Yy
er

The Universit
of Manchest

MANCHESTER

1824

GPU-enabled steady-state solution of large
Markov models

Magalhaes, Bruno R. C. and Dingle,
Nicholas J. and Knottenbelt, William J.

2010

MIMS EPrint: 2010.94

Manchester Institute for Mathematical Sciences

School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/

And by contacting: The MIMS Secretary
School of Mathematics
The University of Manchester
Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

GPU-Enabled Steady-State Solution of Large
Markov Models

Bruno R.C. Magalhaes, Nicholas J. Dingle and William J. Knottenbelt
Department of Computing, Imperial College London,
South Kensington Campus, SW7 2AZ, United Kingdom.
Email: {brc08,n3jd200,wik}@doc.ic.ac.uk

Abstract—We describe a novel parallel steady-state solver that
uses NVIDIA’s Compute Unified Device Architecture (CUDA)
library to perform calculations on a graphics processing unit
(GPU). We demonstrate speed-ups of over 8 times compared with
a CPU-only solver. We also discuss a parallel implementation
which runs on multiple GPUs on separate machines, and explain
how we deal with allocating appropriate amounts of work to
heterogeneous computing resources.

I. INTRODUCTION

More cores, not faster clock speeds, drive performance
enhancement in today’s processors. Due to the recent increase
in the number of cores on a computer processor and the intro-
duction of graphics boards with their own cores and memory,
nowadays most of the applications which were written for
single or dual core processors do not take full advantage of
the processing power of the machine, as they were written
for single-threaded and sequential execution modes. Therefore,
we stand in a period where graphics processing units (GPUs)
and CPUs with multiple cores are left idle by most of the
applications. Recent developments such as NVIDIA’s Compute
Unified Device Architecture (CUDA) library have, however,
lowered the barrier of entry to writing programs that tap into
the high floating-point performance offered by GPUs.

Within the domain of performance analysis there has been
some work on harnessing the power of GPUs for computa-
tion. Such work has focused mainly on extracting qualitative
measures from models, for example with model checking [1],
[2], but to the best of our knowledge there has been little or
no work on the computation of quantitative measures such as
steady-state probabilities or passage-time distributions.

Such measures are typically computed by constructing and
solving a system of linear equations. A great deal of work
has been conducted on solving dense systems of equations
with GPUs, but the solution of sparse systems, which more
often arise from high-level performance model descriptions,
has been less widely studied [3].

The aim of this paper is to present our novel work on
the solution of steady-state probabilities in Continuous Time
Markov Chains (CTMCs) using GPUs. After briefly describing
the background theory and NVIDIA’s CUDA library (Sec-
tion II), we describe our GPU-enabled steady-state solver in
Section III. We discuss how we deal with allocating appropri-
ate amounts of work given the heterogeneous nature of systems
composed of GPUs and CPUs, and present results which show

that our GPU implementation can be over 8 times faster than a
CPU-based solver. In Section IV we then consider expanding
our implementation to run on multiple physical machines using
the Message Passing Interface (MPI) [4] standard, and present
results to show the run-time and speed-up of the resulting
parallel implementation. Finally, we conclude and suggest
avenues for future work.

II. BACKGROUND

We briefly describe the theoretical background to the solu-
tion of CTMCs for their steady-state probability distributions,
before presenting an overview of NVIDIA’s CUDA library.

A. Farallel Steady State Solution

For a finite, irreducible and homogeneous CTMC, the
steady-state probabilities {r;} always exist and are indepen-
dent of the initial state distribution. They are uniquely given
by the solution of the equations:

—q;;7; + Z ki Tk = 0 subject to ZTFZ‘ =1
k#j i
This can be expressed in terms of the vector 7 (with elements
{m1,72,...,mn}) and the matrix Q as:

Q=0

There are a number of well-known iterative techniques for
computing steady-state probabilities in Markov chains. These
techniques are used for solving linear systems of the form
Ax = b; in the case of CTMC analysis, A = QT, x = w7
and b = 0 (a vector with all elements being 0), where the
superscript 1" denotes the transpose operator.

Probably the most easily-parallelisable iterative solution
technique is the Jacobi method. This is based on the observa-
tion that solving Ax = b is equivalent to finding the solution
to the n equations:

n—1
E aija:j:bi i:O,l,...,n—l
Jj=0

Solving the ith equation for z; yields:

1
xXr; = ?“(bl — Zaijxj)

i

which suggests the iterative method:

k+1 1 k
2 = 7(bi - Zaiﬁ;)) (1
Qi .
J#i
where £ > 0 and z(©) is an initial guess at the solution
vector. Iterations are performed until the normalised difference
between successive iterations is less than some predefined

error €.
||x(k+1) _ ,J;(k)”OC

[l |

<e€

Here, ||z||o is the infinity-norm given by ||z||cc = max;|x;].

In the Jacobi method the calculation of the :cgk ’s are
independent of one another, which means vector element
updates can be performed in parallel, using a data access
pattern similar to sparse matrix-vector multiplication.

B. CUDA

CUDA is NVIDIA’s parallel computing platform for GPUs.
It was released in November 2006 and allows developers to
write programs for GPUs in a very similar way to CPUs. It
is essentially a C library for writing GPU-enabled programs,
albeit one with several limitations (e.g. no recursive functions)
on the structure of the GPU code. A CUDA program is formed
of standard C/C++-code (compiled for the architecture of the
CPU), and one or more “kernels” written in the CUDA subset
of C that execute on the GPU when called by the functions
running on the CPU.

Each CUDA kernel in a program will be executed many
times in parallel by a large number of threads. Threads are
grouped into blocks and are able to synchronise with other
threads in the same block, but are not able to synchronise with
threads in other blocks. The programmer has no control over
the order in which these blocks of threads will be executed
on the available GPU cores. Unlike a CPU, an NVIDIA GPU
contains a large number of cores (e.g. 480 on the top-of-the-
range NVIDIA GeForce GTX 295 card [5]) each of which
executes one block of threads at a time, and can switch
between the constituent threads of a block at low cost. This
Single Instruction Multiple Thread (SIMT) execution model
allows CUDA programs to scale seamlessly across different
hardware with varying numbers of cores.

In addition, the GPU has a memory hierarchy which must
be explicitly dealt with by the programmer [5]:

« Private local memory is the fastest type, but can only be
accessed by a single thread and does not persist beyond
the lifetime of that thread.

o Shared memory is shared between all threads in the
same block. It is much faster to access than global
memory (see below), but is limited in capacity.

o Global memory is the “main memory” of the graphics
card and is available to all threads in all blocks. It is,
however, the slowest form of memory to access.

o Texture memory is a read-only binding of global mem-
ory that is well-suited to storing and retrieving data with a
high level of two-dimensional spatial locality. It is cached.

III. GPU IMPLEMENTATION

As described above, one of the central concepts of CUDA
programming is that the same kernel is executed in parallel by
a large number of threads. For Jacobi, the central operation is
the multiplication of one row of the matrix with the current
solution vector (i.e. Eq. 1) and this therefore formed the kernel
of our implementation. Each thread on the GPU would then
be responsible for multiplying one row of the matrix with the
current solution vector. It will be recalled from the description
of the Jacobi method above that the update of each :z:l(.k) value
is independent of the others in the same iteration, and therefore
our kernel satisfies the CUDA programming requirement that
it must not matter in what order the threads are executed.

Our matrix is stored in Compressed Sparse Row format [6]
as three one-dimensional vectors: a vector of non-zero weights
(the g;; values), a vector of column indices and a vector of
offsets for the row starts. We also explicitly store the x(¥)
vector and the x(*+1) vector.

To ensure good performance of our implementation we have
exploited the memory hierarchy of the GPU. The matrix must
be stored in the GPU’s global memory as it is too large
to fit in the shared memory available to each thread block.
As it is not altered by the Jacobi method, however, we can
bind it into read-only texture memory and this results in a
slight performance improvement even with the overhead of
binding/unbinding taken into account.

We achieved a much larger performance improvement by
storing the x(**1) vector in shared memory. As the ith
element of this is only accessed by the thread responsible for
multiplying row ¢ with the current solution vector, there was no
requirement for threads outside the block containing the thread
responsible for row ¢ to access xz(.k'H) — had there been then
shared memory would not have been appropriate and global
memory would have had to have been used. We recorded an
approximately 20% reduction in solution times by storing the
x(#+1) vector in shared (as opposed to global) memory.

A. Dealing with large matrices

A major limitation on the use of standard GPUs for com-
putation is the limited amount of memory on the graphics
card. For example, the NVIDIA GeForce 8600GTS cards used
to generate the results presented in this paper have 256MB
of main memory. It should be noted also that this is the
total amount of memory available, and that other applications
(especially graphical ones) may consume a portion of this,
further reducing the amount available to use for steady-state
solution. Furthermore, the largest amount of memory available
to be allocated with a single malloc () call will often be
appreciably smaller; in our experiments, of the 256MB of
total memory on the graphics card, approximately 180MB was
consistently available for our steady-solver but no more than
20MB of contiguous memory at a time could be allocated.

For small matrices, this was not a problem. For those which
we are interested in analysing, which may have many millions
of states, this presented a major problem. The solution was
to split the matrix into smaller portions and then perform

the computation on each portion in turn, by first copying
the portion from system memory to the GPU, perform one
iteration of Jacobi on it and then copying the updated vector
elements back to system memory.

The major drawback of this scheme was that main memory
to GPU copies are extremely time-consuming, and as a result
the performance of our steady-solver was unacceptable. To
overcome this, we have implemented a scheme inspired by the
use of asynchronous iterations in distributed memory steady-
state solution [7], [8], [9]. Rather than perform only one
iteration on a block of the matrix per copy, we instead perform
multiple iterations with the copied data before proceeding to
the next matrix portion. This reduces the amount of copy
operations at the expense of requiring more iterations to
converge, but as copying data to and from the GPU is far
more expensive than performing computation with the data,
the result is an overall improvement in the run-time of the
steady-state solver — see Section III-C for more details.

B. Resource discovery

Our intention in this work was to produce a steady-state
solver capable of making maximum use of all available
computing resources (CPU and GPU). As these resources will
have differing capabilities it is not sufficient to delegate equal
amounts of work to each. We have therefore implemented a
resource discovery mechanism that tests all available process-
ing elements to determine their relative computing power and
assign portions of the matrix to each accordingly.

From /proc/cpuinfo we are able to determine the
number of CPU cores in the machine on which we are running,
while the CUDA library contains built-in functions to enable
us to extract the characteristics of the installed GPUs. As the
raw clock rates of CPUs and GPUs are not comparable, we
instead determine their relative processing power empirically
by conducting a number of sample Jacobi iterations on each
processing element. We take the average duration per iteration
of each core, and calculate the amount of matrix rows per
second that each core is able to process. We then partition the
matrix according to the percentage of processing power each
core has when compared to the total processing power (the
sum of the rows per second of all cores).

C. GPU vs. CPU Results

Table I shows run-time and speedup results for our steady-
state solver running on an Intel Core2 Duo 2.13GHz with 2GB
of memory and fitted with an NVIDIA GeForce 8600GTS
graphics card with 256MB of memory. As this is a dual-core
machine, we compare our solver’s performance running on a
single core of the CPU, both cores of the CPU, the GPU alone
and finally on all the cores available in the machine (i.e. both
CPU cores and also the GPU). Results are presented for three
vector exchange frequencies (1, 10 and 20 iterations) — note
that convergence checks are conducted at the same range of
frequencies, which accounts for the three entries for the single
CPU core case that otherwise features no vector exchanges.

We observe that the speed-up achieved using only the GPU
(compared with using only a single CPU core) exceeds that
achieved by using both CPU cores for all vector exchange
frequencies for all CTMC sizes, although the effect is most
marked for vector exchange frequencies of 10 and 20 iter-
ations. This illustrates the size of the overhead imposed by
main-memory-to-GPU copies.

Combining both CPU cores and the GPU results in per-
formance which usually matches or, in some cases, exceeds
that of using only the GPU. The occasions where this scheme
under-performs compared with the GPU-only scheme may be
attributable to our resource-discovery mechanism: although
we partition the matrix between the cores according to their
observed performance, we have no way of enforcing that the
thread of our solver that has the larger portion of the matrix
is assigned to the same core that ran the test iterations faster.
This means that more work end up being given to a more
heavily loaded core, and hence that overall performance may
suffer. Rectifying this is a matter for future work. Copying
data from the CPU to the GPU is also a significant bottleneck
as it requires the whole execution (on both CPUs cores and
on the GPU) to pause.

IV. GPU AND MPI IMPLEMENTATION

So far, we have described a scheme centred on the use of
a single machine containing one or more CPU cores and a
GPU. Using MPI we are able to launch multiple instances
of our GPU-enabled solver on a number of machines, which
can then work together to solve CTMCs with state spaces too
large to be held within the memory of a single machine. Data
is exchanged between machines at the same frequency that it is
copied between main memory and the GPU on each machine —
as described above, this is not necessarily after the completion
of each iteration. We assign blocks of contiguous matrix rows
to participating machines, and then determine how much of
the portion assigned to each machine should be given to the
computational cores within that machine using our resource
discovery method described above.

Table II shows run-time and speedup results for our steady-
state solver running on two Intel Core2 Duo 2.13GHz with
2GB of memory and both fitted with an NVIDIA GeForce
8600GTS graphics card with 256MB of memory. We note that
the speed-ups here are much lower than those achieved for the
solver running on a single machine (see Section III-C), and we
believe that this is due to the overheads incurred in exchanging
vector elements between the participating machines after each
iteration. Work is currently on-going to investigate the use of
hypergraph partitioning [10], [11] to reduce the amount of
CPU-to-GPU and inter-machine communication required.

V. CONCLUSION

We have described the implementation of a steady-state
solver for CTMC:s that uses the GPU to compute results up to 8
times faster than a CPU-only solver. We have also described a
parallel extension of this solver that uses MPI to distribute the
work across a number of machines, each of which runs our

No. of . Run-time (seconds) Speed-up
States Configuration T [10 | 20 T [10 [20
Tx CPU core 682 | 729 | 655 - B -
so1501 || 2x CPU cores 459 | 340 | 366 || 149 | 2.14 | 1.93
1x GPU 315 | 102 | 096 | 217 | 7.15 | 6.82
2x CPU cores + 1x GPU || 245 | 129 | 127 || 278 | 5.65 | 5.16
Tx CPU core 2615 | 2960 | 2637 - N -
2x CPU cores 14.58 14.18 14.40 1.79 | 2.09 | 1.83
2003001 1 1, Gpy 1157 | 591 | 567 | 226 | 501 | 465
2x CPU cores + 1x GPU || 853 | 451 | 390 || 3.07 | 7.59 | 8.59
Tx CPU core 117.42 | 11488 | 10741 || - 5 -
2006001 || 2 CPU cores 5817 | 5736 | 5523 || 202 | 200 | 1.94
1x GPU 48.83 | 1739 | 1554 | 240 | 6.61 | 6.91
2x CPU cores + 1x GPU || 3320 | 17.82 | 1675 || 3.54 | 645 | 6.41
TABLE I

RUN-TIME AND CORRESPONDING SPEED-UPS ON ONE MACHINE, FOR THREE DIFFERENT VECTOR EXCHANGE FREQUENCIES.

No. of . Run-time (seconds) Speed-up
States Configuration T [10 | 20 T] 10 [20
2xI CPU 587 | 1203 | 1253 | - - -
2x2 CPU 1203 | 821 | 803 || 122 | 148 | 156
4504501 11 5.\ Gpu 1537 | 15442 | 1402 || 1.03 | 079 | 0.89
2x2 CPU + 2x1 GPU || 13.90 | 15.06 | 19.83 || 1.14 | 0.81 | 0.63
7xI CPU 39.07 | 3346 | 3485 [- - -
2x2 CPU 2716 | 1886 | 1944 || 144 | 1.77 | 1.79
12507501 || 51 Gpu 4379 | 1943 | 1876 || 0.89 | 1.72 | 1.86
2x2 CPU + 2x1 GPU || 32.84 | 1411 | 1551 || 1.19 | 2.37 | 2225
7x2 CPU 5021 | 4141 | 4558 || - : :
24510501 || 2x1 GPU 87.02 | 39.85 | 3861 || 0.58 | 1.04 | 1.18
2x2 CPU + 2x1 GPU || 56.52 | 31.07 | 24.80 || 0.89 | 1.33 | 1.84
TABLE II

RUN-TIME AND CORRESPONDING SPEED-UPS USING TWO MACHINES, FOR THREE DIFFERENT VECTOR EXCHANGE FREQUENCIES.

GPU-enabled solver. As these machines may have differing
computational power, we have described a resource discovery
mechanism that assigns an appropriate amount of work to each
based on their measured performance.

We are aware that there are still many opportunities for fur-
ther work that will improve the performance of our implemen-
tation. As described above, we will investigate the scheduling
of threads on the CPU to devise a method for ensuring that
the correct amount of work is assigned to each CPU core. We
will also investigate the use of hypergraph partitioning and a
better CUDA-to-MPI interface to more efficiently parallelise
our calculations across multiple machines. In addition, we will
investigate more advanced sparse matrix layouts (e.g. those
described in [3], [12]). Our ultimate intention is to use GPUs
for the analysis of more complex measures such as response
time distributions, which can also be computed with iterative
sparse matrix-vector multiplication methods [13], [14].

[4]

[5]
[6]

[7]

[8]

[9]

[10]
[11]

3rd International Conference on High Performance Computing and
Communications (HPCC’07), Houston, September 2007, pp. 358-371.
W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message Passing Interface, 2nd ed. Cambridge,
Massachussetts: MIT Press, 1999.

“NVIDIA CUDA programming guide,” February 2010, version 3.0.

I. Duff, A. Erisman, and J. Reid, Direct Methods for Sparse Matrices.
Oxford: Clarendon Press, 1986.

K. Blathras, D. Szyld, and Y. Shi, “Timing models and local stopping
criteria for asynchronous iterative algorithms,” Journal of Parallel and
Distributed Computing, vol. 58, no. 3, pp. 446465, September 1999.
N. Dingle and W. Knottenbelt, “Distributed solution of large Markov
models using asynchronous iterations and graph partitioning,” in
Proceedings of the 18th UK Performance Engineering Workshop
(UKPEW’02), Glasgow, July 2002, pp. 27-34.

A. Frommer and D. Szyld, “On asynchronous iterations,” Journal of
Computational and Applied Mathematics, vol. 123, pp. 201-216, 2000.
C. Berge, Graphs and Hypergraphs. North-Holland, Amsterdam, 1973.
U. Catalyiirek and C. Aykanat, “Hypergraph-partitioning-based decom-
position for parallel sparse-matrix vector multiplication,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 10, no. 7, pp. 673-693,
July 1999.

[12] A. Monakov, A. Lokhmotov, and A. Avetisyan, “Automatically tuning

REFERENCE sparse matrix-vector multiplication for GPU architectures,” in Proceed-

CES ings of the 5Sth International Conference on High-Performance and

[1] J. Barnat, L. Brim, and M. Ceska, “DiVinE-CUDA - a tool for GPU Embedded Architectures and Compilers (HiPEAC’10), Pisa, January
accelerated LTL model checking,” in Proceedings of the Sth Interna- 2010, pp- 111-125. . . L

[13] N. Dingle, P. Harrison, and W. Knottenbelt, ‘“Uniformization and

tional Workshop on Parallel and Distributed Methods in Verification
(PDMC’09), Eindhoven, November 2009, pp. 107-111.

D. Bosnacki, S. Edelkamp, and D. Sulewski, “Efficient probabilistic
model checking on general purpose graphics processors,” in Proceedings
of the 16th International SPIN Workshop on Model Checking of Software
(SPIN’09), Grenoble, June 2009, pp. 32-49.

L. Buatois, G. Caumon, and B. Lévy, “Concurrent Number Cruncher:
An efficient sparse linear solver on the GPU,” in Proceedings of the

[2]

[3]

[14]

hypergraph partitioning for the distributed computation of response
time densities in very large Markov models,” Journal of Parallel and
Distributed Computing, vol. 64, no. 8, pp. 908-920, August 2004.

J. Bradley, N. Dingle, W. Knottenbelt, and H. Wilson, “Hypergraph-
based parallel computation of passage time densities in large semi-
Markov models,” Linear Algebra and its Applications, vol. 386, pp.
311-334, 2004.

