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THE MILSTEIN SCHEME FOR STOCHASTIC DELAY
DIFFERENTIAL EQUATIONS WITHOUT ANTICIPATIVE

CALCULUS∗

P.E. KLOEDEN† AND T. SHARDLOW‡

Abstract. The Milstein scheme is the simplest nontrivial numerical scheme for stochastic dif-
ferential equations with a strong order of convergence one. The scheme has been extended to the
stochastic delay differential equations but the analysis of the convergence is technically complicated
due to anticipative integrals in the remainder terms. This paper employs an elementary method
to derive the Milstein scheme and its first order strong rate of convergence for stochastic delay
differential equations.
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1. Introduction. The Milstein scheme is the simplest nontrivial numerical
scheme for stochastic ordinary differential equations that achieves a strong order of
convergence higher than that of the Euler-Maruyama scheme. It was first derived by
Milstein, who used the Itô formula to expand an integrand involving the solution in
one of the error terms of the Euler-Maruyama scheme. The iterative repetition of this
idea underlies the systematic derivation of stochastic Taylor expansions and numerical
schemes of arbitrarily high strong and weak orders, as expounded in Kloeden & Platen
[9], see also Milstein [12].

An analogue of the Milstein scheme has been derived in a similar way for stochas-
tic delay differential equations (SDDEs), see Hu et al. [4]. However, the proofs of
convergence are technically complicated due to the presence of anticipative integrals
in the remainder terms.

Here we use an elementary method to derive the Milstein scheme for stochastic
delay differential equations that does not involve anticipative integrals and anticipative
stochastic calculus. Following the approach used by Jentzen & Kloeden for random
ordinary differential equations [6, 8] and stochastic partial differential equations [7],
we use deterministic Taylor expansions of the coefficient functions, with lower order
expansions being inserted into the right hand side of higher order ones to give a
closed form for the expansion. (A similar idea, without the final insertion, was also
considered in [5, 11]). The Itô formula is not used at all and our proofs are much
simpler than in [4].

The paper is organised as follows. §2 gives the precise stochastic delay differen-
tial equation that we study and some background. §3 derives the Milstein method
(see (3.7)) by use of Taylor expansions and calculates the local truncation error by
collecting the Taylor remainder terms. §4 gives the proof of convergence and the
main results in Theorems 4.2 and 4.5 . We must restrict the class of SDDEs to have
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finitely many discrete delays and this allows proof of a mean square first order rate
of convergence subject to continuity of the drift, diffusion, and initial data.

2. Background. Consider Rd with the norm ‖x‖Rd = 〈x, x〉1/2 for x ∈ Rd.
Denote the bounded linear operators between Banach spaces X and Y by L(X,Y )
and ‖L‖op the induced operator norm for L ∈ L(X,Y ). Let Cn(X,Y ) denote the
space of functions from X to Y with n uniformly bounded Frechet derivatives Djf ∈
L(X, . . .L(X,Y )) for j = 0, . . . , n and f ∈ Cn(X,Y ).

Denote by C the Banach space C = C([−τ, 0],Rd) for τ > 0 with norm ‖η‖∞ =
sup−τ≤θ≤0 ‖η(θ)‖Rd for η ∈ C. Let (Ω,F ,Ft,P) denote a standard filtered probability
space. Consider the Itô SDDE on Rd on the time interval [0, T ] with delay τ > 0
given by

dx(t) = f(xt, t) dt+ g(xt, t) dβ(t), (2.1)

subject to initial data x0 = ξ ∈ C, where β(t) is a Rm Brownian motion adapted to
Ft,

f : C ×R+ → Rd, g : C ×R+ → Rd×m,

and we use xt to denote the segment {x(t+θ) : θ ∈ [−τ, 0]}. We assume there exists a
unique solution x(t) to (2.1) that is adapted to Ft and such that xt ∈ C for t ≥ 0 (see
[10, 13]). Denote by x(t; s, η) the solution of (2.1) with initial condition xs = η ∈ C
at time t = s and the corresponding segment by xt(s, η) ∈ C. Then x(t) = x(t; 0, ξ)
and xt = xt(0, ξ).

Throughout K is a generic constant that varies from one place to another and
depends on f , g, the initial data ξ, the interval of integration [0, T ], but is independent
of the discretisation parameter. The notation O(n) is used to denote a quantity
bounded by Kn.

We make use of the following inequalities: for any a1, a2, . . . , aN and p > 1,

( N∑
i=1

ai

)p
≤ Np−1

N∑
i=1

api . (2.2)

Burkholder-Gundy-Davis inequality: for any Rd×m valued adapted process z(s) and
for p ≥ 2, there exists Cp, Ĉp such that

E
[

sup
0≤t≤T

∥∥∥∫ t

0

z(s) dβ(s)
∥∥∥p
Rd

]
≤Cp

(∫ T

0

E‖z(s)‖2F ds
)p/2

≤Ĉp
∫ T

0

E‖z(s)‖pF ds
(2.3)

where ‖ · ‖F denotes the Frobenius norm.
We assume the following regularity throughout.
Assumption 2.1. f ∈ C3(C × R+,Rd), g ∈ C3(C × R+,Rd×m), and ξ is

uniformly Lipschitz continuous from [−τ, 0] to Rd.
We make use of the following results.
Theorem 2.1. Suppose that 0 ≤ s, t ≤ T and η is a Fs measurable C valued
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random variable such that E‖η(θ1)− η(θ2)‖p
Rd ≤ K|θ1 − θ2|p/2. Then

E
[

sup
s−τ≤t≤T

‖x(t; s, η)‖p
Rd

]
≤K (2.4)

E
[

sup
s≤r≤t

‖xr(s, η)− η‖p∞
∣∣∣Fs] ≤K|t− s|p/2 (2.5)

E
[∥∥∥xt(s, η)−E

[
xt(s, η)|Fs

]∥∥∥p
∞

]
≤K|t− s|p/2. (2.6)

Proof. The first inequality is a consequence of the Gronwall inequality and a
detailed proof is found in [10, 15]. The second follows easily from the integral form
for the solution: for r + θ ≥ s,

x(r + θ; s, η) =x(s+ θ)

+
∫ r+θ

s+θ

f(xq(s, η), q) dq +
∫ r+θ

s+θ

g(xq(s, η), q) dβ(q).

Assume for notational simplicity that η is non-random,

E
[

sup
s≤r≤t

‖x(r + θ; s, η)− η(θ)‖p
Rd

]
≤K|r − s|p +K

(∫ t+θ

s+θ

E‖g(x(q; s, η))‖2F dq
)p/2

≤K|t− s|p +K|t− s|p/2 ≤ K|t− s|p/2.

For r+ θ ≤ s, ‖x(r+ θ; s, η)− η(θ)‖Rd = ‖η(r− s+ θ)− η(θ)‖Rd ≤ K|r− s|. Finally,

E
[

sup
s≤r≤t

‖xr(s, η)− η‖p∞
∣∣∣Fs]

≤E
[

sup
s≤r≤t

sup
θ∈[−τ,0]

‖x(r + θ; s, η)− η(r + θ)‖p
Rd

∣∣∣Fs] ≤ K|t− s|p/2.
The last is found from∥∥∥xt(s, η)−E

[
xt(s, η)|Fs

]∥∥∥
∞
≤ ‖xt(s, η)− η‖∞ +

∥∥∥E[xt(s, η)− η
∣∣∣Fs]∥∥∥

∞
.

Theorem 2.2 (derivative in initial condition). Suppose that 0 ≤ s, t ≤ T and
η is a Fs measurable C valued random variable such that E‖η(θ1) − η(θ2)‖p

Rd ≤
K|θ1 − θ2|p/2. For h ∈ C, let yht denote the solution to

dyh(t) = Df(xt(s, η), t)yht dt+Dg(xt(s, η), t)yht dβ(t), yhs = h (2.7)

Then yh(t) is the L2 Frechet derivative of x(t; s, η) with respect to η:

sup
‖h‖∞<1

E
[

sup
0≤t≤T

∣∣∣x(t; s, η + εh)− x(t; s, η)
ε

− yh(t)
∣∣∣2∣∣∣Fs]→ 0 ε→ 0. (2.8)

We write ∂x(t;s,η)
∂η h for yh(t) and note that ∂x(t;s,η)

∂η ∈ L(C,L2(Ω,Rd)). Further,
for 0 ≤ s ≤ t ≤ T and η ∈ C,

E
[∥∥∥∂x(t; s, η)

∂η

∥∥∥2

op

∣∣∣Fs] ≤K (2.9)

E
[∥∥∥∂x(t; s, η)

∂η
−E

[∂x(t; s, η)
∂η

∣∣∣Fs]∥∥∥p
op

∣∣∣Fs] ≤K|t− s|p/2. (2.10)
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Proof. Equations (2.7)–(2.8) are given in [15]. Equations (2.9)–(2.10) follow by
applying standard techniques to (2.7) as in Theorem 2.1. For example, the integral
form gives

yh(t) = h(0) +
∫ t

0

Df(xr(s, η), r)yhr dr +
∫ t

0

Dg(xr(s, η), t)yhr dβ(r).

which implies

E
[
‖yh(t)‖2Rd

]
≤ 3‖h‖2∞ +K

∫ t

0

E
[
‖yhr ‖2∞

]
dr +K

∫ t

0

E
[
‖yhr ‖2∞

]
dr.

so that Gronwall’s inequality provides E‖yh(t)‖2Rd ≤ K‖h‖2∞ for 0 ≤ t ≤ T . Hence
yh is a bounded linear operator from C to L2(Ω,Rd).

Theorem 2.3 (second derivative in initial condition). Under the assumptions
of Theorem 2.2, there exists a second L2 Frechet derivative for x(t; s, η), which we
denote by ∂2

∂η2x(t; s, η). Further, ∂2

∂η2x(t;x, η) belongs to L(C,L(C,L2(Ω,Rd))) and

E
[∥∥∥∂2x(t; s, η)

∂η2

∥∥∥2

op

]
≤ K. (2.11)

Proof. Similar to Theorem 2.2.
Corollary 2.4. If h(η) = EΨ(η, x(t; s, η)) for t ≥ s, η ∈ C, and some Ψ ∈

C2(C ×Rd,R), then h ∈ C2(C,R).
If

h(η1, . . . , η4) = EΨ(η1, . . . , η4, x(t1; s, η1), . . . , x(tJ ; s, η4))

where t1, . . . , tJ ≥ s, η1, . . . , η4 ∈ C, and Ψ ∈ C2(C × C × C × C × R4dJ ,Rm×m),
then h ∈ C2(C × C × C × C,Rm×m).

Proof. This follows from Theorem 2.2–2.3. For example, with x(t) = x(t; s, η)
and ξ1, ξ2 ∈ C,

Dh(η)(ξ1) =E
[
DΨ(η, x(t))(ξ1,

∂x(t)
∂η

ξ1)
]

D2h(η)(ξ1, ξ2) =E
[
D2Ψ(η, x(t))

(
(ξ1,

∂x(t)
∂η

ξ1), (ξ2,
∂x(t)
∂η

ξ2)
)]

+ E
[
DΨ(η, x(t))

(
0,
∂2x(t)
∂η2

(ξ1, ξ2)
)]

and

‖D2h(η)‖op ≤E
[
‖D2Ψ(x(t))‖op

(
1 +

∥∥∥∂x(t)
∂η

∥∥∥
op

)2 ]
+ E

[
‖DΨ(x(t))‖op

∥∥∥∂2x(t)
∂η2

∥∥∥
op

]
.

As Ψ ∈ C2,

‖D2h(η)‖op ≤K
[
1 + E

[∥∥∥∂x(t)
∂η

∥∥∥2

op

]]
+K

[
E
[∥∥∥∂2x(t)

∂η2

∥∥∥2

op

]]1/2
.

which is uniformly bounded using (2.9) and (2.11)
The second statement is an elementary extension of the first.
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3. Derivation of Milstein method and remainders. Taylor’s theorem on
Banach spaces [1] gives for 0 ≤ s ≤ r

f(xr, r) =f(xs, s) +Df(xs, s)(xr − xs, r − s)

+
∫ 1

0

(1− h)D2f
(
xs + h(xr − xs), s+ h(r − s)

)(
xr − xs, r − s

)2

dh

=f(xs, s) +Rf (r; s, xs) (3.1)
g(xr, r) =g(xs, s) +Dg(xs, s)(xr − xs, r − s)

+
∫ 1

0

(1− h)D2g
(
xs + h(xr − xs), s+ h(r − s)

)(
xr − xs, r − s

)2

dh

=g(xs, s) +Dg(xs, s)(xr − xs, r − s) +Rg(r; s, xs). (3.2)

Lemma 3.1.

E
[

sup
0≤s≤r≤t

‖Rf (r; s, xs)‖pRd

]
≤K|t− s|p/2

E
[

sup
0≤s≤r≤t

‖Rg(r; s, xs)‖pF
]
≤K|t− s|p.

Proof. Using (2.4) and the regularity of f, g, both inequalities follow from the
definitions in (3.1)–(3.2).

Substitute the expansions for f and g into the integral form of (2.1) on [s, t],

x(t) = x(s) +
∫ t

s

f(xr, r) dr +
∫ t

s

g(xr, r) dβ(r),

to find

x(t) =x(s) + f(xs, s)(t− s) + g(xs, s)
∫ t

s

dβ(r)

+
∫ t

s

Dg(xs, s)(xr − xs, r − s) dβ(r) +R1(t; s, xs),

where the remainder R1(t; s, xs) is Ft measurable and defined by

R1(t; s, xs) =
∫ t

s

Rf (r; s, xs) dr +
∫ t

s

Rg(r; s, xs) dβ(r). (3.3)

Lemma 3.2. For 0 ≤ s ≤ t ≤ T ,

E
[

sup
s≤r≤t

‖R1(r; s, xs)‖2Rd

]
≤ K|t− s|3.

Proof. Applying (2.2) and (2.3),

E
[

sup
s≤r≤t

‖R1(r; s, xs)‖2Rd

]
≤2
(
E
[

sup
s≤r≤t

‖Rf (r; s, xs)‖2Rd |t− s|2
]

+ Ĉ2

∫ t

s

E
[
‖Rg(r; s, xr)‖2F

]
dr
)
.
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To finish, apply Lemma 3.1.
Let I(s, t) =

∫ t
s
dβ(r) = β(t)− β(s). Then, for s ≥ 0

x(t; s, xs) =x(s) + f(xs, s)(t− s) + g(xs, s)I(s, t)

+
∫ t

s

Dg(xs, s)(xr(s, xs)− xs, r − s) dβ(r) +R1(t; s, xs)

and

x(t; s, xs) = x(s) + g(xs, s)I(s, t) +R2(t; s, xs), (3.4)

where R2(t; s, xs) is Ft measurable and given by

R2(t; s, xs) =f(xs, s)(t− s)

+
∫ t

s

Dg(xs, s)
(
xr(s, xs)− xs, r − s

)
dβ(r) +R1(t; s, xs).

Lemma 3.3. For ∆t > 0,

E
[

sup
s≤r≤s+∆t≤T

‖R2(r; s, xs)‖2Rd

]
≤ K∆t2.

Proof. By (2.2) and (2.3),

E
[

sup
s≤r≤s+∆t≤T

‖R2(r; s, xs)‖2Rd

]
≤3
(
K|t− s|2 + Ĉ2 sup

s≤r≤s+∆t≤T

∫ r

s

E
[
‖Dg(xs, s)(xp(s, xs)− xs, p− s)‖2F

]
dp

+ E sup
s≤r≤s+∆t≤T

‖R1(r; s, xs)‖2Rd

)
≤K

(
∆t2 + ∆t

(
E
[

sup
s≤r≤s+∆t≤T

‖xr(s, xs)− xs‖2∞
]

+ ∆t2
)

+ E sup
s≤r≤s+∆t≤T

‖R1(r; s, xs)‖2Rd

)
.

By Lemma 3.1 and (2.5), this is O(∆t2) as required.
For θ ∈ [−τ, 0] and s+ θ ≤ 0 ≤ t+ θ,

x(t+ θ; s, xs) = x(s+ θ) +
(
x(t+ θ; 0, x0)− x(0)

)
+
(
x(0)− x(s+ θ)

)
so by (3.4)

x(t+ θ; s, xs) =x(s+ θ) +
(
g(x0, 0)I(0, t+ θ) +R2(t+ θ; 0, x0)

)
+
(
ξ(0)− ξ(s+ θ)

)
.

(3.5)

For t+ θ < 0,

x(t+ θ; s, xs) = ξ(t+ θ) = ξ(s+ θ) + (ξ(t+ θ)− ξ(s+ θ)). (3.6)
6



We combine (3.4)–(3.6), to get an expression for the segment xt as a perturbation of
xs for any 0 ≤ s ≤ t.

xt(s, xs)(θ) = xs(θ) +


(see (3.4)), 0 ≤ s+ θ,

(see (3.5)), s+ θ ≤ 0 ≤ t+ θ,

(see (3.6)), t+ θ < 0,

As xs(θ) = x(s + θ), the correction term for (3.4) depends on x̂s ∈ C([−2τ, 0],Rd),
which we define for θ ∈ [−2τ, 0] by

x̂s(θ) =


x(s+ θ), 0 < s+ θ,

ξ(s+ θ), −τ < s+ θ ≤ 0,
ξ(−τ), s ≤ −τ.

The choice of constant for s ≤ −τ ensures continuity. We further require the following
notations:

1. G : C([−2τ, 0],Rd)×R+ → L(C,C), defined by

G(ζ, s)η(θ) =

{
g(πθζ, s+ θ)η(θ), s+ θ > 0,
g(ξ, 0)η(θ), s+ θ ≤ 0,

where ζ ∈ C([−2τ, 0],Rd), s ∈ R+, η ∈ C, θ ∈ [−τ, 0], and πθ :
C([−2τ, 0],Rd)→ C is defined by πθζ(φ) = ζ(φ+ θ) for φ ∈ [−τ, 0].

2. define It(s) ∈ C by

It(s)(θ) =


I(s+ θ, t+ θ), 0 ≤ s+ θ ≤ t+ θ,

I(0, t+ θ), −τ ≤ s+ θ ≤ 0 ≤ t+ θ,

0, otherwise.

3. For s ≤ t,

δt(s)(θ) =


0, 0 ≤ s+ θ,

ξ(0)− ξ(s+ θ), s+ θ ≤ 0 ≤ t+ θ,

ξ(t+ θ)− ξ(s+ θ), t+ θ ≤ 0.

Together we have

xt(s, xs) = xs +G(x̂s, s)It(s) + δt(s) +R2,t(s, x̂s),

with R2,t(s, x̂s) ∈ C defined by

R2,t(s, x̂s)(θ) =


R2(t+ θ; s+ θ, πθx̂s), 0 ≤ s+ θ,

R2(t+ θ; 0, ξ), s+ θ < 0 ≤ t+ θ,

0, t+ θ ≤ 0.

Lemma 3.4. For 0 ≤ s ≤ T ,

E sup
s≤r≤s+∆t

‖R2,r(s, x̂s)‖2∞ ≤ K∆t2.
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Proof. This is a consequence of Lemma 3.3.
If

R(t; s, xs) = R1(t; s, xs) +
∫ t

s

Dg(xs, s)(R2,r(s, x̂s), 0) dβ(r),

then finally,

x(t; s, xs) =x(s) + f(xs, s)(t− s) + g(xs, s)I(s, t)

+
∫ t

s

Dg(xs, s)
(
G(x̂s, s)Ir(s) + δr(s), r − s

)
dβ(r) +R(t; s, xs).

Let tk = k∆t with ∆t = T/n. Let xn(t) solve for tk < t ≤ tk+1.

xn(t) =xn(tk) + f(xntk , tk)(t− tk) + g(xntk , tk)
∫ t

tk

dβ(r)

+
∫ t

tk

Dg(xntk , tk)
(
G(x̂ntk , tk)Ir(tk) + δr(tk), r − tk

)
dβ(r).

(3.7)

This is Milstein’s method for (2.1) and our main result (Theorem 4.2) concludes that
xn(t) is a first order approximation in ∆t to x(t) over the interval [0, T ].

4. Main result. Before proving Theorem 4.2, we give some preliminary results
on the size of the remainder terms.

Lemma 4.1. For t ≤ T ,

E
[

sup
tk≤t

∥∥∥ k−1∑
j=0

R(tj+1; tj , xtj )
∥∥∥2

Rd

]
≤ K∆t2 + sup

tk≤t
2E
[ k−1∑
i,j=0

〈RX(ti), RX(tj)〉
]
,

where

RX(ti) =
∫ ti+1

ti

Df(xti , ti)(G(x̂ti , ti)Ir(ti), 0) dr. (4.1)

Proof. If Sk =
∑k−1
j=0 rj+1, where rk are Rd valued Ftk measurable random

variables, then Sk − ESk is a discrete martingale and Doob’s maximal inequality
gives E supk≤n ‖Sk −ESk‖2Rd ≤ 2E‖Sn−ESn‖2Rd ≤ 4E‖Sn‖2Rd + 4‖ESn‖2Rd . Hence,

E sup
k≤n
‖Sk‖2Rd ≤8E‖Sn‖2Rd + 10 sup

k≤n
‖ESk‖2Rd

≤8E‖Sn‖2Rd + 10 sup
k≤n

E‖Sk‖2Rd ≤ 18 sup
k≤n

E‖Sk‖2Rd ,

because ‖EX‖ ≤ E‖X‖ ≤ (E‖X‖2)1/2. Now

E
[

sup
tk≤t

∥∥∥ k−1∑
j=0

R(tj+1; tj , xtj )
∥∥∥2

Rd

]
≤ 8 sup

tk≤t
E
[∥∥∥ k−1∑

j=0

R(tj+1; tj , xtj )
∥∥∥2

Rd

]

+ 10 sup
tk≤t

∥∥∥E k−1∑
j=0

R(tj+1; tj , xtj )
∥∥∥2

Rd
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and

R(t; s, xs) =
∫ t

s

Rf (r; s, xs) dr +
∫ t

s

Rg(r; s, xs) dβ(r)

+
∫ t

s

Dg(xs, s)(R2,r(s, x̂s), 0) dβ(r).

Hence,

E
[∥∥∥ k−1∑

j=0

R(t; tj , xtj )
∥∥∥2

Rd

]
≤ 3E

∥∥∥ k−1∑
j=0

∫ tj+1

tj

Rf (r; tj , xtj ) dr
∥∥∥2

Rd

+3
k−1∑
j=0

∫ tj+1

tj

E‖Rg(r; tj , xtj )‖2F dr

+3
k−1∑
j=0

∫ tj+1

tj

E‖Dg(xs, s)(R2,r(s, x̂s), 0)‖2F dr

Lemmas 3.1 and 3.4 provide estimates of O(∆t2) for the last two terms. For the first
term, we further develop Rf from (3.1)

Rf (r; s, xs)
= Df(xs, s)(xr − xs, r − s)

+
∫ 1

0

(1− h)D2f
(
xs + h(xr − xs), s+ h(r − s)

)(
xr − xs, r − s

)2

dh

=Df(xs, s)(df(xs, s)Ĝ(xs, s)Ir(s), r − s) +Df(xs, s)(δr(s) +R2,r(s, x̂s), 0)

+
∫ 1

0

(1− h)D2f
(
xs + h(xr − xs), s+ h(r − s)

)(
xr − xs, r − s

)2

dh

so that

∥∥∥ k−1∑
j=0

∫ tj+1

tj

Rf (r; tj , xtj ) dr
∥∥∥2

Rd
= 2
∥∥∥ k−1∑
j=0

RX(tj)
∥∥∥2

Rd

+ 2
∥∥∥ k−1∑
j=0

∫ tj+1

tj

Df(xtj , tj)(0, r − tj)

+Df(xtj , tj)(δr(tj) +R2,r(tj , x̂tj ), 0) +
∫ 1

0

(1− h)×

×D2f
(
xtj + h(xr − xtj ), tj + h(r − tj)

)(
xr − xtj , r − tj

)2

dh dr
∥∥∥2

Rd
.

The second term is O(∆t2) by applying definition of δ and Lipschitz property of the
initial data ξ, Lemma 3.4, and (2.5). We find

E
[∥∥∥ k−1∑

j=0

∫ tj+1

tj

Rf (r; tj , xtj ) dr
∥∥∥2

Rd

]
≤ 2E

[∥∥∥ k−1∑
j=0

RX(tj)
∥∥∥2

Rd

]
+K∆t2
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and the following observation completes the proof.∥∥∥ k−1∑
j=0

RX(tj)
∥∥∥2

Rd
=

k∑
i,j=0

〈RX(tj), RX(ti)〉

Assumption 4.1. For P(n) = {(i, j) : i, j = 0, . . . , n}, suppose there exists
Q(n) ⊂ P(n) such that

E 〈RX(ti), RX(tj)〉 ≤

{
K∆t3, (i, j) ∈ Q(n)
K∆t4, (i, j) ∈ P(n)−Q(n).

A calculation with (4.1) shows the assumption holds with Q(n) = P(n) and in the
stochastic ordinary differential equation case with Q(n) = {(i, i) : i = 1, . . . , n}, as

RX(ti) = df(x(ti), ti)
(
g(x(ti))

∫ ti+1

ti

β(r) dr, 0
)

and E 〈RX(ti), RX(tj)〉 = 0 for i 6= j (for i < j, use the fact that RX(ti) is Fti+1

measurable and E
[
RX(tj)|Ftj

]
= 0). To show that the Milstein method has order

one, we need Q(n) to have O(n) members, which as we show in Theorem 4.5 is true
when f and g have finitely many discrete delays.

Theorem 4.2. Suppose that Q(n) has O(n) members. Then,(
E sup
t∈[−τ,T ]

‖x(t)− xn(t)‖2Rd

)1/2

≤ K∆t. (4.2)

Proof. For tk ≤ s < tk+1,

xn(s)− x(s) =xn(tk)− x(tk)

+
∫ min{tk+1,s}

tk

(
f(xntk , tk)− f(xtk , tk)

)
dr

+
∫ min{tk+1,s}

tk

(
g(xntk , tk)− g(xtk , tk)

)
dβ(r)

+
∫ min{tk+1,s}

tk

[
Dg(xntk , tk)(G(x̂ntk , tk)Ir,tk + δr(tk), r − tk)

−Dg(xtk , tk)(G(x̂tk , tk)Ir,tk + δr(tk), r − tk)
]
dβ(r)

+R(s; tk, xtk).

For tk ≤ s < tk+1, let

D(s) =f(xntk , tk)− f(xtk , tk)

M(s) =
[
g(xntk , tk)− g(xtk , tk)

]
+
[
Dg(xntk , tk)(G(x̂ntk , tk)Is,tk + δs(tk), s− tk)

−Dg(xtk , tk)(G(x̂tk , tk)Is,tk + δs(tk), s− tk)
]
.
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Then,

xn(s)− x(s) =
∫ s

0

D(r) dr +
∫ s

0

M(r) dβ(r)

+
k−1∑
j=0

R(tj+1; tj , xtj ) +R(s, tk, xtk).

For tk ≤ t < tk+1, let e(t) = E sups≤t ‖xn(s)− x(s)‖2Rd .

e(t) ≤4E
[

sup
s≤t

∥∥∥ ∫ s

0

D(r) dr
∥∥∥2

Rd

]
+ 4E

[
sup
s≤t

∥∥∥∫ s

0

M(r) dβ(r)
∥∥∥2

Rd

]
+ 4E

[∥∥∥ k−1∑
j=0

R(tj+1; tj , xtj )
∥∥∥2

Rd

]
+ 4E

[
sup

tk≤s≤t
‖R(s; tk, xtk)‖2Rd

]
.

1. For tk ≤ t < tk+1,

E
[

sup
s≤t

∥∥∥∫ s

0

D(r) dr
∥∥∥2

Rd

]
≤K

∫ t

0

E
[

sup
s≤r
‖D(s)‖2Rd

]
dr

≤K
∫ t

0

E sup
s≤r
‖f(xns , s)− f(xs, s)‖2Rd dr

≤K
∫ t

0

e(r) dr.

2. By (2.3),

E
[

sup
s≤t

∥∥∥∫ s

0

M(r) dβ(r)
∥∥∥2

Rd

]
≤K sup

s≤t

∫ s

0

E‖M(r)‖2F dr.

Now, for tk ≤ s < tk+1,

E
[
‖M(s)‖2F

]
≤2E

[
‖g(xntk , tk)− g(xtk , tk)‖2F

]
+ 2E

[∥∥∥Dg(xntk , tk)(G(x̂ntk , tk)Is,tk + δs(tk), s− tk)

−Dg(xtk , tk)(G(x̂tk , tk)Is,tk + δs(tk), s− tk)
∥∥∥2

F

]
≤K e(s).

So

E
[

sup
s≤t

∥∥∥∫ s

0

M(r) dβ(r)
∥∥∥2

Rd

]
≤K

∫ t

0

e(s) ds.

3. Under Assumption 4.1 with the condition on Q(n) and Lemma 4.1,

E
[

sup
tk≤t

∥∥∥ k−1∑
j=0

R(tj+1; tj , xtj )
∥∥∥2

Rd

]
≤ K∆t2.

and we can also show

E
[

sup
tk≤s≤t

‖R(s; tk, xtk)‖2Rd

]
≤ K∆t2.
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Putting the estimates together, we have

e(t) ≤ K
∫ t

0

e(s) ds+K∆t2

and an application of Gronwall’s inequality completes the proof.
Assumption 4.2. For 0 = τ1 < τ2 < · · · < τJ ≤ τ , suppose that

f(η, t) = F (η(−τ1), . . . , η(−τJ)), g(η, t) = G(η(−τ1), . . . , η(−τJ)),

for η ∈ C. Denote ∂jf = ∂F (x1, . . . , xJ)/∂xj ∈ Rd×d.
Lemma 4.3. Suppose that Assumption 4.2 holds. For 0 ≤ r ≤ t and s ≥ 0, let

Φ(η) = xt(r, η)−E
[
xt(r, η)|Fs

]
. Then Φ ∈ C1(C,C) and

E
[
‖DΦ(η)‖2op

]
≤ K|t− s|.

Proof. For t+ θ ≤ s, Φ(η)(θ) = 0. For t+ θ > s and s ≥ r,

Φ(η)(θ) =x(t+ θ; r, η)−E
[
x(t+ θ; r, η)|Fs

]
=x(t+ θ; s, xs(r, η))−E

[
x(t+ θ; s, xs(r, η))|Fs

]
=
∫ t+θ

s

f(xp(s, xs(r, η))) dp+
∫ t+θ

s

g(xp(s, xs(r, η))) dβ(p)

−
∫ t+θ

s

E
[
f(xp(s, xs(r, η)))|Fs

]
dp

=
∫ t+θ

s

f(xp(r, η))) dp+
∫ t+θ

s

g(xp(s, xs(r, η))) dβ(p)

−
∫ t+θ

s

E
[
f(xp(r, η))|Fs

]
dp.

Under Assumption 4.2, f(xp(r, η)) and g(xp(r, η)) are mean square differentiable in η
with uniformly bounded derivative:

E
∥∥∥∂f(xp(r, η))

∂η

∥∥∥2

op
= E

∥∥∥ J∑
j=1

∂jf(xp(r, η))
∂x(p− τj ; r, η)

∂η

∥∥∥2

op
≤ K,

as f ∈ C1, ‖∂x(p−τj ; r, η)/∂η‖op ≤ 1 for p−τj ≤ r and E‖∂x(p−τj ; r, η)/∂η‖2op ≤ K
for p − τj ≥ r from (2.9) of Theorem 2.2. A similar equation holds for the partial
derivatives in g and we conclude that

E
[

sup
θ∈[−τ,0]

∥∥∥DΦ(η)(θ)
∥∥∥2

op

]
≤ K|t− s|.

We will often work on the p times product space C × · · · × C and let

‖(w1, w2, . . . , wp)‖ = max{‖w1‖∞, ‖w2‖∞, . . . , ‖wp‖∞},

for (w1, w2, . . . , wp) ∈ C × · · · × C.
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Lemma 4.4. Let Assumption 4.2 hold. Suppose that p + ∆t ≤ r ≤ s and that
∆p,∆s are mean zero Rm random variables such that

∆p is Fp+∆t measurable and independent of Fp,
∆s is independent of Fs.

Consider h ∈ C2(C × C × C × C,Rm×m). Then

E
[
〈∆p, h(xp, xr, xs, xs+∆t)∆s〉

]
≤ K∆t

(
E‖∆p‖4RmE‖∆s‖4Rm

)1/4

. (4.3)

and, if ∆p,∆s are N(0, σ2I),

E
[
〈∆p, h(xp, xr, xs, xs+∆t)∆s〉

]
≤ K∆t σ2.

Proof. Let y = [xp, xr, xs, xs+∆t]. By (2.6) of Theorem 2.1,

E‖ȳ − y‖p∞ ≤ K∆tp/2, (4.4)

where ȳ = E[y|Fs]. Taylor’s theorem provides

h(y) =h(ȳ) +Dh(ȳ) (y − ȳ) +Rh,

where the remainder satisfies ‖Rh‖op ≤ 1
2‖D

2h‖op ‖y− ȳ‖2∞ and, as the second deriva-
tive of h is uniformly bounded,

‖Rh∆s‖Rm ≤ ‖Rh‖op‖∆s‖Rm ≤ K‖y − ȳ‖2∞‖∆s‖Rm .

The Cauchy-Schwarz inequality gives

E
[
‖Rh∆s‖2Rm

]
≤ K

(
E
[
‖y − ȳ‖8∞

]
E
[
‖∆s‖4Rm

])1/2

≤ K∆t2E
[
‖∆s‖4Rm

]1/2
.

As ∆s has mean zero and is independent of ȳ and hence h(ȳ),

E
[
h(y)∆s|Fp+∆t

]
=E
[
Dh(ȳ)(y − ȳ)∆s|Fp+∆t

]
+ E

[
Rh∆s|Fp+∆t

]
=a(z) + E

[
Rh∆s|Fp+∆t

]
,

where z = [xp, xp+∆t] and

a(w) = E
[
Dh(Ȳ (w))

(
Y (w)− Ȳ (w)

)
∆s

]
, w ∈ C × C

where Y (w) = [w1, xr(p+ ∆t, w2), xs(p+ ∆t, w2), xs+∆t(p+ ∆t, w2)]
and Ȳ (w) = E

[
Y (w)|Fs

]
for w = [w1, w2] ∈ C × C.

For w, v ∈ C × C,

|a(w)− a(v)|

≤E
[∥∥∥Dh(Ȳ (w))(Y (w)− Ȳ (w))−Dh(Ȳ (v))(Y (v)− Ȳ (v))

∥∥∥2

op

× ‖∆s‖2Rm

]1/2
≤E
[∥∥∥Dh(Ȳ (w))(Y (w)− Ȳ (w))−Dh(Ȳ (v))(Y (v)− Ȳ (v))

∥∥∥2

op

]1/2
×E

[
‖∆s‖2Rm

]1/2
.
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As h ∈ C2, ∥∥∥Dh(Ȳ (w))(Y (w)− Ȳ (w))−Dh(Ȳ (v))(Y (v)− Ȳ (v))
∥∥∥

op

≤
∥∥∥(Dh(Ȳ (w)−Dh(Ȳ (v)))(Y (w)− Ȳ (w))

∥∥∥
op

+
∥∥∥Dh(Ȳ (v))(Y (w)− Ȳ (w)− Y (v) + Ȳ (v))

∥∥∥
op

≤K
∥∥∥Ȳ (w)− Ȳ (v)

∥∥∥
∞

∥∥∥Y (w)− Ȳ (w)
∥∥∥
∞

+K
∥∥∥Y (w)− Ȳ (w)− Y (v) + Ȳ (v)

∥∥∥
∞
.

By (2.5) and (2.9),

E
[
‖Y (w)− Ȳ (w)‖p∞

]
≤K∆tp/2,

E
[
‖DȲ ‖pop

]
≤K.

and by Lemma 4.3

E
[
‖Y (w)− Ȳ (w)− Y (v) + Ȳ (v)‖2∞

]
≤ K∆t‖w − v‖2∞.

Hence,

E
[∥∥∥Dh(Ȳ (w))(Y (w)− Ȳ (w))−Dh(Ȳ (v))(Y (v)− Ȳ (v))

∥∥∥2

op

]
≤K‖w − v‖2∞∆t

or

|a(w)− a(v)| ≤ K∆t1/2E
[
‖∆s‖2Rd

]1/2
‖w − v‖∞.

Let z̄ =
[
xp,E

[
xp+∆t|Fp

]]
, which is independent of ∆p, so that

E
[
〈∆p, a(z)〉

]
=E
[
〈∆p, a(z)− a(z̄)〉

]
.

By (2.6),

E‖z̄ − z‖p∞ ≤ K∆tp/2

and

E‖a(z)− a(z̄)‖2Rm ≤K∆tE
[
‖∆s‖2Rm

]
E‖z − z̄‖2∞

≤K∆t2E
[
‖∆s‖2Rm

]
.

so that

E
[
〈∆p, a(z)〉

]
≤E
[
‖∆p‖Rm ‖a(z)− a(z̄)‖Rm

]
≤
[
E‖∆p‖2Rm E

[
‖a(z)− a(z̄)‖2Rm

]]1/2
≤K∆tE

[
‖∆p‖2Rm

]1/2
E
[
‖∆s‖2Rm

]1/2
.
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Putting everything together, as ∆p is Fp+h measurable,

E
[
〈∆p, h(xp, xr, xs, xs+∆t)∆s〉

]
= E

[ 〈
∆p,E

[
h(y)∆s|Fp+∆t

]〉 ]
and the right hand side

E
[ 〈

∆p,E
[
h(y)∆s|Fp+∆t

]〉 ]
=E
[
〈∆p, a(z)〉+

〈
∆p,E

[
Rh∆s|Fp+∆t

]〉 ]
≤K∆tE

[
‖∆p‖2Rm

]1/2
E
[
‖∆s‖2Rm

]1/2
+
(
E
[
‖∆p‖2Rm

]
E
[
‖Rh∆s‖2Rm

])1/2

≤K∆tE
[
‖∆p‖2Rm

]1/2
E
[
‖∆s‖2Rm

]1/2
+K∆t

(
E
[
‖∆p‖2Rm

]
E
[
‖∆s‖4Rm

])1/4

.

The inequality (4.3) follows as
(
E‖∆‖2Rm

)2 ≤ E‖∆‖4Rm .
To complete the proof, recall that for mean zero Gaussian random variables the

fourth moment is proportional to the second moment squared.
The final theorem says that under the assumption of discrete delays, Assump-

tion 4.2, we can show that Q(n) has O(n) members and hence that Milstein method
converges in mean square with order one.

Theorem 4.5. Suppose that Assumption 4.2 holds. If ∆t ≤ τ2 then Assump-
tion 4.1 holds where Q(n) has O(n) members. In particular, the error estimate (4.2)
holds and the Milstein method converges with one.

Proof. With ∆(s, t) =
∫ t
s
I(s, r) dr,

RX(ti) =
J∑
a=1

∂af(xti)g(xti−τa
)∆(ti − τa, ti+1 − τa)

and for ti < tj

E
[
〈RX(ti), RX(tj)〉

]
=

J∑
a,b=1

E
[〈
∂af(xti)g(xti−τa

)∆(ti − τa, ti+1 − τa),

∂bf(xtj )g(xtj−τb
)∆(tj − τb, tj+1 − τb)

〉]
=

J∑
a,b=1

E
[〈

Υ∆(ti − τa, ti+1 − τa),∆(tj − τb, tj+1 − τb)
〉]
,

where we treat Υ in the following cases
1. for ti − τa ≤ ti ≤ ti+1 − τa ≤ tj − τb ≤ tj
2. for ti+1 − τa ≤ ti ≤ tj − τb ≤ tj
3. for ti+1 − τa ≤ tj − τb ≤ tj and ti ≥ tj − τb
4. for tj+1 − τb ≤ ti − τa ≤ ti < tj
5. ti − τa ≤ tj+1 − τb and tj − τb ≤ ti+1 − τa.

The last case only occurs for O(n) pairs (i, j). For the first four cases, we give
definitions of Υ such that Lemma 4.4 applies.
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1. As ∆t < τ2, it must be that τa = τ1 = 0 and hence ti < ti+1 ≤ tj − τb ≤ tj .

Υ =ha,b(xti , xtj−τb
, xtj−τb

, xtj+1−τb
)

=E
[
g(xti)

T∂af(xti)
T∂bf(xtj )g(xtj−τb

)|Ftj+1−τb

]
ha,b(η1, η2, η3, η4) =E

[
g(η1)T∂af(η1)T∂bf(xtj (tj+1 − τb, η4))g(η3))

]
for τb ≥ ∆t and

ha,b(η1, η2, η3, η4) = E
[
g(η1)T∂af(η1)T∂bf(η3)g(η3)

]
for τb = 0 (the second argument is included to make h have four arguments).
By Corollary 2.4, ha,b ∈ C2(C×· · ·×C,Rm×m) and Lemma 4.4 applies with
p = ti, r = tj − τb, s = tj − τb.

2. for ti+1 − τa ≤ ti ≤ tj − τb,

Υ =ha,b(xti−τa
, xti , xtj−τb

, xtj+1−τb
)

=E
[
g(xti−τa

)T∂af(xti)
T∂bf(xtj )g(xtj−τb

)|Ftj+1−τb

]
ha,b =E

[
g(η1)T∂af(η2)T∂bf(xtj (tj+1 − τb, η4))g(η3)

]
for τb ≥ ∆t and

ha,b = E
[
g(η1)T∂af(η2)T∂bf(η3)g(η3)

]
for τb = 0. Lemma 4.4 applies with p = ti − τa, r = ti, s = tj − τb.

3. for ti+1 − τa ≤ tj − τb ≤ tj and ti ≥ tj − τb

Υ =ha,b(xti−τa , xti+1−τa , xtj−τb
, xtj+1−τb

),

=E
[
g(xti−τa

)T∂af(xti)
T∂bf(xtj )g(xtj−τb

)|Ftj+1−τb

]
ha,b =E

[
g(η1)T∂af(xti(xtj+1−τb

, η4))T∂bf(xtj (tj+1−τb
, η4))g(η3)

]
for τb ≥ ∆t and

ha,b = E
[
g(η1)T∂af(xti(xtj+1−τb

, η4))T∂bf(η3)g(η3)
]

for τb = 0 (the second argument is included to make h have four arguments).
Lemma 4.4 applies with p = ti − τa, r = ti+1 − τa, s = tj − τb.

4. for tj+1 − τb ≤ ti − τa < ti < tj

Υ =ha,b(xtj−τb
, xtj+1−τb

, xti−τa
, xti+1−τa

)

=E
[
g(xti−τa

)T∂af(xti)
T∂bf(xtj )g(xtj−τb

)|Fti+1−τa

]
.

ha,b =E
[
g(η3)T∂af(xti(ti+1 − τa, η4))T∂bf(xtj (ti+1 − τa, η4))g(η1)

]
for τa ≥ ∆t and

ha,b = E
[
g(η3)T∂af(η3)T∂bf(xtj (ti+1 − τa, η4))g(η1)

]
.

for τa = 0. Lemma 4.4 applies with p = tj − τb, r = tj+1 − τb, s = ti − τa.
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If tj − τa 6= ti − τb for any a, b = 1, . . . , J , Lemma 4.4 applies with ∆p = I(p, p+ ∆t)
and ∆s = I(s, s+ ∆t). Because ∆p,∆s are N(0, σ2I) with

σ2 =
∫ ∆t

0

∫ ∆t

0

E[β1(r)β1(s)] dr ds ≤ ∆t3,

we find

E
[
〈RX(ti), RX(tj)〉

]
≤ K∆t4.

Hence Q(n) has O(n) members and Theorem 4.2 applies to complete the proof.
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