O(r−3) which involves nonlinear terms in an essen-

tial way. This means that we can offer reliable estimates of the “Bondi mass”

MB(u) of the isolated system2, and its rate of decrease dMB/du ≤ 0, presum-

ably due to the radiation of energy, both manifestly inaccessible to linearized

theory.

The final section §3.5 translates these results back into the Xa chart of

§3.1 used by a typical numerical relativist. From her/his standpoint there is

no need to go through the elaborate construction of a theoretical chart and NP

2The “Bondi mass” is of course the timelike component of a 4-vector and so frame
dependent. But a numerical relativity evolution singles out a well-defined frame, and that
is the one in which the mass is computed.
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tetrad carried out in the intermediate sections. Instead, we offer “numerical

relativity recipes” so that they can compute the key quantities referred to in

the previous paragraph in their own preferred chart.

The key ideas in this chapter are at least forty years old, and one might

ask why were these results not given before? The nonlinear calculations of

[18], [123] and [100] were made possible by careful, clever, a priori choices of

chart and tetrad. In this chapter, we have to start from more or less arbitrary

choices and so the resulting expressions are horrendously complicated. In

order to handle them accurately we have utilized a computer algebra system.

We used Reduce 3.8. This choice reflected experience and knowledge of one

particular computer algebra system, but used no features not available in some

other systems.
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3.1 The Numerical Data

Many numerical relativists might choose a quasi-spherical polar chart Xa =

(T, R, Θ, Φ) for the numerical evolution of the spacetime surrounding an iso-

lated gravitational source. We could also define an associated quasi-Cartesian

chart Y a = (T, X, Y, Z) where

X = R sin Θ cos Φ, Y = R sin Θ sin Φ, Z = R cos Θ.

We shall be interested in the limit R → ∞. As stated this limit is mean-

ingless unless we specify the behaviour of the other three coordinates under

the limiting process, and we shall rectify this omission shortly. It proves very

convenient to introduce the notation

On = O(R−n) as R→∞. (3.8)

Our fundamental assumption is that the spacetime outside an isolated source

is asymptotically Minkowskian, expressed by the idea that, as seen in the Y a

chart,

gab = ηab + g(1)
ab R−1 + g(2)

ab R−2 + O3, (3.9)

where ηab = diag(1,−1,−1,−1) and the g(n)
ab are supposed to remain constant

during the limiting process. Transforming from the Minkowskian chart to the

spherical polar one we find that the metric components in the Xa chart look

like

g00 = 1 + h00R
−1 + k00R

−2 + O3,

g01 = h01R
−1 + k01R

−2 + O3,

g02 = h02 + k02R
−1 + O2,

g03 = h03 + k03R
−1 + O2,

g11 = −1 + h11R
−1 + k11R

−2 + O3,

g12 = h12 + k12R
−1 + O2,

g13 = h13 + k13R
−1 + O2,

g22 = −R2 + h22R + k22 + O1,

g23 = h23R + k23 + O1,

g33 = −R2 sin2 Θ + h33R + k33 + O1.

(3.10)
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Here the functions {hab} and {kab} are required to remain constant during the

limiting process.

We will also need the asymptotic form of the inverse metric gab which is

readily obtained from the relation gacgcb = δa
b. We find

g00 = 1 + h00R−1 + k00R−2 + O3,

g01 = h01R−1 + k01R−2 + O3,

g02 = h02R−2 + k02R−3 + O4,

g03 = h03R−2 + k03R−3 + O4,

g11 = −1 + h11R−1 + k11R−2 + O3,

g12 = h12R−2 + k12R−3 + O4,

g13 = h13R−2 + k13R−3 + O4,

g22 = −R−2 + h22R−3 + k22R−4 + O5,

g23 = h23R−3 + k23R−4 + O5,

g33 = −R−2 csc2 Θ + h33R−3 + k33R−4 + O5.

(3.11)

Explicit formulae for the hab and the kab are given by equations (A.1) and

(A.2) in appendix A.1. At this level of approximation

gacgcb = δa
b + O3.

A numerical evolution in which the dependent variables include both gab

and gab,c (usually called a “first order formulation”) should produce accurate

values for hab and its first derivatives, and for kab. Otherwise we assume that

these variables are available for discrete ranges of T , Θ and Φ so that the

corresponding derivatives can be estimated.
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3.2 The Bondi Chart

Most of the theoretical work which has been done on outgoing gravitational

radiation involves a “Bondi chart” (u, r, θ, φ) in which u is a retarded time

coordinate (see e.g. [18], [97], [100] and chapter 2).

Here we take the viewpoint that the Xa = (T, R, Θ, Φ) chart introduced in

§3.1 is the fundamental one in which, ultimately, all numerical calculations will

be performed. Starting from this chart we need to construct an xa = (u, r, θ, φ)

one which has all the essential features of a Bondi chart. We start by studying

the function u(T, R, Θ, Φ).

Because u is a null coordinate it has to satisfy the relativistic eikonal equa-

tion

gabu,au,b = 0. (3.12)

This is a well-known nonlinear equation with four independent variables which

is exceedingly difficult to solve with any generality. (Even the restriction of

(3.12) to Minkowski spacetime leads to the surprisingly rich structure of light

ray caustics, see e.g. [135].) Note that there is a “gauge freedom”—if u is a

solution then so is U(u) for any differentiable function U .

The standard procedure is to specify u on a spacelike hypersurface in space-

time, and then existence and local uniqueness of u is guaranteed by standard

theorems. However, the standard procedure is of little utility in this context,

for no obvious choice of data suggests itself, and so we adopt a different ap-

proach.

Consider first the special case of a Minkowski spacetime, where (3.12) can

be rewritten as

(u,T )2 − (u,R)2 = R−2
[
(u,Θ)2 + csc2 Θ(u,Φ)2

]
= O2. (3.13)

Suppose we look for spherically symmetric solutions u = u(T, R). Setting

ω = u,R/u,T in (3.13) we find ω2 = 1. Using the gauge freedom mentioned

earlier we may impose u,T = 1 to find

du = dT ± dR,
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which implies

u = T ±R + const.

T −R is called retarded time and T + R is called advanced time.

Although the special case appears trivial it is the key to the general one.

Within this paragraph only let the indices i, j range over 0, 1 and let the indices

I, J range over 2, 3. Perusal of the display (3.11) shows that gij is O0 while

both giJ and gIJ are O2. Thus the eikonal equation takes the form

giju,iu,j = O2, (3.14)

which should be compared with (3.13) above. As boundary conditions (as

R→∞) we impose

u,T = 1 + O1, u,I = O1. (3.15)

This means that the eikonal equation takes the form

giju,iu,j = O3, (3.16)

which we can write as a quadratic equation for ω = u,R/u,T . Choosing the

sign appropriate for a retarded time coordinate, we find the solution

u,R = −
(

1 +
2m1

R
+

2m2

R2

)
u,T + O3, (3.17)

where

m1 = −1

4
(h00 + 2h01 + h11), (3.18)

and

m2 =− 1

16

[
4k00 + 8k01 + 4k11 + (h00 − h11)

2

− 4(h00 + h01)
2 + 4(h02 + h12)

2 + 4(h03 + h13)
2 csc2 θ

]
.

(3.19)

Thus

du = u,T dT − u,T

(
1 +

2m1

R
+

2m2

R2

)
dR + O3. (3.20)

We leave some freedom in u by setting

u,T = 1 +
q1

R
+

q2

R2
+ O3, (3.21)
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where q1 and q2 are R-independent functions. At the moment they are arbi-

trary. The requirement that the vacuum Einstein equations hold then deter-

mines inter alia q1, see §3.4. In our calculation, q2 is not used directly.

We need next to specify a radial coordinate r = r(T, R, Θ, Φ). The simplest

choice is r = R. This has the great practical advantage that On = O(R−n) =

O(r−n). It could be argued that our choice of r is neither the Bondi area

coordinate nor an affine parameter along the outgoing null rays as favoured

by [100]. However, since both of those approaches are known to be essentially

equivalent (see chapter 2), it would seem that the discussion is not sensitive

to the precise choice of r.

Then (3.20) implies

dT =

(
1− q1

r
− q2 − q1

2

r2

)
du +

(
1 +

2m1

r
+

2m2

r2

)
dr + O3, (3.22)

and so

(
∂T

∂u

)

r

= 1− q1

r
− q2 − q1

2

r2
+ O3,

(
∂R

∂u

)

r

= 0, (3.23)

(
∂T

∂r

)

u

= 1 +
2m1

r
+

2m2

r2
+ O3,

(
∂R

∂r

)

u

= 1. (3.24)

Finally we consider the choice of angular coordinates θ = θ(T, R, Θ, Φ) and

φ = φ(T, R, Θ, Φ). We shall require θ = Θ + O1 and φ = Φ + O1, and so the

relations, being close to the identity, are invertible. It is more convenient to

posit

Θ = θ +
y2

r
+

z2

r2
+ O3, Φ = φ +

y3

r
+

z3

r2
+ O3, (3.25)

where the functions yJ and zJ do not depend on r but are otherwise arbitrary.

Equations (3.25) are certainly consistent with the boundary conditions (3.15).

We can now specify the limiting process as r → ∞ holding u, θ and φ

constant. Thus we are regarding mn, qn, yJ , zJ , {hab} and {kab} as functions

of u, θ and φ.
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Because we know the Jacobian (∂Xa/∂xb) we can write down the metric

components in the xa = (u, r, θ, φ) chart

g00 = 1 + a00r
−1 + b00r

−2 + O3,

g01 = 1 + a01r
−1 + b01r

−2 + O3,

g02 = −ry2,u + a02 + b02r
−1 + O2,

g03 = −rz2,u sin2 θ + a03 + b03r
−1 + O2,

g11 = a11r
−1 + b11r

−2 + O3,

g12 = a12 + b12r
−1 + O2,

g13 = a13 + b13r
−1 + O2,

g22 = −r2 + a22r + b22 + O1,

g23 = a23r + b23 + O1,

g33 = −r2 sin2 θ + a33r + b33 + O1.

(3.26)

Two points should be noted here. Firstly the leading terms in g02 and g03, if

non-zero, would violate our notion of an asymptotically Minkowskian space-

time, for they are not present in the standard Minkowski line element. Thus

we need to impose the conditions or “constraints”

y2,u = z2,u = 0. (3.27)

Explicit formulae for the amn in terms of the hmn, q1, m1, y2 and z2 (after

imposing (3.27)) are given as (A.3) in appendix A.1. We could also give explicit

formulae for the bmn in terms of {hmn}, {kmn}, qn, mn, yn and zn but they

are rather lengthy, and are most easily generated using a computer algebra

package.

Next recall that the u-coordinate was constructed as a solution of the

eikonal equation (3.16). Thus, as seen in the (u, r, θ, φ) chart, g00 = O3. This

implies g11 = O2 and so a11 = 0. One may verify this directly by comparing

the explicit expression for a11 given in (A.3) with (3.18). We will show later

that by making a suitable choice for y2 and y3, we can achieve b11 = 0 so that

g11 = O3 as expected.

We now have sufficient notation available to write down the “outgoing
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radiation condition” of [18] as

a33 = −a22 sin2 θ, b33 = b22 sin2 θ, b23 = 0, (3.28)

which we shall invoke later. The outgoing radiation condition is deduced by in-

specting the real and imaginary parts of the O4 term in Ψ0 (3.55) and requiring

that they vanish so that the peeling property holds.
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3.3 The Newman-Penrose Tetrad

Since most recent studies of gravitational radiation use a Newman-Penrose

null tetrad [97], we need to introduce one. The basics of tetrad formalisms are

due to Schouten [129]. Many textbooks contain more readable, but often suc-

cinct accounts, and [27] chapter 1, section 7, is a good pedagogic compromise.

With small, but necessary, changes in notation this is summarised in appendix

A.2. The specialisation of this approach to the original NP formalism is given

in [26]. It turns out that the calculations that we need to perform become

surprisingly intricate, and so are most conveniently handled using a computer

algebra system.

We use a tetrad of vectors eα
a and the dual tetrad of covectors eα

a. (The

tetrad indices are Greek characters and always occur first.) Tetrad indices are

lowered and raised using εαβ and εαβ where

εαβ = εαβ =





0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0




.

In NP notation we have

e0
a = la, e1

a = na, e2
a = ma, e3

a = ma,

e0
a = na, e1

a = la, e2
a = −ma, e3

a = −ma. (3.29)

(3.30)

We shall require that, to leading order, la = u,a.

Setting s = 2−1/2 we write the tetrads as3

3In our calculations we actually included one extra term in each of the asymptotic ex-
pansions below. E.g., the first component of e0

a was written as

e0
0 = 1 + c00/r + d00/r2 + j00/r3 + O4.

These “junk” terms show up in our expressions for the connection and curvature components.
In any expression where a junk term occurs we regard all terms of that (and any higher order)
as being junk, and not computable from the data described in section 3.1.
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e0
a = (1 + c00r

−1 + d00r
−2 + O3, c01r

−1 + d01r
−2 + O3,

c02 + d02r
−1 + O2, c03 + d03r

−1 + O2),

e1
a = (1

2 + c10r
−1 + d10r

−2 + O3, 1 + c11r
−1 + d11r

−2 + O3,

c12 + d12r
−1 + O2, c13 + d13r

−1 + O2),

e2
a = (c20r

−1 + d20r
−2 + O3, c21r

−1 + d21r
−2 + O3,

− sr + c22 + d02r
−1 + O2, isr sin θ + c23 + d23r

−1 + O2),

e3
a = (c30r

−1 + d30r
−2 + O3, 1 + c31r

−1 + d31/r
−2 + O3,

− sr + c32 + d32r
−1 + O2, −isr sin θ + c33 + d33r

−1 + O2),

(3.31)

and

e0
a = (1 + c00r−1 + d00r−2 + O3, −1

2 + c01r−1 + d01r−2 + O3,

c02r−2 + d02r−3 + O4, c03r−2 + d03r−3 + O4),

e1
a = (c10r−1 + d10r−2 + O3, 1 + c11r−1 + d11r−2 + O3,

c12r−2 + d12r−3 + O4, c13r−2 + d13r−3 + O4),

e2
a = (c20r−1 + d20r−2 + O3, c21r−1 + d21r−2 + O3,

− sr−1 + c22r−2 + d02r−3 + O4, −is csc θr−1 + c23r−2 + d23r−3 + O4),

e3
a = (c30r−1 + d30r−2 + O3, 1 + c31r−1 + d31r−2 + O3,

− sr−1 + c32r−2 + d32r−3 + O4, is csc θr−1 + c33r−2 + d33r−3 + O4).

(3.32)

Each tetrad contains, at each order, 32 real coefficients. This is because,

although c2n and c3n are complex, we also have c2n = c3n etc. The relation

eµ
aeν

a = δµ
ν allows one to determine the cmn in terms of the cmn and the

dmn in terms of the cmn and the dmn, reducing the number of unknowns, at

each order, from 32 to 16. The first set of these is given as equation (A.4) in

appendix A.1. The second set is rather lengthy and best generated using a

computer algebra package.

We also have the relation εµνeµ
aeν

b = gab, and this enables us to determine

{amn} in terms of {cmn}. Note that there are 10 real amn and 16 real cmn.

Given the tetrad, the metric is uniquely determined. But for a given metric

there is a 6-parameter family of tetrads which give rise to it. They are of

course Lorentz transformations of each other and the Lorentz group has 6
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arbitrary parameters. We introduce 6 arbitrary first order Lorentz parameters

αm(u, θ, φ) and can determine the cmn in terms of the amn and the αm. There

are many different ways of doing this, and one is written down explicitly as

(A.5) in appendix A.1. We can of course write down the dmn in terms of

the amn, bmn, αm and extra second order Lorentz parameters βm, but the

expressions are rather lengthy and, once again, are best generated by computer

algebra.
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3.4 The Curvature Tensors

We now use the tetrads developed in §3.3 to evaluate the Ricci and Weyl

curvature tensors using the algorithm outlined in appendix A.2. At each stage

we convert all instances of {cmn} and {dmn} to instances of {cmn} and {dmn}
using (A.4) and its second order analogue. Then we convert all instances of

{cmn} and {dmn} to instances of the metric coefficients {amn} and {bmn} using

(A.5) and its second order analogue. These conversions are implicit and will

not be mentioned explicitly again.

We start by looking at the Ricci tensor component R11 = Rabe1
ae1

b =

Rablalb. We find

0 = R11 = a11,ur
−2 + O3. (3.33)

We chose our chart to ensure that u was approximately a null coordinate or

equivalently g00 = O3, or g11 = O1. This means that we have to enforce

a11 = 0, and so the leading order term in R11 vanishes. We look next at

0 = R01 = Rabe0
ae1

b = Rabn
alb = −1

2
a11,uur

−1 + O2. (3.34)

Again the leading order term vanishes automatically. Next consider

0 = R12+R13 = −2sa12,ur
−2+O3, 0 = R12−R13 = −2isa13,u csc θ r−2+O3,

(3.35)

where s = 2−1/2. We deduce that

a12,u = a13,u = 0. (3.36)

Furthermore, we can compute

0 = R02+R03 = sa12,uur
−1+O2, 0 = R02−R03 = isa13,uu csc θ r−1+O2,

(3.37)

If we inspect R23 and use (3.36) we find

0 = R23 =
1

2
(a22,u + a33,u csc2 θ)r−2 + O3, (3.38)

and we deduce that

a22,u + a33,u csc2 θ = 0. (3.39)
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Next we compute

R00 = −1

2
(a22,uu + a33,uu csc2 θ)r−1 + O2, (3.40)

and we see immediately from (3.39) that the leading term vanishes, and so

this furnishes no new information. Finally, inspection of the leading O2 terms

in R22 ±R33 reveals that they vanish automatically because of a11 = 0, (3.36)

and (3.39). Thus we have

R22 + R33 = O3, R22 −R33 = O3. (3.41)

We have found, so far, that the conditions a11 = 0, (3.36) and (3.39) imply

that R00, R01, R02 and R03 are O2 while the other components are O3.

At this point we need to examine (3.36) more closely. Using (A.3) we have

(h02 + h12 + y2),u = 0 (h03 + h13 + z2 sin2 θ),u = 0. (3.42)

Now we know that the functions y2 and z2 are arbitrary, apart form the con-

straints (3.27), and so (3.42) implies

(h02 + h12),u = 0 (h03 + h13),u = 0. (3.43)

We may therefore choose, consistent with the constraints (3.27),

y2 = −(h02 + h12), z2 = −(h03 + h13) csc2 θ, (3.44)

which, using (A.3), sets

a12 = a13 = 0. (3.45)

The choice (3.44) has an added advantage that if we now express b11 in

terms of the hab, kab, m1 and m2, y2 and z2 we find that b11 = 0, so that

g11 = O3. At the same time we can examine b12 and b13 which are linear in

y3 and z3 respectively. By choosing y3 and z3 appropriately we may arrange

b12 = b13 = 0.

This is a convenient point at which to examine the choice of a specific

Lorentz transformation. In our tetrad, this is determined at leading order by

the parameters αn (see (A.5)). Newman & Penrose [97] chose u to be a null
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coordinate, gabu,aub = 0, and also chose la = u,a. For a symmetric connection,

it follows easily that la;blb = 0. Even if we set la = f(xc)u,a we find that la;blb is

proportional to la so that we still have a null geodesic, albeit not necessarily an

affinely parameterized one. The rest of this paragraph relies on some details

of the Newman-Penrose formalism which can be checked swiftly using, for

example, appendix B of [135]. Within the NP formalism

la;bl
b = (ε + ε)la − κ̄ma − κma, (3.46)

where κ and ε are NP spin coefficients defined below. Now our coordinate u is

only approximately null, and our covector la is only approximately its gradient.

Here κ = malbla;b = γ131 (using the notation of appendix A.2) turns out to be

O3. However if we choose α4 = α5 = β4 = β5 = 0, and anticipate a01 = 0

(see next paragraph), we obtain κ = O4. Also ε + ε = nalbla;b = γ011 is O2,

but if we choose α1 = 0, then we find ε + ε is O3. We also find τ = γ130 =

(α2 + iα3)r−2 + O3. If we impose α2 = α3 = 0 then τ = O3 . At this stage we

also choose α6 = β6 = 0 for reasons given below.

Now we need to examine each of the remainder (next order) terms in (3.33),

(3.34), (3.35), (3.37), (3.38), (3.40) and (3.41). For example, we now find

that the O3 terms in R11 vanish if and only if we set a01 = 0, and then

R11 = O4. This also implies that the O2 terms in R01 vanish, so that R01 =

O3. We already established that R12 ± R13 = O3. Setting the leading order

terms to zero furnishes expressions for a02 and a03 which we use for subsequent

simplifications. Now R12±R13 = O4. We find then that our previous estimate

(3.37) refines to R02 ± R03 = O3. We also need to refine our estimate (3.38)

to R23 = O4. We find R22 ± R33 = O3, where both O3 terms deliver the same

relation relating the u-derivatives of a22, a23, a33 and b22, b23, b33 which we

save for later use. In deriving this result we had to choose α6 = β6 = 0 and to

impose the Bondi outgoing radiation condition (3.28). Then R22 ± R33 = O4.

Next we re-examine (3.40). The leading O2 term gives us an expression for

a00,u which we store for later use. Now R00 = O3. We have found, so far, that

R00, R01, R02 and R03 are O2 while the other components are O3.

We now try to repeat the procedure of the previous paragraph. However we

find that the O4 contribution in R11 contains “junk” terms, i.e., terms which

involve the third order metric components which we have not been including;

see the footnote in §3.3. Thus we can obtain no further information from the
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vacuum field equation R11 = 0. Similarly we find that the O3 terms in R01

contain junk, as do the O4 terms in R12 ± R13. The same applies to the O3

terms in R02 ± R03, the O4 terms in R23 and R22 ± R33, and finally the O3

terms in R00. We have therefore exhausted the information available from the

vacuum field equations.

Assuming that we have a vacuum, we can now switch our attention to the

Weyl tensor, and we compute first

Ψ4 = R0202 =

[
1

4
(a22,uu − a33,uu csc2 θ) +

1

2
ia23,uu csc θ

]
r−1 + O2. (3.47)

Using (3.39), we may rewrite this as

Ψ4 = N,ur
−1 + O2, (3.48)

where

N =
1

2
(a22 + ia23 csc θ),u (3.49)

is the Bondi news function (see [18] and chapter 2).

This is a highly satisfactory result which, in spite of our rather ad hoc chart

and tetrad, mimics the treatment of [18] and [100]. Furthermore we see that

it is linear in the amn and so should appear in linearized theory. Also it does

not involve the Lorentz parameters αn and βn and so is tetrad-invariant (for

tetrads which are asymptotically Minkowskian). The remainder term in (3.48)

contains some O2 terms and junk O3 terms.

Next consider

Ψ3 = R0120 = Ψ(2)
3 r−2 + O3, (3.50)

where

Ψ(2)
3 = 2−1/2(N,θ − iN,φ csc θ +N cot θ) + (α4 + iα5)N,u. (3.51)

Note first that the r-dependence is precisely what one would have expected

from the peeling property. The first term in the coefficient Ψ(2)
3 is linear and

would have been predicted within linearized theory. However the second term

is nonlinear for it depends on the αn which determine the infinitesimal Lorentz

transformation of the NP tetrads (3.31) and (3.32). This is to be expected.

The NP tetrad used by Newman & Unti [100] was chosen very specifically,

54



Chapter 3. Numerical Relativity and Asymptotic Flatness

while here we are considering a class of tetrads infinitesimally close to the

Minkowski one. If we were to restrict attention to the subclass of tetrads

where α4 = α5 = 0 then our result would be consistent with linearized theory.

On the other hand another choice of α4 + iα5 would give Ψ(2)
3 = 0. The

remainder term in (3.50) is junk.

Next we find that

Ψ2 = R1320 = Ψ(3)
2 r−3 + O4, (3.52)

where the remainder term is junk. We will return to the leading term shortly.

We find next that

Ψ1 = R0113 = Ψ(4)
1 r−4 + O5, (3.53)

The coefficient Ψ(4)
1 contains nonlinear terms, but we are unable to determine

it precisely because it also contains junk terms. The peeling property is still

holding though.

The peeling property would demand that Ψ0 = R1313 should be O5. How-

ever, in a similar manner to chapter 2 (2.21), we find

Ψ0 = Ψ(4)
0 r−4 + O5, (3.54)

where

Ψ(4)
0 =

1

8

[
(a22 + a33 csc2 θ)(a22 − 2ia23 csc θ − a33 csc2 θ)

+ 4(b22 − b33 csc2 θ − 2ib23 csc θ)
]
. (3.55)

This result is expected. Thus far we have not made the restrictions that were

imposed in [18], [100] or chapter 2 to ensure peeling. The restriction of [100]

was to demand Ψ(4)
0 = 0. The restriction of [18] was that the “outgoing radia-

tion condition” held. In the chart and tetrad of chapter 2 the two conditions

were equivalent. In our notation, the outgoing radiation condition is (3.28)

a22 = −a33 csc2 θ, b22 = b33 csc2 θ, b23 = 0. (3.56)

Examining (3.55) we see that imposing the outgoing radiation condition (3.56)
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ensures Ψ(4)
0 = 0, a result first obtained by Valiente Kroon [81]. With one or

other condition we have

Ψ0 = Ψ(5)
0 r−5 + O6, (3.57)

but the coefficient Ψ(5)
0 contains junk terms and so we cannot evaluate it. It also

contains nonlinear terms not predicted by linearized theory. This is consistent

with the results in §2.2.

To summarize: if we impose the outgoing radiation condition (3.56) then

we obtain the peeling property, and we can obtain explicitly the leading terms

in Ψ4, Ψ3 and Ψ2, but not those for Ψ1 and Ψ0 because they contain junk

terms. Note that the outgoing radiation condition is not something that can

be imposed during a numerical evolution. However, a numerical relativist can

verify whether it holds by investigating the behaviour of Ψ0 or by checking

(3.56). This in turn provides a test on the validity of the asymptotic expansions

used.

We now return to the discussion of Ψ2 given by (3.52). The leading term

coefficient is

Ψ(3)
2 =

1

2
a00 −

1

4
ia23 csc3 θ +

1

2
b22,u +

1

4
(a22 + ia23 csc θ)(a22,u − ia23,u csc θ)

+
1

4
i(a23,θ − 2a22,φ) cot θ csc θ − 1

2
ia22,θφ csc θ

+
1

4
i(a23,θθ − csc2 θa23,φφ) csc θ.

(3.58)

Here we have fixed the Lorentz parameters, as described earlier, and are im-

posing the outgoing radiation condition (3.28).

Now, motivated by the definition (2.19), the Bondi mass MB(u) can be

defined by

4πMB(u) = − lim
r→∞

∫ ∫
r3(Ψ2 + σλ) dS, (3.59)

where dS = sin θ dθ dφ is the area element of the unit sphere. Here σ and λ

are NP spin coefficients given by

σ = maδla = γ313 = σ(2)r−2 + O3, λ = naδ̄ma = γ022 = λ(1)r−1 + O2,

(3.60)
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where

σ(2) = −1

2
(a22 − ia23 csc θ), λ(1) = −1

2
(a22,u + ia23,u csc θ). (3.61)

Taking the limit in (3.59) we have

4πMB(u) = −
∫ ∫

(Ψ(3)
2 + σ(2)λ(1)) dS. (3.62)

Of course the formula (3.59) is only valid in a specially chosen Bondi frame.

The generalization to an arbitrary NP frame obtained via spins, boosts and a

null rotation about l was first discussed in chapter 2. Here we make a further

generalization by including null rotations about n. In the large r limit, our

frame differs from the Bondi one by a Lorentz transformation which is close to

the identity. A 2-parameter subgroup of the Lorentz group consists of “boosts”

and “spins”

l → a2l, n→ a−2n, m→ eiψm, (3.63)

where a and ψ are real. As seen in §2.3, by using the formulae in appendix B

of [135] it is easy to verify that the integrand of (3.62) is invariant under boosts

and spins and that the news function (3.49) only undergoes a phase change.

Next consider a 2-parameter subgroup of “null rotations about l” given by

l → l, m→ m + c̄l, n→ n + cm + c̄m + cc̄l, (3.64)

where c is complex. Under such a transformation,

Ψ2 → Ψ2 + 2cΨ1 + c2Ψ0, σ → σ + c̄κ,

λ→ λ + cπ + 2cα + c2(ρ + 2ε) + c3κ + clac;a + mac;a.
(3.65)

The NP scalars α, π, ρ and ε are all O1, and we expect c = O1. Thus the

integrand of (3.62) is not changed. Finally, we consider null rotations about n

given by

n→ n, m→ m + c̄n, l → l + cm + c̄m + cc̄n, (3.66)

so that

Ψ2 → Ψ2 + 2cΨ3 + c2Ψ4, λ→ λ + c̄ν,

σ → σ + cτ + 2cβ + c2(µ + 2γ) + c3ν + cnac,a + mac,a.
(3.67)
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Now we have taken great care to ensure that l is almost geodesic (κ = O4)

and almost affinely parametrised (ε + ε̄ = O3) and so we should only consider

the transformation (3.66) where c = O3, otherwise these properties are not

conserved. Under this restriction the integrand of (3.62) is not changed. Thus

the formula (3.62) evaluated in the new frame does indeed give the Bondi mass

to leading order. Next note that

Im(Ψ(3)
2 + σ(2)λ(1)) =− 1

4
a23 csc3 θ +

1

4
a23,θ csc θ cot θ +

1

4
a23,θθ csc θ

− 1

2
a22,φ csc θ cot θ − 1

2
a22,θφ csc θ − 1

4
a23,φφ csc3 θ.

(3.68)

When we integrate this over the unit sphere, the terms in the second line give

zero since their contribution to the integrand is 2π-periodic in φ. Those in the

first line contribute
1

2
π [csc θ(sin θ a23),θ]

π
0 .

Now a23 must scale like sin2 θ at the end points or else the integrand is singular.

It follows that the Bondi mass must be real, and

4πMB(u) = −1

2

∫ 2π

0

∫ π

0

(a00 + b22,u + a22a22,u + a23a23,u csc2 θ) sin θ dθ dφ.

(3.69)

Finally there is a standard result, [18], [100], [134], (2.14), for the rate of

decrease of the Bondi mass

4π
dMB

du
(u) = −

∫ ∫
|N |2 dS

= −1

4

∫ ∫ (
(a22,u)

2 + (a23,u)
2 csc2 θ

)
dS,

(3.70)

demonstrating the well-known result dMB/du ≤ 0; the Bondi mass decreases

as energy is radiated away, a result not deducible in linearized theory. Although

(3.70) was originally derived in a special Bondi frame, it too holds in our

approximate Bondi one, at least to leading order. We should emphasize that

although the outgoing radiation condition was used in the derivation of (3.69),

the mass loss formula (3.70) holds without the need for this restriction. In fact

a definition of the Bondi mass, which is a monotonically decreasing function

of retarded time, can be written down for polyhomogeneous spacetimes [30].
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3.5 Implications for Numerical Relativity

At first glance the formalism we set up to carry out this study may seem to

be cumbersome, but it has the advantage that the results can be translated

back into the Xa = (T, R, Θ, Φ) chart, after which the theoretical chart xa =

(u, r, θ, φ) can be discarded.

We chose the xa chart so that the metric coefficients a11 and b11 vanished,

as well as a12 and a13. Now

(
∂

∂u

)

r

=

(
∂T

∂u

)

r

(
∂

∂T

)

R

+

(
∂R

∂u

)

r

(
∂

∂R

)

T

= (1− q1r
−1)

(
∂

∂T

)

R

+ O2,

(3.71)

using (3.23). In principle the function q1 is arbitrary. But the vacuum field

equations implied a01 = 0, and then equations (A.3) imply

q1 =
1

2
(h00 − h11). (3.72)

The vacuum field equations imply (3.39)

a22,u + a33,u csc2 θ.

Using (A.3) and (3.44) we have, to leading order

[h22 + 2h02,Θ + 2h12,Θ],T + [h33 + (2h03,Φ + 2h13,Φ) csc2 Θ],T csc2 Θ = 0. (3.73)

Other vacuum conditions can be handled in a similar way.
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In order to discuss the Bondi news function and Bondi mass, it is convenient

to introduce some auxiliary functions in the numerical chart,

W =h03 + h13,

A =h22 + 2(h02,Θ + h12,Θ),

B =h23 + h02,Φ + h12,Φ +W,Θ − 2W cot Θ,

C =k22 + 2Wh23 cot Θ csc2 Θ− 4W2 cot Θ csc2 Θ + (k02 + k12),Θ

− (1
2h11 + h22)h02,Θ − ((1

2h00 + h01)h02),Θ + (4W cot Θ− h23)W,Θ csc2 Θ

− 1
2h02h11,Θ − h22h12,Θ + (h02 + h12)h22,Θ +Wh23,Θ csc2 Θ− (W,Θ)2 csc2 Θ,

(3.74)

which should be readily available according to the assumptions in §3.1.

Then the leading term in the Bondi news function, given by (3.49), becomes

N = A,T + iB,T csc Θ, (3.75)

whose calculation might require some sophistication, although there is no ref-

erence to the intermediary xa = (u, r, θ, φ) chart. Because the news function

is linear in the hab and their derivatives, it could have been calculated within

linearized theory.

The formula (3.69) for the Bondi mass MB(u) translates into

MB(T −R) =− 1

8π

∫ 2π

Φ=0

∫ π

Θ=0

(
h11 +AA,T + BB,T csc2 Θ + C,T

)
sin Θ dΘdΦ.

(3.76)

In a similar way the formula (3.70) for the rate of change of MB at fixed

large R is

ṀB(T −R) =− 1

16π

∫ 2π

Φ=0

∫ π

Θ=0

(
(A,T )2 + (B,T )2 csc2 Θ

)
sin Θ dΘdΦ. (3.77)

In linearized theory, gravitational radiation has only two degrees of free-

dom. Numerical relativists often describe these degrees of freedom using the

“gravitational waveform” quantities h+ and h× [121]. These represent the two

possible polarizations of the gravitational waves, so that in traceless-transverse
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gauge, the perturbed metric tensor hab takes the form

hab =





0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0




. (3.78)

In traceless-transverse gauge, h+ and h× are related to Ψ4 by the expression

Ψ4 = −h+,TT + ih×,TT , (3.79)

and can therefore be obtained by evaluating A and B. Equations (3.74) there-

fore enable a numerical relativist to evaluate h+ and h×.

Again we emphasize that the intermediate xa chart does not intrude—the

formulae (3.75), (3.76) and (3.77) apply in the numerical Xa = (T, R, Θ, Φ)

chart. However, only (3.75) can be deduced from linearized theory.

Why are these formulae so complicated, when compared with the original

papers, [18] and [100], or even the formulae in chapter 2 or §3.4? Well the

coordinates and tetrads of the original papers were very carefully chosen to

simplify the problem, and much of this chapter has been spent building the

relationship between the numerical relativist’s Xa = (T, R, Θ, Φ) chart and the

xa = (u, r, θ, φ) chart and adapted tetrad, in which the formulae look almost

as simple as in the original approaches. One way to avoid the complexity is to

design a numerical approach based on Penrose’s geometrical approach [103],

but that brings in different problems and complexities (see §1.2).

3.5.1 Polyhomogeneous Spacetimes

One of the fundamental assumptions made in the preceding two chapters is that

asymptotic 1/r expansions of the metric variables exist. Bondi et al. [18] found

that the outgoing radiation condition was necessary to prevent logarithmic

terms appearing in the expansions. Similarly, the condition Ψ0 = O(r−5),

imposed by Newman & Unti [100], was required to prevent the appearance

of log r terms. This suggests that, in generic situations, logarithmic terms

might naturally arise in the asymptotic expansions. This has led to the study

of polyhomogeneous spacetimes. A polyhomogeneous spacetime has a metric
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which admits an expansion in terms of r−m (log r)n for m, n ∈ N.

One of the first notable studies of polyhomogeneous spacetimes was by

Chruściel et al. [30]. They showed that the assumption of polyhomogeneity

was very natural and does not lead to any significant analytical difficulties.

Although the Weyl tensor no longer peels in the usual way, polyhomogene-

ity was shown to be formally consistent with the Einstein field equations and

various results that hold for non-polyhomogeneous spacetimes were proved.

Notably, an appropriate definition of the Bondi mass was obtained, which is

a monotonically decreasing function of a retarded time coordinate. Chruściel

et al. concluded that removing logarithmic terms from the asymptotic expan-

sions is not sufficient justification for imposing the outgoing radiation condi-

tion. Furthermore, Valiente Kroon [80,82–85] has found generalizations of the

Newman-Penrose constants [99] for polyhomogeneous spacetimes.

The physical interpretation of the log r terms in polyhomogeneous space-

times (and the resulting non-smooth null infinity) is still an open question.

It is believed that the logarithmic terms are somehow connected to incoming

radiation. The presence of a non-smooth null infinity may also have physical

effects on the propagation of gravitational radiation (see, for example, [86]).

The fundamental assumption made in this chapter is that the numerically

calculated spacetime can be expanded (asymptotically) in terms of negative

powers of r. However, such behaviour is not generic and it is not possible to

guarantee that a spacetime will possess a particular type of asymptotic decay

or that the peeling property will hold. Indeed, if it is found that the outgoing

radiation condition is not satisfied in the numerically calculated spacetime,

then logarithmic terms will automatically be present and the Weyl scalars will

not peel off in the “usual” way. The natural extension of the work in this

chapter would therefore be to consider polyhomogeneous spacetimes, without

imposing the outgoing radiation condition. The resulting calculations might

well be valid in a more general setting than the one considered here. However,

there may be a price to pay, as evaluating coefficients in a polyhomogeneous

expansion of the metric variables is likely to be more difficult numerically than

evaluating the coefficients in a 1/r expansion.

62



Chapter 4

Hertz Potentials

In chapters 2 and 3 we focused on the asymptotic behaviour of gravitational

fields near future null infinity I +. By using 1/r expansions in the full non-

linear theory of general relativity we were able to close the gap between the

very specific choices of coordinate chart and tetrad used in theoretical calcula-

tions and the gauge choices that are accessible to a numerical relativist. This

gives us free reign to choose whichever theoretical chart is the most convenient

for us in which to formulate absorbing boundary conditions. The results of

the preceding chapter will enable us to express the boundary conditions in a

numerical chart later. In addition, provided we recall the limitations of lin-

earized theory discussed in chapter 3, we can use a perturbative approach (see

e.g. [139]) to simplify our calculations.

The notions of incoming and outgoing gravitational radiation are key when

formulating absorbing boundary conditions. In [107] it was shown that Hertz

potentials provide a very transparent way of describing incoming and outgoing

radiation, linearized about a Minkowski background. Furthermore, Hertz po-

tentials can describe perturbations about Schwarzschild and Kerr spacetimes.

The method used by Buchman & Sarbach [22,23] is applicable only on flat or

Schwarzschild background spacetimes, and can not easily be extended to Kerr

backgrounds. It is for this reason that Hertz potentials are of interest to us.

In this chapter we will introduce Hertz potentials in more detail. Chapters 5,

6 and 7 will then build on this work to investigate the propagation of gravita-

tional waves on Minkowski, Schwarzschild and Kerr backgrounds respectively.

This will enable us to create boundary conditions for numerical relativity which

are absorbing for linearized gravitational radiation on these backgrounds.
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Chapter 4. Hertz Potentials

What is a Hertz potential? On a flat spacetime, a source-free electromag-

netic field has precisely two degrees of freedom. The Einstein field equations

describing linearized gravitational perturbations about a flat vacuum space-

time also have two degrees of freedom. In each case, the fields can be expressed

in terms of the derivatives of a complex scalar field known as a Hertz potential.

A gravitational field has spin 2, whereas an electromagnetic field has spin 1.

It is similarly possible to use a Hertz potential to describe any zero rest-mass

field of arbitrary spin propagating on a Minkowski background [104].

These ideas can be extended to certain curved spacetimes. Electromagnetic

fields propagating on any algebraically special background can be represented

by a Hertz potential [31, 33]. In addition, Hertz potential representations for

gravitational perturbations about algebraically special spacetimes have been

obtained [34, 76]. The field equations in such theories invariably involve the

widespread use of antisymmetric tensors. Therefore a slightly less cumbersome

approach is to use spinor notation. The resulting field equations for the Hertz

potential are much simpler [133].

In this chapter we will introduce Hertz potentials using 2-component spinors

(see e.g. [135] for an introduction to 2-component spinors). It is instructive to

begin with the conceptually simpler case of Hertz potentials for electromag-

netic fields (§4.1) before considering gravitational fields (§4.2).
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4.1 Hertz Potentials for Electromagnetic Fields

in a Vacuum Spacetime

Let χAB be a symmetric 2-component spinor with derivatives

λAB′ = ∇B
B′χAB, (4.1)

φ̄A′B′ = ∇A
A′λAB′ = ∇A

A′∇B
B′χAB. (4.2)

Since φ̄A′B′ is symmetric and traceless, it will represent a source-free Maxwell

field if and only if Maxwell’s equations are satisfied. This implies

0 = ∇B
B′

φ̄A′B′ (4.3)

= ∇A
A′

(
−1

2
!χAB + ΨAB

CDχCD

)
, (4.4)

where ! = ∇AA′∇AA′
, and ΨABCD = Ψ(ABCD) is the Weyl spinor of the

background spacetime. Clearly, if we impose

!χAB − 2ΨAB
CDχCD = 0, (4.5)

then φ̄A′B′ is a Maxwell field.

We can generalize (4.2) by introducing a “gauge change” via an arbitrary

spinor αAB′

¯̃φA′B′ = ∇C
A′λCB′ −∇C(A′αC

B′). (4.6)

With a suitable choice of αAB′ it is often possible to cancel some of the terms

from the field equation for χAB (4.5). We will specify our particular choice of

αAB′ later. It can now be shown that ¯̃φA′B′ is a Maxwell field if, for any αAB′ ,

the spinor χAB satisfies

!χAB − 2ΨAB
CDχCD + 2∇C′

(AαB)C′ = 0. (4.7)

Note that the choice of αAB′ is not a true gauge freedom because the new

Maxwell field ¯̃φA′B′ is different from the old one φ̄A′B′ , and the difference de-

pends on the choice of αAB′ .

We now restrict our attention to vacuum type D spacetimes, with a basis

of repeated principal null spinors (oA, ιA) (this restriction will be justified in
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§4.2, but note that the analysis below still works in the more general type II or

algebraically special spacetimes). The spinor basis defines a Newman-Penrose

null tetrad

la = oAōA′
, na = ιAῑA

′
, ma = oAῑA

′
, m̄a = ιAōA′

. (4.8)

The covariant derivative ∇a is contracted with each tetrad vector in turn to

define the four standard differential operators used in the Newman-Penrose

formalism

D ≡ la∇a, * ≡ D′ ≡ na∇a,

δ ≡ ma∇a, δ′ ≡ δ̄ ≡ m̄a∇a. (4.9)

Using the Geroch-Held-Penrose formalism [53], we introduce the four spin- and

boost-weighted derivations Þ, Þ′, " and "′. Acting on a quantity η of GHP

type {p, q} these derivations are

Þη ≡ (D − pε− qε̄)η, Þ′η ≡ (D′ + pε′ + qε̄′)η,

"η ≡ (δ − pβ + qβ̄′)η, "′η ≡ (δ′ + pβ′ − qβ̄)η. (4.10)

The use of the prime (′) in (4.9) and (4.10) denotes the operation

oA → iιA, ιA → ioA, ōA′ → −iῑA
′
, ῑA

′ → −iōA′
. (4.11)

If we choose

χAB = χ′ιAιB, (4.12)

and make the gauge choice

αAB′ = −2ιA(τ ′ῑB′ − ρ′ ¯oB′)χ′, (4.13)

then we find that (4.7) reduces to a single field equation for the complex scalar

χ′

(ÞÞ′ − ""′ + ρ′Þ− ρ̄Þ′ − τ ′" + τ̄ ′"′ −Ψ2) χ′ = 0. (4.14)

The scalar χ′ has GHP type {2, 0}. The 4−vector potential Aa and the Maxwell
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scalars φ0, φ1 and φ2 can all now be expressed in terms of χ′:

Aa = ["χ′ + "′χ′ + (τ ′ + τ̄ ′)χ′] na − [Þχ̄′ + ρ̄χ̄′] ma − [Þ′χ′ + ρ′χ′] m̄a, (4.15)

and

φ0 = Þ′2χ̄′, φ1 = (Þ′"′ + τÞ′)χ̄′, φ2 = ("2 + σÞ′ + σρ̄′)χ̄′. (4.16)

Note that we could have chosen χAB = χoAoB, as was done in the earlier

paper [133]. The results in [133] are then related to ours by the GHP prime

operation ′. The reasons for our choice of χAB (4.12) will be justified in the

next section.

In summary, the two degrees of freedom of the source-free electromagnetic

field are encoded in the complex scalar χ′, which satisfies a field equation.

Quantities such as the vector potential and the Maxwell scalars can be ex-

pressed in terms of χ′.
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4.2 Hertz Potentials for Linearized Gravita-

tional Fields

The Weyl spinor ΨABCD for a vacuum spacetime satisfies

∇DD′
ΨABCD = 0. (4.17)

Infinitesimal vacuum perturbations of the gravitational field have two degrees

of freedom. Comparison of (4.17) with (4.3) then suggests that by using a sim-

ilar approach to §4.1 we might be able to find a Hertz potential representation

for linear perturbations of the Weyl spinor, such that the Einstein equations

(1.2) would then reduce to a single field equation for a complex scalar potential.

In a background algebraically special vacuum spacetime, we introduce a

symmetric spinor χABCD with derivatives

λABCD′ = ∇D′
DχABCD, (4.18)

γABC′D′ = ∇C′
CλABCD′ , (4.19)

µAB′C′D′ = ∇B′
BγABC′D′ , (4.20)

νA′B′C′D′ = ∇A′
AµAB′C′D′ . (4.21)

If we impose

ΨABCDχBCDE = 0, ΨABCDλBCD
E′ = 0, (4.22)

then we obtain the symmetry properties

γABC′D′ = γ(AB)(C′D′), µAB′C′D′ = µA(B′C′D′), νA′B′C′D′ = ν(A′B′C′D′).

(4.23)

The real tensor γab defined by

γab = ΘABA′B′ = γABA′B′ + γ̄ABA′B′ , (4.24)

then satisfies

γab = γ(ab), γc
c = 0. (4.25)
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Since γab is symmetric and traceless, we can interpret it as a linearized pertur-

bation of the background metric induced by the potential χABCD. In addition,

we have

∇bγab = 0, (4.26)

so the perturbation is in de Donder gauge. In a vacuum, the perturbed Rie-

mann and Ricci tensors, R̂abcd and R̂ab, are given by the standard identities [92]

R̂abcd = 2∇[c∇[aγb]d] − γe
[aRb]ecd, (4.27)

R̂ab = !γab − 2∇c∇(aγb)c. (4.28)

In analogy with (4.6) we make the “gauge change”

γABA′B′ → γABA′B′ +∇C
(A′αB′)ABC , (4.29)

where αA′ABC is symmetric on its last three indices. Note once more that

the introduction of αA′ABC alters the perturbed metric so this is not a true

gauge change. In addition the de Donder gauge condition (4.26) is no longer

automatically satisfied. It can now be shown, via a long but straightforward

calculation [133], that the perturbed Ricci tensor (4.28) will vanish if

∇(A
C′∇E

|C′|χBCD)E + 3ΨEF
(ABχCD)EF = ∇C′(AαC′

BCD). (4.30)

In order to make further progress, we restrict our attention to type D

algebraically special spacetimes, with repeated principal null directions oA and

ιA. This slight loss of generality poses no problem because the backgrounds of

interest to us (such as Minkowski, Schwarzschild or Kerr spacetimes) are all

of type D. Note once more that oA and ιA define a null tetrad of vectors

la = oAōA′
, na = ιAῑA

′
, ma = oAῑA

′
, m̄a = ιAōA′

, (4.31)

and we define the same derivations as in §4.1,

D ≡ la∇a, * ≡ D′ ≡ na∇a,

δ ≡ ma∇a, δ′ ≡ δ̄ ≡ m̄a∇a, (4.32)
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and

Þη ≡ (D − pε− qε̄)η, Þ′η ≡ (D′ + pε′ + qε̄′)η,

"η ≡ (δ − pβ + qβ̄′)η, "′η ≡ (δ′ + pβ′ − qβ̄)η, (4.33)

where η is a quantity with GHP type {p, q}.

The spinor χABCD is now completely degenerate. Since we are interested

in studying future null infinity, we take its repeated principal spinor to be ιA

rather than oA, so that

χABCD = χ′ιAιBιCιD. (4.34)

(For further justification of this choice of χABCD see, for example, section 3.7

of [135].) The subsequent results will be related to those that were obtained

by Stewart [133], in which χABCD = χoAoBoCoD, by the GHP prime operation

(4.11). We now also make a “gauge choice” in order to simplify the field

equation (4.30)

αA′BCD = 4ιBιCιD(τ ′ῑA′ − ρ′ōA′)χ′. (4.35)

With these choices of χABCD and αA′BCD, (4.30) reduces to

(ÞÞ′ − ""′ + 3ρ′Þ− ρ̄Þ′ − 3τ ′" + τ̄ ′"′ − 6Ψ2) χ′ = 0. (4.36)

The scalar χ′ has GHP type {4, 0}. Thus, as postulated at the beginning of

this section, the linearized vacuum Einstein equations have been reduced to a

single field equation for the complex scalar χ′. The field equation (4.36) is the

starting point for the calculations in chapters 5, 6 and 7.

In a similar manner to §4.1, in which the vector potential and the Maxwell

scalars were expressed in terms of the Hertz potential, the perturbations to the

Newman-Penrose scalars, the metric, the Weyl scalars and the NP tetrad can

all be expressed in terms of χ′. Using (4.29) and (4.24), the perturbed metric

can immediately be written in terms of the Hertz potential. This enables us to

evaluate the perturbed tetrad. There are two ways of obtaining the perturbed

NP scalars. By perturbing the GHP field equations, we can obtain a set of

linear simultaneous equations which can be solved in terms of the perturbed

NP scalars. A much easier way, however, is to note that the NP spin coefficients

can be expressed in terms of antisymmetrized partial derivatives of the tetrad
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vectors. For example

κ = 2l[a,b]m
alb. (4.37)

A complete set of such formulae was obtained by Cocke [32]. Since these ex-

pressions contain no covariant derivatives, they can be perturbed in a straight-

forward manner. Finally the perturbed Weyl scalars can be obtained from

(4.27).

By repeatedly making use of the GHP commutator equations for the oper-

ators Þ, Þ′, " and "′ [53], the expressions for the perturbed quantities can be

significantly simplified. Further simplifications occur if we restrict our atten-

tion to Minkowski or Schwarzschild background spacetimes. On a Minkowski

background, the only non-zero NP scalars are ρ, ρ′, β and β′, which are all

real. On a Schwarzschild background, ρ, ρ′, β, β′, ε′ and also Ψ2 are real and

non-zero. On a Kerr background the NP scalars are, in general, complex and,

in addition, τ and τ ′ are non-zero. The perturbations of the tetrad, metric,

NP and Weyl scalars about Minkowski, Schwarzschild and Kerr backgrounds

are given in appendix B.

As a useful guard against algebraic errors, we can use the GHP commutator

equations [53] and the scalar equation (4.36) to check that the expressions

for the perturbed quantities satisfy the GHP Bianchi identities and the GHP

vacuum field equations.

In this section, we chose a potential of the form χABCD = χ′ιAιBιCιD (4.34).

The expressions for the perturbed quantities corresponding to the potential

χABCD = χoAoBoCoD are given in [133]. They are related to the results found

here by the GHP prime operation (4.11) but are considerably lengthier than

the expressions in appendix B because the GHP commutator equations were

not used to simplify them.

The calculations mentioned in the preceding paragraphs are most easily

carried out using a computer algebra system (the author used Reduce 3.8, and

the script is available on request).
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The Homogeneous

Euler-Poisson-Darboux

Equation

The aim of chapters 5, 6 and 7 is to study the scalar field equation for Hertz

potentials (4.36) on Minkowski, Schwarzschild and Kerr backgrounds respec-

tively. By investigating the behaviour of the solutions in the far-field region we

can begin to understand how linearized gravitational waves propagate, firstly

on a flat space background, and then on curved spacetimes with mass M and

angular momentum Ma. This will enable us to formulate absorbing boundary

conditions for numerical relativity.

In §5.3 we find that, on a Minkowski background, by choosing standard

double null coordinates with a suitable tetrad, (4.36) reduces to a special case

of the homogeneous Euler-Poisson-Darboux equation [39, 45] whose solutions

are known. In chapters 6 and 7, when suitable choices of coordinate chart

and tetrad are made, inhomogeneous Euler-Poisson-Darboux equations are ob-

tained, with additional terms depending on the mass and angular momentum

parameters, M and a.

To illustrate these ideas, it is instructive to consider first the conceptually

and algebraically simpler case of the wave equation for a spin-0 massless scalar

field Φ

!Φ = 0, (5.1)

where ! ≡ ∇a∇a. Here, when double null coordinates are chosen, an Euler-
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Poisson-Darboux equation is again obtained, which is homogeneous only on a

Minkowski background.

Clearly, the Euler-Poisson-Darboux (EPD) equation is central to this in-

vestigation. In fact it has many applications in theoretical physics. For ex-

ample, in the study of gravitational perturbations on a Schwarzschild back-

ground [111,149] the field equations governing “odd parity” and “even parity”

perturbations can be shown to be EPD equations. See, for example, [137] for

an overview of other applications of the EPD equation in general relativity.

Much is known about the Euler-Poisson-Darboux equation and we begin

this chapter by reviewing some useful results (§5.1). In particular the Riemann-

Green function is known [50]. This means that integral representations of

solutions to the Cauchy or characteristic initial value problems for both ho-

mogeneous and inhomogeneous EPD equations can be written down using

Riemann’s method [36, 37]. In the inhomogeneous cases (corresponding to

perturbations about Schwarzschild or Kerr backgrounds), these solutions can

then be estimated using a Picard iteration scheme [106]. This is the approach

taken in chapters 6 and 7.

In §5.2 and §5.3, we restrict our attention to the homogeneous EPD equa-

tion. We obtain solutions first to the scalar wave equation (5.1), and then to the

Hertz potential field equation (4.36), both on a Minkowski background. The

inhomogeneous cases, corresponding to Schwarzschild and Kerr backgrounds,

are dealt with in chapters 6 and 7 respectively.

5.1 General Properties of the Euler-Poisson-

Darboux Equation

The homogeneous Euler-Poisson-Darboux equation is given by

z,uv +
αz,u

v − u
− βz,v

v − u
+

γz

v − u
= 0, (5.2)

where α, β and γ are arbitrary constants and z is a function of u and v. It

is a generalization of the standard wave equation and is the simplest second

order hyperbolic differential equation whose coefficients contain singularities.

We are interested in studying the behaviour of solutions as v →∞, and so the
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singularities will not be dealt with here (see [137] for a discussion of solutions

containing singularities). By making a change of dependent variable

z(u, v) = (v − u)λω(u, v), (5.3)

for a suitable choice of λ, it is always possible to eliminate the term involving

γ from (5.2). From now on we therefore consider the following simplified

equation

z,uv +
αz,u

v − u
− βz,v

v − u
= 0. (5.4)

In general, α and β need not be integers, and indeed in many physical sit-

uations of interest EPD equations are obtained with non-integer parameters.

(For example the “polarized Gowdy equation” [71, 75] is an Euler-Poisson-

Darboux equation with α = β = 1
2 . Similarly, in the study of plane symmetric

spacetimes containing irrotational fluid flows [61, 138], an EPD equation with

α = β = 1
2 is found, whose solutions contain spacelike singularities at t = 0.)

The EPD equations resulting from the study of the spin-0 massless scalar field

or a Hertz potential for linearized gravitational perturbations always have in-

teger parameters of the same sign. By interchanging the independent variables

u and v, or by setting λ = 1−α−β in the transformation (5.3), we can always

arrange that both parameters are positive. Suppose then that α = m ∈ N and

β = n ∈ N. In this case the general solution to (5.4) can be written in the

form

z(u, v) =

(
∂

∂u

)n−1 U(u)

(v − u)m
+

(
∂

∂v

)m−1 V (v)

(v − u)n
, (5.5)

where U(u) and V (v) are arbitrary functions of u and v respectively. We posit

that the terms involving U(u) represent outgoing radiation, whilst the terms

involving V (v) represent incoming radiation. This assertion will be justified in

§5.2 when the characteristic initial value problem is discussed.

For general (non-integer) α and β, by seeking homogeneous solutions of the

form z(u, v) = vλy(x), where x = u
v , the EPD equation (5.4) is transformed

into the hypergeometric differential equation, and we obtain

z(u, v) = vλ
2F1

(
−λ, β; 1− α− λ;

u

v

)
, (5.6)

for an arbitrary choice of λ. Here 2F1 is a hypergeometric function [1, 102].
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In order to write down integral representations of solutions to the EPD

equation, the Riemann-Green function is required. This is defined as being

the solution R(u′, v′; u, v) of the adjoint equation to (5.4) with independent

variables u′ and v′, which depends on the parameters u and v and satisfies the

characteristic boundary conditions

R(u′, v; u, v) =

(
v − u′

v − u

)β

, (5.7)

and

R(u, v′; u, v) =

(
v′ − u

v − u

)α

. (5.8)

Using (5.6), it can be shown that

R(u′, v′; u, v) = (v′ − u′)α+β(v′ − u)−β(v − u′)−α
2F1(β, α, 1; t), (5.9)

where

t =
(v′ − v)(u′ − u)

(v′ − u)(u′ − v)
. (5.10)

Note that t is the ratio of two polynomials homogeneous in u′ and v′.
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5.2 The Massless Scalar Field on a Minkowski

Background

Before dealing with the more complex examples of the EPD equation encoun-

tered in the study of Hertz potentials, it is instructive to consider the massless

zero-spin scalar wave equation on Minkowski spacetime.

Consider a scalar field Φ on a Minkowski background, satisfying (5.1)

gijΦ;ij = 0. (5.11)

We work in the standard double null coordinate chart for Minkowski spacetime

(u, v, θ, φ), where

u = t− r, v = t + r, (5.12)

and (θ,φ) are spherical polar coordinates. We seek separable solutions by

expanding the scalar field in terms of spherical harmonics

Φ(u, v, θ, φ) =
∑

l,m

φlm(u, v)Ylm(θ, φ). (5.13)

Appendix C.1 contains details of the spherical harmonic conventions used here.

Then (5.11) becomes

∑

l,m

Ylm(θ,φ)

{
∂2φlm

∂u∂v
+

1

v − u

∂φlm

∂u
− 1

v − u

∂φlm

∂v
− l(l + 1)

(v − u)2
φlm

}
= 0,

(5.14)

where −l ≤ m ≤ l. By considering a single harmonic mode and changing the

dependent variable from φlm to zlm, where

φlm = (v − u)lzlm(u, v), (5.15)

we obtain the Euler-Poisson-Darboux equation

zlm
,uv +

l + 1

v − u
zlm

,u −
l + 1

v − u
zlm

,v = 0. (5.16)
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The general solution to (5.16) is

zlm(u, v) =

(
∂

∂u

)l U lm(u)

(v − u)l+1
+

(
∂

∂v

)l V lm(v)

(v − u)l+1
, (5.17)

where U lm(u) and V lm(v) are arbitrary functions of u and v respectively.

We now seek solutions (5.17) corresponding to a given choice of initial data.

The coordinates u and v are characteristic variables for the EPD equation

(5.16) and are therefore the natural choice of coordinates with which to study

incoming and outgoing radiation. We therefore choose to specify initial data on

the surfaces u = const. and v = const. and solve the characteristic initial value

problem rather than the Cauchy problem. Suppose we wish to find a solution

to (5.16) at a point P with coordinates (u, v). The solution will uniquely be

determined by the initial data specified on the characteristic surfaces u = u0

and v = v0.

D

P

Q

R

S

(u, v)

(u0, v0)

(u, v0)

(u0, v)

Figure 5.1: Specifying data on the edges QR and QS of the domain of depen-
dence D defines the solution at the point P with coordinates (u, v).

Suppose that we specify a function C lm(u) as our initial data on the char-

acteristic QR, v = v0. The function C lm(u) can be written as

C lm(u) =

(
∂

∂u

)l U lm(u)

(v0 − u)l+1
, (5.18)

for a suitable choice of U lm(u). If there are no initial data on QS, u = u0 (that

77



Chapter 5. The Homogeneous Euler-Poisson-Darboux Equation

is V lm(v′) = 0 for v′ ∈ [vo, v]) then the resulting solution to (5.16) at P is

zlm(u, v) =

(
∂

∂u

)l U lm(u)

(v − u)l+1
, (5.19)

Similarly, general initial data Dlm(v) on the characteristic QS, u = u0 can be

written as

Dlm(v) =

(
∂

∂v

)l V lm(v)

(v − u0)l+1
, (5.20)

for some choice of V lm(v). If there are no initial data on the surface QR,

v = v0 (so that U lm(u′) = 0 for u′ ∈ [u0, u]) then the solution to (5.16) at P is

zlm(u, v) =

(
∂

∂v

)l V lm(v)

(v − u)l+1
. (5.21)

In the general solution (5.17), the terms involving U lm(u) can then be inter-

preted as outgoing radiation and the terms involving V lm(v) can be interpreted

as incoming radiation.

We now investigate equation (5.18) in more detail. Consider first the case

l = 0 (and hence m = 0). Suppose that we specify some initial outgoing data

C00(u) on v = v0. Then (5.19) implies

C00(u) =
U00(u)

(v0 − u)
. (5.22)

If C00(u) has compact support then so does U00(u). The general solution

z00(u, v) will therefore also have compact support in u. This is known as sharp

propagation. Once the initial wave has passed a given point there is no longer

any excitation of the field remaining. The sharp propagation occurs due to

the spherical symmetry of the l = 0 mode. The spherical harmonic Y00 is

constant, and so the solution propagates purely radially with no interference

due to propagation in an angular direction.

Now consider the case l = 1 (so that m = 0 or ±1). The general outgoing

solution (5.19) is

z1 m(u, v) =
∂

∂u

U1 m(u)

(v − u)2
, (5.23)
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and so, for initial data C1 m(u), we have

U1 m(u) = (v0 − u)2

∫ u

u0

C1 m(u′)du′. (5.24)

Now, if C1 m(u) has compact support then in general we cannot infer that

U1 m(u) has compact support. Hence the general solution z1 m(u, v) will not,

in general, have compact support in u. (As a concrete example take C1 m(u) =

δ(u− ua). Then

U1 m(u) = (v0 − u)2H(u− ua), (5.25)

which does not have compact support.) A similar analysis works for all l ≥ 1.

Once the initial outgoing wavefront has passed through the point (u, v), there

is some residual radiation which persists. This is known as spreading of the

initial data. The residual radiation is known as a geometrical tail.

An alternative way of viewing this phenomenon is by transforming the EPD

equation (5.16) into (t, r) coordinates, to obtain

(rzlm),tt − (rzlm),rr = 2lzlm
,r. (5.26)

The case l = 0 corresponds to the spherically symmetric wave equation, whose

solutions propagate sharply. If l ≥ 1, then the extra “potential” term on the

right-hand side of (5.26) gives rise to the geometrical tail.

An equation is said to satisfy Huygens’ principle (as defined by Hadamard’s

“minor premise”, [65] p. 54) if an initially sharp wave does not develop a tail.

Huygens’ principle can also be stated in terms of the Cauchy problem. It is

satisfied if the value of zlm at a point P depends only on the intersection of

the characteristic cone C(P ) with the Cauchy surface S on which initial data

are specified. Here, Huygens’ principle is satisfied only in the case l = 0.

The geometrical tail for l ≥ 1 arises due to the angular dependence of the

corresponding spherical harmonics (Ylm is θ− and φ−dependent if l ≥ 1),

which prevents such modes from propagating purely radially. The resulting

interference causes an initially sharp wave to spread. In §7.2, we will consider

the scalar wave equation on a Kerr background. Then, even if l = 0, the

background curvature causes the initial data to spread. The solution contains

a “gravitational tail” and so Huygens’ principle cannot be satisfied. This is

consistent with the results of Kundt & Newman [88].
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Huygens’ principle for scalar wave equations has recieved a good deal of

attention in the literature (see e.g. [49]). McLenaghan [91] has shown that

Huygens’ principle for the scalar wave equation (5.11) is satisfied only on

plane-wave or Minkowski background spacetimes. The results presented here

are slightly different. McLenaghan investigated Huygens’ principle for scalar

waves Φ in physical, four-dimensional spacetimes. Here, we have factorized

out the angular dependence of the field Φ and are considering Huygens’ prin-

ciple for the φlm (5.13), which propagate on a 1 + 1-dimensional, “unphysical”

spacetime. In one spatial dimension, Huygens’ principle is not, in general,

valid [37].
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5.3 Linearized Gravitational Fields on a Minkowski

Background

We now apply similar methods to those in §5.2 to the Hertz potential field

equation (4.36) for linearized gravitational fields perturbed about a Minkowski

background. Again, we obtain a homogeneous Euler-Poisson-Darboux equa-

tion with integer parameters. This enables us to write down solutions corre-

sponding to incoming and outgoing gravitational radiation, and ultimately to

formulate absorbing boundary conditions for gravitational radiation on a flat

background.

5.3.1 Hertz Potentials on a Minkowski Background

Consider a Minkowski background with coordinate chart (u, v, θ, φ). Here, as

in §5.2, θ and φ are spherical polar coordinates and u and v are the standard

advanced and retarded time coordinates

u = t− r, v = t + r. (5.27)

With respect to the NP tetrad

la = (0, 2, 0, 0), na = (1, 0, 0, 0), ma = 2−1/2(0, 0, r−1,−ir−1 csc θ),

la = (1, 0, 0, 0), na = (0, 1
2 , 0, 0), ma = 2−1/2(0, 0,−r, ir sin θ), (5.28)

the only non-vanishing NP scalars are

ρ = −r−1, ρ′ = 1
2r
−1, β = β′ = 2−3/2r−1 cot θ. (5.29)

The Hertz potential χ′ (4.34) has GHP type {4, 0} and therefore it has spin

s = 2. Following the method detailed in [107] we decompose it in terms of

spin-weighted spherical harmonics

χ′ =
∑

l,m

χlm(u, v)2Ylm(θ,φ). (5.30)

There are many different conventions that can be used for spin-weighted spher-

ical harmonics (see for example [21,57,99,135]). Appendix C.2 contains details
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of the conventions used here. These conventions have been chosen to render

the calculations in this thesis as simple as possible. Note that sYlm ≡ 0 for

l < |s|, so the l = 0 (monopole) and l = 1 (dipole) cases would have to be

treated separately. However, since gravitational monopoles and dipoles are

non-radiative, these are not of interest in this study.

On a Minkowski background, the field equation for χ′ (4.36) becomes

(ÞÞ′ − ""′ + 3ρ′Þ− ρÞ′) χ′ = 0. (5.31)

Using the tetrad (5.28) and the NP scalars (5.29), the derivations Þ, Þ′, " and

"′, which were defined in (4.33), can be expressed in terms of the coordinates

u, v, θ and φ. For a quantity η of GHP type {p, q}

Þη = 2
∂

∂v
η,

Þ′η =
∂

∂u
η,

"η = 2−1/2r−1

(
∂

∂θ
+ i csc θ

∂

∂φ
− 1

2 [p− q] cot θ

)
η,

"′η = 2−1/2r−1

(
∂

∂θ
+ i csc θ

∂

∂φ
+ 1

2 [p− q] cot θ

)
η. (5.32)

Note that Þ and Þ′ contain u and v derivatives but no angular derivatives, and

so have no effect on the spin-weighted spherical harmonics. The derivations

" and "′ are precisely the same as those used in appendix C.2 to define the

spin-weighted spherical harmonics (C.8), since s = 1
2(p− q). We can therefore

make use of the eigenvalue equation (C.11). Substitution of (5.29), (5.30),

(5.32) and (C.11) into (5.31) yields

∑

l,m

{
χlm

,uv +
1

v − u
χlm

,u +
3

v − u
χlm

,v +
(l + 2)(l − 1)

(v − u)2
χlm

}
2Ylm(θ,φ) = 0.

(5.33)

By considering a single mode, we conclude that

χlm
,uv +

1

v − u
χlm

,u +
3

v − u
χlm

,v +
(l + 2)(l − 1)

(v − u)2
χlm = 0. (5.34)

This is an Euler-Poisson-Darboux (EPD) equation. (It is interesting to note

at this point that the “master equation” found in [22] governing the behaviour
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of linearized gravitational waves on a Minkowski background is also an EPD

equation. This can be seen by using characteristic variables u and v). The

equation (5.34) can be cast into the form (5.4) by making a change of dependent

variable

χlm(u, v) = (v − u)l+2ωlm(u, v), (5.35)

to obtain

ωlm
,uv +

l + 3

v − u
ωlm

,u −
l − 1

v − u
ωlm

,v = 0, (5.36)

which has the general solution

ωlm(u, v) =

(
∂

∂v

)l+2 Alm(v)

(v − u)l−1
+

(
∂

∂u

)l−2 Blm(u)

(v − u)l+3
, (5.37)

for some Alm(v) and Blm(u). The general solution of (5.34) is then

χlm = (v − u)l+2

[(
∂

∂v

)l+2 Alm(v)

(v − u)l−1
+

(
∂

∂u

)l−2 Blm(u)

(v − u)l+3

]
. (5.38)

By considering the characteristic initial value problem in precisely the same

way as in §5.2, we might interpret Blm(u) as representing “outgoing” radiation

and Alm(v) as representing “incoming” radiation. In fact, we can be more

specific than this. In §5.3.3 we construct the perturbed Weyl scalars induced

by the Hertz potential χ′. It has been posited [104] that outgoing gravitational

2l-poles on I + peel; that is Ψn ∼ rn−5. An analogous result holds for incoming

radiation on I −: Ψn ∼ r−n−1 (see chapters 2 and 3 for details on the peeling

theorem in the full nonlinear theory of relativity). This peeling behaviour is

matched precisely by the Weyl scalars constructed from “outgoing” solutions

Blm(u) on I +, and by “incoming” solutions Alm(v) on I − (see table 5.1).

We conclude that the term

(v − u)l+2

(
∂

∂v

)l+2 Alm(v)

(v − u)l−1
, (5.39)

represents “incoming” linearized 2l-pole gravitational radiation, whereas the

term

(v − u)l+2

(
∂

∂u

)l−2 Blm(u)

(v − u)l+3
, (5.40)

represents “outgoing” 2l-pole radiation (this result was first obtained in [107]).
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It is this separation of incoming and outgoing radiation that will enable us to

formulate absorbing boundary conditions for numerical relativity.

We consider now the characteristic initial value problem for the Euler-

Poisson-Darboux equation (5.34). Suppose that an astrophysical event occurs

which emits an outgoing gravitational wave on a Minkowski background. We

take this wave to be our initial data. In the characteristic initial value problem,

this corresponds to specifying data on the characteristic v = v0, shown below

in figure 5.2.

D

P

Q

R

S

(u, v)

(u0, v0)

(u, v0)

(u0, v)

Initial data is zero on u = u0.
This corresponds to specifying
zero initial incoming radiation.

Initial outgoing data
specified on v = v0

↗
↗
↗

Figure 5.2: Specifying data only on v = v0 results in a purely outgoing radiative
solution.

Consider first the case l = 2 (so that m = 0,±1,±2). From (5.38), the

general outgoing solution to (5.34) is

χ2 m
out =

B2 m(u)

v − u
. (5.41)

For initial data on v = v0 given by C2 m(u), it is then immediate that

B2 m(u) = (v0 − u)C2 m(u). (5.42)

Therefore compact support of the initial data leads to a general solution with

compact support. This is sharp propagation and the gravitational wave obeys

Huygens’ principle (§5.2).
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For l = 3 the general outgoing solution is

χ3 m
out = (v − u)5 ∂

∂u

B3 m(u)

(v − u)6
. (5.43)

Then for initial data C3 m(u) on v = v0, we have

B3 m(u) = (v0 − u)6

∫ u

u0

C3 m(u′)

(v0 − u′)5
du′. (5.44)

If C3 m(u) has compact support, then the general solution (5.43) does not

necessarily have compact support. (For example if C3 m(u) = δ(u − ua) then

B3 m = (v0−u)6

(v0−ua)5 .) It is easy to check that this is true for all l ≥ 3. Thus

for l ≥ 3, gravitational radiation does not obey Huygens’ principle. Once the

initial wave has passed a given point, there is a leftover excitation in the field,

known as the geometrical tail.

In a similar manner to the spin-zero massless scalar field (§5.2), the geo-

metrical tail for l ≥ 3 arises due to the complex angular dependence of the

spin-weighted spherical harmonics. This angular dependence prevents solu-

tions from propagating purely radially, and causes interference. However, for

l = 2 the propagation of gravitational waves is not purely radial either. In fact

2Y20 ∝ sin2 θ. Why then is there no geometrical tail in the case l = 2? In [19],

by adding a perturbation approximation to the asymptotic expansion of Bondi

et al. [18], it was shown that a quadrupole tail arises due to the interaction

of quadrupole radiation with the gravitational monopole. Since we are per-

turbing about Minkowski spacetime here, there is no monopole present in the

background, and therefore there is no quadrupole tail. In chapters 6 and 7, in

which a gravitational monopole is present, we will find that the quadrupole ra-

diation does in fact admit a tail. Huygens’ principle is therefore never satisfied

for gravitational radiation propagating on a curved spacetime.

Waylen [146] has shown, in a similar manner to McLenaghan [91], that

linearized gravitational radiation satisfies Huygens’ principle only on flat or

plane-wave backgrounds. Just as in the scalar field case of the previous sec-

tion, the results here are slightly different. Waylen considered the linearized

Einstein field equations in the full four-dimensional spacetime. We have used

spin-weighted spherical harmonics to factor out the angular dependence of

the gravitational field and are considering wave equations for the χlm rather
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than χ′ (5.30). We are thus investigating Huygens’ principle for the χlm in an

unphysical two-dimensional spacetime.

We can extend the results above to fields of arbitrary spin on a Minkowski

background. Let the complex scalar field Ψ have spin s. If we decompose Ψ

in terms of spin-weighted spherical harmonics

Ψ(u, v) =
∑

l,m

(v − u)l+sΨlm(u, v)sYlm(θ,φ), (5.45)

then the spin-s wave equation becomes

Ψlm
,uv +

l + s + 1

v − u
Ψlm

,u −
l − s + 1

v − u
Ψlm

,v = 0, (5.46)

which has the general solution

Ψlm(u, v) =

(
∂

∂u

)l−s B̃lm(u)

(v − u)l+s+1
+

(
∂

∂v

)l+s Ãlm(v)

(v − u)l−s+1
. (5.47)

The terms involving Blm(u) represent outgoing radiation. Consistent with our

earlier results, it is clear that sharp propagation is only possible if l = s. If

l > s then, for generic initial data C lm(u), spreading occurs and a geometrical

tail is present. Note that for certain specific choices of C lm(u) with compact

support, we can arrange that the first l − s integrals of C lm(u) have compact

support, and hence B̃lm(u) also has compact support, so that no spreading

occurs. However this is not true of generic initial data.

5.3.2 Absorbing Boundary Conditions on a Minkowski

Background

On a Minkowski background, the incoming and outgoing solutions propagate

independently. If the initial data is posited to be purely outgoing then the

solution should remain purely outgoing. However, if an artificial boundary ∂Ω

of the computational domain is introduced then reflection off the boundary

may produce incoming radiation. Boundary conditions imposed on ∂Ω should

therefore remove all incoming radiation.

The Weyl scalars Ψi are chart-independent and contain all the information

about the radiative behaviour of the gravitational field in a vacuum. They are
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therefore the natural candidates for quantities on which to impose boundary

conditions.

The general solution to the homogeneous Euler-Poisson-Darboux equation

(5.38) can be expanded and written in the form

χlm =
Alm

0 (v)

(v − u)l−1
+

Alm
1 (v)

(v − u)l−2
+ · · ·+ Alm

l+2(v)(v − u)3

+
Blm

0 (u)

(v − u)l−1
+

Blm
1 (u)

(v − u)l−2
+ · · ·+

Blm
l−2(u)

(v − u)
, (5.48)

where the functions Alm
i (v) and Blm

i (u) can easily be expressed as linear combi-

nations of the derivatives of the Alm(v) and Blm(u) respectively. Substituting

(5.48) into the expressions for the Ψ̂i (B.6) we find that the Weyl scalars can

be written as the sum of incoming and outgoing contributions from each grav-

itational 2l−pole

Ψi = Ψout
i + Ψin

i , (5.49)

where

Ψout
i =

∑

l,m

{
B̃lm

0 (u)

(v − u)l+3
+

B̃lm
1 (u)

(v − u)l+2
+ · · ·+

B̃lm
l−2+i(u)

(v − u)5−i

}

i−2Ylm(θ, φ),

(5.50)

and

Ψin
i =

∑

l,m

{
Ãlm

0 (v)

(v − u)l+3
+

Ãlm
1 (v)

(v − u)l+2
+ · · ·+

Ãlm
l+2−i(v)

(v − u)i+1

}

i−2Ylm(θ,φ).

(5.51)

Again, the functions Ãlm
k (v) and B̃lm

k (u) could be expressed as linear combi-

nations of the derivatives of the Alm
k (v) and Blm

k (u) respectively, but this is

not necessary here. An absorbing boundary condition should set the Ãlm
k (v)

in (5.51) to be zero on the boundary ∂Ω, whilst ignoring the B̃lm
k (u).

We can read off, from (5.51), the leading order behaviour of the incoming

and outgoing terms in each of the Weyl scalars. These are shown in table

5.1, which shows that Ψ0 is dominated by incoming radiation. This is why

many numerical relativity groups choose to impose their boundary conditions
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Incoming Outgoing
Ψ0 O(r−1) O(r−5)
Ψ1 O(r−2) O(r−4)
Ψ2 O(r−3) O(r−3)
Ψ3 O(r−4) O(r−2)
Ψ4 O(r−5) O(r−1)

Table 5.1: The behaviour of the incoming and outgoing radiative parts of the
Weyl scalars near I +

on it. Below we demonstrate how absorbing boundary conditions could be

formulated in terms of Ψ0.

From (5.51) we obtain

Ψout
0 =

∑

l,m

{
B̃lm

0 (u)

(v − u)l+3
+

B̃lm
1 (u)

(v − u)l+2
+ · · ·+

B̃lm
l−2(u)

(v − u)5

}

2Ylm(θ,φ), (5.52)

and

Ψin
0 =

∑

l,m

{
Ãlm

0 (v)

(v − u)l+3
+

Ãlm
1 (v)

(v − u)l+2
+ · · ·+

Ãlm
l+2(v)

(v − u)

}

2Ylm(θ,φ). (5.53)

At O(r−1), O(r−2), O(r−3) and O(r−4) there are no contributions from the out-

going radiation. The outgoing radiative terms do not contribute until O(r−5).

Therefore an approximately absorbing boundary condition (accurate to fourth

order) would be to demand that Ψ0 = O(r−5) on ∂Ω. This is similar to the

“freezing Ψ0” condition commonly used in numerical relativity [78,90,114,124].

We can establish the condition Ψ0 = O(r−5) order by order to create a

hierarchy of increasingly accurate boundary conditions, similar to those in [22].

From now on we use the symbol
.
= to denote equality only on the boundary ∂Ω.

As a first approximation, we impose Ãlm
l+2(v)

.
= 0 in (5.53). This removes the

leading order incoming radiation term. In a numerical simulation, the Ãlm
k (v)

are not known, but the condition Ãlm
l+2(v)

.
= 0 can be expressed as

M̂1Ψ0 ≡ (v − u)Ψ0
.
= O(r−1). (5.54)
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At second order we must remove the term

Ãlm
l+1(v)

(v − u)2
, (5.55)

from (5.53). If we have already imposed M̂1Ψ0
.
= O(r−1) then (5.55) can be

removed by imposing

M̂2Ψ0 ≡ (v − u)2Ψ0
.
= O(r−1). (5.56)

Similarly, having imposed the second order boundary condition, we can impose

the third and then the fourth order boundary conditions

M̂3Ψ0 ≡ (v − u)3Ψ0
.
= O(r−1), (5.57)

and

M̂4Ψ0 ≡ (v − u)4Ψ0
.
= O(r−1). (5.58)

At fifth order and above, we must adopt a slightly different approach, since

outgoing terms are now also present in Ψ0. For k ≥ 5, we define the operators

M̂k ≡
∂

∂v
(v − u)k. (5.59)

If we have already imposed the lower order boundary conditions (M̂jΨ0
.
=

O(r−1) with j ≤ k) then the leading order term in M̂kΨ0 is Ãlm
l+3−k, and so we

impose the condition

M̂kΨ0
.
= O(r−1). (5.60)

Thus we now have a hierarchy of increasingly accurate absorbing boundary

conditions. Inspection of (5.53) suggests that imposing this hierarchy up to

M̂L+3 will remove all the Ãlm
j from all the gravitational multipoles with angular

momentum number l ≤ L, and so for l ≤ L these boundary conditions are

perfectly absorbing.

How can a numerical relativist impose a condition such as M̂kΨ0
.
= O(r−1)?

One approach is to multiply by r and then take the limit r → ∞. However,

this is impractical numerically. Bayliss & Turkel [7] encountered a similar

situation. They argued that it is valid to simply impose M̂kΨ0
.
= 0.
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It was argued in chapter 3 that Ψ0 cannot in fact be estimated using lin-

earized theory, since at leading order it contained third order terms from the

asymptotic expansions of the metric variables. Therefore the boundary con-

ditions defined above are of questionable use in numerical relativity. The

calculations of chapter 3 suggest that Ψ4 is the easiest Weyl scalar to evalu-

ate numerically. Can we formulate appropriate boundary conditions for Ψ4?

Unfortunately, this appears to be a dead end. From (5.51) we obtain

Ψin
4 =

∑

l,m

{
Ãlm

0 (v)

(v − u)l+3
+

Ãlm
1 (v)

(v − u)l+2
+ · · ·+

Ãlm
l−2(v)

(v − u)5

}

2Ylm(θ,φ),

Ψout
4 =

∑

l,m

{
B̃lm

0 (u)

(v − u)l+3
+

B̃lm
1 (u)

(v − u)l+2
+ · · ·+

B̃lm
l+2(u)

(v − u)

}

2Ylm(θ,φ), (5.61)

where the Ãlm
i (v) and B̃lm

i (u) can be expressed as a linear combination of

the derivatives of the Alm
i (v) and Blm

i (u) respectively. In order to obtain

absorbing boundary conditions we must remove all terms involving the Ãlm
i (v)

on ∂Ω. Such terms do not appear until fifth order. Hence, in order to obtain a

boundary condition even for the leading order contribution from the incoming

radiation, we would need to evaluate Ψ4 to fifth order. This is unlikely to be

possible numerically.

Having established that Ψ0 and Ψ4 are unsuitable for use in boundary

conditions, a compromise is required. The obvious choice is Ψ2. In chapter

3, we showed that Ψ2 could be estimated to leading order using linearized

theory. Furthermore, perusal of table 5.1 shows that the incoming and outgoing

radiative parts in Ψ2 are on an equal footing.1 From (5.51) we find

Ψout
2 =

∑

l,m

{
B̃lm

0 (u)

(v − u)l+3
+

B̃lm
1 (u)

(v − u)l+2
+ · · ·+ B̃lm

l (u)

(v − u)3

}

0Ylm(θ,φ),

Ψin
2 =

∑

l,m

{
Ãlm

0 (v)

(v − u)l+3
+

Ãlm
1 (v)

(v − u)l+2
+ · · ·+ Ãlm

l (v)

(v − u)3

}

0Ylm(θ,φ). (5.62)

As before, we can proceed order by order, by removing the incoming terms

(terms involving the Ãlm
k ). At leading order we obtain a Sommerfeld-type

1Could we also have chosen Ψ1 or Ψ3? It appears not. We argued in chapter 3 that
Ψ1 cannot be estimated in linearized theory. Furthermore Ψ3 is dominated by outgoing
radiation and so we would encounter a similar problem to the one described above for Ψ4.
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condition:

N̂1Ψ2 ≡
∂

∂v
(v − u)3Ψ2

.
= O(r−1), (5.63)

which is equivalent to the condition Ãlm
l (u)

.
= 0. Consider now the operator

N̂kΨ2 ≡
∂

∂v
(v − u)2+kΨ2. (5.64)

Successively imposing N̂kΨ2
.
= O(r−1) for k = 1, 2, . . . removes the incoming

radiation terms from Ψ2, order by order. Again, we can argue that it is suffi-

cient to impose N̂kΨ2
.
= 0. By inspection of (5.62) we can deduce that using

N̂L+3 in the hierarchy will result in perfectly absorbing boundary conditions

for gravitational poles with l ≤ L.

The operators N̂k would be difficult to implement numerically owing to the

high powers of r involved. An equivalent set of operators can be obtained by

dividing through by (v − u)2+k. We then define

Ôk ≡
∂

∂v
+

2 + k

v − u
, (5.65)

and impose

ÔkΨ2
.
= O(r−3−k). (5.66)

The sequence of boundary conditions defined by Ôk has the same absorbing

properties as the N̂k, but is easier to implement numerically. However, a

numerical relativist cannot impose all the boundary conditions above at various

different orders simultaneously. We therefore need to combine the Ôk into a

single boundary condition. Following the method of Bayliss & Turkel [7], we

could impose the product

L+3∏

k=1

(
∂

∂v
+

2 + k

v − u

)
Ψ2

.
= 0. (5.67)

This sequence could then be used to any desired value of L, and would result in

perfectly absorbing boundary conditions for gravitational radiation with l ≤ L.

It is the boundary condition (5.67) that a numerical relativist would ultimately

use. It is no coincidence that the sequence of boundary conditions (5.67) is

very similar in form to the Bm operators devised by Bayliss & Turkel [7]. Their

approach was also to seek operators which kill off outgoing terms in solutions
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to wave-like equations.

Buchman & Sarbach [22] also obtained a hierarchy of perfectly absorb-

ing boundary conditions for linearized gravitational radiation on a Minkowski

background with l ≤ L. Their “master equation” governing the propagation of

linearized gravitational radiation was expressed in terms of Ψ2 and they were

able to express their boundary conditions both in terms of Ψ2 and Ψ0. Within

linearized theory both sets of boundary conditions could in principle be used

to any desired order of accuracy. However, in the full nonlinear investigation

of chapter 3 we found that nonlinear terms arose in the leading and second

order terms of Ψ0 and Ψ2 respectively. Therefore we cannot justify the use

of boundary conditions for the Weyl scalars, derived using linearized theory,

beyond leading order.

5.3.3 An Aside on the Peeling of Linearized Gravita-

tional Radiation

The study of Hertz potentials on a Minkowski background also enables us to

investigate the peeling property of the Weyl scalars and the outgoing radiation

condition, both in linearized theory. Both were discussed in the full nonlinear

theory of relativity in chapters 2 and 3.

Gravitational fields are said to be asymptotically regular if they peel in the

usual way as we approach null infinity; that is Ψi = O(r−i−1) on I − and

Ψi = O(ri−5) on I +. We will restrict our attention to future null infinity,

I +, although the analysis works analogously on I − by reversing the direc-

tion of time. Future null infinity is obtained by taking the limit v →∞ whilst

u, θ and φ remain constant. For a solution consisting entirely of outgoing

linearized gravitational radiation only and no incoming radiation, it is imme-

diate from (5.51) and table 5.1 that Ψout
i = O(ri−5) near I + (and similarly

Ψin
i = O(r−i−1) near I −). Thus outgoing radiation peels in the usual way.

For a solution containing only incoming radiation, recall from (5.51) that

Ψin
i =

∑

l,m

{
Ãlm

0 (v)

(v − u)l+3
+

Ãlm
1 (v)

(v − u)l+2
+ · · ·+

Ãlm
l+2−i(v)

(v − u)i+1

}

i−2Ylm(θ,φ). (5.68)

Without specifying the behaviour of the Ãlm
j (v) as v → ∞, we cannot de-
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termine whether the fields peel as we approach I +. In order to guarantee

Ψin
i = O(ri−5) on I +, we must impose conditions on the asymptotic behaviour

of the Alm(v) (which were defined in (5.38)):

Alm(v) = O(vl−2),

(
∂

∂v

)
Alm(v) = O(vl−3), . . . ,

(
∂

∂v

)l−1

Alm(v) = O(v−1),

(5.69)

as v → ∞. These conditions can be satisfied by demanding that Alm(v)

grows no faster than a polynomial of order l − 2 as v → ∞. We interpret

this condition as the outgoing radiation condition for linearized gravitational

waves, or the linearized outgoing radiation condition. This is analogous to

the outgoing radiation condition found in the study of nonlinear gravitational

radiation (see [18,40,81] and chapters 2 and 3), which regulates the amount of

incoming radiation from I + to ensure that the peeling assumption holds. The

relationship between the two conditions cannot be made precise because we are

now working in linearized theory. Analogous “incoming radiation conditions”

hold on I +, which result in conditions similar to (5.69) being imposed on the

Blm(u).

To measure the amount of energy carried by gravitational radiation one

might compute the Bondi mass MB(u) and the news function N (see chapters

2 and 3 and [18, 40, 134]). With a suitable choice of radial coordinate r, the

Bondi mass is given by

4πMB(u) = − lim
r→∞

∫ ∫
r3 (Ψ2 − σσ′) dS, (5.70)

where dS is the area element of the unit sphere. Also

N = − lim
r→∞

rσ′. (5.71)

The perturbations induced by the Hertz potential are then given by

4πM̂B(u) = − lim
r→∞

∫ ∫
r3Ψ̂2dS, (5.72)

and

N̂ = − lim
r→∞

rσ̂′ (5.73)
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However since the standard mass-loss equation involves the square of the news

function we are unable to compute it consistently within linearized theory.
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Chapter 6

Hertz Potentials on a

Schwarzschild Background

In deriving the boundary conditions of chapter 5, we assumed that the space-

time in the far-field region could be described by a perturbation about flat

space. We obtained a hierarchy of boundary conditions in a similar manner to

Buchman & Sarbach [22]. In a numerical relativity simulation, a mass M might

be present in the near-field region, and so it is more accurate to describe the

far-field region by a perturbation about a Schwarzschild background. Buch-

man & Sarbach generalized their calculation to incorporate first order effects

due to M [23]. By considering the Hertz potential field equation (4.36) on a

Schwarzschild background we can also take M into account. We expect the

solutions to (4.36) to be altered due to the presence of the background Weyl

curvature. Our approach, based on integral representations of solutions to in-

homogeneous Euler-Poisson-Darboux equations, is similar to that of Schmidt

& Stewart [128], who studied the scalar wave equation on a Schwarzschild

background.

Boundary conditions which take into account the Weyl curvature of the

Schwarzschild background will naturally depend intrinsically on the mass pa-

rameter M . A numerical relativist would therefore need to accurately evaluate

this quantity during the evolution of the spacetime. One possible approach

would be to use the results of chapter 3 to evaluate the Bondi mass. Never-

theless, estimating M is a non-tivial problem in numerical relativity.
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6.1 The Hertz Potential Field Equation on a

Schwarzschild Background

We use the coordinate chart (u, v, θ, φ) with advanced and retarded time co-

ordinates, v and u, given by

v = t + r∗, u = t− r∗, (6.1)

where

r∗ = r + 2M log
( r

2M
− 1

)
. (6.2)

We choose the Newman-Penrose tetrad

la = (0, 2F−1, 0, 0), na = (1, 0, 0, 0), ma = 2−1/2(0, 0, r−1,−ir−1 csc θ),

la = (1, 0, 0, 0), na = (0, 1
2F, 0, 0), ma = 2−1/2(0, 0,−r, ir sin θ), (6.3)

where

F = 1− 2M

r
. (6.4)

With respect to this tetrad, the only non-vanishing NP and Weyl scalars are

ρ = −r−1, ρ′ =
1

2
r−1F, ε′ = −1

2
Mr−2,

β = β′ = 2−3/2r−1 cot θ, Ψ2 = −Mr−3. (6.5)

As was done in §5.3, we decompose χ′ in terms of spin-weighted spherical

harmonics

χ′ =
∑

l,m

χlm(u, v)2Ylm(θ,φ). (6.6)

On a Schwarzschild background the field equation (4.36) becomes

(ÞÞ′ − ""′ + 3ρ′Þ− ρÞ′ − 6Ψ2) χ′ = 0. (6.7)

Using the tetrad (6.3) and the NP scalars (6.5), the derivations Þ, Þ′, " and

"′ can be expressed in terms of the coordinates u, v, θ and φ. For a quantity
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η of GHP type {p, q},

Þη = 2
∂

∂v
η

Þ′η =

(
∂

∂u
− 1

2 [p + q]Mr−2

)
η

"η = 2−1/2r−1

(
∂

∂θ
+ i csc θ

∂

∂φ
− 1

2 [p− q] cot θ

)
η

"′η = 2−1/2r−1

(
∂

∂θ
+ i csc θ

∂

∂φ
+ 1

2 [p− q] cot θ

)
η. (6.8)

Note again that Þ and Þ′ do not involve angular derivatives and so have no

effect on the spin-weighted spherical harmonics. Due to our choice of ma, the

" and "′ above match precisely the " and "′ of (C.8) and so, as in §5.3.1, we

are able to use the eigenvalue equation (C.11) once more. For l ≥ 2, the field

equation (6.7) becomes

∑

l,m

{
χlm

,uv +
1

2r
χlm

,u +
3

2r
χlm

,v +
lc

4r2
χlm

−M

r2
χlm

,u −
5M

r2
χlm

,v −
M

r3
(lc − 4F ) χlm

}
2Ylm(θ,φ), (6.9)

where

lc =
1

2
(l + 2)(l − 1). (6.10)

Since the angular dependence of the field has decoupled, we can consider a

single harmonic mode and deduce that

χlm
,uv +

1

2r
χlm

,u +
3

2r
χlm

,v +
lc

4r2
χlm

=
M

r2
χlm

,u +
5M

r2
χlm

,v +
M

r3
(lc − 4F ) χlm, (6.11)

Substituting the expression

r−1 = r∗−1

(
1 +

2M

r
log

( r

2M
− 1

))
, (6.12)
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into (6.11), we obtain

χlm
,uv+

1

v − u
χlm

,u +
3

v − u
χlm

,v +
lc

(v − u)2
χlm

=− 2M

r(v − u)
log

( r

2M
− 1

)
χlm

,u −
6M

r(v − u)
log

( r

2M
− 1

)
χlm

,v

− lc
(v − u)2

(
4M

r
log

( r

2M
− 1

)
+

4M2

r2

[
log

( r

2M
− 1

)]2
)

+
M

r2
χlm

,u +
5M

r2
χlm

,v +
M

r3
(lc − 4F ) χlm, (6.13)

The relationship with the Minkowski background calculation now becomes

apparent. Equation (6.13) is the same Euler-Poisson-Darboux equation as

(5.34) but now with additional “source” terms which are present only if M .= 0.

Since we are interested in the behaviour of solutions as v → ∞, we next

use the expression

r−1 =
2

v − u
+

8M log
(

v−u
2M

)

(v − u)2
+ O

([
M log

(
v−u
2M

)]2

(v − u)3

)
, (6.14)

which is obtained from (6.12), to make a polyhomogeneous expansion of the

source term in terms of v − u,

χlm
,uv +

1

v − u
χlm

,u +
3

v − u
χlm

,v +
(l + 2)(l − 1)

(v − u)2
χlm

=−
[

4M log
(

v−u
2M

)

(v − u)2
− 4M

(v − u)2
+ O

([
M log

(
v−u
2M

)]2

(v − u)3

)]
χlm

,u

+

[
−

12M log
(

v−u
2M

)

(v − u)2
+

20M

(v − u)2
+ O

([
M log

(
v−u
2M

)]2

(v − u)3

)]
χlm

,v

+

[
−

8Mlc log
(

v−u
2M

)

(v − u)3
+

M(8lc − 32)

(v − u)3
+ O

([
M log

(
v−u
2M

)]2

(v − u)4

)]
χlm.

(6.15)

Finally it will be convenient to make a change of dependent variable via

χ′lm(u, v) = (v − u)1−lωlm(u, v). (6.16)
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With this change of variable, (6.15) becomes

ωlm
,uv −

l − 2

v − u
ωlm

,u +
l + 2

v − u
ωlm

,v = Slm(u, v; ωlm(u, v)), (6.17)

where

Slm(u, v; ωlm) =

(
ωlm

,u −
(1− l)

v − u
ωlm

)
S1(u, v)

+

(
ωlm

,v +
(1− l)

v − u
ωlm

)
S2(u, v) + ωlmS3(u, v), (6.18)

and

S1(u, v) = −
4M log

(
v−u
2M

)

(v − u)2
+

4M

(v − u)2
+ O

([
M log

(
v−u
2M

)]2

(v − u)3

)

S2(u, v) = −
12M log

(
v−u
2M

)

(v − u)2
+

20M

(v − u)2
+ O

([
M log

(
v−u
2M

)]2

(v − u)3

)

S3(u, v) = −
8Mlc log

(
v−u
2M

)

(v − u)3
+

M(8lc − 32)

(v − u)3
+ O

([
M log

(
v−u
2M

)]2

(v − u)4

)
. (6.19)

In §6.2 we will estimate the effect of the source terms (6.18) on the solutions

of (6.17). Firstly however, we discuss how the use of spin-weighted spheri-

cal harmonics enables us to recover the Hertz potential from the curvature

perturbations given in appendix B.2.

6.1.1 An Aside on Recovering the Hertz Potential from

the Curvature Perturbation

The spherical harmonic decomposition (6.6) allowed us to factor out the angu-

lar dependence of the Hertz potential. By seeking a linear combination of the

perturbed Newman-Penrose scalars which only depend on the angular deriva-

tives of χ′ (that is "χ′ and "′χ′) it is possible to recover the potential from the

curvature perturbation.

Perusing appendix B.2 we note that, using the commutator equations for

the GHP operators Þ, Þ′, " and "′ [53] and the field equation for χ′ (4.36), κ̂
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can be written as

κ̂ = −"3χ̄′ + ""′2χ′ − 2ρ′"′Þχ′ + 2ρ"′Þ′χ′ + 4Ψ2"χ′. (6.20)

It follows that

Ψ2κ̂− 4
3"′Ψ̂0 = −"3χ̄′ + ""′2χ′ − 2

3"′"4χ̄′. (6.21)

Substituting the spin-weighted spherical harmonic decomposition (6.6) into

(6.21) yields

Ψ2κ̂− 4
3"′Ψ̂0 =

{
Ar−3χlm + (Br−3 + Cr−5)χ̄lm

}
1Ylm(θ, φ), (6.22)

where

A = 2−3/2

(
(l − 2)(l − 1)l

(l + 3)(l + 2)(l + 1)

)1/2

,

B = −2−3/2

(
(l + 2)

(l − 1)

)1/2

,

C = −1

3
2−3/2

(
(l + 2)

(l − 1)

)1/2

. (6.23)

Therefore by evaluating the real and imaginary parts of

lim
r→∞

r3

∫ ∫ (
Ψ2κ̂− 4

3"′Ψ̂0

)
1Ȳlm(θ,φ)dS, (6.24)

where dS is the area element of the unit sphere, we can evaluate χlm and thus

recover the Hertz potential χ′.
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6.2 The Inhomogeneous Euler-Poisson-Darboux

Equation

6.2.1 The Riemann Representation of Solutions to the

Characteristic Initial Value Problem

The field equation (6.17) is an inhomogeneous Euler-Poisson-Darboux equa-

tion whose solutions can be written down in integral form using Riemann’s

method. Most of the literature on Riemann’s method deals only with the

Cauchy problem (see for example [36,37]) rather than the characteristic initial

value problem, which is of interest to us here. The derivation of the integral

representation of solutions to the characteristic initial value problem is very

similar to that of the Cauchy problem [137]. We state the general result below.

Consider the inhomogeneous partial differential equation for the variable

z(u, v),

L[z] = z,uv + a(u, v)z,u + b(u, v)z,v + cz = S(u, v), (6.25)

where a and b are functions and S(u, v) is a “source term”. Characteristic

initial data are specified on the surfaces QR (v = v0) and QS (u = u0),

shown in figure 6.1. The initial data on QR and QS are z(u, v0) = f(u) and

z(u0, v) = g(v) respectively (note that we also require f(u0) = g(v0)). The

characteristic initial value problem then requires us to find the unique solution

to (6.25) at the point P , which satisfies these initial data.
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D

P

Q

R

S

(u, v)

(u0, v0)

(u, v0)

(u0, v)

Initial incoming data
specified on u = u0Initial outgoing data

specified on v = v0

↗
↗
↗

↖
↖
↖

Figure 6.1: Characteristic initial value problem for the inhomogeneous partial
differential equation (6.25).

The Riemann-Green function R(u′, v′; u, v) for (6.25) is defined to be the

solution to the adjoint equation

L∗[R] = 0, (6.26)

satisfying

R(u, v; u, v) = 1,

R,u′ = bR on v′ = v,

R,v′ = aR on u′ = u. (6.27)

The unique solution to (6.25) at point P , satisfying the given initial conditions,

is then composed of the sum of line integrals along QS and QR and an area

integral over the entire domain of dependence D of the point P . The solution

is most transparently expressed by using the notation z(X) to denote the
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function z evaluated at the point X. For example, z(S) ≡ z(u0, v). Then

z(P ) =
1

2
[z(R)R(R; P ) + z(S)R(S; P )]

+
1

2

∫

QR

[R(u′, v0; P )z(u′, v0),u′ − z(u′, v0)R(u′, v0; P ),u′

+2b(u′, v0)z(u′, vo)R(u′, v0; P )] du′

+
1

2

∫

QS

[R(u0, v
′; P )z(u0, v

′),v′ − z(u0, v
′)R(u0, v

′; P ),v′

+2a(u0, v
′)z(u0, v

′)R(u0, v
′; P )] dv′

+

∫ v

v0

∫ u

u0

R(u′, v′; P )S(u′, v′)du′dv′.

(6.28)

Suppose that within the domain of dependence D of P , we have S(u′, v′) =

0, so that (6.25) is homogeneous. Then the double integral in (6.28) vanishes,

whilst the remaining terms are unaffected. We conclude that the first three

terms on the right-hand side of (6.28) constitute the homogeneous solution to

(6.25). Suppose in addition that the initial “incoming” data vanish (i.e. we

prescribe z = 0 on QS). Then the second line integral in (6.28) will also vanish.

Similarly if there are no initial “outgoing” data (so that z = 0 on QR) then

the first line integral will vanish. Therefore the two line integrals in (6.28)

correspond to the propagation of “outgoing” and “incoming” homogeneous

solutions, originating from the characteristic surfaces QR and QS respectively.

Let zhom denote the unique solution of L[z] = 0 which satisfies some given

initial data on QR and QS. Then in general the solution (6.28) of L[z] =

S(u, v) can be written as

z(u, v) = zhom(u, v) +

∫ v

v0

∫ u

u0

R(u′, v′; u, v)S(u′, v′)du′dv′. (6.29)

6.2.2 The Solution to the Hertz Potential Field Equa-

tion on a Schwarzschild Background

We now apply the techniques of §6.2.1 to the field equation (6.17). We are

interested in the behaviour of solutions in the limit v →∞.

Consider the characteristic initial value problem with initial data on u = u0
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and v = v0. Using (6.29), the general solution of (6.17) at (u, v) is

ωlm(u, v) = ωlm
0 (u, v) +

∫ v

v0

∫ u

u0

Rlm(u′, v′; u, v)Slm(u′, v′; ωlm(u′, v′))du′dv′,

(6.30)

where ωlm
0 (u, v) is the homogeneous solution of the Euler-Poisson-Darboux

equation and Slm(u, v; ωlm) is the source term (6.18). Suppose that an astro-

physical event (such as a binary black hole merger) emits an outgoing gravi-

tational wave. We take this to be our initial data. In the characteristic initial

value problem, this corresponds to specifying data on v = v0 and imposing

ωlm(u0, v) = 0. Note that, for continuity, we require ωlm(u0, v0) = 0.

D

P

Q

R

S

(u, v)

(u0, v0)

(u, v0)

(u0, v)

Initial outgoing data
specified on v = v0

↗
↗
↗

Figure 6.2: Characteristic initial value problem for a Hertz potential on a
Schwarzschild background with outgoing initial data.

Since the integral in (6.30) vanishes on QR and QS (see figure 6.2), the initial

outgoing data satisfy ωlm(u, v0) = ωlm
0 (u, v0). This means that the initial data

can be can be written as an outgoing solution of the homogeneous EPD equa-

tion (the flat space equation) even though the subsequent solution propagates

on a Schwarzschild background.

The Riemann-Green function Rlm(u′, v′; u, v) is given by

Rlm(u′, v′; u, v) = (v′−u′)−2l(v′−u)l+2(v−u′)l−2
2F1(−2− l, 2− l; 1; t), (6.31)
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where

t =
(v′ − v)(u′ − u)

(v′ − u)(u′ − v)
. (6.32)

Picard’s method [106] can be used to obtain an approximate solution to

any desired order of accuracy via successive iterations of the form

ωlm
i (u, v) = ωlm

0 (u, v) + ∆ωlm
i−1(u, v), (6.33)

where

∆ωlm
i−1(u, v) =

∫ v

v0

∫ u

u0

Rlm(u′, v′; u, v)Slm(u′, v′; ωlm
i−1(u

′, v′))du′dv′. (6.34)

In the limit i → ∞, it can be shown that ωlm
i → ωlm, the inhomogeneous

solution of (6.17). We will argue later that a single iteration of Picard’s method

is sufficient to estimate the leading order contribution from the Weyl curvature.

The initial outgoing data on QR can be written in the form

ωlm
0 (u, v0) = (v0 − u)2l+1 ∂l−2

∂ul−2

(
Blm(u)

(v0 − u)l+3

)
, (6.35)

for some function Blm(u). The homogeneous (flat space) solution to the char-

acteristic initial value problem is then

ωlm
0 (u, v) = (v − u)2l+1 ∂l−2

∂ul−2

(
Blm(u)

(v − u)l+3

)
, (6.36)

which has the asymptotic expansion

= Blm(l−2)
(v − u)l−2 − (l − 2)(l + 3)Blm(l−1)

(v − u)l−3

+ O
(
(v − u)l−4

)
. (6.37)

The condition ωlm
0 (u0, v) = 0 as v → ∞ now becomes a condition on the

derivatives of Blm(u)

Blm(u0) = Blm(1)
(u0) = · · · = Blm(l−2)

(u0) = 0. (6.38)
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Using (6.37) and (6.18), we find

Slm(u, v; ωlm
0 (u, v)) =− 4MBlm(l−1)

(u)(v − u)l−4 log

(
v − u

2M

)

+ 4MBlm(l−1)
(u)(v − u)l−4

+ O

(
(v − u)l−5

[
M log

(
v − u

2M

)]2
)

. (6.39)

By inspection, noting that 2F1(−2−l, 2−l; 1; t) is a polynomial in t of order

l − 2, we expect to find that ∆ωlm
0 = O(vl−2) as v → ∞. At first glance, this

appears to be a contradiction since, if ∆ωlm
0 is of the same order of magnitude

as the homogeneous solution, the iteration scheme (6.33) will not converge.

The resolution of this apparent paradox lies in the coefficient of vl−2 in ∆ωlm
0 .

By inspection, it must be proportional to
(

M
v0

)a

for some a ≥ 1. Therefore

provided that we are in the far-field region (so that M 0 v0), then ∆ωlm
0 0

ωlm
0 . Subsequent iterations of Picard’s method will introduce higher powers

of M
v0

and so ∆ωlm
i+1 0 ∆ωlm

i . The boundary conditions subsequently derived

in this chapter are therefore only valid if the boundary of the computational

domain lies in the far-field region, so that the condition M 0 v0 holds. This

provides a consistency requirement on the location of the numerical boundary.

We illustrate the arguments above by considering the simplest case, l = 2.

We have

∆ω2 m
0 =

∫ v

v0

∫ u

u0

4MB2 m(1)
(u′)

(v′ − u)4

(v′ − u′)6

(
1− log

(
v′ − u′

2M

))
du′dv′. (6.40)

The leading order term in ∆ω0 is obtained by taking the v0 limit in the integral

above. It is therefore O(1) with respect to v, as expected.

As a concrete example, suppose we take B2 m(1)
(u) = δ(u − uA) for some

uA ∈ (u0, u). Expanding in powers of 1/v′ we find

∆ω2 m
0 =

∫ v

v0

4M

(
1− log

(
v′ − uA

2M

)) (
1

v′2
+

2(3uA − 2u)

v′3
+ O

(
1

v′4

))
dv′.

(6.41)

To leading order in 1/v0 we have

∆ω2 m
0 = −4M

v0

(
log

(
v0 − uA

2M

)
− 1

)
+ O

(
M2

v2
0

)
. (6.42)
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If v0 is in the far-field region (so that M 0 v0), then ∆ω2 m
0 0 ω2 m

0 . Note that

the v−dependence of ∆ω2 m
0 to leading order is

4M

v

(
log

(
v − uA

2M

)
− 1

)
. (6.43)

In equation (6.40), suppose instead that we choose a general function

B2 m(u) such that B2 m(1)
(u) = O(1) and B2 m(1)

(u0) = 0. Taylor expanding

the integrand, we find

∆ω2 m
0 = 4M

∫ v

v0

∫ u

u0

B2 m(1)
(u′)

(
1− log

(
v′ − u′

2M

)) (
1

v′2
+

2(3u′ − 2u)

v′3
+ O

(
1

v′4

))
du′dv′

= 4M

∫ v

v0

B2 m(u)

(
1− log

(
v′ − u

2M

)) (
1

v′2
+ O

(
1

v′3

))
dv′, (6.44)

where the u′−integral has been done by parts, neglecting the higher order

terms. Thus we find that

∆ω2 m
0 =− 4MB2 m(u)

v0

(
log

(
v0 − u

2M

)
− 1

)
+ O

(
M2

v2
0

)

+
4MB2 m(u)

v

(
log

(
v − u

2M

)
− 1

)
+ O

(
M2

v2

)
. (6.45)

As a useful check of the validity of our approximations, we can substitute

(6.45) back into (6.17). The first line in (6.45) is a function of u only and can

therefore be written as a homogeneous solution to (6.17). However, when we

substitute the v−dependent term

4MB2 m(u)

v

(
log

(
v − u

2M

)
− 1

)
, (6.46)

into the left-hand side of (6.17) we recover the source term (6.18), as required.

We now translate these results back in terms of the original Hertz potential

χlm, using (6.16). For l = 2, as v → ∞, and for the general outgoing initial

data given by

χ2 m
out (u, v0) =

B2 m(u)

v0 − u
, (6.47)
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the solution to the inhomogeneous Euler-Poisson-Darboux equation (6.11) is

χ2 m
out =

B2 m(u)

v
− 4B2 m(u)

v

(
M

v0

(
log

(
v0 − u

2M

)
− 1

)
+ O

(
M2

v2
0

))

+
4MB2 m(u)

v2

(
log

(
v − u

2M

)
− 1

)
+ O

(
M2

v3

)
. (6.48)

If we take the limit M → 0 then we recover the leading order term in the

asymptotic expansion of the flat space solution, as expected. Note that the

second term in (6.48) is also a homogeneous solution to the Euler-Poisson-

Darboux equation (6.11). Therefore the first line in (6.48) is a homogeneous

solution but with B2 m(u) replaced by F (u) where

F (u) = B2 m(u)

(
1− 4

M

v0

(
log

(
v0 − u

2M

)
− 1

)
+ O

(
M2

v2
0

))
. (6.49)

The final term in (6.48)

4MB2 m(u)

v2

(
log

(
v − u

2M

)
− 1

)
, (6.50)

is not a homogeneous solution. It is the contribution to the solution from the

Weyl curvature. We therefore interpret it as the gravitational tail. Similar

calculations can be performed for higher values of l. For l ≥ 2, even if the

initial data have compact support, the gravitational tail will not in general

have compact support. A wave propagating on a Schwarzschild background

then consists of a combination of the geometrical tail and the gravitational tail

due to the Weyl curvature.

In order to formulate absorbing boundary conditions, we must also investi-

gate the behaviour of an incoming wave propagating on a Schwarzschild back-

ground, since such waves can be created by the reflection of outgoing waves

off ∂Ω. Suppose that we specify some initial incoming 2l−pole data on QS.

Then we can write the data in the form

ωlm(u0, v) = (v − u0)
2l+1

(
∂

∂v

)l+2 Alm(v)

(v − u0)l−1
, (6.51)

for a suitable function Alm(v). The homogeneous solution satisfying these data
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is

ωlm
0 (u, v) = (v − u)2l+1

(
∂

∂v

)l+2 Alm(v)

(v − u)l−1
. (6.52)

We restrict our attention to fields which are asymptotically regular so that

the peeling theorem holds. Recall from §5.3.3 that we must then impose the

linearized outgoing radiation condition, which places a constraint upon the

behaviour of Alm(v) as v → ∞. Restricting our attention further to the case

l = 2, we discover that the homogeneous solution has the asymptotic expansion

ω2 m
0 (u, v) = A1(v) +

A2(v)

v − u
+ O

(
1

(v − u)2

)
, (6.53)

for some functions A1(v) and A2(v), both of order O(1) as v → ∞, and both

of which vanish at v = v0.

To estimate the effect of the background Weyl curvature on the incoming

solution, we follow the same method used in the study of the outgoing solution.

One iteration of Picard’s method is performed. Substituting (6.53) into the

source term in (6.18) we obtain

S2 m(u, v; ω2 m
0 ) =

MÃ1(v) log
(

v−u
2M

)

(v − u)2
+

MÃ2(v)

(v − u)2
+ O

(
log

(
v−u
2M

)

(v − u)3

)
. (6.54)

The functions Ã1(v) and Ã2(v) could be expressed in terms of A1(v) and A2(v),

but this is not necessary here, since we are only interested in the general

behaviour of the incoming solution. It is sufficient for our purposes to note

that Ã1(v) and Ã2(v) are both O(1) as v →∞. Then ∆ω2 m
0 (6.33) is given by

∆ω2 m
0 =

∫ v

v0

∫ u

u0

MÃ1(v)(v′ − u)4 log
(

v′−u′

2M

)

(v′ − u′)6
+ MÃ2(v)

(v′ − u)4

(v′ − u′)6

+O

(
(v′ − u)4 log

(
v′−u′

2M

)

(v′ − u′)7

)
du′dv′. (6.55)

The u′−integral in ∆ω2 m
0 can easily be evaluated. The v′−integral is done by

parts, neglecting higher order terms, to give

∆ω2 m
0 =

MÂ1(v) log
(

v−u
2M

)

v
+

MÂ2(v)

v
+ O

(
M2

v2

)
. (6.56)
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Again Â1(v) and Â2(v) are both of order O(1) as v →∞ and could be expressed

in terms of Ã1(v) and Ã2(v). Translating this result back in terms of the Hertz

potential χlm, using (6.16), we find that the general l = 2 incoming mode can

be written in the form

χ2 m
in =

Ā1(v)

v
+ MĀ2(v)

log
(

v−u
2M

)
− 1

v2
+ O

(
M2

v3

)
, (6.57)

where, once more, the functions Ā1(v) and Ā2(v) are both of order O(1) as

v →∞. As was found in the analysis of outgoing radiation, the leading order

term is a solution to the homogeneous EPD equation, but at second order

there is a contribution due to the Weyl curvature which is not a homogeneous

solution to the EPD equation.

6.2.3 Absorbing Boundary Conditions on a Schwarzschild

Background

To obtain boundary conditions for linearized gravitational radiation on a Schwarzschild

background, we adopt a similar approach to that used to obtain the operators

(5.67) for Ψ2. However, we will restrict our attention to the l = 2 pole. The

quadrupole contribution to Ψ̂2 can be calculated by substituting (6.48) and

(6.57) into the expressions for the perturbed Weyl scalars (B.11). We obtain

Ψ̂l=2
2 out =

1
2F

(2)(u)

v3
+ 2MB(2)(u)

(
log

(
v−u
2M

)
− 1

)

v4
+ O

(
M2

v5

)
, (6.58)

and

Ψ̂l=2
2 in =

Ā1(v)

v3
+ MĀ1(v)

log
(

v−u
2M

)
− 1

v4
+ O

(
M2

v5

)
. (6.59)

Here we are not interested in the specific behaviour of the functions F (u),

B(u), Ā1(v) or Ā2(v).

The boundary conditions here will be slightly different in form from the

boundary conditions on a Minkowski background (5.65) because we have ex-

panded the solution in powers of v rather than v − u. Consider the operator

P̂1 ≡
∂

∂v
+

3

v
. (6.60)
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The operator P̂1 removes the leading order outgoing term from Ψ̂2. Imposing

P̂1Ψ̂2
.
= O(v−4), (6.61)

will then remove the leading order incoming radiative term from Ψ̂2 on ∂Ω.

The first order boundary condition P̂1 is similar to the first order Bayliss &

Turkel condition [7] and similar to Ô1 (5.65). This is expected because at

leading order the background Weyl curvature has no effect.

Suppose now that we have removed the first order contribution from the

incoming radiation (using P̂1) and now wish to remove the second order terms.

At second order, the presence of logarithms complicates matters. Consider the

operator

P̂2 ≡
∂

∂v
(v − u)

∂

∂v
v4. (6.62)

At second order, the quantity P̂2Ψ̂2 contains only incoming radiation. Imposing

P̂2Ψ̂2
.
= O(v−1), (6.63)

will then remove these terms. We have now obtained the first two boundary

conditions in an increasingly accurate hierarchy similar to (5.67).

Buchman & Sarbach [23] also obtained a boundary condition, D2, which is

perfectly absorbing for quadrupolar radiation on a Schwarzschild background.

Their boundary condition is non-local, as it involves an integral over the past

boundary of the computational domain.

In practice (6.62) is unlikely to be of use in a numerical simulation. It

differs in form considerably from the simple and elegant Bayliss & Turkel-type

conditions of chapter 5 (5.67), which were devised to be as easy as possible

to implement numerically. Due to the presence of the logarithmic terms, the

operator (6.62) now involves multiplying by five powers of the radial coordinate

and taking two radial derivatives just to obtain second order accuracy in the

boundary condition. It would be desirable to obtain a much simpler sequence of

operators than the P̂i defined above. This will be done in chapter 7, in which a

careful choice of coordinates, which removes the logarithmic terms, will enable

us to consider both Schwarzschild and Kerr background spacetimes.
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Chapter 7

Hertz Potentials on a Kerr

Background

In chapter 5, the far-field region of spacetime was modelled as a linear pertur-

bation about flat space. This model was improved in chapter 6, in which it

was assumed that the far-field region could more accurately be described by a

perturbation about a Schwarzschild background with mass parameter M . In

a similar manner to Buchman & Sarbach [22, 23], the first order effects due

to M/R were incorporated, although the resulting boundary conditions were

rather cumbersome.

One might expect that more accurate boundary conditions could be ob-

tained by working to second order in M/R. However, at second order there

is also a contribution due to the angular momentum Ma of the background

spacetime. The method used by Buchman & Sarbach cannot incorporate these

effects and so their calculation was not extended to second order. By consid-

ering Hertz potentials that generate gravitational perturbations about a Kerr

background spacetime [77], however, we can determine the second order effect

of the background angular momentum on the propagation of linearized grav-

itational waves, thereby taking the results of Buchman & Sarbach one stage

further.

Any boundary conditions which take into account the background Kerr

spacetime will depend on the mass and angular momentum parameters M

and a. Both parameters must accurately be estimated during the numerical

evolution if the boundary conditions are to be used. As mentioned in chapter 6,
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one possible approach to estimating M is to evaluate the Bondi mass using the

results of chapter 3. However, there appears to be no easy way of estimating

the value of a. This remains an outstanding problem in numerical relativity.

The scalar field equation (4.36) for a Hertz potential χ′ is valid in any type D

spacetime so in principle the methods used in chapters 5 and 6 should work on a

Kerr background. However, the analysis now becomes even more complex than

in chapter 6. Unless we simplify the calculations considerably, any boundary

conditions obtained will be too unwieldy to implement numerically.

In chapters 5 and 6, double null coordinate charts and “standard” tetrads

were chosen. The Hertz potential was decomposed in terms of spin-weighted

spherical harmonics and it was found that the angular dependence decoupled

completely from the u− and v−dependence. Furthermore, the null coordinates

u and v were also characteristic coordinates for the resulting Euler-Poisson-

Darboux equations. On a Kerr background, the calculation is somewhat dif-

ferent. Firstly, there is no obvious choice of double null coordinate chart.

We will therefore choose a single outgoing null coordinate u and transform

the resulting Euler-Poisson-Darboux equation into characteristic coordinates

later. Secondly, due to the presence of the angular momentum parameter a,

the angular dependence of the potential, when decomposed into spin-weighted

spherical harmonics, will not decouple. Some mixing of the harmonic modes

will occur. One might expect that decomposing the Hertz potential in terms of

spin-weighted spheroidal harmonics (originally defined by Teukolsky [142,143])

would result in the decoupling of the angular dependence. However, this proves

not to be the case. In addition, there are very few analytical results known

about spin-weighted spheroidal harmonics (see, for example, [14, 21]). In this

calculation, their use appears to be a dead end.

In chapter 6, logarithmic terms were present in the inhomogeneous Euler-

Poisson-Darboux equation (6.13). If we use the standard Boyer-Lindquist co-

ordinates [20] for the corresponding calculation on a Kerr background, then

such terms will still be present. Together with the trigonometric terms that

arise at second order, due to the lack of decoupling, this is enough to render

the calculation virtually intractable. We require a coordinate chart and tetrad

better adapted to the study of the Kerr spacetime near future null infinity, to

minimise the number of logarithmic and trigonometric terms present in the

Hertz potential field equation. Luckily, Bai et al. [6, 59] have obtained such a
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chart and tetrad.

Section 7.1 contains details of the coordinate chart and tetrad of Bai et al.

In §7.2 we illustrate our methods by considering the massless spin−0 scalar field

equation on a Kerr background. An inhomogeneous Euler-Poisson-Darboux

equation is obtained. We are able to investigate the effect of the mass M and

angular momentum Ma on the solution by solving the characteristic initial

value problem to second order using a Picard iteration scheme. In addition,

we are able to demonstrate how the background angular momentum results in

mode-mixing between the l−poles. In §7.3 we apply these methods to the more

complex Hertz potential field equation for linearized gravitational waves on a

Kerr background. Again, an inhomogeneous Euler-Poisson-Darboux equation

is obtained, whose solutions we can estimate using Picard’s method. At sec-

ond order, some mode-mixing between the gravitational 2l−poles is present.

Finally, we use the solutions to formulate absorbing boundary conditions for

numerical relativity.
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7.1 A Coordinate Chart and Tetrad Adapted

to the Study of the Kerr Metric near I +

Bai et al. [6,59] have obtained a coordinate chart (u, λ, θ̃, φ̃) and tetrad (l, n,m, m̄),

both of which are adapted to the study of the Kerr metric near future null infin-

ity I +. To define the chart, null hypersurfaces that intersect I + in shear-free

cuts are first constructed. Each hypersurface corresponds to a particular value

of a null coordinate u, which satisfies the relativistic eikonal equation (7.4).

The Boyer-Lindquist radial coordinate r is then replaced with an affine pa-

rameter λ of the null generators of these hypersurfaces. Angular coordinates

are defined on the unit sphere generated by the intersection of the u = const.

hypersurfaces with I +.

The tetrad is defined by demanding that l is hypersurface-forming and that

the tetrad is parallelly transported along the null generator of constant u hy-

persurfaces. The definitions above are made possible by expanding the tetrad

components in powers of 1/λ and working to the desired order of accuracy.

Further details are given below.

In Boyer-Lindquist coordinates (t, r, θ, φ) [20], the Kerr metric [77] for a

vacuum spacetime containing a mass M , with angular momentum Ma, cen-

tered on the origin, is

ds2 =

(
1− 2Mr

ρ2

)
dt2 − ρ2

∆
dr2 +

4Mar sin2 θ

ρ2
dtdφ

− ρ2dθ2 −
(

r2 + a2 +
2Ma2r

ρ2
sin2 θ

)
sin2 θ dφ2, (7.1)

where

∆ = r2 − 2Mr + a2,

ρ2 = r2 + a2 cos2 θ. (7.2)

The Boyer-Lindquist chart (t, r, θ, φ) is related to the standard spherical polar
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chart for Minkowski spacetime (T, R, Θ, Φ) via

T = t,

R =
√

r2 + a2 sin2 θ,

sin Θ =

√
r2 + a2

r2 + a2 sin2 θ
sin θ,

Φ = φ. (7.3)

By solving the asymptotic expansion of the relativistic eikonal equation

giju,iu,j = 0, (7.4)

order by order, a Bondi-Sachs type null coordinate u can be constructed, such

that the u = const. null hypersurfaces intersect future null infinity in shear-free

cuts. In terms of the Boyer-Lindquist coordinates, u is given by

u = t−
(

r + 2M log
r

2M
−

4M2 − 1
2a

2 sin2 θ

r
− 4M3 −Ma2

r2
+ O

(
1

r3

))
.

(7.5)

A Newman-Penrose tetrad adapted to the u = const. hypersurfaces (so that la

is hypersurface forming) can then be written down

la = (du)a = (1,−h1,−h2, 0),

na =
1

g00 − g11h2
1 − g22h2

2

(1, h1, h2, 0),

ma =

(
g03

i

sin θ

√
ρ2

2Σ2
, −g11

√
−h2

2

2g11h2
2 + 2g22h2

1

,

g22

√
−h2

1

2g11h2
2 + 2g22h2

1

, g33
i

sin θ

√
ρ2

2Σ2

)
, (7.6)
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where

Σ = (r2 + a2)2 −∆a2 sin2 θ,

h1 = 1 +
2M

r
+

4M2 − 1
2a

2 sin2 θ

r2
+

8M3 − 2Ma2

r3
+ O

(
1

r4

)
,

h2 =
a2 sin θ cos θ

r
−

1
2a

4 sin3 θ cos θ

r3
+ O

(
1

r4

)
. (7.7)

Next, we define an affine parameter λ of the null generators of the constant

u hypersurfaces, so that la =
(

∂
∂λ

)a
. We replace the Boyer-Lindquist radial

coordinate r with λ. The Boyer-Lindquist angular coordinates (θ, φ) are not

constant along the null generators of the u = const. hypersurfaces. We there-

fore define two new angular coordinates (θ̃, φ̃). On the unit sphere generated by

the intersection of a constant−u hypersurface with I +, (θ̃, φ̃) become stan-

dard polar coordinates. The Boyer-Lindquist coordinates can be expressed

asymptotically in terms of λ, θ̃ and φ̃:

r = λ− a2 sin2 θ̃

2λ
− Ma2 sin2 θ̃

2λ2
+ O

(
1

λ3

)
,

θ = θ̃ − a2 sin θ̃ cos θ̃

2λ2
+ O

(
1

λ4

)
,

φ = φ̃− Ma

λ2
− 4M2a

3λ2
+ O

(
1

λ4

)
. (7.8)
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In terms of the new coordinate chart (u, λ, θ̃, φ̃), the Kerr metric (7.1) becomes

ds2 =

(
1− 2M

λ
+

(3 cos2 θ̃ − 1)Ma2

λ3
+ O

(
1

λ4

))
du2 + 2dudλ

+ 2

(
−3Ma2 cos θ̃ sin θ̃

λ2
+

a4 cos θ̃ sin3 θ̃

2λ3
+ O

(
1

λ4

))
dudθ̃

+ 2

(
2Ma sin2 θ̃

λ
+

Ma3 sin2 θ̃(1− 5 cos2 θ̃)

λ3
+ O

(
1

λ4

))
dudφ̃

+ O

(
1

λ3

)
dλdθ̃ + O

(
1

λ3

)
dλdφ̃−

(
λ2 − Ma2 sin2 θ̃

λ
+ O

(
1

λ2

))
dθ̃2

−
(

12M2a3 cos θ̃ sin3 θ̃

λ3
+ O

(
1

λ4

))
dθ̃dφ̃

−
(

sin2 θ̃ λ2 +
Ma2 sin4 θ̃

λ3
+ O

(
1

λ4

))
dφ̃2. (7.9)

Finally, we transform the tetrad (7.6) such that the new tetrad is parallelly

transported along a null generator of the constant u hypersurfaces. Performing

a phase shift on ma only has an effect at O(1/λ5). For na to be parallelly

transported, we perform a null rotation about la,

l → l,

m→ m + bl,

n→ n + b̄m + bm̄ + bb̄l, (7.10)

where

b = −3iMa sin θ̃

2
√

2λ2
− Ma2 sin θ̃ cos θ̃√

2λ3
+ O

(
1

λ4

)
. (7.11)
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The new tetrad, expressed in the (u, λ, θ̃, φ̃) chart is

la =

(
1, O

(
1

λ4

)
,

a4 sin3 θ̃ cos θ̃

2λ3
+ O

(
1

λ4

)
, 0

)
,

na =

(
1

2
− M

λ
+

Ma2(cos2 θ̃ − 1
2 sin2 θ̃)

λ3
+ O

(
1

λ4

)
,

1− 2Ma2 cos2 θ̃

λ3
+ O

(
1

λ4

)
,

−2Ma2 sin θ̃ cos θ̃

λ2
+ O

(
1

λ3

)
,

3Ma sin2 θ̃

2λ
+ O

(
1

λ3

))
,

ma =

(
iMa sin θ̃

2
√

2λ2
− Ma2 sin θ̃ cos θ̃√

2λ3
+ O

(
1

λ4

)
, O

(
1

λ4

)
,

− λ√
2

+
Ma2(2− 3

2 sin2 θ̃ − 2 cos2 θ̃)
√

2λ2
+ O

(
1

λ3

)
,

−iλ sin θ̃√
2
− iMa2 sin3 θ̃

2
√

2λ2
+ O

(
1

λ3

))
. (7.12)

With respect to the tetrad (7.12), the Newman-Penrose scalars are

κ, τ ′, ε = O

(
1

λ5

)
, ρ = −1

λ
+ O

(
1

λ5

)
, σ = −3Ma2 sin2 θ̃

2λ4
+ O

(
1

λ5

)
,

κ′ = −3iMa sin θ̃

4
√

2λ3
+

Ma2 sin θ̃ cos θ̃√
2λ4

+ O

(
1

λ5

)
, σ′ =

Ma2 sin2 θ̃

4λ4
+ O

(
1

λ5

)
,

τ = − 3iMa

2
√

2λ3
+

2
√

2Ma2 sin θ̃ cos θ̃

λ4
+ O

(
1

λ5

)
, β′ =

cot θ̃

2
√

2λ
+ O

(
1

λ4

)
,

β =
cot θ̃

2
√

2λ
− 3iMa sin θ̃

2
√

2λ3
+ O

(
1

λ4

)
, ε′ = − M

2λ2
− 3iMa cos θ̃

4λ3
+ O

(
1

λ4

)
,

ρ′ =
1

2λ
− M

λ2
− 3iMa cos θ̃

2λ3
+ O

(
1

λ4

)
. (7.13)
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The Weyl scalars are given by

Ψ0 =
3Ma2 sin2 θ̃

λ5
+ O

(
1

λ6

)
, Ψ1 =

3iMa sin θ̃√
2λ4

+ O

(
1

λ5

)
,

Ψ2 = −M

λ3
− 3iMa cos θ̃

λ4
+ O

(
1

λ5

)
, Ψ3 = −3iMa sin θ̃

2
√

2λ4
+ O

(
1

λ5

)
,

Ψ4 =
3Ma2 sin2 θ̃

4λ5
+ O

(
1

λ6

)
. (7.14)

The relationship between the Minkowski (T, R, Θ, Φ), Boyer-Lindquist (t, r, θ, φ)

and Bai et al. (u, λ, θ̃, φ̃) coordinate charts is best understood by considering

the limits M → 0 and a→ 0.

Consider first the limit M → 0, a→ 0, in which the Kerr background tends

to Minkowski spacetime. In this case the Boyer-Lindquist and Minkowski

charts coincide, and the Bai et al. coordinates reduce to the standard flat

space retarded time chart. Consistent with the Minkowski background results

of chapter 5, the Weyl scalars (7.14) vanish and the only non-zero Newman-

Penrose scalars are ρ, ρ′, β and β′.

Consider now the case M .= 0, a → 0, in which case we recover the

Schwarzschild spacetime. Again, in this limit the Boyer-Lindquist and Minkowski

charts coincide. This is because the Boyer-Lindquist chart is based on a fo-

liation of the spacetime by concentric spheroids, centered on the origin. In

the limit a→ 0, these spheroids become the spheres on which the Minkowski

spherical polar coordinates are based. If a→ 0 then the null coordinate u be-

comes the standard retarded time null coordinate for a Schwarzschild spacetime

(6.1). Similarly, λ, θ̃ and φ̃ tend to r, θ and φ respectively, and so we recover

the standard retarded time chart (u, r, θ, φ) for Schwarzschild spacetime. The

metric (7.9), tetrad (7.12), Newman-Penrose scalars (7.13) and Weyl scalars

(7.14) reduce to the standard results for a Schwarzschild spacetime found in

chapter 6.

Finally, consider the case M → 0, a .= 0. The spacetime is now flat (since

M = 0). However, the three coordinate charts all differ, due to the presence of

the angular momentum parameter a. The Boyer-Lindquist coordinates differ

from the Minkowski coordinates because, since a .= 0, the spheroids on which

the (θ, φ) chart is based no longer reduce to spheres, as was the case in the

previous paragraph. Similarly, since a .= 0, the null coordinate u (7.5) does
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not reduce to the standard flat space retarded time coordinate. Although

φ̃ → φ as M → 0, the same is not true of θ and θ̃ or r and λ, and this is the

fundamental difference between the Boyer-Lindquist chart and the Bai et al.

chart. In the limit M → 0, a .= 0 the tetrad vectors n, m and m̄ (7.12) reduce

to the standard Minkowski tetrad vectors of chapter 5. However the same is

not true of l. The only non-zero Newman-Penrose scalars are ρ, ρ′, β and β′,

and the Weyl scalars (7.14) all vanish. This is expected since we are dealing

with a flat spacetime, albeit in a rotating coordinate chart and frame.

For the remainder of this chapter we will use the (u, λ, θ̃, φ̃) chart only. For

convenience, we will drop the ∼ from θ̃ and φ̃.
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7.2 The Massless Scalar Field on a Kerr Back-

ground

Before investigating gravitational radiation linearized about a Kerr background

it is instructive to consider the simpler case of a massless spin-0 scalar field Φ

on a Kerr background, which obeys the field equation

gijΦ;ij = 0, (7.15)

where the contravariant form of the Kerr metric gij in the (u, λ, θ, φ) chart of

§7.1 can be obtained from (7.9).

The scalar field Φ is expanded in terms of spherical harmonics (see appendix

C.1 for details of the spherical harmonic conventions we use),

Φ =
∑

l,m

φlm(u, λ)Ylm(θ,φ). (7.16)

Substituting (7.16) into (7.15) and using the eigenvalue equation (C.2) to re-

move angular derivatives of spherical harmonics we obtain

∑

l,m

Ylm(θ, φ)

{
∂2φlm

∂λ2
− 2

∂2φlm

∂λ∂u
+

2

λ

(
∂φlm

∂λ
− ∂φlm

∂u
−M

∂2φlm

∂λ2

)

− 1

λ2

(
l(l + 1)φlm + 2M

∂φlm

∂λ

)

+
1

λ3

(
−4iMam

∂φlm

∂λ
−Ma2∂2φlm

∂λ2
+ 3Ma2 cos2 θ

∂2φlm

∂λ2

)

+
2

λ4
iMamφlm + O

(
Ma2φlm

λ4

)}
= 0. (7.17)

The presence of a term involving cos θ in (7.17) means that we cannot com-

pletely decouple the angular dependence of the field, as was done in chapters 5

and 6. However, in appendix C.1 a recurrence relation (C.5) is derived relating
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cos θ Ylm to Yl+1 m and Yl−1 m. This enables us to rewrite (7.17) as

∑

l,m

Ylm(θ,φ)

{
∂2φlm

∂λ2
− 2

∂2φlm

∂λ∂u
+

2

λ

(
∂φlm

∂λ
− ∂φlm

∂u
−M

∂2φlm

∂λ2

)

− 1

λ2

(
l(l + 1)φlm + 2M

∂φlm

∂λ

)

+
1

λ3

(
−4iMam

∂φlm

∂λ
−Ma2∂2φlm

∂λ2

+3Ma2

[
Al−2 m

∂2φl−2 m

∂λ2
+ Blm

∂2φlm

∂λ2
+ Cl+2 m

∂2φl+2 m

∂λ2

])

+
2

λ4
iMamφlm + O

(
Ma2φlm

λ4

)}
= 0, (7.18)

It is the presence of the φl±2 m in (7.18) which gives rise to the “mode-mixing”

between different l−poles (note that there is no mode-mixing between the

m−poles). By inspection, noting that the coefficient of the mode-mixing terms

in (7.18) is proportional to Ma2, we expect the mode-mixing not to occur at

leading order. Now consider a single harmonic mode in (7.18). In order to

cast the equation into a more familiar form, we make a change of variables

(u, λ)→ (u, v) where

v = u + 2λ. (7.19)

Note that unlike u, v is not a null coordinate for the Kerr spacetime background

(unless M = a = 0) but it has been chosen because it is a characteristic

coordinate of the homogeneous EPD equation. It will also be convenient to

change the dependent variable via

φlm = (v − u)lzlm(u, v). (7.20)

With these changes (7.18) becomes

zlm
,uv +

l + 1

v − u
zlm

,u −
l + 1

v − u
zlm

,v = Slm(u, v; zlm), (7.21)
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where

Slm(u, v; zlm) =− 4M

v − u

(
l(l − 1)(v − u)−2zlm + 2l(v − u)−1zlm

,v + zlm
,vv

)

− 4M

(v − u)2

(
l(v − u)−1zlm + zlm

,v

)

− 16iMam

(v − u)3

(
l(v − u)−1zlm + zlm

,v

)

− 8Ma2

(v − u)3

(
l(l − 1)(v − u)−2zlm + 2l(v − u)−1zlm

,v + zlm
,vv

)

+
24Ma2

(v − u)3

(
Al−2 m[(l − 2)(l − 3)(v − u)−4zl−2 m

+ 2(l − 2)(v − u)−3zl−2 m
,v + (v − u)−2zl−2 m

,vv]

+ Blm[l(l − 1)(v − u)−2zlm + 2l(v − u)−1zlm
,v + zlm

,vv]

+ Cl+2 m[(l + 2)(l + 1)zl+2 m + 2l(v − u)zl+2 m
,v

+(v − u)2zl+2 m
,vv]

)

+
8iMam

(v − u)4
zlm + O

(
Ma2zlm

(v − u)4

)
. (7.22)

As one might expect, (7.21) is an inhomogeneous Euler-Poisson-Darboux

equation with a source term (7.22) which vanishes if M = 0, in which case we

recover (5.16). The general homogeneous solution is

zlm
0 (u, v) =

(
∂

∂u

)l U lm(u)

(v − u)l+1
+

(
∂

∂v

)l V lm(v)

(v − u)l+1
, (7.23)

for some arbitrary functions U lm and V lm. As argued in §5.2, the terms involv-

ing U lm correspond to outgoing radiation and those involving V lm correspond

to incoming radiation. For l ≥ 1 the solutions contain a geometrical tail,

in which characteristic initial data with compact support leads to a solution

which does not have compact support.

To obtain solutions to the inhomogeneous Euler-Poisson-Darboux equation

(7.21) we use the same approach as chapter 6. The solution to the character-

istic initial value problem can be expressed in integral form using Riemann’s

method (6.28). An iterative succession of approximations can be obtained us-

ing Picard’s method [106].
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Consider the characteristic initial value problem described by figure below.

We specify some characteristic initial outgoing data zlm
0 on QR. The initial

D

P

Q

R

S

(u, v)

(u0, v0)

(u, v0)

(u0, v)

No data on u = u0

Initial outgoing data
specified on v = v0

↗
↗
↗

Figure 7.1: Characteristic initial value problem for a scalar field on a Kerr
background with outgoing initial data.

data are written in the form

zlm
0 (u, v0) =

(
∂

∂u

)l U lm(u)

(v0 − u)l+1
, (7.24)

so that the corresponding homogeneous solution is

zlm
0 (u, v) =

(
∂

∂u

)l U lm(u)

(v − u)l+1
. (7.25)

Following the argument of §6.2.2, the solution to (7.21) at (u, v) is given by

zlm(u, v) = zlm
0 (u, v) +

∫ v

v0

∫ u

u0

Rlm(u′, v′; u, v)Slm
(
u′, v′; zlm(u′, v′)

)
du′dv′,

(7.26)

where the Riemann-Green function Rlm(u′, v′; u, v) is given by

Rlm(u′, v′; u, v) = (v′ − u′)2l+2(v′ − u)−(l+1)(v − u′)−(l+1)
2F1(l + 1, l + 1, 1, t),

(7.27)

and

t =
(v′ − v)(u′ − u)

(v′ − u)(u′ − v)
. (7.28)
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Note again that we require that U lm and its derivatives vanish at u0, so that

the solution is well-defined at (u0, v0).

Picard’s method [106] enables us to approximate the inhomogeneous solu-

tion at (u, v) via a series of iterations of the form

zlm
i (u, v) = zlm

0 (u, v) + ∆zlm
i−1(u, v), (7.29)

where

∆zlm
i−1(u, v) =

∫ v

v0

∫ u

u0

Rlm(u′, v′; u, v)Slm
(
u′, v′; zlm

i−1(u
′, v′)

)
du′dv′, (7.30)

for i ≥ 1. Thus the solution to (7.21) consists of the homogeneous solution

zlm
0 (u, v) together with the gravitational tail.

We can estimate the behaviour of the gravitational tail for general values

of l as v → ∞. Suppose that initial data are given in the far-field region (so

that M/v0 0 1 and a/v0 0 1). By inspection we note that Rlm(u′, v′; u, v)

can be written in the form

Rlm(u′, v′; u, v) =
(v′ − u′)

(v − u)2l+1
P (u, v, u′, v′), (7.31)

where P (u, v, u′, v′) is a polynomial in u, v, u′ and v′ of order l and is homo-

geneous in u, v and u′, v′. Consider the first iteration of Picard’s method. A

general term in Slm(u′, v′; zlm
i−1) (7.22) can be written in the form

1

(v′ − u′)x
(7.32)

for some integer x. The leading order contribution in ∆zlm
i−1 is obtained by

taking the lower limit of the v′−integral. We deduce that ∆zlm
i−1 = O(1/vl+1)

as v →∞.

This conclusion appears to be a contradiction since it implies that Picard’s

method will not converge. However we must also consider the coefficient of

1/vl+1. By inspection, this coefficient will, in general, involve factors of the

form Mxay/vz
0 where z > x + y. Provided that v0 is in the far field region

(so that M/v0 0 1 and a/v0 0 1), then the coefficient of 1/vl+1 in ∆zlm
i−1

will be small and ∆zlm
i 0 ∆zlm

i−1. Picard’s method will therefore converge. By

inspection once more, we note that the first order contribution to the coefficient
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of 1/vl+1 in the gravitational tail will involve the mass parameter M but not

the angular momentum parameter a. At second order both a and M will

be involved. At third order, mode-mixing terms proportional to Ma2 will be

present (although we have not listed all the third order terms in (7.22)). A

general term in the coefficient of 1/vl+1 in the gravitational tail ∆zlm
i−1 will take

the form
MxayF (u)

vz
0

, (7.33)

where z > x + y, and F (u) is a function which depends on the choice of initial

data.

As was mentioned in chapter 6, the condition M 0 v0, required for the

convergence of Picard’s method, provides a consistency condition on the loca-

tion of the outer boundary and the validity of any boundary conditions derived

for the scalar field.

We illustrate these arguments explicitly by considering the modes l = 0,

1 and 2. Although we did not list all the O(Ma2/v4) terms in (7.22) (there

are too many to write down here), we are nevertheless able to illustrate the

mode-mixing that occurs at this order.

7.2.1 The Monopole Case, l = 0

In the case l = 0, the initial data are written in the form

z0(u, v0) =
U0(u)

(v0 − u)
, (7.34)

where U0(u0) = 0. Note that l = 0 implies that m = 0 so we have dropped

the m suffix for convenience. The Riemann-Green function (7.27) is given by

R0(u′, v′; u, v) =
v′ − u′

v − u
. (7.35)

Performing one iteration of Picard’s method, we obtain

∆z0
0 =

1

v − u

∫ v

v0

∫ u

u0

[
−4MU0(u′)

(v′ − u′)3
+ O

(
Ma2

v′5

)]
du′dv′

=
1

v − u

∫ v

v0

[
−4MU0(−1)

(u)

(v′ − u)3
+

12MU0(−2)
(u)

(v′ − u)4
+ O

(
Ma2

v′5

)]
dv′, (7.36)
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were the u′−integral has been done by parts, neglecting higher order terms.

For convenience we have defined

U0(−1)
(u) =

∫ u

u0

U0(u′)du′, U0(−2)
(u) =

∫ u

u0

U0(−1)
(u′)du′. (7.37)

The v′−integral can be evaluated explicitly. We obtain

z0
1(u, v) =

1

v − u

(
U0(u)− 2MU0(−1)

(u)

(v0 − u)2
+

4MU0(−2)
(u)

(v0 − u)3

+O

(
Ma2

v4
0

))
+ O

(
1

(v − u)2

)
. (7.38)

A second iteration of Picard’s method can be performed by repeating the

calculation above, but with U0(u) replaced by

U0(u)− 2MU0(−1)
(u)

(v0 − u)2
+

4MU0(−2)
(u)

(v0 − u)3
+ O

(
Ma2

v4
0

)
. (7.39)

It is easy to check that the terms displayed in (7.38) are unaltered by the

second iteration (and hence by all subsequent iterations).

Perusal of (7.22) suggests that at O(Ma2/v4
0) there will be some mode-

mixing behaviour. The O(Ma2/v4
0) contribution cannot be determined pre-

cisely because there are further terms present that were not displayed in (7.22),

but it is nevertheless instructive to evaluate the mode mixing terms. If l = 0,

then Al−2 m in (7.22) vanishes and Cl+2 m = 2/3
√

5. Hence there is a contri-

bution from the l = 2 mode. Suppose that the initial characteristic outgoing

data for the l = 2 mode are given by

z2(u, v0) =

(
∂

∂u

)2 U2(u)

(v0 − u)3
, (7.40)

for some function U2(u). If we perform a single iteration of Picard’s method

using these data, we find that the leading order mode-mixing contribution to

the l = 0 mode due to the l = 2 mode is

1

v − u

(
56Ma2U2(u)

5
√

5(v0 − u)4

)
. (7.41)

128



Chapter 7. Hertz Potentials on a Kerr Background

7.2.2 The Dipole Case, l = 1

The initial outgoing data for l = 1 can be written in the form

z1(u, v0) =
∂

∂u

U1(u)

(v0 − u)2
, (7.42)

for some function U1(u). Again for convenience we drop the m suffix here.

The Riemann-Green function (7.27) is given by

R1(u′, v′; u, v) =
v′ − u′

(v − u)3
[(v′ − u)(u′ − v) + (v′ − v)(u′ − u)] . (7.43)

We find that

S1(u′, v′; z1
0) = −4MU1(1)

(u′)

(v′ − u′)5
−56MU1(u′)

(v′ − u′)6
+

24iMamU1(1)
(u′)

(v′ − u′)6
+O

(
Ma2

(v′ − u′)7

)
.

(7.44)

Since the Riemann-Green function is more complicated than the one dealt

with in §7.2.1, we now adopt a slightly different approach. The v′−integral

in ∆z1
0 can be evaluated precisely (this is best done using a computer algebra

package). Next we make a Taylor expansion of the result in powers of 1/v to

obtain

∆z1
0 =

1

v2

∫ u

u0

{
2MU1(1)

(u′)(4u− u′ − 3v0)

3(v0 − u′)3
+

28MU1(u′)(3u− u′ − 2v0)

3(v0 − u′)4

−4iMamU1(1)
(u′)(3u− u′ − 2v0)

(v0 − u′)4
+ O

(
Ma2

v4
0

)}
du′ + O

(
1

v3

)
.

(7.45)
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The integrand is then expanded in powers of 1/v0 to give

∆z1
0 =

1

v2

∫ u

u0

{
−2MU1(1)

(u′)

v2
0

+
4MU1(1)

(u′)(2u− 5u′)

3v3
0

+
2MU1(1)

(u′)u′(4u− 7u′)

v4
0

− 56MU1(u′)

3v3
0

+
28MU1(u′)(u− 3u′)

v4
0

+
8iMamU1(1)

(u′)

3v3
0

−4iMamU1(1)
(u′)(u− 3u′)

v4
0

+ O

(
Ma2

v4
0

)}
du′ + O

(
1

v3

)
.

(7.46)

The u′−integral can now be performed. We find

z1
1(u, v) =

∂

∂u

U1(u)

(v − u)2
+

1

v2

(
−2MU1(u)

v2
0

+
−36MU1 (−1)(u)− 12MuU1(u) + 8iMamU1(u)

3v3
0

+O

(
Ma2

v4
0

))
+ O

(
1

v3

)
. (7.47)

As was found in the monopole case, a second iteration of Picard’s method has

no effect on the terms displayed in (7.47).

By inspection of the source term (7.22), we note that for l = 1, Al−2 m = 0

but Cl+2 m .= 0. We therefore expect that at O(Ma2/v4
0) there will be a mode-

mixing contribution from the l = 3 (octopole) solution. Suppose that the

initial octopole data are given by

z3(u, v0) =

(
∂

∂u

)3 U3(u)

(v0 − u)4
, (7.48)

for some function U3(u). Then the contribution to ∆z1
0 can be evaluated. We

find that the leading order octopole contribution to the dipole mode is

1

v2
432Ma2C3 m

U3(2)
(u)

v4
0

. (7.49)

Note once more that there are other terms of O(Ma2/v4
0) which we have not

evaluated here.
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7.2.3 The Quadrupole Case, l = 2

To calculate the quadrupole contribution to the gravitational tail, we adopt a

similar approach to the dipole calculation in §7.2.2. The initial data on v = v0

are written in the form

z2(u, v0) =

(
∂

∂u

)2 U2(u)

(v0 − u)3
. (7.50)

The source term S2(u′, v′; z2
0) for the first Picard-iteration is given by

S2(u′, v′; z2
0) =

−4MU2(2)
(u′)

(v′ − u′)6
− 96MU2(1)

(u′)

(v′ − u′)7
− 24iMamU2(2)

(u′)

(v′ − u′)7
+ O

(
Ma2

(v′ − u′)8

)
.

(7.51)

The v′−integral in ∆z2
0 can be evaluated explicitly (this is best done using a

computer algebra package). We expand the result in powers of 1/v to obtain

∆z2
0 =

1

v3

∫ u

u0

{
−2MU2(2)

(u′)(3u2 − 2uu′ − 4uv0 + 2u′v0 + v2
0)

(v0 − u′)4

+
16MU2(1)

(u′)(−36u2 + 27uu′ + 45uv0 − u′2 − 25u′v0 − 10v2
0)

5(v0 − u′)5

+
4iMamU2(2)

(u′)(−36u2 + 27uu′ + 45uv0 − u′2 − 25u′v0 − 10v2
0)

5(v0 − u′)5

+O

(
Ma2

v4
0

)}
du′ + O

(
1

v4

)
. (7.52)

The integrand is now expanded in powers of 1/v0,

∆z2
0 =

1

v3

∫ u

u0

{
−2MU2(2)

(u′)

v2
0

− 4MU2(2)
(u′)(3u′ − 2u)

v3
0

− 32MU2(1)
(u′)

v3
0

− 8iMamU2(2)
(u′)

v3
0

+O

(
Ma2

v4
0

)}
du′ + O

(
1

v4

)
. (7.53)
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Finally, performing the u′−integral we obtain

z2
1(u, v) =

(
∂

∂u

)2 U2(u)

(v − u)3
+

1

v3

(
−2MU2(1)

(u)

v2
0

− 20MU2(u) + 4MU2(1)
(u) + 8iMamU2(1)

(u)

v3
0

+O

(
Ma2

v4
0

))
+ O

(
1

v4

)
. (7.54)

Again, it is easy to check that subsequent iterations of Picard’s method have

no effect upon the terms displayed in (7.54).

Inspection of (7.22) suggests that at O(Ma2/v4
0) there will be a contribution

from l = 4 mode and, in addition, if m = 0 there will be a contribution from

the l = 0 mode. Although there are other contributions at this order which we

will not evaluate, it is nevertheless interesting to calculate this mode-mixing

effect. Suppose the initial data for the l = 0 and l = 4 modes are given by

z0(u, v0) =
U0(u)

(v0 − u)
, (7.55)

and

z4(u, v0) =

(
∂

∂u

)4 U4(u)

(v0 − u)5
, (7.56)

respectively. Then the corresponding contribution to S2(u′, v′; z2
0) is

24Ma2

(v′ − u′)8

[
2A0 mU0(u′) + 22C4 mU2(4)

(u′)
]
. (7.57)

(Note that A0 m = 0 if m .= 0.) Evaluating the integrals to leading order, we

find that the mode mixing contribution at O(Ma2/v4
0) is

1

v3

24Ma2

v4
0

[
2A0 mU0(−1)

(u) + 22C4 mU4(3)
(u)

]
. (7.58)

To summarize: the scalar field consists of the homogeneous solution (cor-

responding to propagation on flat space, §5.2), together with a “gravitational

tail” which is present even if l = 0. This gravitational effect is transmitted

slower than light. An initially sharp wave will then develop a tail due to the
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curvature of the background spacetime. Huygens’ principle is not satisfied.

The gravitational tail decays in the same way as the homogeneous solution

as v →∞. However, the ratio X of the size of the gravitational tail to the size

of the homogeneous solution is small, provided that the characteristic initial

value problem is solved in the far-field region. The leading order contribution

to X is of the form M/v2
0. The second order contribution to X is of the form

Ma/v3
0. The third order contribution is of the form Ma2/v4

0. In addition, at

third order, some mode-mixing occurs. For a given harmonic mode (i.e. a

given value of l and m) there is a contribution from the l + 2, m−mode. In

addition, provided that l ≥ 2 and m ≤ l− 2, there is also a contribution from

the l − 2, m−mode.
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7.3 Linearized Gravitational Radiation on a

Kerr Background

We now apply the techniques developed in the previous section to linearized

gravitational waves on a Kerr background. Our starting point is the scalar

field equation for the Hertz potential (4.36), which on a Kerr background is

(ÞÞ′ − ""′ + 3ρ′Þ− ρ̄Þ′ − 3τ ′" + τ̄ ′"′ − 6Ψ2) χ′ = 0. (7.59)

As in §7.2, we choose the chart and tetrad that were introduced in §7.1. The

Newman-Penrose scalars and the Weyl scalars are given by (7.13) and (7.14)

respectively. We expand the Hertz potential in terms of spin-weighted spherical

harmonics,

χ′ =
∑

l,m

χlm(u, λ)2Ylm(θ,φ). (7.60)

The spin-weighted spherical harmonic conventions used here are defined in

appendix C.2. Note that the operators " and "′ in (7.59) are contractions of

the covariant derivative ∇ with the tetrad (7.12). Unlike in the calculations

of chapters 5 and 6, these now differ from the " and "′ used in appendix

C.2, which are defined by (C.8). Therefore, rather than using the eigenvalue

equation (C.11), we use (C.12), which reads

(
∂2

∂θ2
+ csc2 θ

∂2

∂φ2
− (1 + 2s)i

cos θ

sin2 θ

∂

∂φ
− s + s2 cos2 θ

sin2 θ

)
sYlm(θ, φ)

= −(l + s)(l − s + 1)sYlm(θ,φ). (7.61)
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Substituting the spin-weighted spherical harmonic expansion (7.60) into (7.59),

and making use of (7.61) yields

∑

l,m

2Ylm(θ,φ)

{
∂2χlm

∂λ2
− 2

∂2χlm

∂λ∂u
− 2

λ

(
∂χlm

∂u
+

∂χlm

∂λ
+ M

∂2χlm

∂λ2

)

+
1

λ2

(
−(l + 2)(l − 1)χlm + 10M

∂χlm

∂λ

)

+
1

λ3

(
−16Mχlm + 4iMa(3 cos θ − 1)

∂χlm

∂λ

+Ma2(3 cos2 θ − 1)
∂2χlm

∂λ2

)

+
8iMamχlm

λ4
+ O

(
Ma2χlm

λ4

)}
= 0. (7.62)

The trigonometric terms render (7.62) difficult to solve. However, in ap-

pendix C.2, we derive some new recurrence relations, (C.20) and (C.24), con-

necting cos θ sYlm with sYl+1 m and sYl−1 m. This enables us to rewrite (7.62)

as

∑

l,m

2Ylm(θ,φ)

{
∂2χlm

∂λ2
− 2

∂2χlm

∂λ∂u
− 2

λ

(
∂χlm

∂u
+

∂χlm

∂λ
+ M

∂2χlm

∂λ2

)

+
1

λ2

(
−(l + 2)(l − 1)χlm + 10M

∂χlm

∂λ

)
− 1

λ3
16Mχlm

+
1

λ3
12iMa

(
2Al−1 m

∂χl−1 m

∂λ
+ [2Blm − 1

3 ]
∂χlm

∂λ
+ 2Cl+1 m

∂χl+1 m

∂λ

)

+
1

λ3
3Ma2

(
2El−2 m

∂2χl−2 m

∂λ2
+ 2Fl−1 m

∂2χl−1 m

∂λ2
+ [2Glm − 1

3 ]
∂2χlm

∂λ2

+2Hl+1 m
∂2χl+1 m

∂λ2
+ 2Il+2 m

∂2χl+2 m

∂λ2

)

+
8iMamχlm

λ4
+ O

(
Ma2χlm

λ4

)}
= 0. (7.63)

Consider a single harmonic mode in (7.63). The presence of χl±1 m and χl±2 m

gives rise to the mode-mixing. Inspecting the terms of order Ma/λ3, we deduce

that for a given l and m there will always be a contribution from the l +

1, m−mode. If m ≤ l − 1 then there will also be a contribution from l −
1, m−mode (otherwise 2Al−1 m is zero). The exception to this rule is the case
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l = 2 for which 2A1 m is always zero. Consider now the terms of order Ma2/λ3.

At this order, contributions from the l+1, m− and l+2, m−modes will always

be present. If m ≤ l − 1 then 2Fl−1 m is non-zero and so there will be a

contribution from l − 1, m−mode. Similarly, if m ≤ l − 2 then 2El−2 m is

non-zero and so there will be a contribution from the l − 2, m−mode. The

exceptions to this rule are l = 2 (for which 2E0 m and 2F1 m are always zero)

and l = 3 (for which 2E1 m vanishes). These exceptions are expected since

l = 0 (monopole) and l = 1 (dipole) gravitational poles are non-radiative and

should not contribute to the mode-mixing.

In order to make further analytical progress we make a change of indepen-

dent variables (u, λ)→ (u, v), where

v = u + 2λ. (7.64)

It is also convenient to change the dependent variable via

χlm = (v − u)1−lωlm(u, v). (7.65)

With these changes, considering a single harmonic mode in (7.63) implies

ωlm
,uv −

l − 2

v − u
ωlm

,u +
l + 2

v − u
ωlm

,v = Slm(u, v; ωlm), (7.66)
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where

Slm(u, v; ωlm) =− 4M

v − u

(
ωlm

,vv −
2l + 3

v − u
ωlm

,v +
(l + 1)(l + 3)

(v − u)2
ωlm

)

+
16iMa

(v − u)2

(
32Al−1 m

[
ωl−1m

,v −
l − 2

v − u
ωl−1 m

]

+ (32Blm + 2m− 1)

[
1

v − u
ωlm

,v −
l − 1

(v − u)2
ωlm

]

+32Cl+1 m

[
1

(v − u)2
ωl+1 m

,v −
l

(v − u)3
ωl+1 m

])

+
24Ma2

(v − u)3

(

2El−2 m[(v − u)2ωl−2 m
,vv − 2(l − 3)(v − u)2ωl−2 m

,v

+ (l − 2)(l − 3)ωl−2 m]

+ 2Fl−1 m

[
(v − u)ωl−1 m

,vv − 2(l − 2)ωl−1 m
,v

+
(l − 2)(l − 1)

v − u
ωl−1 m

]

+ (2Glm − 1
3)

[
ωlm

,vv −
2(l − 1)

v − u
ωlm

,v +
l(l − 1)

(v − u)2
ωlm

]

+ 2Hl+1 m

[
1

v − u
ωl+1 m

,vv −
2l

(v − u)2
ωl+1 m

,v

+
l(l + 1)

(v − u)3
ωl+1 m

]

+ 2Il+2 m

[
1

(v − u)2
ωl+2 m

,vv −
2(l + 1)

(v − u)3
ωl+2 m

,v

+
(l + 1)(l + 2)

(v − u)4
ωl+2 m

])

+ O

(
Ma2wlm

(v − u)4

)
, (7.67)

Once again we have obtained an inhomogeneous Euler-Poisson-Darboux

equation (7.66) with a source term (7.67) which is non-zero if a .= 0 and

M .= 0. We seek solutions by considering the, now familiar, characteristic

initial value problem and using a Picard iteration scheme.
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D

P

Q

R

S

(u, v)

(u0, v0)

(u, v0)

(u0, v)

No initial data on u = u0

Initial outgoing data
specified on v = v0

↗
↗
↗

Figure 7.2: Characteristic initial value problem for Hertz potential on a Kerr
background with outgoing initial data.

The solution to (7.66) can be written down in integral form as

ωlm(u, v) = ωlm
0 (u, v) +

∫ v

v0

∫ u

u0

Rlm(u′, v′; u, v)Slm
(
u′, v′; ωlm(u′, v′)

)
du′dv′,

(7.68)

where the Riemann-Green function is given by

Rlm(u′, v′; u, v) = (v′−u′)−2l(v′−u)l+2(v−u′)l−2
2F1(−2− l, 2− l; 1; t), (7.69)

and

t =
(v′ − v)(u′ − u)

(v′ − u)(u′ − v)
. (7.70)

The general homogeneous solution is

ωlm
0 (u, v) = (v − u)2l+1

[(
∂

∂v

)l+2 V lm(v)

(v − u)l−1
+

(
∂

∂u

)l−2 U lm(u)

(v − u)l+3

]
, (7.71)

In §5.3, we argued that setting V lm(v) = 0 corresponds to an outgoing radia-

tive solution. We also showed that on the edges QR and QS of the domain of

dependence D of the point (u, v), the homogeneous and inhomogeneous solu-

tions are identical, since the integral in (7.68) vanishes. In order to investigate

the propagation of outgoing gravitational radiation, we therefore choose

ωlm(u, v0) = (v0 − u)2l+1 ∂l−2

∂ul−2

U lm(u)

(v0 − u)l+3
= ωlm

0 (u, v0), (7.72)
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as the outgoing characteristic initial data on v0, and specify ωlm(u0, v) = 0

(note that U lm(u) and its derivatives must vanish on u0). The solution (7.68)

is approximated using Picard’s method:

ωlm
i = ωlm

0 + ∆ωlm
i−1, (7.73)

where

∆ωlm
i−1 =

∫ v

v0

∫ u

u0

Rlm(u′, v′; u, v)Slm
(
u′, v′; ωlm

i−1(u
′, v′)

)
du′dv′. (7.74)

In general 2F1 is a polynomial of order l − 2 in t. As v → ∞ we expect

∆ωlm
i = O(vl−2). This is of the same order of magnitude as the homogeneous

solution. However, if the initial data are in the far-field region (so that a/v0 0
1 and M/v0 0 1) then the coefficient of vl−2 in ∆ωlm will be small compared

to the homogeneous solution, and ∆ωlm
i 0 ∆ωlm

i−1. The boundary conditions

subsequently derived in this section are therefore only valid if the boundary

of the computational domain lies in the far-field region, so that the conditions

M 0 v0 and a 0 v0 hold. This provides a consistency requirement on the

location of the numerical boundary.

7.3.1 The Quadrupole Case, l = 2

We illustrate the arguments above by considering the case l = 2. The initial

data are written in the form

ω2 m(u, v0) = U2 m(u), (7.75)

so that the corresponding homogeneous solution is

ω2 m
0 (u, v) = U2 m(u). (7.76)

We also need initial data from the l = 3 mode, since this will also contribute

to the propagation of the l = 2 mode. We posit

ω3 m(u, v0) = (v0 − u)7 ∂

∂u

U3 m(u)

(v0 − u)6
, (7.77)
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which corresponds to the homogeneous solution

ω3 m
0 (u, v) = (v − u)7 ∂

∂u

U3 m(u)

(v − u)6
. (7.78)

The Riemann-Green function is

R2 m(u′, v′; u, v) =

(
v′ − u

v′ − u′

)4

. (7.79)

The source function for the first iteration of Picard’s method S2 m(u, v; ωlm
0 ) is

given by

S2 m(u, v; ωlm
0 ) =− 60MU2 m(u)

(v − u)3
− 16iMa(3 2B2 m + 2m− 1)U2 m(u)

(v − u)4

− 48iMa 2C3 mU3 m(1)
(u)

(v − u)4
+ O

(
Ma2

(v − u)5

)
. (7.80)

We then find that

∆ω2 m
0 =

∫ v

v0

∫ u

u0

−60M
U2 m(u′)(v′ − u)4

(v′ − u′)7
− 16iMa(3 2B2 m + 2m− 1)

U2 m(u′)(v′ − u)4

(v′ − u′)8

− 48iMa 2C3 m
U3 m(1)

(u′)(v′ − u)4

(v′ − u′)8
+ O

(
Ma2

(v′ − u′)5

)
du′dv′

(7.81)
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The u′−integral is evaluated by parts, neglecting higher order terms in v′.

Evaluating the v′−integral, we find.

∆ω2 m
0 =

∫ v

v0

[
−60M

U2 m(−1)
(u)

(v′ − u)3
+ 420M

U2 m(−2)
(u)

(v′ − u)4
− 16iMa(3 2B2 m + 2m− 1)

U2 m(−1)
(u)

(v′ − u)4

−48iMa 2C3 m
U3 m(u)

(v′ − u)4
+ O

(
Ma2

(v′ − u)5

)]
dv′,

=

{
−30M

U2 m(−1)
(u)

(v0 − u)2
+ 140M

U2 m(−2)
(u)

(v0 − u)3
− 16

3
(3 2B2 m + 2m− 1)

U2 m(−1)
(u)

(v0 − u)3

−16iMa 2C3 m
U3 m(u)

(v0 − u)3
+ O

(
Ma2

(v0 − u)4

)}

+

{
30M

U2 m(−1)
(u)

(v − u)2
− 140M

U2 m(−2)
(u)

(v − u)3
+

16

3
(3 2B2 m + 2m− 1)

U2 m(−1)
(u)

(v − u)3

+16iMa 2C3 m
U3 m(u)

(v − u)3
+ O

(
Ma2

(v − u)4

)}
. (7.82)

It is easy to check that subsequent iterations have no effect on the terms

displayed above. As a further check of our calculations, the v−dependent

terms in (7.82) can be substituted into the Euler-Poisson-Darboux equation

(7.66) to recover the source terms. There is a contribution to the gravitational

tail (7.82) from the l = 3 mode. At higher order there are also contributions

from the harmonic modes with l ≥ 4.

We summarise these results by translating them back in terms of the Hertz

potential χ2 m using (7.65). Initial outgoing data on the surface v = v0 are

written as

χ2 m
0 (u, v) =

U2m(u)

v0 − u
. (7.83)

The homogeneous solution to the Euler-Poisson-Darboux equation satisfying

these initial data is given by

χ2 m
0 =

U2 m(u)

v − u
. (7.84)
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The solution to the inhomogeneous EPD equation is

χ2 m(u, v) =
F (u)

v − u
+ 30M

U2 m(−1)
(u)

(v − u)3
− 140M

U2 m(−2)
(u)

(v − u)4

+
16

3
(3 2B2 m + 2m− 1)

U2 m(−1)
(u)

(v − u)4

+ 16iMa 2C3 m
U3 m(u)

(v − u)4
+ O

(
1

(v − u)5

)
, (7.85)

where

F (u) =U2 m(u)− 30M
U2 m(−1)

(u)

(v0 − u)2
+ 140M

U2 m(−2)
(u)

(v0 − u)3

− 16

3
(3 2B2 m + 2m− 1)

U2 m(−1)
(u)

(v0 − u)3
− 16iMa 2C3 m

U3 m(u)

(v0 − u)3

+ O

(
Ma2

(v0 − u)4

)
. (7.86)

The solution then consists the homogeneous solution (7.84), but with U2 m(u)

replaced by F (u). In addition, there is an extra gravitational tail term,

30M
U2 m(−1)

(u)

(v − u)3
− 140M

U2 m(−2)
(u)

(v − u)4
+

16

3
(3 2B2 m + 2m− 1)

U2 m(−1)
(u)

(v − u)4

+ 16iMa 2C3 m
U3 m(u)

(v − u)4
+ O

(
1

(v − u)5

)
, (7.87)

which cannot be expressed as a solution to the homogeneous EPD equation. In

general, the Hertz potential that generates outgoing quadrupole gravitational

radiation, linearized about a Kerr background, can be written in the simple

form

χ2 m
out =

F (u)

v − u
+

G(u)

(v − u)3
+

H(u)

(v − u)4
+ O

(
1

(v − u)5

)
, (7.88)

for some functions F (u), G(u) and H(u).

In order to formulate absorbing boundary conditions we must also investigate

the propagation of incoming gravitational radiation, since this can be produced

by reflection of outgoing radiation off the boundary of the computational do-

main ∂Ω. We work in terms of the variable ωlm(u, v) once more (7.65). In
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§6.2.2 we argued that, if the linearized outgoing radiation condition is im-

posed, then an incoming quadrupole gravitational wave on flat space behaves

asymptotically as

ω2 m
0 (u, v) = A1(v) +

A2(v)

v − u
+ O

(
1

(v − u)2

)
, (7.89)

for some functions A1(v) and A2(v), both of order O(1) as v → ∞ and both

vanishing at v = v0. We perform one iteration of Picard’s method. Firstly,

(7.89) is substituted into the source term (7.67). The gravitational tail term

∆ω2 m
0 (defined in (7.74)) is then given by

∆ω2 m
0 =

∫ v

v0

∫ u

u0

Â1(v′)(v′ − u)4

(v′ − u′)7
+

Â2(v′)(v′ − u)4

(v′ − u′)8
+ O

(
Ma2

(v′ − u′)5

)
dudv,

(7.90)

where the functions Â1(v) and Â2(v) could be expressed in terms of A1(v) and

A2(v) but this is not necessary. For our purposes it is sufficient to note that

they are both of O(1) as v →∞. The u′−integral in (7.90) is evaluated first.

The v′−integral is then done by parts, neglecting higher order terms, to obtain

∆ω2 m
0 =

Ã1(v)

(v − u)2
+

Ã2(v)

(v − u)3
+ O

(
1

(v − u)4

)
, (7.91)

where, again, Ã1(v) and Ã2(v) could be expressed in terms of Â1(v) and Â2(v).

Note that the terms obtained from the lower limit of the u′−integral, which

are of the form
F (v)

(v − u0)x
, (7.92)

for some F (v) and x, have been incorporated into the definitions of Ã1(v)

and Ã2(v). Using (7.65), we conclude that the Hertz potential that generates

incoming quadrupole radiation on a Kerr background can be written as

χ2 m
in =

Ā1(v)

v − u
+

Ā2(v)

(v − u)2
+ O

(
1

(v − u)3

)
, (7.93)

for some functions Ā1(v) and Ā2(v). This expression will be used later in order

to formulate absorbing boundary conditions.
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7.3.2 The Limits M → 0 and a→ 0

Are the results of §7.3.1 consistent with those of chapters 5 and 6? In the

limits M → 0 and a → 0, does the Hertz potential on a Kerr background

(7.85) reduce to the Hertz potentials that were calculated on Minkowski and

Schwarzschild backgrounds?

Consider first the limit M → 0. Under this limit, we recover the homo-

geneous (flat space) solution immediately. This is because all the terms in

the source term (7.67) vanish as M → 0. This result is expected since the

case M = 0, a .= 0 corresponds to flat space, but in rotating coordinates.

Clearly then, taking the limits M → 0 and a → 0 together will also recover

the homogeneous (flat space) solution.

Consider now the limit a → 0, with M .= 0. Now, in (7.85) we are left

with the first order contributions due to M only. These first order corrections

to the homogeneous solution are different from those that were calculated in

chapter 6 (6.48). This is because, although the u, θ and φ coordinates in both

calculations are now identical, the v coordinates still differ. The v of chapter 6,

which we will now denote by vs to avoid confusion, was an advanced time null

coordinate for Schwarzschild spacetime. The v coordinate used in this chapter,

now denoted by vk, is a characteristic coordinate for the homogeneous Euler-

Poisson-Darboux equation. If we were to consider the Hertz potential field

equation (4.36) on a Schwarzschild background using the standard (u, r, θ, φ)

coordinate chart and then make the coordinate change vk = u + 2r, then, if

a = 0, we would recover (7.85). We conclude that the results of this chapter

are consistent with those of chapters 5 and 6.

It is not possible to make the relationship between the Kerr and Schwarzschild

calculations more precise here because the two characteristic initial value prob-

lems are subtly different. In both cases, initial data were specified on v = const.

hypersurfaces. But since vs .= vk, these surfaces were different in each case, so

the B(u) which defined the initial data in chapter 6 (6.48) will not match the

U2 m(u) of (7.85). We can, however, illustrate the relationship in more detail

by considering quadrupole radiation once more. The leading order outgoing

radiation term on a Kerr background is given by

χ2 m
0 (u, vk) =

U2 m(u)

(vk − u)
. (7.94)

144



Chapter 7. Hertz Potentials on a Kerr Background

We can transform vk into vs using

vk = vs − 2M log
( r

2M
− 1

)
. (7.95)

Substituting (7.95) into (7.94) and using the asymptotic expansion of r (6.14),

we obtain

χ2 m
0 (u, vs) =

U2 m(u)

vs − u
+ 2MU2 m(u)

log(vs − u)

(vs − u)2
. (7.96)

As expected, this is similar in form to the original Schwarzschild solution

(6.48). The slight differences in the two expressions are due to the two different

characteristic initial value problems.

7.3.3 Absorbing Boundary Conditions on a Kerr Back-

ground

In order to obtain absorbing boundary conditions on a Kerr background, we

adopt a similar approach to chapter 5, in which boundary conditions on

a Minkowski background were obtained. Here, however, we only consider

quadrupole radiation.

Recall that the outgoing quadrupole mode of the Hertz potential can be

written in the form (7.88)

χ2 m
out =

F (u)

v − u
+

G(u)

(v − u)3
+

H(u)

(v − u)4
+ O

(
1

(v − u)5

)
, (7.97)

for appropriate functions F (u), G(u) and H(u). The term involving F (u) is

a solution to the homogeneous EPD equation; the terms involving G(u) and

H(u) are not. The incoming quadrupole mode can be written as (7.93)

χ2 m
in =

Ā1(v)

v − u
+

Ā2(v)

(v − u)2
+ O

(
1

(v − u)3

)
, (7.98)

Using (B.16), the quadrupole contribution to the perturbation of Ψ2 can be

calculated:

Ψ̂l=2
2 out =

F̃ (u)

(v − u)3
+

G̃(u)

(v − u)4
+

H̃(u)

(v − u)5
+ O

(
1

(v − u)6

)
, (7.99)
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and

Ψ̂l=2
2 in =

Ã(v)

(v − u)3
+

B̃(v)

(v − u)4
+

C̃(v)

(v − u)5
+ O

(
1

(v − u)6

)
, (7.100)

where the functions F̃ (u), G̃(u) and H̃(u) depend on F (u) and G(u) and Ã(v),

B̃(v) and C̃(v) depend on Ā1(v) and Ā2(v).

The expressions for Ψ̂2 above are similar to the corresponding expressions

for Ψ̂2 on a Minkowski background (5.62) (although the coordinate charts used

in each case differ). We can therefore use the same approach as in §5.3.2. We

define the Bayliss & Turkel-type operators [7]

Q̂k ≡
∂

∂v
+

2 + k

v − u
. (7.101)

At leading order O(r−3), Q̂1Ψ̂2 contains only incoming radiative terms. Impos-

ing Q̂1Ψ̂2
.
= O(r−4) will remove these terms. Next, imposing Q̂2Ψ̂2

.
= O(r−5)

will remove the incoming terms at O(r−4). This process can be repeated as

many times as necessary: Q̂kΨ̂2 contains incoming terms at order O(r−2−k)

which can be removed by imposing the condition

Q̂kΨ̂2
.
= O(r−3−k). (7.102)

The sequence
L∏

k=1

(
∂

∂v
+

2 + k

v − u

)
Ψ̂2

.
= 0. (7.103)

will then result in an increasingly accurate hierarchy of absorbing boundary

conditions for linearized gravitational radiation on a Kerr background.

The boundary conditions (7.103) appear to be identical to the flat space

boundary conditions (5.67). However, it is the specific choice of u and v in

(7.103) that incorporates the effects of the background Weyl curvature.

On a Minkowski background, we argued that using the sequence (5.67)

results in perfectly absorbing boundary conditions for all gravitational modes

with l ≤ L. On a Kerr background, using (7.103), we can no longer make

this assertion. Firstly, throughout this section we only considered quadrupole

radiation. Secondly, we only evaluated the effect of the Weyl curvature at

second order, and so we cannot justify choosing L > 2 in (7.103). However,
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by inspecting the asymptotic expansions made throughout this chapter, it is

reasonable to suppose that gravitational 2l−poles with l > 2 might give similar

expressions to (7.100) for the perturbed Weyl scalar Ψ̂2. We might therefore

postulate that, within linearized theory, the hierarchy of boundary conditions

(7.103) should be absorbing for general multipole gravitational radiation on a

Kerr background, however, without performing further calculations, we cannot

justify the boundary conditions for L > 2.
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Chapter 8

Boundary Conditions in a

Numerical Chart

The boundary conditions of chapters 5, 6 and 7 were derived using very specific

choices of coordinate chart and tetrad, adapted to the theoretical study of

gravitational radiation. These charts and tetrads are unlikely to match those

used in numerical relativity. In chapter 3, techniques were developed which

allow us to transform between theoretical and numerical charts. Furthermore,

quantities such as the Bondi mass and the Weyl scalars were expressed purely

in terms of the metric variables in a numerical chart. In this chapter we will

use these techniques to transform the boundary conditions derived in chapters

5, 6 and 7 into a numerical chart.

In chapter 3 it was assumed that the theoretical chart contained a single

null coordinate, the retarded time u (together with a radial coordinate and

two angular coordinates). This was indeed the case for the calculation on

a Kerr background, which used the (u, λ, θ, φ) chart introduced in §7.1. In

chapters 5 and 6 however, double null coordinate charts were used. Therefore,

in order to express these boundary conditions in a numerical chart, we must

first extend the techniques of chapter 3 so that we can deal with a theoretical

chart containing two null coordinates. This is done in §8.1.

In §8.2 we use these results to transform the boundary conditions of chapter

5 (in which linearized gravitational radiation on a Minkowski background was

considered) into a numerical chart. We previously argued that the boundary

conditions of chapter 6 (for gravitational perturbations on a Schwarzschild
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background) would be too difficult to implement numerically and so we do not

attempt to transform them into a numerical chart here. Instead, in §8.3 we

transform the boundary conditions of chapter 7 (for gravitational perturbations

on a Kerr background) into the numerical chart. Boundary conditions for

gravitational radiation on a Schwarzschild background can then be obtained

by taking the limit a→ 0.

8.1 Asymptotically Flat Spacetimes in Double

Null Coordinates

Suppose that the chart used by a numerical relativist is a quasi-spherical one

Xa = (T, R, Θ, Φ) and that the theoretical chart xa = (u, v, θ, φ) contains two

null coordinates, retarded time u and advanced time v. A radial coordinate

r(u, v) can also be defined and, as in chapter 3, we assume r = R.

Following the method of §3.1 we assume that the spacetime is asymptoti-

cally Minkowskian. We find that in the numerical chart the metric takes the

form

g00 = 1 + h00R
−1 + O(R−2), g01 = h01R

−1 + O(R−2),

g02 = h02 + O(R−1), g03 = h03 + O(R−1),

g11 = −1 + h11R
−1 + O(R−2), g12 = h12 + O(R−1),

g13 = h13 + O(R−1), g22 = −R2 + h22R + O(1)

g23 = h23R + O(1), g33 = −R2 sin2 Θ + h33R + O(1), (8.1)

where the hij are functions of T , Θ and Φ.

We investigate u(T, R, Θ, Φ) and v(T, R, Θ, Φ) by considering the relativis-

tic eikonal equation

giju,iu,j = 0, (8.2)

Following the method outlined in §3.2, we seek solutions which satisfy

giju,iu,j = O(R−3), (8.3)

where in equation (8.3) only the indices range over 0 and 1. This results

in a quadratic equation for the quantity u,R/u,T . There are two solutions,
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corresponding to the advanced and retarded time coordinates:

u,R = −(1 + 2muR
−2)u,T + O(R−2),

v,R = (1 + 2mvR
−2)v,T + O(R−2), (8.4)

where

mu = −1
4(h00 + 2h01 + h11),

mv = −1
4(h00 − 2h01 + h11). (8.5)

Note that mu = mv if and only if h01 = 0. We leave some freedom in u and v

by setting

u,T = 1 + quR
−1 + O(R−2),

v,T = 1 + qvR
−1 + O(R−2), (8.6)

where qu and qv are arbitrary functions, independent of R. We now have

dR = 1
2(1− [qv + mu + mv]R

−1)dv − 1
2(1− [qu + mu + mv]R

−1)du + O(R−2),

dT = 1
2(1 + [mu −mv − qv]R

−1)dv + 1
2(1 + [mv −mu − qu]R

−1)du + O(R−2).

(8.7)

Rather than writing down expressions for θ(R, Θ, Φ) and φ(R, Θ, Φ) it is more

convenient to use the inverse transformations:

Θ = θ + yθr
−1 + O(r−2), Φ = φ + yφr

−1 + O(r−2), (8.8)

where yθ and yφ are functions independent of r.
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The expansions (8.7) and (8.8) enable us to write down the Jacobian ∂Xa/∂xb

for the coordinate change between the theoretical chart (u, v, θ, φ) and the

numerical chart (T, R, Θ, Φ):

∂Xa

∂xb
=





1
2 + 1

2 [mv −mu − qu]R−1 + O(R−2) 1
2 + 1

2 [mu −mv − qv]R−1 + O(R−2)

−1
2 + 1

2 [qu + mu + mv]R−1 + O(R−2) 1
2 −

1
2 [qv + mu + mv]R−1 + O(R−2)

yθ,uR−1 + O(R−2) yθ,vR−1 + O(R−2)

yφ,uR−1 + O(R−2) yφ,vR−1 + O(R−2)

O(R−2) O(R−2)

O(R−2) O(R−2)

1 + yθ,θR−1 + O(R−2) yθ,φR−1 + O(R−2)

yφ,θR−1 + O(R−2) 1 + yφ,φR−1 + O(R−2)




(8.9)

At this point, we do not need to take the calculation any further. The Jacobian

(8.9) and the expression for Ψ2 in terms of the metric variables in the numerical

chart (3.58) are sufficient to allow us to transform the boundary conditions

(5.67) into the numerical chart (see §8.2). However, we can still obtain some

useful information by continuing in a similar manner to §3.2. Using (8.9), the

metric in the numerical chart (8.1) can be transformed into the theoretical

chart to give

g00 = −y2
θ,u − y2

φ,u sin2 θ + a00r
−1 + O(r−2),

g01 = 1
2 − yθ,uyθ,v − yφ,uyφ,v sin2 θ + a01r

−1 + O(r−2),

g02 = −yθ,ur + a02 + O(r−1),

g03 = −yφ,u sin2 θr + a03 + O(r−1),

g11 = −y2
θ,v − y2

φ,v sin2 θ + a11r
−1 + O(r−2),

g12 = −yθ,v + a12 + O(r−1),

g13 = −yφ,v sin2 θ + a13 + O(r−1),

g22 = −r2 + ra22 + O(1),

g23 = a23r + O(1),

g33 = −r2 sin2 θ + a33r + O(1). (8.10)

The aij are expressed in terms of the hij in (A.19). In order for the metric to be
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asymptotically Minkowskian we must impose that yφ and yθ are independent

of u and v.

We choose a Newman-Penrose tetrad which asymptotically resembles the

tetrad (5.28),

la =
(
1 + c00r

−1 + O(r−2), c01r
−1 + O(r−2), c02 + O(r−1), c03 + O(r−1)

)

na =
(
c10r

−1 + O(r−2), 1
2 + c11r

−1 + O(r−2), c12 + O(r−1), c13 + O(r−1)
)

ma =
(
[c20 + ic30]r

−1 + O(r−2), [c21 + ic31]r
−1 + O(r−2)

−sr + c22 + ic32 + O(r−1), irs sin θ + c23 + ic33 + O(r−1)
)
. (8.11)

Here the cij are real functions of u, v, θ and φ, and s = 2−1/2. The contravariant

tetrad vectors can then be written down:

la =
(
c00r−1 + O(r−2), 2 + c01r−1 + O(r−2),

c02r−2 + O(r−3), c03r−2 + O(r−3)
)

na =
(
1 + c10r−1 + O(r−2), c11r−1 + O(r−2),

c12r−2 + O(r−3), c13r−2 + O(r−3)
)

ma =
(
[c20 + ic30]r−1 + O(r−2), [c21 + ic31]r−1 + O(r−2),

sr−1 + [c22 + ic32]r−2 + O(r−3), −ir1s csc θ + [c23 + ic33]r−2 + O(r−3)
)
.

(8.12)

Again the cij are real functions of u, v, θ and φ. The cij are related to the cij

by the expressions in (A.20). We can also relate the cij to the aij using

gab = 2l(anb) − 2m(am̄b). (8.13)

Since there are 16 cij and only 10 aij, this relation introduces 6 arbitrary

constants Ai corresponding to the Lorentz transformations of the tetrad, at

first order, which preserve the metric. One possible representation of these

relations is given in (A.21).

Imposing the vanishing of the Ricci curvature in a similar manner to §3.4

provides us with a set of constraints on the aij, given by (A.22). From these

we can deduce a corresponding set of constraints on the hij (A.23).
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8.2 Boundary Conditions on a Minkowski Back-

ground

In chapter 5 we defined the operators

Ôk ≡
∂

∂v
+

2 + k

v − u
, (8.14)

and imposed

ÔkΨ2
.
= O(r−3−k), (8.15)

where the symbol
.
= denotes equality only on the boundary of the computa-

tional domain ∂Ω. This resulted in the hierarchy of boundary conditions

L+3∏

k=1

(
∂

∂v
+

2 + k

v − u

)
Ψ2

.
= 0. (8.16)

These boundary conditions can be imposed to any desired value of L and

are perfectly absorbing for linearized gravitational 2l−poles on a Minkowski

background with l ≤ L.

There are two steps involved in transforming (8.16) into a numerical chart.

Firstly, Ψ2 must be expressed in the numerical chart. Secondly, we must deal

with the null coordinates u and v.

In terms of the metric variables in the theoretical (u, r, θ, φ) chart of chapter

3, the leading order term in Ψ2 was given by (3.58). Using (A.3) and its second

order analogue we can express this in terms of the metric variables in the

numerical chart. We find

Ψ2 = Ψ(3)
2 R−3 + O(R−4), (8.17)

where

Ψ(3)
2 =

1

2
h11 −

1

4
iB csc3 Θ +

1

2
C,T +

1

4
(A+ iB csc Θ)(A,T − iB,T csc Θ)

+
1

4
(B,Θ − 2A,Φ) cot Θ csc Φ− 1

2
iA,ΘΦ +

1

4
i(B,ΘΘ − B,ΦΦ) csc Θ.

(8.18)
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Here, A and B are the auxiliary functions first defined in (3.74),

A =h22 + 2(h02,Θ + h12,Θ),

B =h23 + h02,Φ + h12,Φ +W,Θ − 2W cot Θ,

W =h03 + h13.

(8.19)

In flat space, v−u = 2r. If we assume that the radial coordinates, r and R,

in the theoretical and numerical charts are identical, then we can replace v−u

in (8.16) with 2R. Furthermore, recalling the condition that yθ and yφ (8.8)

are independent of u and v, the partial derivative ∂/∂v can be transformed

into the numerical chart

∂

∂v
=

(
∂T

∂v

)
∂

∂T
+

(
∂R

∂v

)
∂

∂R
+

(
∂Θ

∂v

)
∂

∂Θ
+

(
∂Φ

∂v

)
∂

∂Φ

=
1

2

(
1 + [mu −mv − qv]R

−1 + O(R−2)
) ∂

∂T

+
1

2

(
1− [qv + mu + mv]R

−1 + O(R−2)
) ∂

∂R

+ O(R−2)
∂

∂Θ
+ O(R−2)

∂

∂Φ
. (8.20)

The operator

Ôk ≡
∂

∂v
+

2 + k

v − u
(8.21)

then becomes

Ôk ≡
(
1 + [mu −mv − qv]R

−1 + O(R−2)
) ∂

∂R

+
(
1− [qv + mu + mv]R

−1 + O(R−2)
) ∂

∂T

+
2 + k

R
. (8.22)

Note that we have dropped the factor of 1
2 that appears when transforming

(8.21) into (8.22). The quantities mu and mv in (8.22) are easily evaluated

via (8.5). However qv depends on the relationship between the theoretical

retarded time coordinate u and the numerical chart and is thus more difficult

to evaluate. The simplest case, corresponding to a numerical evolution in

standard flat space coordinates is

Ôk ≡
∂

∂R
+

∂

∂T
+

2 + k

R
. (8.23)
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The hierarchy of boundary conditions (8.16) then becomes

L+3∏

k=1

{
∂

∂R
+

∂

∂T
+

2 + k

R

}
Ψ2

.
= 0, (8.24)

where Ψ2 is given by (8.17) and (8.18). These boundary conditions are identical

to those of Buchman & Sarbach [22]. Note also the similarity between the

boundary conditions above and those of Bayliss & Turkel [7], who were also

seeking absorbing boundary conditions for wave-like equations.

In principle the sequence of boundary conditions (8.24) could be applied

for any desired value of L. Within linearized theory, we have shown (§5.3.2)

that they are perfectly absorbing for gravitational radiation on a Minkowski

background with angular momentum number l ≤ L. However, we showed

in chapter 3 that, within linearized theory, we can only obtain Ψ2 to leading

order. Hence in the full nonlinear theory of relativity, we can only justify using

(8.24) to first order.
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8.3 Boundary Conditions on Schwarzschild and

Kerr Backgrounds

We argued in §6.2.3 that the boundary conditions on a Schwarzschild back-

ground (6.62) were too cumbersome to be used in numerical relativity. How-

ever, by setting a = 0 in the boundary conditions for linearized gravitational

radiation on a Kerr background (7.103), we can obtain boundary conditions

on a Schwarzschild background. We therefore restrict our attention to the

hierarchy of boundary conditions (7.103):

L∏

k=1

(
∂

∂v
+

2 + k

v − u

)
Ψ̂2

.
= 0, (8.25)

where the coordinates u and v were defined in (7.5) and (7.64) respectively.

The Weyl scalar Ψ2 was given in terms of the metric variables in the numer-

ical chart by (8.17) in the preceding section. Here, however, we are interested

in the perturbed quantity Ψ̂2. In the chart and tetrad of §7.1, the unperturbed

Weyl scalars on a Kerr background were given by (7.14). To leading order in

the numerical chart, Ψ2 = −MR−3. We can therefore obtain the perturbation

induced by the Hertz potential:

Ψ̂2 = Ψ̂(3)
2 R−3 + O(R−4), (8.26)

where

Ψ̂(3)
2 =

1

2
h11 −

1

4
iB csc3 Θ +

1

2
C,T +

1

4
(A+ iB csc Θ)(A,T − iB,T csc Θ)

+
1

4
(B,Θ − 2A,Φ) cot Θ csc Φ− 1

2
iA,ΘΦ +

1

4
i(B,ΘΘ − B,ΦΦ) csc Θ + M.

(8.27)

Now consider the operator

Q̂k ≡
∂

∂v
+

2 + k

v − u
. (8.28)

We make the transformation v = u + 2λ, and drop the resulting factor of 1
2
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that appears, to obtain

Q̂k ≡
∂

∂λ
+

2 + k

λ
, (8.29)

where λ is the radial coordinate defined in (7.8). Suppose now that the numeri-

cal chart (T, R, Θ, Φ) is the “standard” flat space chart (if this was not the case

then we could easily add further 1/R terms in the coordinate transformations,

as was done in §3.1). We now have three charts to consider:

(i) the (u, λ, θ̃, φ̃) chart of Bai et al. [6, 59],

(ii) the Boyer-Lindquist chart (t, r, θ, φ) [20],

(iii) the numerical chart (T, R, Θ, Φ).

Our goal is to transform the operator Q̂k (8.29) from the (u, λ, θ̃, φ̃) chart into

the numerical chart, via the Boyer-Lindquist chart.

We consider first the radial coordinates λ, r, and R. Recall the relationships

between the three charts which were introduced in §7.1. From (7.8), we have

λ = r +
a2 sin2 θ

2r
+

Ma2 sin2 θ

2r2
+ O

(
r−3

)
(8.30)

Furthermore, the numerical chart (T, R, Θ, Φ) is related to the Boyer-Lindquist

chart (t, r, θ, φ) by (7.3),

R =
√

r2 + a2 sin2 θ, (8.31)

and

sin Θ =

√
r2 + a2

r2 + a2 sin2 θ
sin θ. (8.32)

This enables us to relate λ and R:

λ = R +
Ma2 sin2 Θ

2R2
+ O

(
R−3

)
. (8.33)

Next we deal with the partial derivative ∂/∂λ. This can be transformed

into (T, R, Θ, Φ) coordinates by using the chain rule twice. First we transform

157



Chapter 8. Boundary Conditions in a Numerical Chart

into Boyer-Lindquist coordinates, using (7.5) and (7.8):

∂

∂λ
=

∂t

∂λ

∂

∂t
+

∂r

∂λ

∂

∂r
+

∂θ

∂λ

∂

∂θ
+

∂φ

∂λ

∂

∂φ
.

=

(
1 +

2M

r
+

4M2 − 1
2a

2 sin2 θ

r2
+ O

(
r−3

)) ∂

∂t

+

(
1 +

a2 sin2 θ

2r2
+ O

(
r−3

)) ∂

∂r

+ O
(
r−3

) ∂

∂θ
+ O

(
r−3

) ∂

∂φ
. (8.34)

Next, using (8.31) and (8.32), we apply the chain rule once more to transform

into the numerical chart,

∂

∂λ
=

(
1 +

2M

R
+

4M2 − 1
2a

2 sin2 Θ

R2
+ O

(
R−3

)) ∂

∂T

+
(
1 + O

(
R−3

)) ∂

∂R
+ O

(
R−3

) ∂

∂Θ
+ O

(
R−3

) ∂

∂Φ
. (8.35)

The operator Q̂k (8.29) is then given in the numerical chart by

Q̂k =

(
1 +

2M

R
+

4M2 − 1
2a

2 sin2 Θ

R2

)
∂

∂T
+

∂

∂R

+
2 + k

R
+ O

(
R−3

)
, (8.36)

The hierarchy of boundary conditions (8.25) now becomes

L∏

k=1

{(
1 +

2M

R
+

4M2 − 1
2a

2 sin2 Θ

R2

)
∂

∂T

+
∂

∂R
+

2 + k

R
+ O

(
R−3

)}
Ψ̂2

.
= 0. (8.37)

We can clearly see that in the limits M → 0, a → 0 we recover the

flat space boundary conditions of the previous section. In the limit a → 0,

M .= 0 we obtain boundary conditions for linearized gravitational radiation

on a Schwarzschild background, with a first order contribution from the mass

parameter M .

In the limit M → 0, a .= 0 one might expect to obtain boundary conditions

for linearized gravitational radiation on a Minkowski background similar to
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(8.24). However, due to the presence of the term

1
2a

2 sin2 Θ

R2
(8.38)

in (8.37) this appears not to be the case. The reason for this is as follows. If

a .= 0, then the tetrad (7.12) in which Ψ̂2 is evaluated is rotating at second

order. Therefore the case M = 0, a .= 0 corresponds to a boundary condition

for linearized gravitational radiation on a flat space background, but applied

to Ψ̂2 evaluated in a rotating frame. The Weyl scalar Ψ̂2 is given to leading

order by (8.27). The effect of the rotating tetrad only becomes apparent at

second order.

In principle, the sequence (8.37) could be applied for any choice of L. How-

ever, within linearized theory we only established that the boundary conditions

were perfectly absorbing for L = 2 (although it was postulated, without proof,

that within linearized theory, the higher the value of L, the more accurate the

boundary conditions might be). Furthermore, in chapter 3 we showed that

Ψ2 can only be evaluated to first order in linearized theory. At higher order,

nonlinear terms contribute. Therefore in the full nonlinear theory of general

relativity we are only able to justify using the boundary conditions (8.37) at

first order (this corresponds to the case L = 1 with M = 0 and a = 0).

Finally we note that the boundary conditions (8.37) involve radial deriva-

tives ∂/∂R, which are difficult to implement accurately on ∂Ω in a numerical

simulation. This problem can be overcome by defining a sequence of auxiliary

variables on ∂Ω. The boundary conditions can then be expressed in terms of

these variables, enabling the radial derivatives to be removed [54,55,68].
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Chapter 9

Conclusions and Outlook

9.1 Conclusions

The main results of this thesis are as follows.

In the first half of the thesis we attempted to close the gap between an-

alytical and numerical studies of gravitational radiation. Theoretical results

concerning gravitational radiation (such as the discovery of the news function

and the mass-loss formula by Bondi et al. [18]) rely upon very specific choices of

chart and tetrad, which are not necessarily the same as those used in numerical

relativity.

In chapter 2 we generalized a calculation by Stewart [134], in which the

results of Bondi et al. [18] were expressed in the Newman-Penrose formalism.

We were able to remove the assumption of axisymmetry from Stewart’s calcu-

lation. In addition we obtained a new interpretation of the outgoing radiation

condition, which is required to prevent coordinate singularities from occurring

in the Bondi coordinates.

The results of chapter 2 required a careful choice of coordinate chart and

Newman-Penrose tetrad and are therefore of limited use in numerical relativity.

In chapter 3 we extended the results by demonstrating how they can be related

to the general chart and tetrad that might be used in a numerical relativity

simulation.

Under the assumption that the spacetime is asymptotically Minkowskian,

we made 1/r expansions of the metric variables (in both the analytical and
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numerical charts) and the Newman-Penrose tetrad. Imposing the vanishing of

the Ricci curvature in the far-field region provided us with a set of constraints

on the metric variables. Expressing the numerical chart asymptotically in

terms of the analytical one enabled us to transform from one chart to the

other with O(r−2) accuracy. Thus we were able to express quantities such as

the Weyl scalars, the news function and the Bondi mass purely in terms of

the metric variables in the numerical chart. We also demonstrated Valiente

Kroon’s result [81] on how the outgoing radiation condition results in the

peeling behaviour of the Weyl scalars: Ψi = O(ri−5) as r →∞.

Finally, in chapter 3, we discussed the limitations of linearized theory in

general relativity that our calculations had highlighted. We found that Ψ4,

Ψ3 and Ψ2 can accurately be evaluated using linearized theory, but that Ψ1

and Ψ0 (which is often used by numerical relativists to formulate boundary

conditions) cannot, since there are nonlinear contributions at leading order.

In summary, in the first half of the thesis we demonstrated how to link

theoretical and numerical studies in relativity, and investigated the validity of

linearized theory.

In the second half of the thesis, we turned our attention to absorbing outer

boundary conditions in numerical relativity. Keeping in mind the restrictions

suggested by the previous chapters, we used Hertz potentials to generate linear

perturbations about Minkowski, Schwarzschild and Kerr backgrounds and to

investigate the propagation of the resulting gravitational waves. In chapter 4,

we were able to simplify considerably the original formulae for the perturbed

Newman-Penrose and Weyl scalars induced by a Hertz potential [133].

On a Minkowski background (chapter 5), with a suitable choice of chart

and tetrad, the field equation for the Hertz potential reduces to a homogeneous

Euler-Poisson-Darboux equation, whose solutions are known. The solutions

enable us to transparently represent incoming and outgoing gravitational radi-

ation. We were thus able to obtain a hierarchy of outer boundary conditions,

similar in form to those of Bayliss & Turkel [7], which are perfectly absorbing

for gravitational 2l−poles with l ≤ L. The Weyl scalar Ψ0 cannot be estimated

in linearized theory, and we found that Ψ4 is dominated by outgoing radia-

tion and so neither are suitable for use in boundary conditions. We therefore

formulated this sequence of boundary conditions in terms of Ψ2.

In addition, in chapter 5 we were able to introduce a version of the out-
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going radiation condition for linearized theory, which ensures that the peeling

theorem for the Weyl scalars holds. We also investigated Huygens’ principle

for both scalar waves and gravitational waves on a Minkowski background.

In chapter 6, we used Hertz potentials to generate gravitational pertur-

bations on a Schwarzschild background. An inhomogeneous Euler-Poisson-

Darboux equation was obtained, whose solutions we could write down in inte-

gral form. The solutions consist of the sum of the homogeneous solution and

a gravitational tail caused by the background Weyl curvature. Using a Picard

iteration scheme, we were able to estimate the leading order (M/v) contribu-

tion to the gravitational tail as v →∞ and hence obtain absorbing boundary

conditions which take into account the first order contribution due to M/R.

Unfortunately, due to the presence of logarithmic terms in our calculations,

the boundary conditions we obtained are rather cumbersome and unlikely to

be of use in numerical relativity.

Finally in chapter 6 we demonstrated how the Hertz potential may be

recovered from the curvature perturbation.

Previously, Buchman & Sarbach [22,23] had also obtained absorbing bound-

ary conditions for linearized gravitational radiation on a Schwarzschild back-

ground. Their boundary conditions incorporated the first order contribution

due to M/R. We were able to extend this work in chapter 7 by using Hertz

potentials to generate gravitational perturbations on a Kerr background. This

meant that that we could incorporate the second order contribution from the

Weyl curvature, in which the angular momentum of the background has an

effect. A careful choice of coordinate chart and tetrad enabled us to avoid the

problems encountered in chapter 6, in which the presence of logarithmic terms

in the solutions to the Hertz potential field equation meant that the resulting

boundary conditions were too unwieldy to use numerically.

The method used in chapter 7 was similar to that of chapter 6. The Hertz

potential was expanded in terms of spin-weighted spherical harmonics. An

inhomogeneous Euler-Poisson-Darboux equation was obtained, whose solu-

tions were written in integral form and then estimated using Picard’s method.

However, unlike the Minkowski and Schwarzschild calculations, the angular

dependence of the field equations no longer decoupled. We derived a recur-

rence relation (see appendix C.2) for the spin-weighted spherical harmonics

which enabled us to express this lack of decoupling as mode-mixing between
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the various gravitational 2l−poles. By calculating the first and second order

contributions to the gravitational tail for l = 2, we were able to obtain a hier-

archy of increasingly accurate absorbing boundary conditions for gravitational

quadrupole radiation on a Kerr background. Again, these boundary condi-

tions were formulated in terms of Ψ2. Although we only considered the l = 2

modes, the calculation suggested that these boundary conditions might also

be absorbing for general gravitational 2l−poles with l > 2.

In chapter 8 we linked the two investigations carried out in this thesis. The

machinery of chapter 3 was used to express Ψ2 in terms of the metric variables

in a typical numerical chart. We then transformed the boundary conditions for

linearized gravitational radiation on Minkowski and Kerr backgrounds into the

numerical chart. At leading order (in which the Weyl curvature has no effect),

we obtained the very simple Bayliss & Turkel type boundary conditions [7].

At first order there was a contribution due to the mass M of the background

spacetime. At second order there was also a contribution from the angular

momentum Ma of the background.

Within linearized theory, it was shown that our sequences of boundary

conditions are absorbing for quadrupolar gravitational radiation (L ≤ 2), and

account for the mass and angular momentum of the background spacetime.

Our calculations did not deal explicitly with the case L > 2 but inspection

of the asymptotic expansions used suggested that the hierarchy of boundary

conditions might well be valid for larger values of L, although this is only a

postulate. By considering the full nonlinear theory of relativity, we were able

to highlight the limitations of these boundary conditions. At leading order,

linearized theory correctly predicts Ψ2. At higher orders however, nonlinear

effects become significant and linearized theory is no longer valid. Therefore

we can only justify imposing boundary conditions devised within linearized

theory (such as those in chapter 8 or those of Buchman & Sarbach) to leading

order.

9.2 Outlook

There were three main threads in this thesis: asymptotic flatness in numer-

ical relativity, the propagation of linearized gravitational waves on a curved
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background spacetime and the problem of outer boundary conditions. Further

study is warranted in each of these areas.

Our calculation regarding asymptotically flat spacetimes (chapter 3) was

based on a 1/r expansion of the metric variables and the tetrad components.

A more accurate representation of reality might be to use a polyhomogeneous

expansion, in which logarithmic terms are also present (see e.g. Chruściel et

al. [30] and Valiente Kroon [80, 82–86]). This was discussed in more detail in

§3.5.1.

The matching process between numerical and analytical charts that we

devised relied on using the first few terms in the 1/r expansions and is therefore

only valid in the far-field i.e. for large r. For the purposes of obtaining outer

boundary conditions this was not restrictive. However, our calculations do not

allow quantities such as the Bondi mass or the Weyl scalars to be evaluated in

the near-field region.

We next considered the propagation of gravitational waves linearized about

curved spacetime backgrounds. We were able to estimate the behaviour of

the resulting gravitational tails. It is interesting to compare this calcula-

tion with that of Price [109], who considered gravitational perturbations on

a Schwarzschild background. Whereas we investigated the behaviour of the

gravitational tails as v → ∞, Price was interested in the late time behaviour

of the tails with r constant but t → ∞. The tails decay as either t−(2l+2) or

t−(2l+3), where l is the angular momentum number of the gravitational waves.

This is known as Price’s Law. Our two investigations are distinct. A simi-

lar investigation has more recently been performed for late-time gravitational

tails on a Kerr background [56]. Dafermos [38] has investigated the effect

that boundary conditions in numerical relativity might have on tails that obey

Price’s law. Typical radiation-controlling boundary conditions cause the tails

to decay faster than any polynomial power.

Price extended his investigation to the late-time tails of massless scalar

fields of arbitrary spin [110]. An interesting extension of our Hertz potential

calculations would be to consider the propagation of such fields on a curved

background. In this thesis, Hertz potentials were used to describe gravita-

tional perturbations (s = ±2), electromagnetic fields (s = ±1) and massless

scalar fields with s = 0. However, complex scalar fields of arbitrary spin

can also be described using Hertz potentials. In §5.3.1 we demonstrated how,
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on a Minkowski background, the radiative modes of a complex scalar field

of arbitrary spin contain geometrical tails if l > s. On a curved spacetime,

inhomogeneous Euler-Poisson-Darboux equations would be obtained and the

solutions would contain gravitational tails for all values of l ≥ s. The tech-

niques used in chapters 6 and 7 could be used to estimate the behaviour of the

gravitational tails as v →∞.

Finally we discuss the outer boundary conditions that we obtained in chap-

ter 8. Within linearized theory, the boundary conditions are absorbing for

gravitational waves propagating on a Kerr background. However, further in-

vestigations are required to establish whether the higher order effects of our

boundary conditions (and indeed all boundary conditions derived using lin-

earized theory) are in agreement with the full nonlinear theory of relativity.

In §1.3 we stated three properties desirable for boundary conditions in

numerical relativity: they should form a well-posed initial boundary value

problem, they should be constraint-preserving and they should be absorbing.

We have obtained absorbing boundary conditions and we have demonstrated

how to implement them in a numerical chart. However, we have not considered

the first two items in the list. Furthermore, the boundary conditions obtained

in this thesis depend on the mass and angular momentum parameters, M and

a, of the background spacetime. Accurately estimating these quantities is a

non-trivial, open problem.

Can a well-posed initial boundary value problem be found using our bound-

ary conditions? Furthermore, can additional boundary conditions be specified

so that no constraint violations are introduced via the computational bound-

ary? The first well-posed initial boundary value problem for the vacuum Ein-

stein field equations was found by Friedrich & Nagy [52] in 1999. Since then,

many groups have attempted to generalize this work by specifying constraint-

preserving boundary conditions for other Einstein evolution systems (for ex-

ample [124,141]). Many of these studies involve boundary conditions based on

combinations of Ψ0 and Ψ4, so we are hopeful that our boundary conditions

can successfully be implemented numerically. One approach to these issues

is to use the framework of Ruiz et al. [122]. There, the well-posedness of a

set of constraint-preserving boundary conditions for Einstein’s equations in

harmonic gauge was investigated in the high-frequency limit. In addition, the

boundary conditions of Buchman & Sarbach [22, 23] were incorporated into
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their class of constraint-preserving boundary conditions. It should be possi-

ble to apply those techniques to the boundary conditions found in this thesis.

Once well-posedness and constraint-preserving properties are established, a

scheme similar to that of Rinne et al. [117] could be used to test the boundary

conditions. In [117], two outer boundaries ∂Ω1 and ∂Ω2 were used, such that

Ω1 ∈ Ω2. The boundary conditions being tested were imposed on the inner

boundary ∂Ω1 and the resulting numerical solution was compared to the solu-

tion obtained when no conditions were imposed on this boundary.

In summary, in this thesis we investigated the propagation of linearized gravi-

tational radiation on curved spacetime background. This enabled us to obtain

absorbing outer boundary conditions for numerical relativity which are valid

in linearized theory. We also showed how our boundary conditions could be

implemented, by demonstrating how quantities such as the Weyl scalars or

the Bondi mass can be evaluated in numerically. Finally, we have highlighted

some of the limitations of perturbative studies in numerical relativity.

In the coming years, computing power will continue to increase and nu-

merical relativity studies will become more ambitious. Events such as binary

black hole coalescence will continue to be modelled by numerical relativists to

provide waveform templates for the second generation of gravitational wave

instruments. The detection of such gravitational waves would provide fur-

ther experimental evidence of the existence of black holes and the validity of

Einstein’s theory of general relativity in the strong-field regime.

166



Appendix A

Computational Details for

Chapters 3 and 8

A.1 Computational Details for Chapter 3

The hab and kab occurring in (3.11) are related to the hab and the kab by

h00 = −h00, h01 = h01,

h02 = h02, h03 = h03 csc2 θ,

h11 = −h11, h12 = −h12,

h13 = −h13 csc2 θ, h22 = −h22,

h23 = −h23 csc2 θ, h33 = −h33 csc4 θ, (A.1)
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and

k00 = −k00 + h2
00 − h2

01 − h2
02 − h2

03 csc2 θ,

k01 = k01 − h00h01 + h01h11 + h02h12 + h03h23 csc2 θ,

k02 = k02 − h00h02 + h01h12 + h02h22 + h03h23 csc2 θ,

k03 = (k03 − h00h03 + h01h13 + h02h23 + h03h33 csc2 θ) csc2 θ,

k11 = −k11 + h2
01 − h2

11 − h2
12 − h2

13 csc2 θ,

k12 = −k12 + h01h02 − h11h12 − h12h22 − h13h23 csc2 θ,

k13 = (−k13 + h01h03 − h11h13 − h12h23 − h13h33 csc2 θ) csc2 θ,

k22 = −k22 + h2
02 − h2

12 − h2
22 − h2

23 csc2 θ,

k23 = (−k23 + h02h03 − h12h13 − h22h23 − h23h33 csc2 θ) csc2 θ,

k33 = (−k33 + h2
03 − h2

13 − h2
23 − h2

33 csc2 θ) csc4 θ.

(A.2)

The aab occurring in (3.26) (after imposing the conditions (3.27)) are given

by

a00 = h00 − 2q1,

a01 = h00 + h01 + 2m1 − q1,

a02 = h02 − y3,u,

a03 = h03 − z3,u sin2 θ,

a11 = h00 + 2h01 + h11 + 4m1,

a12 = h02 + h12 + y2,

a13 = h03 + h13 + z2 sin2 θ,

a22 = h22 − 2y2,θ,

a23 = h23 − y2,φ − z2,θ sin2 θ,

a33 = h33 − 2z2,φ.

(A.3)
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The relation between the tetrad components cmn and the cmn is

c00 = 1
2c01 − c00,

c01 = 1
2c00 − 1

4c01 − c10 + 1
2c11,

c02 = s(c20 + c30)− 1
2s(c21 + c31),

c03 = is[(c20 − c30)− 1
2s(c21 − c31) csc θ],

c10 = −c01,

c11 = 1
2c01 − c11,

c12 = s(c21 + c31),

c13 = is(c21 − c31) csc θ,

c20 = s(c02 + ic03 csc θ),

c21 = s(c12 − 1
2c02)− is(1

2c03 − c13) csc θ,

c22 = −1
2(c22 + c32)− 1

2i(c23 + c33) csc θ,

c23 = −1
2i(c22 − c32) csc θ + 1

2(c23 − c33) csc2 θ,

c30 = s(c02 − ic03 csc θ),

c31 = s(c12 − 1
2c02) + is(1

2c03 − c13) csc θ,

c32 = −1
2(c22 + c32) + 1

2i(c23 + c33) csc θ,

c33 = −1
2i(c22 − c32) csc θ − 1

2(c23 − c33) csc2 θ,

(A.4)

where s = 2−1/2.
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One possible relation between the tetrad coefficients cmn and the metric

coefficients amn is

c00 = α1,

c01 = 1
2a11,

c02 = a12 − 2sα4,

c03 = a13 + 2sα5 sin θ,

c10 = 1
2a00 − 1

2α1,

c11 = a01 − 1
4a11 − α1,

c12 = a02 − 1
2a12 − s(2α2 − α4),

c13 = a03 − 1
2a13 + s(2α3 − α5) sin θ,

c20 = α2 + iα3,

c21 = α4 + iα5,

c22 = 1
2sa22 − is(a23 − α6) csc θ,

c23 = sα6 − 1
2isa33 csc θ,

c30 = α2 − iα3,

c31 = α4 − iα5,

c32 = 1
2sa22 + is(a23 − α6) csc θ,

c33 = sα6 + 1
2isa33 csc θ,

(A.5)

where αm are the Lorentz parameters and s = 2−1/2. Other representations

are possible.
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A.2 The Tetrad Formalism used in Chapter 3

Here we define the notation used and summarize the results. The reader to

whom this material is unfamiliar should consult introductory material e.g. [27]

chapter 1, section 7.

In this appendix a, b, c, . . . are coordinate indices while α, β, γ, . . . are tetrad

indices.

At each spacetime point P we introduce a basis of vectors

eα
a, α ∈ [0, 3], a ∈ [0, 3]. (A.6)

Then the matrix

eα
a =





e0
0 e0

1 . . .

e1
0 e1

1 . . .
...

...
. . .





is non-singular and we denote its inverse by eα
a. Thus

eα
aeβ

a = δα
β, eα

aeα
b = δa

b. (A.7)

The eα
a represent the dual basis of covectors. As usual, chart indices are

lowered using gab and raised using gab.

An additional assumption made here is that

εαβ = gab eα
aeβ

b (A.8)

is a constant symmetric matrix with inverse εαβ. Thus

εαβ εβγ = δα
γ. (A.9)

The choice εαβ = diag(1,−1,−1,−1) gives an orthonormal tetrad, but here we

choose

εαβ = εαβ =





0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0




, (A.10)

which gives a Newman-Penrose tetrad [97].
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Then it is easy to see that

εαβ eβ
a = eαa, εαβ eβ

a = eαa, (A.11)

so that tetrad indices can be lowered using εαβ and raised using εαβ.

The Ricci rotation coefficients γλµν are defined via

eµb;c = γλµνe
λ

be
ν
c, (A.12)

where the metric covariant derivative has been used. Since εαβ is constant, we

must have γλµν = γ[λµ]ν .

The tetrad structure constants Cγ
αβ are defined via

[eα, eβ] = Cγ
αβeγ. (A.13)

Clearly Cγ
αβ = Cγ

[αβ]. If we let (A.13) act on a scalar function f , note that

the metric connection is symmetric, and use (A.12), then it is easy to see that

Cγ
αβ = γγ

βα − γγ
αβ, (A.14)

which implies

γλµν = 1
2(Cνλµ − Cλµν − Cµνλ). (A.15)

It is important to realise that the Cλ
µν do not involve the connection. Using

(A.14), (A.12) and the fact that the connection is symmetric, we can deduce

that

Cλ
µν = eλ

a,b(eµ
aeν

b − eµ
beν

a). (A.16)

Next, the Ricci identity applied to eα
b gives

Rαβγδ = γαβγ,aeδ
a − γαβδ,aeγ

a + γαβεC
ε
γδ + γε

αγγεβδ − γε
αδγεβη, (A.17)

and finally

Rαγ = εβδRαβγδ. (A.18)

Note that throughout chapter 3 we use these forms for the curvature tensors.

Thus R12 means Rαβ with α = 1 and β = 2, which is not the same as Rab with

a = 1 and b = 2.
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The algorithm used to obtain the Rαβ in §3.4 starts from the sets {eα
a} and

{eα
a}. We compute Cα

βγ from (A.16) and of course Cγαβ = εγδCδ
αβ. Next

we compute γαβγ from (A.15) and finally the curvature tensors from (A.17)

and (A.18). Although this looks ponderous it can easily be automated using

a computer algebra system.
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A.3 Computational Details for Chapter 8

The aij are related to the hij by

a00 = mv + 1
4(h00 − 2h01 + h11) = 0,

a01 = 1
4(h00 − h11)− 1

2(mu + mv)− 1
2(qu + qv) = 1

2h00 − 1
2(qu + qv),

a02 = 1
2(h02 − h12),

a03 = 1
2(h03 − h13),

a11 = mu + 1
4(h00 + 2h01 + h11) = 0,

a12 = 1
2(h12 + h02),

a13 = 1
2(h13 + h03),

a22 = h22 − 2yθ,θ,

a23 = h23 − yθ,φ − yφ,θ sin2 θ,

a33 = h33 − 2yφ,φ sin2 θ. (A.19)

The relation between the covariant and contravariant tetrad coefficients,

cij and cij, is

c00 = −2c01, c01 = −4c11,

c02 = 4sc21, c03 = −4sc31 csc θ,

c10 = −c00, c11 = −2c10,

c12 = 2sc20, c13 = −2sc30 csc θ,

c20 = −sc02, c21 = −2sc12,

c22 = c22, c23 = −c32 csc θ,

c30 = sc03 csc θ, c31 = 2sc13 csc θ,

c32 = −c23 csc θ, c33 = c23 csc2 θ, (A.20)

where s = 2−1/2.
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The tetrad coefficients cij are related to the aij via

c00 = −2A1 + 2a01, c01 = a11,

c02 = −4sA3 + 2a12, c03 = 4sA5 sin θ + 2a13,

c10 = 1
2a00, c11 = A1,

c12 = −2sA2 + a02, c13 = 2sA4 sin θ + a03,

c20 = A2, c21 = A3,

c22 = 1
2sa22, c23 = A6 sin θ + sa23,

c30 = A4, c31 = A5,

c32 = A6, c33 = −1
2sa33 csc θ, (A.21)

where the Ai are the Lorentz parameters, depending on u, v, θ, φ. Other rep-

resentations are possible.

The vanishing of the Ricci curvature provides us with the following con-

straints on the aij:

a01,uv = 0, a02,uv = a12,uu,

a02,vv = a12,uv, a03,uv = a13,uu,

a03,vv = a13,uv, a22,uv = 0,

a23,uv = 0, a33,uu = −a22,uu sin2 θ,

a33,uv = 0, a33,vv = −a22,vv sin2 θ. (A.22)
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Using (A.19) and (A.22) we obtain the following constraints on the hij:

1
2h00,uv − 1

2(qu,uv + qv,uv) = 0,

1
2(h02,uv − h12,uv) = 1

2(h12,uu + h02,uu),

1
2(h02,vv − h12,vv) = 1

2(h12,uv + h02,uv),

1
2(h03,uv − h13,uv) = 1

2(h13,uu + h03,uu),

1
2(h03,vv − h13,vv) = 1

2(h13,uv + h03,uv),

h22,uv − 2yθ,θuv = 0,

h23,uv − yθ,φuv − yφ,θuv sin2 θ = 0,

h33,uu − 2yφ,φuu sin2 θ = −(h22,uu − 2yθ,θuu) sin2 θ,

h33,uv − 2yφ,φuv sin2 θ = 0,

h33,vv − 2yφ,φvv sin2 θ = −(h22,vv − 2yθ,θvv) sin2 θ. (A.23)
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Perturbed Quantities Induced

by a Hertz Potential

On a type D background spacetime, the Hertz potential

χABCD = χ′ιAιBιCιD, (B.1)

generates perturbations to the metric, the tetrad, the Newman-Penrose scalars

and the Weyl scalars. In this appendix, we state the perturbations on Minkowski,

Schwarzschild and Kerr backgrounds. A hat ∧ above a symbol denotes its per-

turbation.

B.1 Perturbations about a Minkowski Back-

ground

On a Minkowski background, using the tetrad (5.28), ρ, ρ′, β and β′ are real

and non-zero. The remaining Newman-Penrose scalars and the Weyl scalars

vanish.

Expressed in terms of the unperturbed tetrad (l, n,m, m̄), the perturbed
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metric is given by

γab = [""χ̄′ + "′"′χ′] nanb

+ [(Þ′ + 2ρ′)Þ′χ̄′] mamb + [(Þ′ + 2ρ′)Þ′χ′] m̄am̄b

− 2 [(Þ′ + ρ′)"χ̄′] n(amb) − 2 [(Þ′ + ρ′)"′χ′] n(am̄b). (B.2)

The covariant tetrad perturbation is

l̂a = 1
2 [""χ̄′ + "′"′χ′] na − [(Þ′ + ρ′)"χ̄′] ma − [(Þ′ + ρ′)"′χ′] m̄a,

n̂a = 0,

m̂a = −1
2 [(Þ′ + 2ρ′)Þ′χ′] m̄a,

ˆ̄ma = −1
2 [(Þ′ + 2ρ′)Þ′χ̄′] ma, (B.3)

and the contravariant perturbation is

l̂a = −1
2 [""χ̄′ + "′"′χ′] na,

n̂a = 0,

m̂a = − [(Þ′ + ρ′)"′χ′] na + 1
2 [(Þ′ + 2ρ′)Þ′χ′] m̄a,

ˆ̄ma = − [(Þ′ + ρ′)"χ̄′] na + 1
2 [(Þ′ + 2ρ′)Þ′χ̄′] ma. (B.4)

178



Appendix B. Perturbed Quantities Induced by a Hertz Potential

The perturbed NP scalars are given by

κ̂ = −1
2"""χ̄′ + 1

2ÞÞ′"′χ′,
κ̂′ = 0,

σ̂ = 1
2ÞÞ′Þ′χ′ + ρ′ÞÞ′χ′ + ρρ′Þ′χ′,

σ̂′ = 1
2Þ′Þ′Þ′χ̄′ + ρ′Þ′Þ′χ̄′ + ρ′2Þ′χ̄′,

ρ̂ = 1
2 [Þ′("′"′χ′ − ""χ̄′)− ρ′("′"′χ′ + ""χ̄′)] ,

ρ̂′ = 0,

τ̂ = 1
2Þ′Þ′"′χ′,

τ̂ ′ = 1
2Þ′Þ′"χ̄′,

β̂ = −1
2βÞ′Þ′χ′ + 1

2ρ
′Þ′"′χ′ − ρ′βÞ′χ′,

β̂′ = 1
2Þ′Þ′"χ̄′ − 1

2βÞ′Þ′χ̄′ + 1
2ρ
′Þ′"χ̄′ − ρ′βÞ′χ̄′,

ε̂ = −1
2Þ′""χ̄′,

ε̂′ = 0. (B.5)

The perturbed Weyl scalars are given by

Ψ̂4 = 1
2Þ′4χ̄′,

Ψ̂3 = 1
2Þ′3"χ̄′,

Ψ̂2 = 1
2Þ′2"2χ̄′,

Ψ̂1 = 1
2Þ′"3χ̄′,

Ψ̂0 = 1
2"4χ̄′. (B.6)
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B.2 Perturbations about a Schwarzschild Back-

ground

On a Schwarzschild background, in the tetrad (6.3), ρ, ρ′, β, β′, ε′ and Ψ2 are

real and non-zero. The remaining Newman-Penrose and Weyl scalars vanish.

Expressed in terms of the unperturbed tetrad (l, n,m, m̄), the metric per-

turbation is given by

γab = [""χ̄′ + "′"′χ′] nanb

+ [(Þ′ + 2ρ′)Þ′χ̄′] mamb + [(Þ′ + 2ρ′)Þ′χ′] m̄am̄b

− 2 [(Þ′ + ρ′)"χ̄′] n(amb) − 2 [(Þ′ + ρ′)"′χ′] n(am̄b). (B.7)

The covariant tetrad perturbation is

l̂a = 1
2 [""χ̄′ + "′"′χ′] na − [(Þ′ + ρ′)"χ̄′] ma − [(Þ′ + ρ′)"′χ′] m̄a,

n̂a = 0,

m̂a = −1
2 [(Þ′ + 2ρ′)Þ′χ′] m̄a,

ˆ̄ma = −1
2 [(Þ′ + 2ρ′)Þ′χ̄′] ma, (B.8)

and the contravariant tetrad perturbation is

l̂a = −1
2 [""χ̄′ + "′"′χ′] na,

n̂a = 0,

m̂a = − [(Þ′ + ρ′)"′χ′] na + 1
2 [(Þ′ + 2ρ′)Þ′χ′] m̄a,

ˆ̄ma = − [(Þ′ + ρ′)"χ̄′] na + 1
2 [(Þ′ + 2ρ′)Þ′χ̄′] ma. (B.9)
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The perturbed NP scalars are given by

κ̂ = −1
2"""χ̄′ + 1

2ÞÞ′"′χ′ + 1
2Ψ2"′χ′,

κ̂′ = 0,

σ̂ = 1
2ÞÞ′Þ′χ′ + ρ′ÞÞ′χ′ + (ρρ′ −Ψ2)Þ′χ′,

σ̂′ = 1
2Þ′Þ′Þ′χ̄′ + ρ′Þ′Þ′χ̄′ + ρ′2Þ′χ̄′,

ρ̂ = 1
2 [Þ′("′"′χ′ − ""χ̄′)− ρ′("′"′χ′ + ""χ̄′)] ,

ρ̂′ = 0,

τ̂ = 1
2Þ′Þ′"′χ′,

τ̂ ′ = 1
2Þ′Þ′"χ̄′,

β̂ = −1
2βÞ′Þ′χ′ + (1

2ρ
′ + ε′)Þ′"′χ′ − ρ′(βÞ′χ′ − ε′"′χ′),

β̂′ = 1
2Þ′Þ′"χ̄′ − 1

2βÞ′Þ′χ̄′ + (1
2ρ
′ − ε′)Þ′"χ̄′ − ρ′(βÞ′χ̄′ + ε′"χ̄′),

ε̂ = −1
2Þ′""χ̄′ + 1

2ε
′("′"′χ′ + ""χ̄′),

ε̂′ = 0. (B.10)

The perturbed Weyl scalars are given by

Ψ̂4 = 1
2Þ′4χ̄′,

Ψ̂3 = 1
2Þ′3"χ̄′,

Ψ̂2 = 1
2Þ′2"2χ̄′,

Ψ̂1 = 1
2Þ′"3χ̄′ − 3

2Ψ2(Þ′"′χ′ + ρ′"′χ′),
Ψ̂0 = 1

2"4χ̄′ − 3
2Ψ2ρ

′Þχ′ + 3
2Ψ2ρÞ′χ′ + 3Ψ2

2χ
′. (B.11)

Note that the perturbations about a Minkowski background can be ob-

tained by substituting ε′ = Ψ2 = 0 into the expressions above.
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B.3 Perturbations about a Kerr Background

In a Kerr spacetime, using the tetrad (7.12), ρ, ρ′, ε′, β, β′, τ , τ ′ and Ψ2

are non-zero and, in general, complex. In the formulae below, red expressions

are specific to the Kerr background and are not present on Schwarzschild or

Minkowski backgrounds. They involve the angular momentum parameter a

and the mass parameter M . Blue expressions are present in perturbations

about Schwarzschild and Kerr backgrounds. They involve M but not a. Ex-

pressions in black are present in the perturbations about either Minkowski,

Schwarzschild or Kerr backgrounds and are independent of M and a.

The metric perturbation is

γab =(X + X̄)nanb + Y mamb + Ȳ m̄am̄b − 2Zn(amb) − 2Z̄n(am̄b), (B.12)

the covariant tetrad perturbation is

l̂a = 1
2(X + X̄)na − Zma − Z̄m̄a,

n̂a = 0,

m̂a = −1
2 Ȳ m̄a,

ˆ̄ma = −1
2Y ma,

and the contravariant tetrad perturbation is

l̂a = −1
2(X + X̄)na,

n̂a = 0,

m̂a = −Zna + 1
2 Ȳ m̄a,

ˆ̄ma = −Zna + 1
2Y ma, (B.13)

where

X = "′"′χ′+2τ ′"′χ′,
Y = Þ′Þ′χ̄′+2ρ̄′Þ′χ̄′,
Z = Þ′"χ̄′+ρ̄′"χ̄′+(τ + τ̄ ′)Þ′χ̄′. (B.14)
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The perturbed NP scalars are given by

κ̂ =− 1
2"""χ̄′ + 1

2ÞÞ′"′χ′+1
2Ψ2"′χ′−1

2τ(""χ̄′ + "′"′χ′) + 1
2(τ̄ + 2τ ′)ÞÞ′χ′

−1
2 τ̄
′""χ̄′ − τ(τ ′"′χ′ + τ̄ ′"χ̄′) + [Þτ ′ + 1

2 ρ̄(τ̄ − τ ′)]Þ′χ′,
κ̂′ =0,

σ̂ =1
2ÞÞ′Þ′χ′ + 1

2(ρ− ρ̄)Þ′Þ′χ′+ρ′ÞÞ′χ′ + (ρρ′ −Ψ2)Þ′χ′+(τ̄ ′ − τ)Þ′"′χ′

+ρ′(τ̄ ′ − τ)"′χ′ + (("τ ′) + τ̄ τ̄ ′ − τ τ̄ − ττ ′)Þ′χ′,
σ̂′ =1

2Þ′Þ′Þ′χ̄′+1
2(ρ

′ + ρ̄′)Þ′Þ′χ̄′ + ρ′ρ̄′Þ′χ̄′,
ρ̂ =1

2Þ′("′"′χ′ − ""χ̄′)−1
2 ρ̄
′("′"′χ′ + ""χ̄′)+(τ̄ + τ ′)Þ′"′χ′ − 2τÞ′"χ̄′

−ρ̄′(τ"χ̄′ + τ ′"′χ′) + (τ̄ 2 + τ̄ τ ′ + τ ′2)Þ′χ′ − τ(τ̄ ′ + 2τ)Þ′χ̄′,
ρ̂′ =0,

τ̂ =1
2Þ′Þ′"′χ′+(1

2 τ̄ + τ ′)Þ′Þ′χ′ + (1
2(Þ′τ̄) + ρ′(τ ′ − τ̄))Þ′χ′,

τ̂ ′ =1
2Þ′Þ′"χ̄′+(τ + 1

2 τ̄
′)Þ′Þ′χ̄′ + 1

2(Þ′τ)Þ′χ̄′,
β̂ =− 1

2β
′Þ′Þ′χ′+(1

2ρ
′ + ε′)Þ′"′χ′ − ρ′(β′Þ′χ′ − ε′"′χ′)+(ε′(τ ′ + τ̄ ′) + ρ′(1

2 τ̄ + τ ′))Þ′χ′,
β̂′ =1

2Þ′Þ′"χ̄′ − 1
2βÞ′Þ′χ̄′+(1

2ρ
′ − ε′)Þ′"χ̄′ − ρ̄′(βÞ′χ̄′ + ε′"χ̄′)+τÞ′Þ′χ̄′

+(1
2 [(Þ′τ) + ρ̄′τ ]− ε′(τ + τ̄ ′))Þ′χ̄′,

ε̂ =− 1
2Þ′""χ̄′+1

2ε
′("′"′χ′ + ""χ̄′)+1

2τ
′Þ′"′χ′ − (τ + 1

2 τ̄
′)Þ′"χ̄′

+ε′(τ ′"′χ′ + τ̄ ′"χ̄′) + τ ′(τ + 1
2 τ̄)Þ′χ′ − τ(τ + 1

2 τ̄
′)Þ′χ̄′,

ε̂′ =0. (B.15)

The perturbed Weyl scalars are given by

Ψ̂4 =1
2Þ′4χ̄′,

Ψ̂3 =1
2Þ′3"χ̄′+3

2τÞ′3χ̄′ + 3
2(Þ′τ)Þ′2χ̄′ + 1

2(Þ′2τ)Þ′χ̄′,
Ψ̂2 =1

2Þ′2"2χ̄′+2τÞ′2"χ̄′ + 3τ 2Þ′2χ̄′ + (Þ′τ)Þ′"χ̄′ + 3τ(Þ′τ)Þ′χ̄′,
Ψ̂1 =1

2Þ′"3χ̄′−3
2Ψ2(Þ′"′χ′ + ρ′"′χ′)+3

2τÞ′""χ̄′ + 3τ 2Þ′"χ̄′ − 3
2Ψ2(τ̄ + τ ′)Þ′χ′+3τ 3Þ′χ̄′,

Ψ̂0 =1
2"4χ̄′+3

2Ψ2(ρÞ′χ′ − ρ′Þχ′) + 3Ψ2
2χ′+3

2Ψ2(τ
′"χ′ − τ"′χ′). (B.16)

The perturbations about a Schwarzschild background can be obtained from

the expressions above by setting τ = τ ′ = 0 and ρ = ρ̄. If we also set ε′ = 0

and Ψ2 = 0 then we obtain the perturbations on a Minkowski background.
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Spherical Harmonic

Conventions

C.1 Spherical Harmonics

For l ≥ 0 and −l ≤ m ≤ l, the spherical harmonics Ylm(θ,φ) are given by

Ylm(θ,φ) =

√
(2l + 1)(l −m)!

4π(l + m)!
Plm(cos θ)eimφ. (C.1)

They form a complete set of orthonormal functions on the unit sphere. The

spherical harmonics are eigenfunctions of the Laplacian operator on the unit

sphere,

(
∂2

∂θ2
+ csc2 θ

∂2

∂φ2
− i

cos θ

sin2 θ

∂

∂φ

)
Ylm(θ,φ) = −l(l + 1)Ylm(θ, φ). (C.2)

In (C.1), the Plm(cos θ) are associated Legendre functions with the Condon-

Shortley phase factor (−1)m included:

Plm(x) =
(−1)m

2ll!
(1− x2)m/2 dl+m

dxl+m
(x2 − 1)l. (C.3)

There is a well known recurrence formula for the associated Legendre functions

xPlm(x) =

(
l −m + 1

2l + 1

)
Pl+1 m(x) +

(
l + m

2l + 1

)
Pl−1 m(x), (C.4)
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which enables us to write

cos θ Ylm =

√
(l + m + 1)(l −m + 1)

(2l + 3)(2l + 1)
Yl+1 m +

√
(l −m)(l + m)

(2l + 1)(2l − 1)
Yl−1 m. (C.5)

Hence we obtain

cos2 θ Ylm = AlmYl+2 m + BlmYlm + ClmYl−2 m, (C.6)

where

Alm =

√
(l −m + 1)(l −m + 2)(l + m + 1)(l + m + 2)

(2l + 1)(2l + 3)2(2l + 5)
,

Blm =
(l −m + 1)(l + m + 1)

(2l + 1)(2l + 3)
+

(l + m)(l −m)

(2l + 1)(2l − 1)
,

Clm =

√
(l −m− 1)(l −m)(l + m− 1)(l + m)

(2l − 3)(2l − 1)2(2l + 1)
= Al−2 m, (C.7)

This recurrence relation is used in §7.2. Note that the relation (C.5) is still

valid for l = 0 or m = l, since the coefficient of Yl−1 m vanishes in both cases.

Similarly the relation (C.6) is valid if l = 0, 1, or m = l, l − 1 (since Clm

vanishes in each case).
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C.2 Spin-Weighted Spherical Harmonics

We use the spin-weighted spherical harmonic conventions found in [135]. For

a quantity η of spin s, we define the operators " and "′ such that

"η =
1√
2r

(∂θη − s cot θη − i csc θ∂φη)

"′η =
1√
2r

(∂θη + s cot θη + i csc θ∂φη) . (C.8)

For l ≥ |s| and −l ≤ m ≤ l, the spin-weighted spherical harmonics

sYlm(θ,φ) are defined by

sYlm =






(−1)srs

√
2s(l − s)!

(l + s)!
"s

0Ylm if 0 ≤ s ≤ l,

r−s

√
2−s(l + s)!

(l − s)!
"′−s

0Ylm if 0 ≥ s ≥ −l.

(C.9)

The 0Ylm are the standard spin-0 spherical harmonics Ylm defined in appendix

C.1. For any given s the sYlm form a complete set of orthonormal functions on

the unit sphere. The operators " and "′ then act as spin-raising and -lowering

operators respectively:

"sYlm = 2−1/2r−1

(
l − s

l + s + 1

)1/2

s+1Ylm,

"′sYlm = −2−1/2r−1

(
l + s

l − s + 1

)1/2

s−1Ylm. (C.10)

This implies the eigenvalue equation

""′sYlm = − 1

2r2
(l + s)(l − s + 1)sYlm, (C.11)

which can also be written as

(
∂2

∂θ2
+ csc2 θ

∂2

∂φ2
− (1 + 2s)i

cos θ

sin2 θ

∂

∂φ
− s + s2 cos2 θ

sin2 θ

)
sYlm(θ, φ)

= −(l + s)(l − s + 1)sYlm(θ,φ). (C.12)
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Note that some conventions (such as e.g. [21]) do not include the factors of

r in the definitions (C.8) or (C.9). We include them here to simplify the

calculations in chapters 5 and 6.

We can factor out the θ− and φ−dependence of the spin-weighted spherical

harmonics by writing

sYlm(θ,φ) = sNlm Pm+s, m−s
l (cos θ)eimφ, (C.13)

where sNlm is a normalization factor and Pm+s, m−s
l is a function whose be-

haviour we now investigate. Substitution of (C.13) into the eigenvalue equation

(C.11) yields the differential equation

{
(1− x2)

d2

dx2
− 2x

d

dx
− (m + s)2

2(1− x)
− (m− s)2

2(1 + x)
+ l(l + 1)

}
Pm+s, m−s

l (x) = 0.

(C.14)

This differential equation is known as the generalized associated Legendre

equation. Its regular solutions are the generalized associated Legendre func-

tions of the first kind P p, q
l with p = m + s and q = m − s (see, for exam-

ple, [41,145]) . For general (non-integer) p, q and k, Kuipers [87] obtained the

normalisation relation

∫ 1

−1

P p, q
k (x)2dx =

1

2p−q+1

1

2k + 1

Γ(k + p−q
2 + 1)Γ(k + p+q

2 + 1)

Γ(k − p−q
2 + 1)Γ(k − p+q

2 + 1)
. (C.15)

By enforcing ∫ ∫
sYlms ȲlmdS = 1, (C.16)

where dS is the area element of the unit sphere, and using (C.15) we then

obtain

sNlm =

√
(2l + 1)(l − s)!(l −m)!

22−2sπ(l + s)!(l + m)!
. (C.17)

In [87] the recurrence relation

xPm+s, m−s
l (x) = sαlmPm+s, m−s

l+1 (x) + sβlmPm+s, m−s
l (x) + sγlmPm+s, m−s

l−1 (x),

(C.18)
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was derived, where

sαlm =
(l − s + 1)(l −m + 1)

(l + 1)(2l + 1)
,

sβlm =
ms

l(l + 1)
,

sγlm =
(l + s)(l + m)

l(2l + 1)
. (C.19)

We can deduce from (C.18) a new recurrence relation for the spin-weighted

spherical harmonics:

cos θ sYlm(θ,φ) = sAlm sYl+1 m(θ, φ) + sBlm sYlm(θ,φ) + sClm sYl−1 m(θ, φ),

(C.20)

where

sAlm = sNlm

sNl+1 m
sαlm =

√
(l + s + 1)(l − s + 1)(l + m + 1)(l −m + 1)

(2l + 1)(2l + 3)(l + 1)2
,

(C.21)

sBlm = sβlm =
ms

l(l + 1)
, (C.22)

sClm = sNlm

sNl−1 m
sγlm =

√
(l − s)(l + s)(l −m)(l + m)

(2l + 1)(2l − 1)l2
. (C.23)

It follows that

cos2 θ sYlm(θ,φ) = sElm sYl+2 m(θ, φ) + sFlm sYl+1 m(θ,φ)

+ sGlm sYlm(θ,φ) + sHlm sYl−1 m(θ,φ)

+ sIlm sYl−2 m(θ,φ), (C.24)

where

sElm = sAlm sAl+1 m,

sFlm = sAlm [sBl+1 m + sBlm] ,

sGlm = sAlm sCl+1 m + sB
2
lm + sClm sAl−1 m,

sHlm = sClm [sBlm + sBl−1 m] ,

sIlm = sClm sCl−1 m. (C.25)

188



Appendix C. Spherical Harmonic Conventions

Note that although spin-weighted spherical harmonics are only defined for

l ≥ |s| and −1 ≤ m ≤ l, the recurrence relation (C.20) is still valid if l = s

(since sCsm = 0) and m = l (since sCll = 0). Similarly (C.24) is still valid in

the cases l = s, s + 1 and m = l, l − 1.
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