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Abstract

In [6], Belishev and Sharafutdinov consider a compact Riemen manifoldM with bound-
ary oM. They define a generalized Dirichlet to Neumann (DN) operAton all forms on the
boundary and they prove that the real additive de Rham colagyastructure of the manifold in
guestion is completely determined By This shows that the DN maf inscribes into the list
of objects of algebraic topology. In this paper, we supp@se a torus acting by isometries on
M. GivenX in the Lie algebra ofs and the corresponding vector fielgy on M, one defines
Witten’s inhomogeneous coboundary operalgy = d +1x,, on invariant forms oM. The main
purpose is to adapt Belishev and Sharafutdinov’s boundatey th invariant forms in terms of the
operatordy,, and its adjoin®y,,. In other words, we define an operafby,, on invariant forms
on the boundary which we call th§,-DN map and using this we recover the long exdgt
cohomology sequence of the topological gair,0M) from an isomorphism with the long exact
sequence formed from our boundary data. We then show\gacompletely determines the free
part of the relative and absolute equivariant conomologyigs ofM when the set of zeros of
the corresponding vector fieldy is equal to the fixed point s&t for the G-action. In addition,
we partially determine the mixed cup product (the ring dtrce) of Xy-cohomology groups from
Nx, - These results explain to what extent the equivariant tugpodf the manifold in question is
determined by th&u-DN mapAy,,. Finally, we illustrate the connection between Belishest an
Sharafutdinov’s boundary data & and ours oM.

Keywords Algebraic Topology, equivariant topology, manifolds lwvthoundary, equivariant co-
homology, cup product (ring structure ), group actionsjdbiet to Neumann operator.
MSC 201058J32, 57R19, 57R91, 55N91

1 Introduction

The classical Dirichlet-to-Neumann (DN) operaftyj : C*(0M) — C*(dM) is defined byA¢ 6 =
dw/dv, wherew is the solution to the Dirichlet problem

Aw=0, w|u=06

andv is the unit outer normal to the boundary. In the scope of swgroblems of reconstructing a
manifold from the boundary measurements, the followingstjoge is of great theoretical and applied
interest [6]:

“To what extent are the topology and geometry of M determimgdhe Dirichlet-to-Neumann
map”?

In this paper we are interested in the topology aspect whigegeometry aspect of the above
guestion has been studied in [12] and [10].



Much effort has been made to answer the topology aspectxdtigistion. For instance, in the case
of a two-dimensional manifoltil with a connected boundary, an explicit formula is obtaindictv
expresses the Euler characteristicMfin terms of A¢; where the Euler characteristic completely
determines the topology dfl in this case [5]. In the three-dimensional case [4], sommidas are
obtained which express the Betti numbB{gM) andf32(M) in terms of/\q and A :C*(T(0M)) —
C*(T(oM)).

For more topological aspects, Belishev and Sharafutdifpprpve that the real additive de Rham
cohomology of a compact, connected, oriented smooth RieimamanifoldM of dimensionn with
boundary is completely determined by its boundary daka, A) whereA : QX(aM) — Q"k=1(aM)
is a generalization of the classical Dirichlet-to-Neumasperator/\¢ to the space of differential
forms. More precisely, they define the DN operaiaas follows [6]: giver® € QX(dM), the boundary
value problem

Aw=0, i"w=0, i"(dw)=0

is solvable and the operatdris given by the formula
N8 = i* (xdw)

wherei* is the pullback by the inclusion map oM — M. Hered is the formal adjoint otl relative
to theL?-inner product

(@.B)= [ an(B)

which is defined o2(M), andx : QK — Q" K is the Hodge star operator.
More concretely, there are two distinguished finite dimenal subspaces @*(M) = kerd N
kerd, whose elements are called Dirichlet and Neumann harmomils fiespectively, namely

HE(M) = {A e HE(M) [IFA =0}, HEK(M)={\ e H(M) |i*xA =0}.
The dimensions of these spaces are given by
dimHE (M) = dimHL (M) = B(M)
wheref(M) is thekth Betti number [14] . They prove the following theorem

Theorem 1.1 (Belishev-Sharafutdinov [6])  For any0 < k < n— 1, the range of the operator
A+ (—1)"kEEgAL] - QK (M) — Q"R 1(aM)
is FHR (M),

Buti*HE (M) = HE (M) = HK(M). Hence (A + (—1)™HK+1dA-1d) Q" k-1(aM) = HX (M) = HE (M).
Using, Poincaré-Lefscetz dualityg<(M) = H""K(M,dM). So the above theorem immediately implies
that the datddM, /) determines the absolute and relative de Rham cohomologysgro

In addition, they present the following theorem which gitleslower bound for the Betti numbers
of the manifoldM through the DN operatok.

Theorem 1.2 (Belishev-Sharafutdinov [6])  The kernelkerA contains the spac&®(dM) of exact
forms and
dim[kerAX/EX(OM)] < min{Bx(dM), Bk(M)}

whereBy(0M) and k(M) are the Betti numbers, antK is the restriction of\ to QX(aM).
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But at the end of their paper, they posed the following togiglal open problem:

“Can the multiplicative structure of cohomologies be ree@d from our datgoM,N\)?”.

In 2009, Shonkwiler in [16] gave a partial answer to the abguestion. He presents a well-
defined map which is

(@W) — A(=D QAN ), V(@) € "HN(M) xi*xHp(M) (1.1)

and then uses it to give a partial answer to that questioneMmacisely, by using the classical wedge
product between the differential forms, he considers theethicup product between the absolute
cohomologyHX(M, R) and the relative conomology' (M,0M,R), i.e.

U:H¥M,R) x H'(M,0M,R) — H*"'(M,0M, R)

and then he restrictd'(M,0M, R) to come from the boundary subspace which is defined by DeTurck
and Gluck [8] as the subspace of exact forms which satisf{pthiehlet boundary condition (i.&* of
these exact forms are zero) and then he presents the fojjdhéorem as a partial answer to Belishev
and Sharafutdinov’s question:

Theorem 1.3 (Shonkwiler [16]) The boundary datgdoM,\) completely determines the mixed cup
product in terms of the map (1.1) when the relative cohompotdgss is restricted to come from the
boundary subspace.

From another hand, in [1], we consider a compact, orientathogh Riemannian manifolt!
with boundary and we suppo€®is a torus acting by isometries & and denote bp'é thek-forms
invarient under action db. GivenX in the Lie algebra o6 and corresponding vector fiekl, on M,
we consider Witten’s coboundary operatiy, = d +1x,,. This operator is no longer homogeneous in
the degree of the smooth invariant form h if w € QX thendy, w € Q& @ QK L. Note then that
dx, : Q% — Qg, whereQZ is the space of invariant forms of even)(or odd (-) degree. Leby,,
be the adjoint ofiy, and the resultingVitten-Hodge-Laplaciars Ay,, = (dx,, + Oxy )2 = dxy, Oxy +
Oy Axy -

Because the forms are invariant, it is easy to seedﬁgt: 0 (see [1] for details). In this setting,
we define two types oKy-cohomology, the absolut)éM—cohomoIong)%M(M) and the relativexy-
cohomologyl—lfM (M,0M). The first is the cohomology of the compléRg, dx,, ), while the second is
the cohomology of the subcompl¢®c p, dx,, ), wherew QéD if it satisfiesi*w = 0 (theD is for
Dirichlet boundary condition). One also defir@éN(M) ={ae QE(M) | i*(xat) = 0} (Neumann
boundary condition). Clearly, the Hodge star provides amisrphism

*:Qgp — Q&N
where we writen— =+ for the parity (modulo 2) resulting from subtracting an geeldl number from.
Furthermore, becauslg,, andi* commute, it follows thadx,, preserves Dirichlet boundary conditions
while &x,, preserves Neumann boundary conditions. Because of boutetans, the null space of
Ayx,, no longer coincides with the closed and co-closed forms itteVisense. Elements of iy, are
calledXy-harmonic formsvhile wwhich satisfydy,, w= dx,,w= 0 areXy-harmonic fieldgfollowing
[1]); it is clear that everyXy-harmonic field is arKy-harmonic form, but the converse is false. The
space ofXy-harmonicfieldsis denote(ﬂ-&M(M) (soHy,, (M) C kerAy,). In fact, the spacé{,;[M(M)
is infinite dimensional and so is much too big to representfiecohomology, hence, we restrict
1y, (M) into each of two finite dimensional subspaces, namigfy (M) and Hx,, \ (M) with the
obvious meanings (Dirichlet and NeumaxXy-harmonic fields, respectively). There are therefore two
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different candidates foy-harmonic representatives when the boundary is preseig.cbhstruction
firstly leads us to present th&,-Hodge-Morrey decomposition theorem which states that

Q5 (M) = &, (M) @ Cx, (M) & Hy, (M) (1.2)

where&y (M) = {dx,a | a € Qf 5} andCy, (M) = {8x,B | B € Q& \}. This decomposition is or-
thogonal with respect to the?-inner product given above.
In addition, in [1] we presenXy-Friedrichs Decomposition Theorem which states that

Hxa (M) = Hy, o(M) & Hy, oo(M) (1.3)
%)j([M(M) = H)%M,N(M)@H;([M,ex('vl) (1.4)

whereHy o (M) = {€ € Hx, (M) | § = dx, 0} andHy, .o(M) = {n € Hx, (M) | n = 8x,a}. These
give the orthogonaXy-Hodge-Morrey-Friedrichg1] decompositions,

QM) = & (M)@Cy, (M)@Hs, 5(M)®H, oo(M)
= & (M)@C (M) @ H, o (M) Hy, (M) (1.5)

The two decompositions are related by the Hodge star opefidie orthogonality of (1.2-1.5) follows
from Green’s formula foty,, anddy,, of [1] which states

(dx,0.B) = (0.5%,B) + [ i*(@nsB) 16)

forall a,p € Qg.

The consequence fofy-cohomology is that each class H’%(M) is represented by a unique
Xum-harmonic field inH§M7N(M), and each relative class %(M,OM) is represented by a unique
Xum-harmonic field in?—[ﬁgM’D(M). We also elucidate the connection between Xgecohomology
groups and the relative and absolute equivariant cohorp@oaups.

Our construction of th&y-Hodge-Morrey-Friedrichsdecompositions (1.5) of smooth invariant
differential forms gives us insight to create boundary deltéch is a generalization of Belishev and
Sharafutdinov’s boundary data € (0M).

In this paper, we take a more topological approach, lookinddtermine thexy;-cohomology
groups and the free part of the equivariant cohomology grdrgim the generalized boundary data.
To this end, we need first in section 2 to prove that our coeomlizationgﬁM’N (M) and?—Lf([M’D(M)
of the absolute and relativ&y-cohomology groups respectively meet only at the originlevin
section 3 we define théy-DN operatori\y, on Qg (M), the definition involves showing that certain
boundary value problems are solvable. Our definitiogf represents a generalization of Belishev
and Sharafutdinov’s DN-operatdron Q3 (0M) in the sense that whefy = 0, we would gef\g = A.
Finally, in the remaining sections, we explain to what ektae equivariant topology of the manifold
in question is determined by thg,-DN mapAy,, .

2 Mainresults

We consider a compact, connected, oriented, smooth RigaranranifoldM with boundary and we
SuUpposes is a torus acting by isometries dm. GivenX in the Lie algebra and corresponding vector



field Xm on M, one defines Witten's inhomogeneous coboundary opedatoe d +1x,, : Q5 — QF
and the resultingy-harmonic fields and forms as described in the introduction.
We introduce the following definitions of th§,-trace spaces

i, (M) = {i'A | A e Hig, (M)}, 1M, (M) = {i"A | An € Hig, (M)}
we calIi*’HiM’N(M) the NeumanrXy-trace space.

Remark 2.1 Along the boundary oM, any smooth differential fornw has a natural decomposition
into tangential (w ) and normal(w ) components. i.e.

W [gm=tw+ nw

and the tangential componetiod is uniquely determined by the pull-backo and it has been denoted
in a slight abuse of notation byw = i*tw = tw. The normal and tangential componentsuére
Hodge adjoint to each other [14], i.e.

*(NW) = t(*w) =i**xw.

In order to prove Theorem 2.3, we will use the strong uniqudinoation theorem, due to Aron-
szajn [2], Aronszajn, Krzywicki and Szarski [3]. In [11], Kdan writes this theorem in terms of
Laplacian operatoA but he mentions that it is still valid for any operator havihg diagonal form
P = Al + lower-order terms, wherkis the identity matrix. Hence, one can state this theorerarims
of diagonal form operator by the following form:

Theorem 2.2 (Strong Unique Continuation Theorem [11]) Let M be a Riemannian manifold with
Lipschitz continuous metric, and letbe a differential form having first derivatives iR that satisfies
P(w) = 0 where P is a diagonal form operator. d§ has a zero of infinite order at some pointiih
thenw is identically zero orM.

Now, we are ready to present our main results.

Theorem 2.3 Let M be a compact, connected, oriented smooth Riemanniaifatthof dimension n
with boundary and with an action of a torus G which acts by istsies on M. If an X;-harmonic
fieldA € ’H?EM (M) vanishes on the boundadM, thenA =0, i.e.

Higun(M) N H, o (M) = {0} (2.1)

PROOF  Suppose\ € Hy, (M) NHy, 5(M), thenA is smooth by theorem 3.4(c) of [1]. Since
I*A=i*xA =0thenremark 2.1 asserts that=n\ = 0. Hence\ |5,= 0 and we get thgt x,,A) |sm="0
as well.

The proof is local so we can considérto be the upper half space R' with M = R"1. Since
the metric, the differential form and the vector fielKy are given in the upper half space, we can
extend them from there to all &" by reflection idM = R"~1. The resulting objects are: the extended
metric, which will be Lipschitz continuous [7]; we exteido all of R" by making it odd with respect
to reflection inR"~1 and extendXy to all of R" by making it even with respect to reflectiontf—1
and extende&y will be a Lipschitz continuous vector field. But the originasatisfies\ |3= 0 and
dy, A = dx, A = 0 onRR"1, hence the extended one will be of cl&'sand satisfydy, A = dx,A =0
onR", i.e. the extended satisfiedP(A) = Ax,, A = 0 on all of R" where the operatdky,, has diagonal
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form, i.e. P = Ax,, = Al+ lower-order terms, antlis the identity matrix. So far, we satisfy the first
condition of theorem 2.2.

Now, we need to satisfy the remaining hypotheses of theor8m.2tx = (X, X,) = (X1,X2, .., Xn—1,%n)
be a coordinates chart whete= (x;, 2, ..., 1) is a chart on the boundadM andx; is the distance
to the boundary. In these coordinatgs> 0 in M anddM is locally characterized by, = 0. These
coordinates are called boundary normal coordinates anRiflraannian metric in these coordinates
has the forny s 1 | i (X)dX" @ dX + dX" @ dX.

Now, we consider a neighborhood ot dM where our boundary normal coordinates are well de-
fined. We can writd = a + B Adx, wherea = = f; (x)dX , B = Zg, (x)dX andl C {1,2,....n—1}. Our
goal is to prove that all the partial derivatives of the caidfits ofA (i.e. f;(x) andg(x)) vanish at
p € OM. Now, A |sm= O which implies thatf; (X,0) = g, (x,0) = 0. Hence, we can apply Hadamard’s
lemma tof| (x) andg; (x) and deduce thaf; (x) = x, f; (X) andg; (X) = x,0; (x) for some smooth func-
tions f; (x) andgi(x). Moreover, these representations fpfx) andg; (x) help us to conclude that all
the higher partial derivatives df (x) andg, (x) with respect to the coordinates %f(i.e. except the
normal direction coordinate,) at the pointp are all zero. i.e.

951,00 0% (X.0)
= - =0, V S1=0,1,2,...
axilaxﬁq:i axilaxnsti ) S1,92, .., Sn-1 5 Ly &y

Therefore, we only need to prove that all the higher partaivatives off| (x) andg (x) in the
normal direction are zero to deduce that the Taylor seridg(gf andg, (x) aroundx, = O are zero.

For contradiction, suppose the Taylor serie$; 0X) andg; (x) aroundx, = 0 are not zero gb € oM
which means that there exist the largest positive integerausk and j such thatf, (x) = x,‘ﬁﬂ (x) and
a1 (X) = xAG3 (X) wheref, (X, 0) # 0 andgj (X, 0) # 0 for somel,J. Thus, we can always writein the
following form A = Xkt + x),p A dx, where the differential forms andp do not contairdx,. Applying
dx,A =0, we get

0 = dy, A = k& 2dx A T+ XEdT + xhdp A dxg + XKt T+ Xiix, (P A dX).

Now, reducing this equation modudy we conclude that the ters(dp A dx, +1x,, (PAdX,)) #0
moduloxX because the terda& 1dx, AT # 0 moduloxk and as a consequence, we infer that j.

Similarly, we can calculatéy,, A = —(F)"(xd * A + *lx, *A) = 0 (using the Riemannian metric
above). For simplicity, it is enough to calculade A + tx,, A = 0 wherexA = XK€ A dx, + x4 such
that the differential form€§ and{ do not contairdx, and both of them should contain many of the
coefficientshy, (x). Hence, we get

0=d*A+ 1y, A = XKdE A dxy+ jxb~1dx A T+ X5dZ + Xy, (E A dx) + Xhixg, .

Reducing this equation modulg and for the same reason above but repladityy j, then we
can infer thak < |, but this is a contradiction, then there are not such laqgesitive integer numbers
k and j. Hence, the Taylor series for the coefficieffitéx) andg, (x) aroundx, = 0 must be zero at
peoM,i.e.

0"fi(x,0) 0'gi(X,0)
o, ox,
It means that all the higher partial derivativesfpfx) andg, (x) we have already considered vanish
at all points of the boundargM. Thus, this facts are enough to show the mixed partial dérast
including x, also vanish at the boundary. Henaehas a zero of infinite order e oM.

=0, Vr=0,1,2,...



The remaining possibility of one of the the coefficiefitandg, having finite order and the other
infinite order inx, follows from the same argument as above.

Thus, A satisfies all the hypotheses of the strong Unique Contionatheorem 2.2 thek must
be zero on all oR". SinceM is assumed to be connectédmust be identically zero on all dl, i.e.
A=0. O

As a consequence of Theorem 2.3, we obtain the followingtsesu

Corollary 2.4
%)j([M(M) :H)j([M,ex(M)+H)j([M,co(M) (2.2)

where" 4 is not direct sum.
PrRoOOF  The Xy-Friedrichs Decomposition Theorem (1.3 and 1.4) shows (W%’D(M))i N

Hy,, (M) = Hy, o(M) and(Hy, y(M))- NHy (M) = Hy, o(M). Hence, using these facts together
with Theorem 2.3, we conclude eq.(2.2.) 0

Corollary 2.5 The trace map'i: Hy, (M) — i*Hy, (M) defines an isomorphism.

PrROOFE Itis clear that* is surjective and we can use theorem 2.3 to prove the kerribkedinear
mapi* is zero (i.e. ker = {0}) which implies thai* is injective. Thusj* is bijection. O

Corollary 2.6 1- Themap f i*H)fM’N(M) — HfM (M) defined by {i*An) = [An] for Ay € ’H?EM’N(M)
is an isomorphism.
2- The map hi*H§ (M) — Hy, (M, 0M) defined by ti*An) = [xAn] for Ay € HE (M) is

an isomorphism.

PROOF

1- f is a well-defined map because kKer {0} (corollary 2.5). Furthermoref is a bijection
because there exists a unique NeumXgrharmonic field in any absolut&y,- cohomology
class (Theorem 3.16(a) of [1]) hence part (1) holds.

2- It follows from part (1) by usingky-Poincaré-Lefschetz duality (Theorem 3.16(c) of [1]).
0

Corollary 2.7 dim(Hy, (M) = dim(i*Hy, (M)) = dim(Hy, (M)) = dim(Hg, = (M,0M)).

In fact, it is worth saying that our paper [1] (in particultire relation between théy-cohomology
andXy-harmonic fields) can be used to recover most of the resuttisapter three of [14] o®F (M)
but in terms of the operatorsy,,, dx,, andAy,,. In this paper we will need the following theorem
which can be proved by using th&;-Hodge-Morrey-Friedrichs decompositions (1.5).

Theorem 2.8 Let M be a compact, oriented smooth Riemannian manifoldeédsion n with bound-
ary and with an action of a torus G which acts by isometries on Biveny,p € Qf(M) and
P € QE(dM), the boundary value problem



dx,w=xX and Ox,w=p on M
= on oM (2.3)

is solvable forw e Qé(M) if and only if the data obey the integrability conditions
OuP=0, (p,K)=0, VKeHL p(M) (2.4)

and
dy, X =0, "X = dx,W, <x,|<>:/a WA %K, VKeHE, 5(M) (2.5)
M bl

The solution of eq.(2.3) is unique up to arbitrary Dirich};- harmonic fields 7—L§M7D(M)

PrROOF  The proof is analogous to the proof of theorem 3.2.5 of [14]ib terms of the operators
dxM andéxM . O

Lemma 2.9
i Hy, (M) = Ex,, (OM) + "My, (M) (2.6)
where&y. (OM) = {dx, o | a € QE(OM)}
PROOFR  We first prove thati* {5, (M) C Ex (OM) +i*Hy, \(M).
Suppose\ € H)fM(M) then theXy-Friedrichs Decompoaosition theorem (1.4) implies that
A = dyy & + AN € Hig, N (M) © Hig, ox(M)

Hence,
i“A = dxMrFG —+ I*)\N

Conversely, it is clear theif?—t)fm,\,(M) - i*?—[ﬁ{M(M). So, we only need to prove th&;‘; (OM) C
i*Hy, (M). Supposer) = dx,,a € &, (OM) thenn satisfies
dx,n =0, / dxya A" xK =0, VKeH] H(M) (2.7
oM ’

Clearly, theorem 2.8 asserts that the condition (2.7) iscessary and sufficient condition for the
existence oh € Hy (M) such than = i*A. O

Remark 2.10 In [1], we define the spaces
HigcoM) = {n € Hy, (M) [N =8x,a}, My, ex(M) = {& € Hy, (M) | § = dx, 0}

and our proof of theXy-Friedrichs Decomposition Theorem (1.3 and 1.4) showsttietifferential
forms a ando can be chosen to béy-closed (i.e. dx, 0 = 0 ) andXy-coclosed (i.e.dx,,0 = 0)
respectively and in both casasanda should beXy-harmonic forms (i.eAx, o = Ax,, 0 = 0). This
observation will be used in section 4.



3 Xum-DN operator

Before defining this operator, we first need to prove the $ilitsaof a certain boundary value problem
BVP (3.1) which is shown in theorem 3.1. This theorem represiiet&eystone to define thq,-DN
operator and then to exploiting a connection betweenXhiON operator andy-cohomology via
the NeumanrXy-trace spacd?*?—t)%m,\,(M).

Theorem 3.1 Let M be a compact, oriented smooth Riemannian manifoldneédsion n with bound-
ary and with an action of a torus G which acts by isometries on Kiven8 € Qg(aM) and
n € QE(M), then thesvp

Ax,& = n on M
i*w = 6 on oM (3.1)
i*(Ox,w) = 0 on OM.

is solvable forw € QZ (M) if and only if
(n,kp) =0, Vkp € Hy, p(M) (3.2)
The solution ofsvp (3.1) is unique up to an arbitrary Dirichlet p¢-harmonic fieIdHiM’D(M).

PROOFE  Suppose eq.(3.1) has a solution then one can easily shbthéheondition (3.2) holds by
using Green'’s formula (1.6).

Now, suppose the conditiofn, kp) =0, Vkp € Hy, p(M) is given (i.e. n € Hy, H(M)*4).
Sinced € QF(dM), we can construct an extensian € QE(M) of the differential form € QF(aM)
such that

"Wy =0, 01 =8, By + Ay € Cx, (M) ® His, (M).

But Ax, 1 = 8x,dxy 8, Bey. then (1.6) implies that\x,w € Hy, n(M)* as well. Hencen —
Dy, 0 € H§M7D(M)i. We now apply proposition 3.8 of [1] which for smooth invaridorms states
that for each € ’}-QM,D(M)L there is a unique smooth differential foime QéD rW’}-l>j<E“A’E)(M)L sat-
isfying theBvP (3.1) but withn =1 and@ = 0. Sincen — Ax,,w; € ’;‘-l?{M’D(M)L is smooth, it follows
from this there is a unique smooth differential fotop € QéD N 7—t§§MD(M)l which satisfies thevp

i*wop, = 0 on OM (3.3)

DAx, 02 = nN—~Ax,01 on M
i*(Ox,2) = 0 on OM.

Now, letwy = w— wy, then theevp (3.3) turns into thesvp (3.1). Hence, there exists a solution
to the BvP (3.1) which isw = w; + wp, where the uniqueness af is up to an arbitrary Dirichlet
Xm-harmonic fields. 0

Definition 3.2 ( Xv-DN operator Ax,,) LetM be the manifold in question. We consider #her (3.1)
withn =0, i.e.
Ax, = 0 on M
i*w = 0 on oM (3.4)
i*(Ox,w) = 0 on oM

then theBvp (3.4) is solvable and the solution is unique up to an arljitRirichlet Xy-harmonic
fieldkp € H§M7D(M) (Theorem 3.1). We can therefore define ¥ye DN operatoriy,, : Q& (0M) —
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QL ™ (am) by
AXM 0= i*(*dXM (JL))

Note that takinglx,, w eliminates the ambiguity in the choice of the solutonvhich meang\y,, 6 is
well defined.

In the case oKy = 0, the definition (3.2) reduces to the definition of Belishad &harafutdinov’s
DN-operatorA [6].
The remainder of our results in this section are slightlyghalogues of the results in [6].

Lemma 3.3 Letw e QF(M) be a solution to th@vp (3.4) whered € Qg (dM) is given. Theng,w e
Hy,, (M) and &x,,w = 0.

PROOF  Sincedy, commutes withi* andAy,, then theBvpr (3.4) andAx,, 6 = i* (xdx, w) shows
thatdy,, w solves thesvp

Dy Oxy 0 =0, i*(xdZ, @) =0, i*(x,0x,w)=0.

But proposition 3.2(4) of [1] implies thaty, w € H¥ (M).

Sincedy, w € Hy,, (M), one can easily verify thal,, dx,, 0= —8x,dx, w=0 andd%  w= 0 which
means thaby,, w € H§M7CO(M) but the second condition (i.@*(dx, w) = 0 ) of theBvp (3.4) gives
thatdx,,w € Hy, p(M). Using (1.3), this then implies thak, w € Hy, 5 (M) NHy, (M) = {0}, i.e.
5xMo\): 0. U

Lemma 3.4 The operator\x,, is nonnegative in the sense that the integral

/ 8/ Ax, 0
oM

is nonnegative for ang € QF (oM).

PROOF  For givend, letw € Q5 (M) be a solution to thevp (3.4). Then it follows from (1.6) that
0= (D, 00, &) = (dy, 0, g, 00) + (B, 0, By ) —/ 6 A " (xdlx, )
oM

whence
[ 8 A8 = e, 0l + 3,2 > 0. (35)
oM

Lemma 3.5
kerAx, = Ran\y,, = i*Hx, (M)

whereHy, = Hy,, & Hy,
PROOF  We first prove that kehy,, = i*Hx, (M). If 8 =i"A € i*Hyx,, (M) for A € Hx,, (M), thenA
is a solution to thevp (3.4). Butdy, A = dx,A = O, thereforeAy,, 8 = i*(xdx,,A) = 0. Conversely, if

8 € kerAyx,, andA is a solution to thevPr (3.4) thenB = i*A and equation (3.5) implies the,, A =
Ox,A =0.i.e.8 =i*A € i*Hx, (M). Hence, kely,, = i"Hx, (M).

10



Now, to prove Rany,, = i*Hx, (M), supposep € Ran\y,, then@= Ax, 6 whereB = i*A such
thatA is a solution of thesvp (3.4). But,dx, A € Hx, (M) (Lemma 3.3) therdy, A € Hx, (M) too.
Hence,p = Ax,, 0 = i*(xdx, A) € i"Hx, (M). Conversely, letp=i*A € i"Hy,, (M), i.e. A € Hx,, (M).
Applying, theXy-Friedrichs Decomposition Theorem (1.4), we can decomphses

*A :dxMoO—F)\N E%XM,N(M)@HXM@X(M)- (3.6)
Remark 2.10 asserts thatcan be chosen such that
AXM w=0, 6XM w=0

which implies that
/\XNJ*OOZ I*(*dxMo\))
We can obtain from eq. (3.6) that
i* (xdx,, W) = £i*A.

Comparing the last two equation wigh= i*A, we obtaing = Ax,, (+i*w) € Ran\y,,.

Corollary 3.6 The operator\y,, satisfies the following relations:
Axydxy =0, dx,Ax, =0, A, =0. (3.7)

PROOF  The first relation of (3.7) means that any form in the spégg(dM) is the trace of an
Xm-harmonic field which is true bgx,, (OM) C i*Hx,, (M) = kerAy, (Lemmas 2.9 and 3.5) while the
second and third of equalities (3.7) follow from Lemma 3.5. O

Corollary 3.7 The operatordxMA;(“} D1 Hx, (M) — i*Hyx,, (M) is well-defined, i.e. the equation
@ = Nx,, 0 has a solutiord for any ¢ € i*#x, (M), anddx,, 0 is uniquely determined by= Ax,, 6. In
particular, the Opel’atOIdxM/\)_('jdxM : Qg(0M) — Qg (0M) is well-defined.

PROOF ~ Lemma 3.5 proves that R&y,, = i*Hx, (M). Hence, ifp € i*Hyx,, (M) then the equation
@= /N, 0is solvable. IfAx,, 01 = Ax, 02 thenB; — 6, € kerAy,, is Xw-closed (i.edx,, (61 — 62) = 0)
because keky,, = i*Hx,, (M). Thus,dx, 61 = dx, 62 which means thad,,6 is uniquely determined
by @ = Ax,, 6. Clearly, the operatoaixM/\;(M1d><M is well-defined because we have shown in lemma 2.9
thatEx,, (OM) C i*Hx,, (M). O

4 Ny, operator, Xy-conomology and equivariant conomology

In the following theorem which is the analogues of theore®) we relate the dir(er{M (M)) with the
kernel ofAy,, as follows:

Thgorem 4.1 Let/Ay, be the restriction of }-DN operator toQg(dM). Then&y (M) C kerAy,
an
dim[kerAy, /€. (OM)] < min{dim(Hy (0M)),dim(Hyx (M))}
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PrROOFE  We can apply th&y-Hodge-Morrey decomposition theorem (1.2) (or theoremo2 A])
for oM which asserts that the direct sum of the first and third sutespés equal to the subspace of
all Xu-closed invariant differentiat--forms (that is, kedx,, ). Hence, this fact together with eq.(3.7)
implies that

Ex,, (OM) C kerAy  C Hy (OM) ® Ex (OM).

This implies
dimker/Ay /€., (OM)] < dim#; (OM) = dim(Hy. (OM)).

By Lemmas 2.9 and 3.5,
kerAy, = Ex,, (OM) +i*Hy, n(M).

Thus,
dim[ker/\§M /SfM (OM)] < dim(i*’HiMN(M)) = dim(H%M(M)).
Therefore
dim[kerAy /Ex., (OM)] < min{dim(Hyx_ (OM)),dim(Hy (M))}
as required. O

In particular, corollary 4.4 of [1] asserts that if the sezefosN(Xy) of the corresponding vector
field Xv is equal to the fixed point sét for the G-action (i.e. N(Xy) = F) then din{HfM(M)) =
rankHg (M) and din{Hy, (M,0M)) = rankHg (M,0M) where Hg (M) and Hg (M,d0M) are abso-
lute and relative equivariant conomology respectivelye Xi-Poincaré-Lefschetz duality (Theorem

3.16(c) of [1]) asserts that rahlé(M) = ranngf(i)(M,aM). Hence, we conclude the following
corollary which relates the kernel di,, with the rank of the absolute and relative equivariant coho-
mology. In fact, we can write down some lower bounds for thakr

Corollary 4.2 If N(Xu) = F then we have
dimfkerAy /Ex (OM)] < min{rankHg (OM),rankHg (M)}.
The following theorem is the analogues of theorem 4.2 of §6} theorem 1.1).

Theorem 4.3 The Neumann p-trace space*'r}{%f,f)(M) can be completely determined from our
boundary datg oM, Ay, ) in particular,

(Aogy = (FL)™ L, A )G (M) = 45 (T (M) (4.1)
PrROOF  We need first to prove that
(Ao = (F1)™ b, Ay )G (OM) € i*Hy, 7 (M)

Supposed € Q5 (M), let w € QZ(M) be a solution to thevp (3.4). Lemma (3.3) proves that
dx, w e ’H;FM (M). Applying theXu-Friedrichs decomposition td,, w, we get

dxMOJ:6xMa +Ap GH%,CO(M)@H?(:M,D(M) (4.2)
wherea € Q5 (M) and by remark 2.1Qy can be chosen such that

dxM(X =0, AXMG =0 (43)

12



we sefl =0 € Qg*i(M). Hence, eq.(4.3) implies
BxB=0, Ax,B=0
substitutinga = (£1)™ 1« B into eq.(4.2), we have
dy, 0= (£1)"18y, B+ Ap

which implies
" (dyy W) = (1)1 (8, xB)-

But,
and
6XM *B = :F(—l)n*dxM B
thus, eq.(4.6) turns into
dxy 8 = —(F1)"i" (xdx, B)
Formulas (4.4) and (4.7) mean that
dxMe = —(:Fl)n/\xM I*B
Now, applying, (i** ) to eq.(4.5) with the fact thattx,, 6 = i* (xdx,, w), we get
Nxy 8 = (£1)" 1 (%8, *B) +i*(*Ap).
Using the relationdy,, B = (+1)"dx,, B, then eq.(4.9) reduces to
AXMG = ﬂ:dXM (I*B) + I*(*}\D)
we can obtain from eq.(4.8) that
dxy (1*B) = —(F1)"dy Ay Oy O
Putting the latter equation in eq.(4.10), we get
i*()Ap) = (Axy — (F1) ™ dx, A rdxy )6

Hence,(Ax, — (F1)™dx, Axldx, )0 € i*Hy T (M).
The next step is then to prove the converse, i.e.

Hig e (M) € (A, — (F1) Ly, AL, )OS (OM)
GivenAy € H;&ﬁ)(M), then corollary 2.4 asserts thgg has the following representation
}\N = dxMa + 6XMI3 € HQ&EX(M) + H%EO(M)

and also by remark 2.1@, andf3 can be chosen respectively to satisfy

o0 =0, Ax,0=0
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and
dx,B=0, Ax,p=0 (4.13)

We set up the transformations
w=—(x1)"xB, £=—(F1)"a

Then egs.(4.12)-(4.13) turn into

dw=0, Ax,w=0 (4.14)
6)(M€ =0, Ast =0 (4.15)
and eq.(4.11) implies
AN = *dxMoO— (:Fl)nJrldst (4.16)
hence,
FAN = —(F1)™ (xdx,, € — dx, ). (4.17)

We can define forme, ) € Qs(dM) by setting
p=i"w, Y=i'e (4.18)
Restricting eq.(4.16) to the boundary and using the fadtithalx,, w = Ax, @, we obtain
AN = Ax, @— (F1)"dy,, i*e (4.19)
Restricting eq.(4.17) to the boundary
i* (xdx,, €) = dx,, (I*w) (4.20)

buti*(xdx, €) = Ax, W because of eq.(4.15) and the second of equality (4.18). éjenc(4.20) turns
to

/\quJ = dqu) (4.21)
Now, we can eliminate the formp from eq.(4.19) and eq.(4.21) and we can obtain that

AN = (Axy — (F1)" dx, Axrdy )@

Hencei*An € (Ax, — (F1)™ dx, Axldx, ) Qg (OM). 0

5 Xwu- Hilbert transform

In this section, we introduce th§,- Hilbert transform which will be used in section 6. We begiithw
the following definition.

Definition 5.1 ( Xu- Hilbert transform)  The Xy- Hilbert transform is the operator
T = dx Axt M5, (M) — iy (M),

Tx, is a well-defined operator by corollary 3.7 and the resticof Tx,, to Xyv-exact boundary forms
Ex,(OM) Ci*Hy (M) satisfies

Ty : Exy, (OM) —s Ex ) (aM).
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Lemma 5.2 The - Hilbert transform maps*'ﬂ-[ﬁ{M,N(M) to i*’l—l%ﬁ)(M).

PROOF  Let¢ € i*Hy, y(M) then theorem 4.3 implies that
0 = (A — (1) g, Axgrd,y )8
for somed € Q™ (¥)(aM). Hence, it follows that

Tan® = dxuAxt(Axy — (1) dx, Ay tdx, )0
= (dxy — (£1)" dx, Axtdx, Axidx, )0
= (Axy — (1), Axrdx ) Axydx, 0
= (Axy — (FD)" iy, A rdx, ) A%y 0

butA;(“}dxM (8) € Q5 (0M). Thus, by theorem (4.3) we find that the right hand side ofdtted formula
must belong td*?—[%f,ff)(M). O

6 Recovering Xy-cohomology from the boundary data (M, Ax,, )

In this section we pose two questions where in subsectiowé.fresent our answer to the following
first question:

“Can the additive structure of the real absolute and relatX,-cohomology be completely recov-
ered from the boundary dat@M,Ax,,)?” The answer is affirmative and more precisely, we show
that the datdoM, Ax,, ) determines the long exact sequenc&g@fcohomology of the topological pair
(M,0M).

While in subsection 6.2, we present a partial answer to th@img second question:

“Can the ring (i.e. multiplicative) structure of the real ablute and relative p{-cohomology be
completely recovered from the boundary d&d#,Ay,, )?”

6.1 Recovering the additive real Xy-cohomology.

Since the vector fielXy which we are considering is always tangent to the boundiiriyhen we can
still define Xy-cohomology oM, i.e. Hf{M (OM). Hence, from our definitions of the absolute and
relative Xy;-cohomology [1], we can set up the following exagf-cohomology sequence of the pair
(M,0M) as follows:
_rl* p* sk _rl* p*

L= Hg (M, 0M) —— Hyg (M) —— Hg (0M) —— Hy (M,0M) —— .(.6.1)

where
L i [0 M) = [P @ xam)s V(W] (x0m) € Hyg, (M).

2. P[] xyMom) = (W mys V0] (x.M0m) € H)%M(M, oM). In fact, the operatop* is induced
by the embedding of paigs: (M,0) C (M,0M). p* is well-defined.

3. T[] (. 0M) = [dxy @] mom)s V0] (x.0m) € Hy, (OM), wherea € Q5(M) is any exten-
sion ofw € QZ(dM) to M, i.e. i*a = w. Sincedy, andi* commute, theridx, o] xy.m.am) €
HfM(M, o0M). The formdy,a is certainlyXy-exact, but is not in general relativeKg-exact,
ie.i*a #£0.
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Sequence (6.1) is exact in the sense that at each stage the ahthe incoming homomorphism is
the kernel of the outgoing one.

Now, to answer the above first question, we use theorem 4.&wghiows that we can determine
the spacé*’]—[itM‘N(M) from our boundary data and corollary 2.6 which gives us then@phismsf
andh. '

So, if the boundary dat®M, Ay, ) is given then we can construct the sequence

T R M) P g, (M) — s HE (M) — s P M) P
' (6.2)
where we define the operators of sequence (6.2) by the faitpiarmulas:
1. T7'0=1[0](x,om) VOEI"Hy, . 1.e.0=i"wwherewe Hy, \ ,thend is Xy-closed because
i* anddy,, commute.

2. Using Lemma 5.2, then we set

PO = —(£1)"'Ty,0, VOeiHy

3. Based on theorem 4.3, thé, 8 = (Ax, — (F1)™ 1dx, Ax dxy )0 if [6](x, om) € Hx, (OM).
Hence, we set

ﬁ*[e](xM’aM) = ($1)n+1/\XM9, Ve [9](XM70M) S H;([M (aM)

More concretely, our goal is then to recover sequence (6ol Eequence (6.2). It means that we
should prove that the following diagram (6.3) is commuitiNagram.

Tl M) P g (M) — HE (M) s il () 2

lh lf l' lh
C T Hg (MoaM) —E o HE (M) s HY (M) T HY, (M, oM) —2

(6.3)
wherel is the identity operator. But, one can prove the commutsgtiof the diagram (6.3) by a
method similar to that given in [6] but in terms of our operatabove.

Actually, the above construction proves that the datd,/\y,, ) recovers sequence (6.1) of the
pair (M,0M) up to an isomorphism (i.ef andh are given in corollary 2.6) from the sequence (6.2).
We therefore can state the following theorem.

Theorem 6.1 The boundary datddM,Ax,,) completely determines the additive real absolute and
relative Xy-cohomology structure by showing the diagram (6.3) is cotatiue and then

Hy, (M) 22 (Agy — (1) dy, Aldx, ) Q8 ™ (0M) (6.4)
Hy, (M, 0M) 22 (Ax, — (£1)" dx, Ay tdx, ) Q& (OM) (6.5)
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6.2 Recoveringthering structure of the real Xy-cohomology.

First of all, we consider the mixed cup producbetween the absolute and relat¥g-cohomology
as follows:
U Hy,, (M) x Hy (M,0M) — Hy (M,0M)

by setting

(0] (3600 M) O 1Bl (0 M.y = [0 A Blisumanys V([0 x> (Bl mom)) € Hig, (M) x Hy (M, 0M)

it is easy to check thab is a well-defined map. In addition, corollary 3.17 of [1] atsehat any
absolute and relativiy-cohomology classes contain a unique Neumann and Diriéyetarmonic
field respectively. Hence, we can regard any absolute ireJaXy-cohomology class as a Neu-
mann(Dirichlet) Xy-harmonic field. Bufa]x, m)U[B] xym.om) = [0 A Bl(xy,m.0m) IS @ relativeXy-
cohomology class, so there exists a unique Diricigtharmonic fieldn € Hy, (M) such that
[0 A B MMy = [N](x,M.0Mm)5 1-€-

aAB=n+dx,E € Hy, p(M) B Ex, (M). (6.6)
But, we can get from corollary 2.6 that
Hs (M,0M) 2 HE (M) = i (M)

According to our illustrations above we know that an absokil-cohomology classa]x,, m) €
HQEM(M) and relativeXy-cohomology classef]x, m.om), [ A Bl xu,m.am) € HQEM(M,OM) are rep-
resented by the Neumar¥-harmonic fielda & /H)%M,N(M) and the DirichletXy-harmonic fields
B,n € ’H?EMD(M) respectively, such that they correspond, respectiveliorims on the boundary by
setting

Q=i'aeiHy, (M), W=i"*Bei"Hy J'(M), 8=ixnei*Hy M)

As alluded to before, our answer to the second question wijl be partial, in the sense that
we will not consider all the classes of the relatig-cohomology. In fact, we will just consider the
boundary subspac@vhich we denote bHy (M,0M) ) of Hy (M,0M). We defineBH,. (M,0M)
as follows:

BHiS, (M.0M) = {[dx,p] | p € Q&(M).i* (dx,p) = 0}

Actually, in sequence (6.1), our definition of the operattrrepresents the definition of the
boundary subspace ch{M(M,aM). More precisely, the image dﬂf{M (OM) inside H{ (M, aM)
represents the natural portion to interpret as coming frieenbioundary. But, we have proved that
H)%M(M, oM) = H§M7D(M). Hence, on translation into the languageXgf-harmonic fields, we can
identify

BHy,, (M,0M) = EH5 (M)

whereE’HiM’D(M) = {dx, €€ 7—[§§M7D(M) | e € QE(M)}. Clearly, Hodge star gives
CEHR, N(M) = xEHy, p(M)

wherecEHY (M) = {8x, A € H \(M) | A € Q% F(M)}. Now, using this fact together with corol-
lary 2.6(2) we conclude th&Hy, (M,0M) = i* x EHy, 5 (M).
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Now, we adapt Shonkwiler's map [16] but in terms of our opersin order to define the following
map with notation as above

g W = Ay (FOANW), V(W) € "M, (M) x " HY, (M) 6.7)

By using the same method as [16] but together with our dedimii.2 we deduce thaly,, is well-
defined.

So, our partial answer to the second question is that: cﬁa‘ginM (M, 0M) to BH)jfM (M,0M) and
then we recover the mixed cup product by showing the comiwityabf the the following diagram.

Theorem 6.2 The diagram
Hs, (M) x BHE (M,0M)  —2— BH; (M,aM)
[t o 6.8)
5, (M) X% EHE, 5 (M) —2 i % M5, 5(M)

is commutative, where f and h are given in corollary 2.6.

PROOF.  Our goal is then to show th&i([a], [dx,,B1]) € Hf{M(M) X BH)%M(M,OM) then

(hoU)([a]; [dxyBa]) = (Uxy © (f,h))([0], [dx, Bal)- (6.9)
Using eq.(6.6), then the left-hand side gives

h(U([a], [dxBa])) = h([orAdx,Ba])
= h({dxy (FaAB1)])
h([dxy (FaABL—&)])

= i"xn (6.10)
while the right-hand side gives
Ux ((F([0]),h([dxyB1]))) = Uxy (i, i* % dyy, Ba)
Aoy (FQAND) (6.11)

where@= i*a andy = i* xdyx, 1. Now, we only need to show that eq.(6.10) and eq.(6.11) araleq
Putting,3 = dx,B1 € E’H%M‘D(M) and using theXy,-Hodge-Morrey decomposition theorem (1.2),
we infer that; can be chosen to solve tBep

Ava:O, i*V:i*Bl, i*éva:O.

Hence,

llJ = i**del = /\xMrkBl.
Therefore,/\;dlp = i*1. But from eq.(6.6) we get that

N =dx,N' € EHy, p(M)

wheren’ = +a A B1 —&. Applying the Xy-Hodge-Morrey decomposition theorem (1.2) igh we
infer that
N =dx,N' =dx,0
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such that solves thesvp
Dy,e=0, i'e=i*0, i*0x,e=0.

Hence,
Ay I"0 = i* xdy, 0 = i" %1 (6.12)

Sincen’ = +a A By — & implies
dm(:l:C(/\Bl) = dxMr]/—FdxMz
= dx,0+dx,&. (6.13)

Equation (6.13) shows that the cldssi AB; — o —&] € Hg (M), so the formt-a A By — 0 —& can be
decomposed as
FaAB1—0—-&= mel—{—Tz € 5>TM(M)@’H)¢<M(M)

Now, restricting the latter equation to the boundary andgisiemma 3.5, this implies that
/\xMrk(iG /\Bl—O'—E) = /\xMrsz =0.
Combining this with equation (6.12) gives that

A" (FOABL) = Axi"(F0AB1—0—E+0+8)
= Ami*(ia/\Bl—G—E)—F/\mi*G
Nxu (EQANGY) = i*xn (6.14)

Hence, the diagram (6.8) is commutative as desired. O

We can restate theorem 6.2 in the language of our boundamy @Mt Ay, ) to be as follows:

Theorem 6.3 The boundary dat#dM, Ax,,) completely determines the mixed cup product structure
of the X,-cohomology when the relativesXxcohomology classes comes from the boundary subspace.
i.e. if (o, B) € Hy, n(M) B EHy, 5(M) such that AB =N +dx, & € Hy, 5(M) @ &, (M) then

"% = Ay (FOANLY)

wherep=i*a andy = i* x 5.

7 Conclusions

1- The key which uses to recover the free part of the relativbabsolute equivariant cohomol-
ogy groups (i.eHg (M) andHg (M,0M)) from our boundary datédM, Ay,, ) is the following
theorem which has been proved in [1] based on Atiyah and Blottalization theorem:

Theorem 7.1 ([1]) Let{Xy,...,X;} be a basis of the Lie algebr@and {u,...,u;} the corre-
sponding coordinates and let X ¥ ; s;X; € g. If the set of zeros Kv) of the corresponding
vector field X is equal to the fixed point set F for the G-action then

H;M(M, OM) =2 HZ (M,0M) /mxHg (M,0M) = H*(F,0F), (7.1)

and
Hio, (M) 2 Hg (M) /mxHg (M) = H*(F) (7.2)

wheremy = (u; — s1,...,U —§) is the ideal of polynomials vanishing at X.
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Now, combining the above theorem with theorem 6.1, we get
Theorem 7.2 With the hypotheses of the theorem 7.1,
HG (M, M) /myHE (M, 0M) 2 H*(F,0F ) = (Ax, — (1) dx, Ay rdx, ) QE(OM)

and
HE (M) /mxHg (M) = H*(F) = (Ax, — (il)”“dxM/\inxM)QE_(jF)(aM)

since the NeumanKy-harmonic fields are uniquely determined by their Neum#gn trace
spaces (corollary 2.6) which can be completely determiyamlibboundary datédM, Ay, ) (theorem
4.3), this means that we can conclude from theorem 6.1 awoddhe?7.2 that we can realize the
relative and absolutéy-cohomology groups and the free part of the relative andlatesequiv-
ariant cohomology groups as particular subspaces of avedifferential forms o@M and they

are not just determined abstractly from our boundary data.

2- If N(Xm) = F then we can apply Belishev and Sharafutdinov’s resultsdét theorem 1.1) to
the manifoldsF with boundaryoF whereG acts trivially onF and then we use theorem 7.2 to
exploit the connection between Belishev and Sharafutcérimaundary data odF (i.e. (OF,A\))
and ours oM (i.e. (0M,Ay,,)). More concretely, we have the following theorem

Theorem 7.3 If N(Xv) =F, then
(Axy — (F1)™ dy, Ay rdx, QG (OM) = (A — (F1)" 1dA~d)Q* (oF).
3- Theorem 2.3 proves that our concrete reaIizati)d;@ﬁN(M) andH)%M’D(M) of the absolute and
relative Xy-cohomology groups inside the spa@g (M) meet only at the origin which means

that we can conclude the SUH&EM’N(M) +7—[§§M’D(M) is a direct sum and by using (1.6), we
can prove that the orthogonal complemenY-QSM,N(M) +7—L§M’D(M) insideH)jEM(M) is

,H)%M ,ex(M) N /H)i(mco(M) = ,H)i(me)gco(M)
Therefore, we can refine od§,-Friedrichs Decomposition (1.3 and 1.4) into
Hi, (M) = (Hg, n(M) +Hg, p(M)) B Hig, excolM).

Consequently, we can refine tikg-Hodge-Morrey-Friedrichs decompositions (1.5) into the
following five terms decomposition:

Q5 (M) = &, (M) & Cy, (M) @ (Hig, n(M) + Hig, p(M)) & Mg, excoM)-
The idea of this conclusion follows from [8], see also [15] details.

Finally, it is worth considering the following important ep problem:

“Can the torsion part of the absolute and relative equivati@ohomology groups be completely
recovered from our boundary daf@M,Ay,,)?”

Answering this open problem will indeed complete the pietof our boundary dat@M, Ay,,) to
be adding into the list of objects of equivariant cohomolstyry and consequently to the objects of
algebraic topology.
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