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Determining the absorption in

anisotropic media

Romina Gaburro∗and William R.B. Lionheart †

Abstract. The problem in Optical Tomography of determining the spacially de-
pendent absorption coefficient in an anisotropic medium with a-priori known strong
scattering is considered. The problem is modelled by the diffusion approximation
of the Radiative Transfer Equation and the time-harmonic case is studied. In this
particular situation the diffusion approximation leads to an elliptic second order par-
tial differential equation with complex variable coefficients which allows to treat the
problem equivalently to the inverse conductivity problem in Electrical Impedance To-
mography (EIT). Results of uniqueness and stability for the absorption coefficient are
proven by using the approach of the work in SIAM J. Math. Anal. 33 (2001), no. 1,
153–171 for the inverse conductivity problem in EIT.

1 Introduction.

The classical Calderón inverse conductivity problem is to recover an
unknown coefficient in a elliptic partial differential equation from the
Dirichlet-to-Neumann map at the boundary. This problem arises in
electrical resistivity tomography (or more generally electrical impedance
tomography EIT), a method used for subsurface geophysical imaging,
industrial process monitoring and as an experimental medical imaging
technique. Optical tomography (OT) of a highly scattering medium us-
ing near infra-red light [5] is another medical imaging technique that is
closely related. As we shall see the usual mathematical model for this
also results in an elliptic PDE with unknown coefficients to be deter-
mined from boundary data. In both EIT and OT anisotropic materials
are common. Biological tissue and rocks commonly have a layered or fi-
brous structure on a small scale, which appears on a macroscopic scale as
an anisotropic material property. While the problem of non-uniqueness
of solution, and uniqueness with sufficient a priori information has been
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2 DETERMINING THE ABSORPTION

fairly well studied in EIT there has been little work on this in OT. In this
paper we extend the methods of [3] to the case of OT. More precisely we
recall that the P1 approximation of the commonly used Radiative Trans-
fer Equation in OT leads in the static and time-harmonic cases to an
equation [13] of type

∇ · (K∇ϕ) − (µa − ik)ϕ = 0, (1.1)

where k = ω
c

is the wave number, ω is the fixed harmonic frequency with
which the input field is modulated and K is the complex valued matrix

K =
1

n

(
(µa − ik)I + (I − B)µs

)−1

. (1.2)

Here µa, µs are the absorption and scattering coefficient respectively i.e.
the optical properties of the medium. One formulation of the OT inverse
problem is to recover µa and µs from the knowledge of the so-called
Robin-to-Robin map

ΥK : Φ− ∈ H− 1

2 (∂Ω) −→
(
γ(n)ϕ+

1

2
K∇ϕ · ν

) ∣∣∣∣∣
∂Ω

∈ H− 1

2 (∂Ω),

where ϕ ∈ H1(Ω) is the unique solution to (1.1) corresponding to the in-
put flux Φ−. Here ν is the unit outer normal to ∂Ω. The static Neumann-
to-Dirichlet data is insufficient to recover both coefficients uniquely [7]
unless a priori smoothness assumptions are employed [11]. We also refer
to [22, section 6]. In the present paper we study the inverse problem
of determining the absorption µa from the knowledge of the Dirichlet-
to-Neumann map, in the case when the scattering µs and the matrix B
appearing in (1.2) are given.

In medical applications OT has been proposed [6] as a method for
functional rather than structural imaging. While the scattering coeffi-
cient µs varies from tissue to tissue, it is the absorption coefficient µa

that carries the more interesting physiological information as it is related
to the global concentrations of certain metabolites in their oxygenated
and deoxygenated states. Many tissues including parts of the brain, mus-
cle and breast tissue have a fibrous structure on a microscopic scale which
results in anisotropic physical properties on a larger scale. Diffusion Ten-
sor Magnetic Resonance Imaging (DT-MRI) measures a spacially varying
rank two symmetric tensor field related to the diffusion coefficient for wa-
ter in the tissue. This has been proposed as a method of inferring the
anisotropic electrical conductivity as well as other properties including
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anisotropic light scattering [21]. If we assume therefore that prior to the
application of OT the structural information µs and B have been deter-
mined from conventional Magnetic Resonance Imaging and and DT-MRI,
we are interested in determination changes in µa and this presents the
motivation for the present work.
More precisely we concentrate on the issue of determining boundary val-
ues of µa by pursuing the same line of investigation of [3] and considering
anisotropic diffusion tensors that arise in the static and time-harmonic
cases. If we assume that µs and B are known, then these tensors become
of type K(x) = K(x, µa), where K(x, t) is a known, complex matrix-
valued function given by

K =
1

n

(
(t− ik)I + (I − B)µs

)−1

(1.3)

and µa is the unknown scalar function we want to recover. The pre-
cise assumptions shall be illustrated in Section 3. We improve upon the
results obtained in [3] by adapting the uniqueness and stability results
at the boundary to the case in which the governing equation (1.1) has
complex coefficients and an extra lower order term µa − ik which does
not appear in the conductivity equation of [3]. The case in which µa and
B are known and the scattering coefficient µs is to be determined can be
treated in a similar manner to the one considered in this work. Moreover
the results obtained in the present paper show that the so-called mono-
tonicity assumption of [3] is a realistic hypothesis for example in the OT
problem considered here.
The paper is organized as follows. Section 1 contains the formulation
of the problem, starting with the mathematical model in OT of the Ra-
diative Transfer Equation and ending with the recovery of the so-called
P1 approximation. Section 3 is devoted to the static and time-harmonic
cases of the problem and the statement of the main assumptions on the
given scattering coefficient µs and the matrix B. The boundary mea-
surements of the problem are also introduced in this section. The main
results are contained in Section 4, while Section 5 is devoted to the con-
struction of singular solutions of equation (1.1) having the same type of
singularity as those in [3]. Proofs of the main results are given in Section
6.
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2 Formulation of the problem

2.1 The Radiative Transfer Equation

Although Maxwell’s equations provide a complete model for the light
propagation in a scattering medium on a micro scale, on the scale suitable
for medical OT an appropriate model is given by the Radiative Transfer
Equation (or Boltzmann equation)[8].

Let Ω be a domain in Rn, with n = 2 or n = 3 with smooth boundary
∂Ω. We will denote by ν the outer unit vector on ∂Ω. If radiation is
considered in the body Ω, then the radiation flux density at the point
x ∈ Ω, at the time t to the infinitesimal solid angle ds, in the direction θ̂
is given by

d
−→
J (x, t, θ̂) = I(x, t, θ̂)θ̂ds(θ̂), (2.1)

where I(x, t, θ̂) is called the radiance and it satisfies the Radiative Trans-
fer Equation (RTE)

1

c
It(x, t, θ̂) + θ̂ · ∇I(x, t, θ̂) + (µa(x) + µs(x)) I(x, t, θ̂)

− µs(x)

∫

Sn−1

f(x, θ̂, ω̂)ds(ω̂) = 0, (2.2)

where c is the speed of light (assumed to be constant) and µa and µs

are the absorption and the scattering coefficient respectively (the optical
properties of the medium). The kernel f is the scattering phase function
(see [12] for more details on this topic). The RTE is an integro-differential
equation in 2n− 1 variables, therefore it leads to numerical problems of
very large size. A common simplification of it is the so-called Diffusion
Approximation (see [5]).

2.2 The Diffusion Approximation

Let Sn−1 be the unit sphere in Rn and θ̂ = (θ1, . . . , θn) ∈ Sn−1. Note
that span{1, θ1, . . . , θn} ⊂ L2(Sn−1) is a closed subspace, therefore we
can consider the orthogonal projection

P : L2(Sn−1) −→ span{1, θ1, . . . , θn},

defined for any g ∈ L2(Sn−1) by Pg = α+ −→a · θ̂, where

α =
1

|Sn−1|

∫

Sn−1

g(θ̂)ds and −→a =
n

|Sn−1|

∫

Sn−1

θ̂g(θ̂)ds.
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If we denote by B the integro-differential operator on the left hand side of
(2.2), then the diffusion approximation of the radiative transfer equation
is defined by

PBP I = 0. (2.3)

If we define the energy flux and the energy current density corresponding
to the radiance I(x, t, θ̂) by

ϕ(x, t) =

∫

Sn−1

I(x, t, θ̂)ds(θ̂) and
−→
J (x, t) =

∫

Sn−1

I(x, t, θ̂)θ̂ds(θ̂)

respectively, it turns out that (2.3) is equivalent to the coupled system

in ϕ and
−→
J

1

c
ϕt = −∇ · −→J − µaϕ (2.4)

1

c

−→
J t = −1

n
∇ϕ− (µa + (I −B)µs)

−→
J , (2.5)

where

Bij(x) = Bji(x) =
n

|Sn−1|

∫

Sn−1

∫

Sn−1

θiωjf(x, θ̂, ω̂)ds(θ̂)ds(ω̂) ∈ R.

Remark 2.1. I−B is a positive definite matrix (see [5], [12] and [14]).

We refer to [5], [12] and [14] for a full understanding of the diffusion
approximation, being the purpose of this section here only a brief resume
on the mathematical model used in OT.

3 The static and time-harmonic cases.

If the input field is modulated with a fixed harmonic frequency ω, i.e.

I(x, t, θ̂) = Re

(
e−iωtI(x, θ̂)

)
,

with φ and
−→
J similarly complexified so that

ϕt = −iωϕ;
−→
J t = −iω

−→
J ,

which reduces the system given by equations (2.4), (2.5) to the elliptic
equation

∇ · (K∇ϕ) − (µa − ik)ϕ = 0, (3.1)
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where k = ω
c

is the wave number and K is the complex valued matrix

K =
1

n

(
(µa − ik)I + (I − B)µs

)−1

. (3.2)

Physically the infra-red light is assumed sinusoidally modulated, or
a single Fourier component has been measured and k is the angular fre-
quency of this component which is of course much lower than the fre-
quency of the light.

Notice that (3.2) reduces in the static case to the real matrix

1

n

(
µa + (I − B)µs

)−1

when k = 0. In this paper we will treat the time harmonic case but
results include the static case simply by setting k = 0.

In EIT it is usual to consider as data the Neumann-to-Dirichlet map.
For a more general equation like

∇ · (K∇ϕ) − qϕ = 0 in Ω,

where Ω is a domain with normal ν, this is NK,qg = u|∂Ω where ν ·
K∇ϕ|∂Ω = g. Here we will denote NK,q simply by NK, q being always
µa − ik in this context. A precise definition of NK and the boundary
measurements is given in Section 3.2 after assumptions are stated on the
domain Ω in Section 3.1. One formulation of the OT inverse problem
in the isotropic case (B = 0) is to determine µs and µa from NK,q for
one or more known values of k. The static Neumann-to-Dirichlet data
is insufficient to recover both coefficients uniquely [7] unless a priori
smoothness assumptions are employed [11]. The key observation here is
that for any function γ ∈ C2(Ω)∩C1(Ω̄), infΩ̄ γ > 0, ν ·K∇γ = 0 on ∂Ω

N−1
K,q̃ = γ−1N−1

γ2K,qγ
−1 + ν ·K∇γ. (3.3)

with

q̃ =
q

γ2
+

∇ ·K∇γ
γ

.

In this paper we will concentrate on the unique determination of µa with
µs and B assumed known.

3.1 Main assumptions

Let Ω be a domain in Rn (n ≥ 2), with Lipschitz boundary ∂Ω. We
recall, for sake of completeness, the definition of Lipschitz regularity of
the boundary. We stick to the notation already used in [3].
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DEFINITION 3.1. Given positive numbers L, r, h satisfying h ≥ Lr,
we say that a bounded domain Ω ∈ Rn has Lipschitz boundary if, for
every x0 ∈ ∂Ω, there exists a rigid transformation of coordinates which
maps x0 into the origin, such that, setting x = (x ′, xn), x ′ ∈ Rn−1,
xn ∈ R, we have

Ω ∩ { x = (x ′, xn) | |x ′| < r, |xn| < h} =

= { x = (x ′, xn) | |x ′| < r, |xn| < h, xn ≥ f(x ′) },
where f = f(x ′) is a Lipschitz function defined for |x ′| < r, which
satisfies

f(0) = 0

|f(x ′) − f(y ′)| ≤ L |x ′ − y ′|,
for every x ′, y ′ ∈ R

n−1, with |x ′|, | y ′| < r.

ASSUMPTION 3.1. (Assumption on the known parameters µs and B)
Given the positive constant E, we assume that µs and B satisfy

||µs||W 1, ∞(Ω) ≤ E (3.4)

||B||W 1, ∞(Ω) ≤ E. (3.5)

Let us introduce a class of matrix valued functions K(x, t) on Ω ×
[λ−1, λ] that we will denote by H′.

DEFINITION 3.2. Given p > n , the positive constants λ, E , F > 0,
and denoting by Symn the class of n×n complex symmetric matrices, we
say that K(·, ·) ∈ H′ if the following conditions hold

K ∈W 1, p(Ω × [λ−1, λ] , Symn), (3.6)

D tK ∈W 1, p(Ω × [λ−1, λ] , Symn), (3.7)

ess sup t∈ [λ−1,λ]

(
‖ K(·, t) ‖Lp(Ω) + ‖ DxK(·, t) ‖Lp(Ω)

+ ‖ DtK(·, t) ‖Lp(Ω) + ‖ DtDxK(·, t) ‖Lp(Ω)

)
≤ E , (3.8)

λ−1|ξ|2 ≤ |K(x, t)ξ · ξ| ≤ λ|ξ|2, for almost every x ∈ Ω,

for every t ∈ [λ−1, λ], ξ ∈ R
n,(3.9)

Re{DtK(x, t)} ξ · ξ ≤ −F|ξ|2, for almost every x ∈ Ω ,

for every t ∈ [λ−1, λ] , ξ ∈ R
n.(3.10)
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We observe that (3.10) is a condition of monotonicity with respect to
the last variable t and that it replaces the monotonicity condition

DtA(x, t) ξ · ξ ≥ F|ξ|2, for almost every x ∈ Ω ,

for every t ∈ [λ−1, λ] , ξ ∈ R
n (3.11)

used in [3] to define the class H.

LEMMA 3.2. If µs, B satisfy conditions (3.4), (3.5) respectively, then
the matrix K(x, t) given by (3.2) belongs to the class H′ with E being a
positive constant depending on n, λ and E.

Proof of Lemma 3.2. Notice that if µs and B satisfy (3.4), (3.5)
respectively, then

K(x, t) ∈ L∞(Ω). (3.12)

We also have

DtK(x, t) = −nK2(x, t) (3.13)

DxK(x, t) = nK(x, t)
[
(DxB)µs − (I −B)Dxµs

]
K(x, t) (3.14)

DxDtK(x, t) = −2n2K2(x, t)
[
(DxB)µs − (I −B)Dxµs

]
K(x, t) (3.15)

and by combining (3.12) together with (3.13)-(3.15) we obtain thatK(x, t)
satisfies conditions (3.6)- (3.8) with p = ∞. Note that

Re{K(x, t)} =
1

n

[(
tI + (I − B)µs

)2
+ k2I

]−1(
tI + (I − B)µs

)

Im {K(x, t)} =
k

n

[(
tI + (I − B)µs

)2
+ k2I

]−1

i.e. Re{K(x, t)} and Im{K(x, t)} are both bounded and positive definite
matrices which proves (3.9). (3.10) is a straightforward consequence of
(3.13) and the fact that K(x, t) is positive definite. �

3.2 Boundary measurements

It is common practise in optical tomography to set the boundary mea-
surements to be given by the so-called Robin-to-Robin map which pro-
vides the relation between the input and the output fluxes of the radiation
through the object. We recall its definition below.



GABURRO AND LIONHEART 9

DEFINITION 3.3. The Robin-to-Robin map (associated to (3.1)) is
the map

ΥK : H− 1

2 (∂Ω) −→ H− 1

2 (∂Ω)

Φ− 7→
(
γ(n)ϕ+

1

2
K∇ϕ · ν

) ∣∣∣∣∣
∂Ω

(3.16)

where ϕ ∈ H1(Ω) is the unique solution to






∇ ·
(
K(µa, µs)∇ϕ

)
− (µa − ik)ϕ = 0 in Ω

(
γ(n)ϕ− 1

2
K∇ϕ · ν

) ∣∣∣
∂Ω

= Φ−.

Here ν is the unit outer normal on ∂Ω and K is given by

K =
1

n

(
(µa − ik)I + (I − B)µs

)−1

.

Prescribing the Robin-to-Robin map (3.16) is mathematically equiv-
alent to prescribing the so-called Neumann-to-Dirichlet map (associated
to (3.1)). The traditionally used Dirichlet-to-Neumann map, ΛK , inverse
of NK , will be considered instead for sake of simplicity. Denoting by 〈·, ·〉
the L2(∂Ω)-pairing between H

1

2 (∂Ω) and its dual H− 1

2 (∂Ω), we recall
that ΛK is the map

ΛK : H
1

2 (∂Ω) → H− 1

2 (∂Ω) (3.17)

defined by

〈ΛKφ, ψ〉 =

∫

Ω

[
K(x)∇u(x) · ∇φ(x) − (µa − ik)uφ

]
dx (3.18)

for any φ, ψ ∈ H1(Ω), where u ∈ H1(Ω) is the solution to

{
∇ ·

(
K(µa, µs)∇ϕ

)
− (µa − ik)ϕ = 0 in Ω

u|∂Ω = φ.

We shall denote by ‖ · ‖⋆ the norm of the Banach space of bounded

linear operators between H
1

2 (∂Ω) and H− 1

2 (∂Ω).
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4 Main results

THEOREM 4.1. (Lipschitz stability of boundary values). Given p >
n, let Ω be a bounded domain with Lipschitz boundary with constants L,
r, h. Let µs1

, µs2
satisfy (3.4), B satisfy (3.5) and moreover µa1

, µa2
be

such that

λ−1 ≤ µa1
(x), µa2

(x) ≤ λ, for every x ∈ Ω, (4.1)

‖ µa1
‖W 1,p(Ω) , ‖ µa2

‖W 1,p(Ω) ≤ F, (4.2)

then we have

‖ µa1
(x) − µa2

(x) ‖L∞ (∂Ω)≤ C ‖ ΛK1
− ΛK2

‖∗ . (4.3)

Here C > 0 is a constant depending on n, p, L, r, h, diam(Ω), λ, E , F ,
E and F .

Next we state our stability results for boundary values of the deriva-
tives of the absorption coefficient.

THEOREM 4.2. (Hölder stability of derivatives at the boundary). Let
p, Ω, µai

, µsi
, i = 1, 2 and B be as in Theorem 4.1. Given y ∈ ∂Ω and

a neighborhood U of y in Ω̄, assume that for some positive integer l and
some α, 0 < α < 1 we have

‖ µsi
‖ C l, α( Ū) ≤ E l for i = 1, 2; (4.4)

‖ B ‖ C l, α( Ū) ≤ E l (4.5)

‖ µa1
− µa2

‖ C l, α( Ū) ≤ E l. (4.6)

Then, for every neighborhood W of y in Ω̄ such that W̄ ⊂ U ,

‖ D l(µa1
− µa2

) ‖L ∞ (∂Ω∩W̄ )≤ C ‖ ΛK1
− ΛK2

‖ δ l α
∗ , (4.7)

where

δl =
l∏

j = 0

α

α + j
. (4.8)

Here C > 0 is a constant which depends only on n, p, L, r, h, diam(Ω),
ρ0, ρ, λ, E, F, F , E α, l, and El.

Under a slightly weaker assumption, we can also obtain the following
uniqueness result.
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THEOREM 4.3. (Uniqueness at the boundary). Let p, Ω, µai
, µsi

,
i=1,2 and B be as in Theorem 4.1. Given y ∈ ∂Ω and a neighborhood U
of y in Ω̄, assume that, for some positive integer l we have

µa1
− µa2

∈ C l(Ū). (4.9)

If
ΛK1

= ΛK2
,

then

Dj(µa1
− µa2

) = 0 on ∂Ω ∩ Ū , for all j ≤ l. (4.10)

What follows is a well–known consequence of the previous theorem
(see [2] and [15] for related arguments).

COROLLARY 4.4. (Uniqueness in the interior). Let p, Ω, µsi
, i = 1, 2

and B be as in Theorem 4.1 and suppose µa1
, i = 1, 2 satisfy (4.1), (4.2)

with p = ∞. Suppose that Ω can be partitioned into a finite number of
Lipschitz domains, {Aj}j = 1,...,N , such that µa1

− µa2
is analytic on each

Āj.
If

ΛK1
= ΛK2

,

then we have
µa1

= µa2
in Ω. (4.11)

5 Singular solutions for the operator L = ∇ · (K∇·) − q.

This section is devoted to the construction of singular solutions of an
elliptic equation in divergence form with a lower extra term of order
zero. The coefficients Kij and q will be complex valued functions unless
stated otherwise. More precisely let us consider the operator

L =
∂

∂xi

(
Kij

∂

∂xj

)
− q in BR = {x ∈ R

n | |x| < R} (5.1)

where q(x) is a complex valued function and the coefficient matrix (Kij(x))
is a complex symmetric valued function which satisfies

λ−1 |ξ|2 ≤ |Kij(x)ξiξj| ≤ λ |ξ|2, for every x, ξ, x ∈ BR, ξ ∈ R
n, (5.2)

and
‖ Kij ‖W 1, p(BR)≤ E , i, j = 1, . . . ,n, (5.3)

where p > n. We also assume that q satisfies

λ−1 ≤ |q(x)| ≤ λ, for any x, x ∈ BR. (5.4)
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THEOREM 5.1. (Complex Singular solutions ). Let L satisfy (5.1)-
(5.4). For any spherical harmonic Sm of degree m = 0, 1, 2, . . . , there
exists u ∈ W 2, p

loc (BR \ {0}) such that

Lu = 0, in BR \ {0}, (5.5)

and furthermore

u(x) = log |Jx|S0

(
Jx

|Jx|

)
+ w(x), when n = 2 and m = 0,(5.6)

u(x) = |Jx|2−n−m Sm

(
Jx

|Jx|

)
+ w(x) otherwise, (5.7)

where J is a positive definite complex symmetric matrix such that J =√
(Kij(0))−1 and w satisfies

| w(x)| + | x | |Dw(x)| ≤ C | x | 2−n−m+α, in Br \ {0}, (5.8)

( ∫

r<|x|<2r

|D2w|p
) 1

p

≤ C s−n−m+α+ n
p , for every r, 0 < r < R/2.

(5.9)
Here α is any number such that 0 < α < 1 − n

p
, and C is a constant

depending only on α, n, p, r, λ, and E .

Before proceeding with the proof of Theorem 5.1 we recall three tech-
nical lemmas (lemma 5.2, 5.3, 5.4) we shall need later on. The proofs of
these results are treated in details for example in [2] or in [9] for the case
in which the operator L is simply

L = ∇ ·K∇, (5.10)

with K real valued matrix function. In the present work the authors will
consider the more general case

L = ∇ ·K∇− q, (5.11)

with K complex valued matrix function and q complex valued functions.
The extension of lemma 5.2, 5.3, 5.4 to the case (5.11) is straight forward,
therefore only the key points for the transition from case (5.10) to case
(5.11) in these proofs will be stressed out in what follows.
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LEMMA 5.2. Let p > n and u ∈W 2,p
loc (BR \ {0}) be a complex valued

function, such that, for some positive s,

|u(x)| ≤ |x|2−s, for any x ∈ BR \ {0} (5.12)
(∫

r<|x|<2r

|Lu|p
) 1

p

≤ Ar
n
p
−s, for any r, 0 < r <

R

2
. (5.13)

Then we have

|Du(x)| ≤ C|x|1−s, for any x ∈ BR \ {0} (5.14)
(∫

r<|x|<2r

|D2u|p
) 1

p

≤ Cr
n
p
−s for any r, 0 < r <

R

4
, (5.15)

where C is a positive constant depending only on A, n, p, λ and E.

Proof of Lemma 5.2. The proof is a consequence of the Lp interior
Schauder estimate

||D2u||Lp(Bσρ) ≤
C

(1 − σ2)ρ2

(
ρ2||Lu||Lp(Bρ) + ||u||Lp(Bρ)

)
, (5.16)

where C = C(n, p, λ, E) is a positive constant, 0 < σ < 1 and Bρ, Bσρ

are two concentric balls such that u ∈W 2,p(Bρ) (see [19, Lemma 5.6.1]).
See [2, Proof of Lemma 2.1] or [9, Proof of Lemma 1.4] for a detailed
proof of this lemma. �

LEMMA 5.3. Let f ∈ Lp
loc(BR \ {0}) be a complex valued function

satisfying

(∫

r<|x|<2r

|f |p
) 1

p

≤ Ar
n
p
−s, for any r, 0 < r <

R

2
, (5.17)

with 2 < s < n < p. Then there exists u ∈W 2,p
loc (BR \ {0}) satisfying

Lu = f, in BR \ {0} (5.18)

and
|u(x)| ≤ C|x|2−s, for any x ∈ BR \ {0}, (5.19)

where C is a positive constant depending only on A, s, n, p, R, λ and E.

DEFINITION 5.1. We shall denote solution u of (5.18) by

u = TLu.
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Proof of Lemma 5.3. The proof is based on the construction of a
fundamental solution Γ of the equation Lu = 0 so that

|Γ(x, y)| ≤ C(n, λ)|x− y|2−n, for any x 6= y. (5.20)

Such a Γ is constructed in the real case (5.10) in [20]. A similar construc-
tion has been done for the complex constant coefficients case by F. John
in his book [17, pp.69-70]. See also [1, section 4] for a brief description
of this construction. See [2, Proof of Lemma 2.2] or [9, Proof of Lemma
1.6] for a complete proof of this lemma. �

LEMMA 5.4. Let s > n be a non-integer real number. Let f be
as in lemma 5.3 and satisfying (5.17) with p > n. Then there exists
u ∈W 2,p

loc (BR \ {0}) satisfying

∆u = f, in BR \ {0} (5.21)

and (5.19) holds with C depending only on A, s,n,p and R.

DEFINITION 5.2. We shall denote solution u of (5.21) by

u = TSu.

Proof of Lemma 5.4. See [2, Proof of Lemma 2.3] or [9, Proof of
Lemma 1.7]. �

Proof of Theorem 5.1 The proof follows the same line of [2, Proof of
Theorem 1.1]. We will therefore only rephrase the key points of this
proof showing how it can be adapted to the more general case treated
here. We consider in BR \ {0} the harmonic

H(x) = |x|2−n−m Sm

(
x

|x|

)
.

As in [2, Proof of Theorem 1.1] the idea is to find w satisfying (5.6)-(5.9)
and such that

Lw = −LH, in BR \ {0}.
We have

−LH = (∆ − L)H = (δij − aij)
∂2H

∂xi∂xj

− ∂aij

∂xi

∂H

∂xj

− qH. (5.22)
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From [2, Proof of Theorem 1.1] we have

(∫

r<|x|<2r

|δij − aij |p
∣∣∣∣
∂2H

∂xi∂xj

∣∣∣∣
p) 1

p

≤ Cr
n
p
−n−m+β (5.23)

(∫

r<|x|<2r

∣∣∣∣
∂aij

∂xi

∣∣∣∣
p ∣∣∣∣
∂H

∂xj

∣∣∣∣
p) 1

p

≤ Cr
n
p
−n−m+β, (5.24)

where β = 1 − n
p
. Here the extra lower order term −cH needs to be

estimated

(∫

r<|x|<2r

|qH|p
) 1

p

≤ C(λ,R)

(∫

r<|x|<2r

|x|(2−n−m)p

) 1

p

≤ C(λ,R)

(∫ 2r

r

ρ(2−n−m)p+n−1

) 1

p

≤ Cr
n
p
−n−m+β (5.25)

and by combining (5.23)-(5.25) together we obtain

(∫

r<|x|<2r

|LH|p
) 1

p

≤ Cr
n
p
−n−m+β. (5.26)

Let α be an irrational number such that 0 < α < β and define

K =
[m
α

]
.

If w0 = TS(−LH), then we have

|w0(x)| ≤ C|x|2−n−m+β, for any x, x ∈ BR \ {0}.

We define

wj =

{
w0, j = 0
TSf, f = (∆ − L)wj−1, j = 1, . . . , K − 1

(5.27)

LEMMA 5.5. For any j = 0, . . . , K − 1 we have

|wj(x)| ≤ C|x|2−n−m+(j+1)α (5.28)
(∫

r<|x|<2r

|(∆ − L)wj |p
) 1

p

≤ Cr
n
p
−n−m+(j+2)α. (5.29)
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Proof of Lemma 5.5. We prove (5.30) and (5.30) by induction on j.
For j = 0 we have

|w0(x)| ≤ C|x|2−n−m+β ≤ C|x|2−n−m+α

and

(∫

r<|x|<2r

|(∆ − L)wj |p
) 1

p

≤ Cr
n
p
−n−m+2α + C

(∫

r<|x|<2r

|(cw0|p
)1

p

≤ Cr
n
p
−n−m+2α + C

(∫

r<|x|<2r

|x|(2−n−m+α)p

)1

p

≤ Cr
n
p
−n−m+2α + Cr

n
p
−n−m+α

≤ Cr
n
p
−n−m+α.

Suppose now that (5.30), (5.30) are true for j i.e.

|wj(x)| ≤ C|x|2−n−m+(j+1)α

(∫

r<|x|<2r

|(∆ − L)wj|p
) 1

p

≤ Cr
n
p
−n−m+(j+2)α,

then if we define s = n+m− (j+2)α, we have that s > n and if we take

wj+1 = TSf, with f = (∆ − L)wj,

then

|wj+1(x)| ≤ C|x|2−n−m+(j+2)α (5.30)

and

(∫

r<|x|<2r

|(∆ − L)wj+1|p
) 1

p

≤ Cr
n
p
−n−m+(j+3)α + C

(∫

r<|x|<2r

|cwj+1|p
)1

p

≤ Cr
n
p
−n−m+(j+3)α

+ C

(∫

r<|x|<2r

|x|(2−n−m+(j+2)α) p

) 1

p

≤ Cr
n
p
−n−m+(j+3)α + Cr

n
p
−n−m+(j+2)α

≤ Cr
n
p
−n−m+(j+3)α, (5.31)

which conclude the proof. �
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(5.30) with j = K − 1 gives

(∫

r<|x|<2r

|(∆ − L)wK−1|p
) 1

p

≤ Cr
n
p
−n−m+(K+1)α

and if we define s = n +m− (K + 1)α, we have s < n. If we define

WK = TLf, with f = (∆ − L)wK−1,

we have

|WK(x)| ≤ C|x|2−n−m+(K+1)α, for any x ∈ BR \ {0}. (5.32)

We define now like in [2, Proof of Theorem 1.1] the function w

w =
K−1∑

j=0

wj +WK . (5.33)

w ∈W 2,p
loc (BR \ {0}) and satisfies

|w(x)| ≤ C|x|2−n−m+α for any x ∈ BR \ {0},

moreover

(∫

r<|x|<2r

|Lw|p
) 1

p

≤ Cr
n
p
−n−m+α +

(∫

r<|x|<2r

|qw|p
) 1

p

≤ Cr
n
p
−n−m+α + C

(∫

r<|x|<2r

|x|(2−n−m+α)p

) 1

p

≤ Cr
n
p
−n−m+α + Cr

n
p
+2−n−m+α

≤ Cr
n
p
−n−m+α. (5.34)

Estimate (5.34) together with Lemma 5.2 lead to

|Dw(x)| ≤ C|x|1−n−m+α (5.35)
(∫

r<|x|<2r

∣∣D2w
∣∣p

) 1

p

≤ Cr
n
p
−n−m+α, (5.36)

which conclude the proof. �

We shall also need the following lemma.
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LEMMA 5.6. Let the hypotheses of Theorem 5.1 be satisfied. For
every m = 1, 2, . . . there exists a spherical harmonic Sm of degree m
such that the solution u given by Theorem 5.1 also satisfies

|Du(x)| > |x|1−(n+m), for every x, 0 < |x| < r0, (5.37)

where r0 depends only on λ, E, p, m and R.

Proof. The proof of this lemma can be obtained along the same lines
as of [2, Lemma 3.1] and [3, Section 3]. �

6 Proofs of main results.

This section contains a detailed proof of Theorem 4.1 and the sketch of
proofs of Theorems 4.2, 4.3. The proofs of the latest follow the idea of
proof of Theorem 4.1 and [3, Proof of Theorem 2.2], [3, Proof of Theorem
2.3] respectively, therefore only the crucial points of the proofs will be
highlighted here. The proof of Corollary 4.4 is left out since it follows
the same line of [3, Proof of Theorem 2.4].

Since the boundary ∂Ω is Lipschitz, the normal unit vector field might
not be defined on ∂Ω. We shall therefore introduce a unitary vector field
ν̃ locally defined near ∂Ω such that: (i) ν̃ is C∞ smooth, (ii) ν̃ is non-
tangential to ∂Ω (see [3], [4]). With the same arguments used in [3,
Section 3] we can state that the point zσ = x0 + σν̃, where x0 ∈ ∂Ω,
satisfies

C σ ≤ d(zτ , ∂M) ≤ σ, for any σ, 0 ≤ σ ≤ σ0, (6.1)

where σ0 and C depend only on L, r, h.

LEMMA 6.1. If K is an n × n positive definite complex symmetric
matrix, then there exists a positive constant C such that

Re

(
Kξ · ξ̄

)
≥ C |ξ|2, for any ξ, ξ ∈ C

n (6.2)

Proof. Let KR and KI denote the real and imaginary parts of K
and ξR and ξI the real and the imaginary parts of a complex vector ξ
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respectively. We have

Kξ · ξ̄ = (KR + iKI)(ξR + iξI) · (ξR − iξI)

= (KRξR −KIξI + iKIξR + iKRξI) · (ξR − iξI)

= KRξR · ξR − iKRξR · ξI
− KIξI · ξR + iKIξI · ξI
+ KIξR · ξI + iKIξR · ξR
+ KRξI · ξI + iKRξI · ξR.

Therefore

Re

(
Kξ · ξ̄

)
= KRξR · ξR +KRξI · ξI
≥ C(|ξR|2 + |ξI |2) = C|ξ|2,

for some positive constant C. �

LEMMA 6.2. Let K be given by (3.2) and µs, B satisfy conditions
(3.4), (3.5) respectively. If moreover µa satisfies (4.1), (4.2), then

K(·, µa(·)) ∈W 1,p(Ω,Hern), (6.3)

and furthermore

||K(·, µa(·))||W 1,p(Ω) ≤ CE(1 + ||µa||W 1,p(Ω)), (6.4)

where C is a positive constant depending only on λ, Ω, n and p.

Proof of Lemma 3.2. We refer to [3, Lemma 3.6] for the proof of this
lemma. �

We can proceed with the proof of Theorem 4.1.

Proof of Theorem 4.1. We start with the identity (see [10, (6.35),
p.99], [16, (5.0.4), p.129])

〈(ΛK2
− ΛK1

) u, v〉 =

∫

Ω

(
K(x, µa2

) −K(x, µa1
)
)
∇u · ∇v

−
∫

Ω

(µa2
− µa1

)uv, (6.5)

which holds for any u, v solutions to

∇ ·K(x, µa1
)∇u− (µa1

− ik)u = 0 in Ω

∇ ·K(x, µa2
)∇v − (µa2

− ik)v = 0 in Ω (6.6)
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respectively. Let x0 ∈ ∂Ω such that

(µa1
− µa2

)(x0) = ‖ µa1
− µa2

‖L∞(∂M)

and xσ = x0 + σν̃, with 0 < σ ≤
{
σ0,

r0

4

}
, where σ0 is the number

fixed in (6.1) and r0 is the number appearing in (5.37) (see [3, Proof of
Theorem 2.1, p. 160]). By following the same procedure of the proof of
Theorem 2.1 of [3], we fix m = 0 and consider the two singular solutions
u, v ∈ W 2,p(Ω) found in Theorem 5.1 having a Green function type of
singularity at zσ

u(x) =
∣∣Jµa1

(x− zσ)
∣∣2−n

+O
(
|x− zσ|2−n+α

)
(6.7)

v(x) =
∣∣Jµa2

(x− zσ)
∣∣2−n

+O
(
|x− zσ|2−n+α

)
. (6.8)

If Bρ(zσ) is the ball with center at zσ and radius ρ = r0, then (6.5) leads
to

||ΛK2
− ΛK1

|| ||u|| ||v|| ≥
∣∣∣∣∣Re

∫

Ω∩Bρ(zσ)

(
K(x, µa2

) −K(x, µa1
)
)
∇u · ∇v̄

∣∣∣∣∣

−
∫

Ω∩Bρ(zσ)

|µa2
− µa1

| |u||v|

−
∣∣∣∣∣

∫

Ω\Bρ(zσ)

(
K(x, µa2

) −K(x, µa1
)
)
∇u · ∇v̄

∣∣∣∣∣

−
∫

Ω\Bρ(zσ)

|µa2
− µa1

| |u||v| .

(6.9)

By combining (6.7), (6.8) with (6.9) and recalling thatK(x, µai
) is Hölder

continuous with exponent β = 1 − n
p

and Jµai
is complex symmetric for
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i = 1, 2, we obtain

Re

∫

Ω∩Bη(zτ )

J2
µa2

(K(x0, µa2
) −K(x0, µa1

))J2
µa1

(x− zσ) · (x− zσ)

|Jµa1
(x− zσ)|n |Jµa2

(x− zσ)|n

≤ C

{∫

Ω∩Bρ(zσ)

|x− zσ|2−2n+α

+

∫

Ω∩Bρ(zσ)

|x− zσ|2−2n |x− x0|β

+

∫

Ω\Bρ(zσ)

|K(x, µa2
) −K(x, µa1

)| |x− zσ|2−2n

+

∫

Ω∩Bρ(zσ)

|x− zσ|4−2n

+

∫

Ω\Bρ(zσ)

|µa2
− µa1

| |x− zσ|4−2n

}

+ ‖ ΛK1
− ΛK2

‖∗ ‖ u ‖
H

1
2 (∂Ω)

‖ v ‖
H

1
2 (∂Ω)

.

By recalling ([3, p.161]) that

∣∣Jµa1
−K(x0, µa1

)−1
∣∣ ≤ C

∣∣x− zσ − x0
∣∣β ≤ Cσβ

∣∣Jµa2
−K(x0, µa2

)−1
∣∣ ≤ C

∣∣x− zσ − x0
∣∣β ≤ Cσβ,

we obtain

Re

[
J2

µa2

(
K(x0, µa2

) −K(x0, µa1
)
)
J2

µ1
(x− zσ) · (x− zσ)

]

≥
(
K(x0, µa1

)−1 −K(x0, µa1
)−1)(x− zσ

)
· (x− zσ)

+ Cσβ(µa1
− µa2

)(x0) |x− zσ|2. (6.10)

It is only at this stage that the monotonicity property ofK(x, t) is needed.
Note that DtK(x, t) is negative definite in this context, it was positive
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definite in [3], therefore we have

Re

[(
K(x0, µa1

)−1 −K(x0, µa2
)−1)

]
(x− zσ

)
· (x− zσ)

=

∫ µa1
(x0)

µa2
(x0)

Re

[
Dt

(
K(x0, t)

)−1
]
(x− zσ) · (x− zσ)dt

=

∫ µa1
(x0)

µa2
(x0)

Re

[
−K−1(x0, t)Dt K(x0, t)K−1(x0, t)

]
(x− zσ) · (x− zσ) dt

=

∫ µa1
(x0)

µa2
(x0)

Re

[
−Dt K(x0, t)K−1(x0, t)(x− zσ) ·K−1(x0, t) (x− zσ)

]
dt

≥ E−1

∫ µa1
(x0)

µa2
(x0)

∣∣K−1(x0, t)(x− zσ)
∣∣2 dt

≥ C(E , λ) (µa1
− µa2

) (x0) |(x− zσ)|2 . (6.11)

By combining (6.10) together with (6.11) we obtain

Re

[
J2

µa2

(
A(x0, µa2

) − A(x0, µa1
)
)
J2

µa1

(x− zσ) · (x− zσ)
]

≥
(
C(E , λ) + Cσβ

)
(µa1

− µa2
)(x0) |x− zσ|2. (6.12)

Hence, we have

‖ µa1
− µa2

‖L∞(∂Ω)

∫

Ω∩Bρ(zσ)

|x− zσ|2

≤ C

{
‖ µa1

− µa2
‖L∞(∂Ω) σ

β

∫

Ω∩Bρ(zσ)

|x− zσ|2−2n

+

∫

Ω∩Bρ(zσ)

|x− zσ|2−2n+α

+

∫

Ω∩Bρ(zσ)

|x− zσ|2−2n |x− x0|β

+

∫

Ω\Bρ(zσ)

|A(x, µa2
) − A(x, µa1

)| |x− zσ|2−2n

+

∫

Ω∩Bρ(zσ)

|x− zσ|4−2n

+

∫

Ω\Bρ(zσ)

|µa2
− µa1

| |x− zσ|4−2n

}

+ ‖ ΛK1
− ΛK2

‖∗ ‖ u ‖
H

1

2 (∂Ω)
‖ v ‖

H
1

2 (∂Ω)
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and by estimating the above integrals and the H
1

2 (∂Ω) norms of u and
v (see [2], [3]) we finally obtain

‖ µa1
− µa2

‖L∞(∂Ω) σ
2−n ≤ C

{
‖ µa1

− µa2
‖L∞(∂Ω) σ

2−n+β

+ σ2−n+α + σ2−n+β + C + σ4−n

+ ‖ ΛK1
− ΛK2) ‖∗ σn−2

}
,

therefore

‖ µa1
− µa2

‖L∞(∂Ω)≤ C {ω(σ)+ ‖ ΛK1
− ΛK2

‖∗} (6.13)

where ω(σ) → 0 as σ → 0 and from (6.13) we obtained (4.3), which
concludes the proof. �

Proof of Theorem 4.2. The main points in which this proof differs
from [3, Proof of Theorem 2.2] will be highlighted here. We shall prove
the following inequality (see [3, Proof of Theorem 2.2] for more details)

∣∣∣∣

∣∣∣∣
∂j

∂ν̃j
(µa1

− µa2
)

∣∣∣∣

∣∣∣∣
L∞(∂Ω∩W̄ )

≤ C ‖ Λ1 − Λ2) ‖δj

∗ , for every j ≤ k,

(6.14)
where δj is given by (4.8) and ν̃ is the unit vector introduced in

section 6. We proceed by induction on k. Using (4.1) we have that
(6.14) is satisfied when k = 0. Let us assume that (6.14) is true for
j = k − 1 and prove that it is true for j = k too.
Let m be a positive integer and x0 ∈ ∂Ω ∩W be such that

(−)k ∂k

∂ν̃k
(µa1

− µa2
)(x0) =

∣∣∣∣

∣∣∣∣
∂k

∂ν̃k
(µa1

− µa2
)

∣∣∣∣

∣∣∣∣
L∞(∂Ω∩W̄ )

. (6.15)

Let zσ = x0 + σν̃ and ρ be the point and the positive real number
respectively chosen as in [3, Proof of Theorem 2.2] so that

Bρ(zσ) ∩ Ω̄ ⊂ U. (6.16)

By following the same line of [3, Proof of Theorem 2.2] we obtain that
for every x ∈ Ū there exists t(x), 0 < t(x) < 1, such that

K(x, µa1
) −K(x, µa2

) = (µa2
− µa1

)(x)
(
−DtK(x, t)|t=c(x)

)
, (6.17)
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where c(x) = a(x) + t(x)(µa2
(x)− µa1

(x)). Therefore estimate (3.35)
of [3, Proof of Theorem 2.2] can be replaced by

Re

(
−DtK(x, t)|t=c(x)Du ·Dv̄

)
≥ C|x− zσ|2−2(n+m), (6.18)

for almost every x ∈ Bρ(zσ) ∩ Ω. By combining Taylor’s formula

∣∣∣∣

∣∣∣∣
∂k

∂ν̃k
(µa1

− µa2
)

∣∣∣∣

∣∣∣∣
L∞(∂Ω∩W̄ )

≤ k! (µa1
− µa2

)(x)

+ C

{
k−1∑

j=0

∣∣∣∣

∣∣∣∣
∂j

∂ν̃j
(µa1

− µa2
)

∣∣∣∣

∣∣∣∣ s
j

+ sk |x− x0|α
}

(6.19)

with the inequality

||ΛK1
− ΛK2

||∗||u||
H

1

2 (∂Ω)
||v||

H
1

2 (∂Ω)

≥ Re

∫

Ω∩Bη(zτ )

(µa2
− µa1

)(x)
(
Dt(x, t)|t=c(x)Du ·Dv̄

)

−
∫

Ω∩Bρ(zσ)

|(µa1
− µa2

)(x)||u||v|

−
∫

Ω\Bρ(zσ)

|K(x, µa1
) −K(x, µa2

)|Du ·Dv̄

−
∫

Ω∩Bρ(zσ)

|(µa1
− µa2

)(x)||u||v|
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we obtain

||ΛK1
− ΛK2

||∗||u||
H

1

2 (∂Ω)
||v||

H
1

2 (∂Ω)

≥
∣∣∣∣

∣∣∣∣
∂k

∂ν̃k(µa1
− µa2

)

∣∣∣∣

∣∣∣∣
L∞(∂Ω∩W̄ )

×
∫

Ω∩Bη(zτ )

(d(x, ∂Ω))k
Re

(
−DtK(x, t)|t=c(x)Du ·Dv̄

)

−
k−1∑

j=0

∣∣∣∣

∣∣∣∣
∂j

∂ν̃j(µa1
− µa2

)

∣∣∣∣

∣∣∣∣
L∞(∂Ω∩W̄ )

×
∫

Ω∩Bη(zτ )

(d(x, ∂Ω))j
Re

(
−DtK(x, t)|t=c(x)Du ·Dv̄

)

−
∫

Ω∩Bη(zτ )

(d(x, ∂Ω))k |x− x0|αRe
(
−DtK(x, t)|t=c(x)Du ·Dv̄

)

−
∫

Ω∩Bρ(zσ)

|(µa1
− µa2

)(x)||u||v|

−
∫

Ω\Bρ(zσ)

|K(x, µa1
) −K(x, µa2

)| |Du||Dv|

−
∫

Ω\Bρ(zσ)

|(µa1
− µa2

)(x)||u||v|. (6.20)

By applying now estimate (6.18) we finally obtain

∣∣∣∣

∣∣∣∣
∂k

∂ν̃k
(µa1

− µa2
)

∣∣∣∣

∣∣∣∣
L∞(∂Ω∩W̄ )

∫

Ω∩Bη(zτ )

(d(x, ∂Ω))k |x− zσ|2−2(n+m)

≤
k−1∑

j=0

∣∣∣∣

∣∣∣∣
∂j

∂ν̃j(µa1
− µa2

)

∣∣∣∣

∣∣∣∣
L∞(∂Ω∩W̄ )

∫

Ω∩Bη(zτ )

(d(x, ∂Ω))j |x− zσ|2−2(n+m)

+

∫

Ω∩Bη(zτ )

(d(x, ∂Ω))k |x− x0|α|x− zσ|2−2(n+m)

+

∫

Ω∩Bρ(zσ)

|(µa1
− µa2

)(x)||x− zσ|4−2(n+m)

+ C ||ΛK1
− ΛK2

||∗||u||
H

1

2 (∂Ω)
||v||

H
1

2 (∂Ω)
, (6.21)

which leads to
∣∣∣∣

∣∣∣∣
∂k

∂ν̃k
(µa1

− µa2
)

∣∣∣∣

∣∣∣∣
L∞(∂Ω∩W̄ )

≤ C
{
||ΛK1

− ΛK2
||δk−1

∗ σ−k + σα
}
. (6.22)
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From here on the reader can follow [3, Proof of Theorem 2.2] to conclude
the proof. �

Proof of Theorem 4.3. This proof follows the same line of [3, proof of
theorem 2.2] therefore the authors only wish to highlight the main points
in which this proof differs from [3, proof of theorem 2.2]. Let us recall
that we only need to prove

∂j

∂ν̃j
(µa1

− µa2
) = 0 on ∂Ω ∩ W̄ for ever j ≤ k, (6.23)

by induction on k. Here W is and arbitrary open subset of Ω̄ such that
W̄ ⊂ U and we can choose it as in proof of theorem 4.2. When k = 0,
(6.23) is a consequence of Theorem 4.1. Let us assume that (6.23) is
true for j ≤ k− 1 and suppose by contradiction that there exists a point
x0 ∈ ∂Ω ∩ W̄ so that

(−1)k ∂
k

∂ν̃k
(µa1

− µa2
)(x0) > 0.

Let zσ = x0 + σν̃, σ > 0 and ρ > 0 be chosen as we in Theorem 4.2. By
Taylor’s formula we have

(µa1
− µa2

)(x) ≥ 1

2
(−s)k ∂

k

∂ν̃k
(µa1

− µa2
)(x0), for every x ∈ U,

where the representation formula x = x0−sν̃ is the same of (see [3, proof
of theorem 2.2]). We replace equality (4.2) of [proof of theorem 2.3]AG
with

Re

(
K(x, µa2

) −K(x, µa1
)
)

=

∫ µa1

µa2

Re

(
−DtK(x, t)ξ · ξ̄

)
, (6.24)

and by the monotonicity assumption (3.10) we obtain

Re

(
K(x, µa2

) −K(x, µa1
)
)

=

∫ µa1

µa2

Re

(
−DtK(x, t)ξ · ξ̄

)

= (µa1
− µa2

)M(x), (6.25)

where the matrix M satisfies

M(x)ξ · ξ̄ ≥ E−1|ξ|2, for almost every x ∈ U, for every ξ ∈ C
n

and therefore (see [3, proof of theorem 2.3])

M(x)Du ·Dv̄ ≥ C1|x− zσ|2−2(n+m), for almost every x ∈ U,

for every ξ, ξ ∈ C
n, (6.26)
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where C1 is a positive constant. By (6.5) and (6.25) we have

0 ≥ Re

∫

Ω∩Bρ(zσ)

K(x, µa2
−K(x, µa1

)Du ·Dv̄ −
∫

Ω∩Bρ(zσ)

|µa2
− µa1

||u||v| − C

≥
∫

Ω∩Bρ(zσ)

(µa1
− µa2

)(x)M(x)Du ·Dv̄ −
∫

Ω∩Bρ(zσ)

|µa2
− µa1

||u||v| − C

(6.27)

and by combining (6.26) together with (6.27)

0 ≥ C1

∫

Ω∩Bρ(zσ)

(µa1
− µa2

)(x)|x− zσ|2−2(n+m)

− C2

∫

Ω∩Bρ(zσ)

|µa2
− µa1

||x− zσ|4−2(n+m) − C

=

∫

Ω∩Bρ(zσ)

(µa1
− µa2

)(x)|x− zσ|2−2(n+m)
(
C1 − C2|x− zσ|2

)

− C, (6.28)

where C2 and C are positive constants. By reducing ρ we can make

|x− zσ| <
1√
2

C2

C1

and with the above choice, (6.28) leads to

0 ≥ 1

2
C2

∫

Ω∩Bρ(zσ)

(µa1
− µa2

)(x)|x− zσ|2−2(n+m) − C (6.29)

and therefore

(−1)k

k!

∂k

∂ν̃k
(µa1

− µa2
)(x0) ≤ C σn+2m−2−k, (6.30)

which leads to a contradiction if we let σ → 0. �

Proof of Corollary 4.4. After noticing thatK ∈W 1, ∞
(
Ω×[λ−1, λ],Hern

)
,

the reader can refer to [3, Proof of Theorem 2.4] or [9, Proof of Theorem
2.4, p.47] for the proof of this result. �
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