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Numerical Modelling of Eulerian Two-Phase Gas-Solid
Flow

Justin Hudson ∗ David Harris†

Abstract

This paper investigates the numerical solution of the equations governing two-
phase flow of a solid granular material dispersed in a gas. We consider two different
models in both of which the dispersed and continuous phases are treated as continua.
An Eulerian description of the flow is adopted. Four different formulations of the two
models are derived and a high resolution scheme is presented to obtain numerical
solutions of the equations in each of the formulations. We investigate whether the
chosen numerical scheme is suitable for the equations governing the models and
use the numerical results to obtain quantitative and qualitative insight into the
predictions of each of the models. Three test cases, new to the literature, are
considered, and the numerical results compared.

1 Introduction

Many industrial and engineering processes involve the flow of several intermingled phases
(solid, liquid and gaseous) and/or chemical species. In particular, chemical engineers have
been much involved with the development of models of multi-phase flow and their appli-
cation. For example, flow in hoppers and risers, the separation and mixing of chemicals,
various processes that occur in nuclear reactors and coal combustion are just a few of the
areas where chemical engineering research into multi-phase systems plays an important
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role in industry. For many industrial applications it is crucial to both model the process
realistically and to obtain accurate approximations to the solutions of initial and bound-
ary value problems arising from the process and the model, in order that the process
runs efficiently, that costs are reduced and that plant and process are able to operate
safely. The special case of two-phase flow is the most well developed theoretically and
has numerous practical applications that are crucial to industry and which may involve
any combination such as liquid-gas, gas-gas etc. In this paper we are concerned with one
particular combination, namely a gas-solid two phase system in which the solid phase is
a granular material (by which is meant that the solid phase material is finely sub-divided
into small separate grains in such a way that the volume of each grain is small in com-
parison to the total volume of solid) which has been dispersed in a gaseous phase. We
shall refer to the gas as the continuous phase, the solid as the dispersed phase. Once
dispersed the system will only remain so, at least in a terrestrial environment, if energy is
continually input into the system to maintain the dispersion. This is effectively done by
ensuring that the gas always flows and then momentum is consequently transferred from
the gaseous to the solids phase by their mechanical interaction.

With regard to the flow of granular materials there are three different approaches that
are commonly made to their modelling, discrete methods (for example, using particle or
rigid body dynamics), statistical mechanics (which generalises the theory of dense gases to
include the inelastic collisions between grains) and continuum mechanics (where both solid
and fluid mechanics are applicable to granular materials, depending upon the deformation
or flow regime). Two points here are worthy of mention. Firstly, for the gas-solid systems
of the type considered here, the methods of fluid mechanics are appropriate, the dispersed
solids phase being modelled, effectively, as a type of fluid. Secondly, a hallmark of multi-
phase flow is the use of hybrid models that utilise two or more of the above approaches.
For example, while the gas phase is modelled as a continuum, there are essentially two
ways of incorporating the solids phase into the model, namely, a discrete (Lagrangian) or
continuum (Eulerian) approach. The Lagrangian method models, and keeps track of, each
particle individually, whilst the Eulerian method treats averaged bulk properties of the
solids phase in terms of an equivalent fluid flow. In either case, the system of equations
are sufficiently complicated to prevent analytical solutions being found in all but the most
trivial cases and recourse must be had to numerical methods to obtain approximations to
solutions of the equations. However, due to the complexity of the models, this also is a
non-trivial task and the solution of problems of relevance to industry required the advent
of adequate computing power. As computing power increases it is to be expected that
numerical approximations to more and more complex problems of interest to industry will
become feasible and the present paper is intended as a significant contribution towards
this process by analysing methods of numerical approximation in the context of models
which, on the one hand are sufficiently simple to enable progress to be made on their
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numerical analysis and on the other hand form a sufficiently adequate basis for this type
of two-phase flow.

We consider an Eulerian formulation of two-phase gas-solid flow in which both phases are
treated as a continuum. The basic balance equations governing the model were established
in the 1960s (see Jackson [15]). However, the constitutive equations are still in a state of
development and this is an active area of research. We will not go further here into this
aspect of the problem, although one paper and book of particular interest that we may
cite is Jackson [16, 17]. There is an extensive literature devoted to two-phase flow in the
context of problems arising in chemical engineering and an excellent introduction to the
subject is provided by the monograph by Gidaspow [10].

In the early 1980’s there was a significant development in the mechanics of granular ma-
terials by J.T. Jenkins and co-workers when an extension to the Kinetic Theory of dense
gases to include granular materials was effected by taking into account the energy loss
during collisions. There is an extensive literature, see, for example, Jenkins & Savage [18],
Savage & Jeffrey [29] and Lun et al. [23]. One very interesting development in the chemical
engineering context has been the application of this theory by its inclusion in models of
gas-solid two-phase flow. The advantage of using the kinetic theory is that it enables cer-
tain material properties associated with the dispersed phase which are difficult to measure
experimentally, for example the solids phase viscosity, to be calculated from the theory.
Use of the kinetic theory of granular flow, however, introduces a new mechanical quantity,
usually called, somewhat confusingly and inappropriately, the granular temperature, to-
gether with an energy equation containing this new quantity. It must be understood that
although the name granular temperature is used in analogy with the usual word temper-
ature, it is a mechanical quantity and not a thermodynamic quantity and is nothing to
do with heat content. A major purpose of the present paper is to investigate numerically
the granular temperature equation.

Another major purpose is that even though there has been a thorough investigation
into Eulerian two-phase flow, modern numerical techniques have yet to be applied to
such models. For example, high resolution schemes increase the accuracy of the results
but can be difficult to implement into certain models, especially if the equations are
inhomogeneous, as they are for two-phase flow. Thus, we analyse here two models that
are well documented in the literature and obtain numerical solutions by implementing a
high resolution scheme. The models are sometimes referred to in the literature as Model
A and Model B. Model A originates with the work of Jackson [15], and for further details,
see also Ding & Gidaspow [4] and Boemer et al. [2]. Model A has been stated to be
ill-posed, see Lyczkowski et al. [25] and Stewart & Wendroff [30], due to the physical
wave speeds being complex. Model B was developed by Rudinger & Chang [28], which is
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extended by Lyczkowski [24] (see also Gidaspow [10] and Boemer et al. [2]). Model B is
well-posed, but the model is not as physically well based as Model A and the results of
the two models can differ for certain test problems, see Boemer et al. [2].

In the next section we present and briefly discuss the basic equations of the two models
which we shall use to model two-phase gas-solid flow. In Section 4 we present four formu-
lations of these models and in Section 5, we present a high resolution scheme discussed
by Hubbard & Garcia-Navarro [12] and Hudson [14], which is based on Roe’s scheme [26],
to obtain numerical approximations of the different formulations. The formulations are
then compared in Section 6 for a variety of test cases to determine which approach is the
most accurate. Our conclusions are presented in Section 7.

2 Mathematical Formulation

In order to develop our numerical scheme we shall consider a time varying flow in one
space dimension of a two-phase gas-solid mixture, the typical application here being flow
in a pipe, the lateral dimension of which is small in comparison to its length. It should
be noted that the grain size must also be reasonably small in comparison with the lateral
dimension. We shall assume that both the continuous gas phase and the dispersed solids
phase may be represented by separate interpenetrating continua at each point of space
occupied by the mixture. Of course, in the real system each point in space is occupied
solely by either gas or solid, but in the model, each point x possesses the attributes of
both solid and fluid material. In a sense the material has been smeared out, or averaged,
throughout space, but continuum models are phenomenological and no attempt is made
to define or calculate the spatial averages explicitly. Having said that, the model uses
some concepts from statistical mechanics, and these, of course, are based upon ensemble
averages. In this sense, the model here is a hybrid of the continuum and statistical
approaches.

We shall take the pipe to lie along a portion OP of the real axis and take a coordinate
system Ox, with the origin O coinciding with the left hand end of the pipe, and the
positive x-direction pointing towards P . At each point x of OP the following quantities
are defined. Let ug, us denote the Eulerian velocity components (in the x-direction)
of the gas and solid phases, respectively, ρg, ρs the density of the gas and grains. In
the real mixture, let V denote the volume of a representative volume (i.e. a volume
containing a representative mixture of gas and grain), Vg and Vs denote the portions of
this representative volume occupied by gas and grains respectively, then the gas volume
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fraction and solids volume fraction are defined by

Vg

V
and

Vs

V
(2.1)

respectively. It is a fundamental assumption of the continuum model, that there exist two
functions εg and εs, which we shall call the gas and solids volume fractions, respectively
and which satisfy the following properties

0 ≤ εg ≤ 1, 0 ≤ εs ≤ 1 and εg + εs = 1. (2.2)

Finally, let Ts denote the so-called granular temperature of the solids phase. The physical
interpretation of Ts is that it is the square of the deviation of the individual grains velocity
from the mean grain velocity.

2.1 The Model Equations

The conservation laws governing the model have been derived many times in the literature,
we may cite for example Jackson [16, 17]. The conservation of mass for each phase gives
rise to the following pair of continuity equations and are the same for both models A and
B:

∂

∂t
(εgρg) +

∂

∂x
(εgρgug) = 0 (2.3)

and
∂

∂t
(εsρs) +

∂

∂x
(εsρsus) = 0. (2.4)

On the other hand, the balance of linear momentum equations differ between models A
and B. The exact form of the conservation of linear momentum depends upon the choice
of constitutive equation and also upon the choice of interaction laws between the two
phases. We wish to make simple but representative choices. Two commonly used forms
for the interaction force between the two phases are Stokes’ law, for laminar flow and
moderate relative velocities which is linear in the phase velocity difference ug − us and
Newton’s law, for turbulent flow and which is quadratic in ug−us. The precise form that
we shall use is given by the expression

β =
CD

ds

εgεsρg(ug − us), (2.5)

where CD is a dimensionless parameter. Thus, viscosity is taken into account via the
interphase drag force. However, we shall omit viscosity from the constitutive equation
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and assume the gas phase to behave as an inviscid, compressible fluid obeying the perfect
gas law

pg(ρg) = Cpρ
γ
g . (2.6)

Thus the stress tensor is diagonal and the balance of linear momentum for the gas phase
for model A may be written

∂

∂t
(εgρgug) +

∂

∂x
(εgρgu

2
g) + εg

∂pg

∂x
= −β(ug − us) (2.7)

while the balance of linear momentum for the solids phase for model A may be written

∂

∂t
(εsρsus) +

∂

∂x
(εsρsu

2
s + ps) + εs

∂pg

∂x
= β(ug − us). (2.8)

where, in this paper, for both models, the solids pressure is assumed to satisfy the following
law, which is analogous to the perfect gas law,

ps(εs, Ts) = εsρsTs (2.9)

It should be emphasised that this law is the simplest one possible and we choose it so
we may clearly illustrate the numerical techniques used to approximate both models. It
is, effectively, the first term of an expression for the solids pressure ps obtained from the
kinetic theory of granular materials. A more accurate law would incorporate both energy
dissipation and also a non-trivial radial distribution function. It should be noted that the
numerical techniques discussed in this paper may be modified to include this extra term
and work is currently in progress to do this.

For model B the linear momentum equations are

∂

∂t
(εgρgug) +

∂

∂x
(εgρgu

2
g + pg) = −β(ug − us) (2.10)

and
∂

∂t
εsρsus) +

∂

∂x
(εsρsu

2
s + ps) = β(ug − us) (2.11)

for the gas and solids phases, respectively. Finally, the granular temperature equation,
which is an energy equation, is

∂

∂t
(εsρsTs) +

∂

∂x
(εsρsusTs) = −2

3

(
ps

∂us

∂x
+ 3βTs

)
(2.12)

We shall take the solids density ρs to be a constant. This is both an accurate approx-
imation and the simplest way to close the models. Note that, however, the gas density
ρg is not assumed to be constant. The governing equations for both models are conve-
niently summarised in Table 2.1, where a subscript k = g (k = s) denotes the gas phase
(solids phase). Also, the physical quantities appearing in the models are summarised in
Table 2.2.
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Mass (A and B) (εkρk)t + (εkρkuk)x = 0

Momentum (A gas) (εgρgug)t + (εgρgu
2
g)x + εg(pg)x = −βA(ug − us)

Momentum (A solid) (εsρsus)t + (εsρsu
2
s + ps)x + εs(pg)x = β(ug − us)

Momentum (B gas) (εgρgug)t + (εgρgu
2
g + pg)x = −β(ug − us)

Momentum (B solid) (εsρsus)t + (εsρsu
2
s + ps)x = β(ug − us)

Granular Temperature (A and B) (εsρsTs)t + (εsρsusTs)x = −2
3
(ps(us)x + 3βTs)

Gas Pressure pg(ρg) = Cpρ
γ
g

Solids Pressure ps(εs, Ts) = εsρsTs

Drag Force β = CD

ds
εgεsρg(ug − us)

Gas Phase Sound Speed cg =
√

∂pg

∂ρg
=

√
Cpγργ−1

g

Solids Phase Propagation Velocity cs =
√

∂ps

∂εs
=
√

ρsTs

Sum of Volume Fractions εg + εs = 1

Table 2.1: Summary of Equations for Models A and B

Name Symbol Units

Density ρk(x, t) kg/m3

Velocity uk(x, t) m/s

Temperature Ts(x, t) m2/s2

Volume Fraction εk(x, t) none

Gravity g m/s2

Gas Pressure pg(ρg) kg/(ms2)

Solids Pressure ps(εs, Ts) kg/(ms2)

Drag Force β kg/(m3s)

Solids Particle Diameter ds m

Table 2.2: Physical Quantities Occurring in Models A and B
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2.2 Gas and Solids Data

We consider the case of glass beads being transported by air and take a solids density
of ρs = 2660 kg/m3 and particle diameter ds = 0.005 m. For the gas phase, data corre-
sponding to air at room temperature (20◦C) with atmospheric pressure (100.0437 kPa),
density ρg = 1.2885 kg/m3 and viscosity µg = 1.58 × 10−7 Pa.s are taken. Also γg = 1.4
and Cp = 75916.16 m3.2/(kg0.4s2).

Since the gas flow is at moderate velocities and room temperature it is physically appro-
priate to assume an isentropic gas flow. Thus, shocks in the gas phase are not permissible.
However, two-phase flows have a richer shock structure than single-phase and there are
shocks involving the solids phase which, for the gas phase only involve discontinuities in
εg and ug, while ρg remains continuous. Such shocks do not violate the assumption of
constant entropy. Perturbations in the gas phase evolve on a considerably faster time
scale than those of the solids phase, since |λg| À |λs|, so shocks due to the solids phase
propagate slowly in comparison with the gas speed of sound.

3 Hyperbolicity

In this section we consider whether each model is hyperbolic for the regime under investi-
gation, both for the suitability of the scheme and for the implementation of the initial and
boundary conditions for the test cases. We intend to solve the equations only in regimes
where the equations are hyperbolic and need to investigate when this is the case.

A system of partial differential equations is hyperbolic if the physical wave speeds (ob-
tained from the canonical form) of the system are all real and there exists a complete set
of linearly independent eigenvectors, see LeVeque [21]. A full set of linearly independent
eigenvectors can be found for both models thus, we must ensure that the wave speeds are
all real.
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3.1 Model A

We can rewrite the system of equations for Model A in canonical form




ρg

ug

εs

us

Ts




t

+




ug ρg
ρg

εg
(us − ug)

ρgεs

εg
0

c2g
ρg

ug 0 0 0

0 0 us εs 0
c2g
ρs

0 Ts

εs
us 1

0 0 0 2
3
Ts us







ρg

ug

εs

us

Ts




x

=




0

− β
εgρg

(ug − us)

0
β

ρsεs
(ug − us)

−2βTs

ρsεs




,

where

c2
g =

∂pg

∂ρg

= Cpγgρ
γg−1
g .

For this system, the characteristic equation is

(λ− us)Q(λ) = 0,

where Q(λ) is the quartic,

Q(λ) = a4λ
4 + a3λ

3 + a2λ
2 + a1λ + a0,

whose components are

a4 = 3ρsεg, a3 = −6ρsεg(ug + us),

a2 = −3c2
g(εgρs + εsρg)− 5ρsεgTs + 3ρsεg(u

2
s + u2

g + 4ugus),

a1 = 6c2
g(εgρsus + εsρgug) + 10ρsεgugTs − 6ρsεgugus(us + ug)

and
a0 = −3c2

g(εgρsu
2
s + εsρgu

2
g) + 3ρsεgu

2
gu

2
s + 5ρsTsεg(c

2
g − u2

g).

Thus, one root is always real and the other four are determined by solving the quartic. The
roots of the quartic for the model in general have not been found analytically. Thus, we
use Matlab to determine the roots numerically. We use the constant values in Section 2.2
and then solve the quartic for a variety of values of the remaining variables appearing
in the coefficients ak. The Matlab program calculates the values of ak, calculates the
roots numerically using the built in command c=roots(ak) and determines if any root is
complex by using the command image(c), with image(c) 6= 0 if a root is complex.

Figures 3.1 and 3.2 illustrate various contour plots for certain fixed values of εs, ρg and Ts

to show combinations of values resulting in complex roots. The coefficients of the quartic
may readily be re-written in terms of ug − us and ug + us and from Figure 3.1, we can
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Figure 3.1: Hyperbolicity of Model A for different velocities.

see that ug −us plays an important role. The graph shows two regions of real roots, both
dependent on ug − us. The region of real roots for small relative velocities (R1) increases
in width as Ts is increased whereas the real region of real roots for large relative velocities
(R2) is slightly reduced. Moreover, as εs is increased, both regions R1 and R2 decrease
in width. Changing the gas density also has an impact on the region of real roots and
reduces the width of both regions R1 and R2. This behaviour is verified by Figure 3.2.
Thus, Model A is hyperbolic for a restricted set of values of the quantities appearing in
the coefficients.

The results show that fixed values of ug−us = C, where C is a constant, produces identical
regions of real roots, regardless of the individual values of ug and us. Setting one velocity
equal to zero simplifies the analysis and Figure 3.3 illustrates the graph of the quartic for
different relative velocities with one of the velocities equal to zero. From the results, we
can see that the real region R1 is created by a maximum, which appears at λ ≈ us, and is
destroyed when the value of the quartic is less than zero for the position of this maximum,
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Figure 3.2: Hyperbolicity of Model A for ug = 0

i.e. Q(us) < 0. By letting us = 0, we see the maximum remains approximately at the
origin for small relative velocities. Thus, by assuming the position of the maximum is at
λ = us and by letting us = 0, we obtain the following inequality

−3c2
gεsρgu

2
g + 5ρsTsεg(c

2
g − u2

g) > 0,

which determines whether or not the region of real roots R1 exists. A similar inequality
in terms of us can be obtained by setting ug = 0. Thus, since the region of real roots is
unaltered for the same relative velocities, we obtain a more general inequality

(ug − us)
2 <

5ρsTsεgc
2
g

3c2
gεsρg + 5ρsTsεg

to determine the maximum value of relative velocities allowed for the real region R1.
When compared to the position of the maximum computed by Matlab using Q(λ) = 0,
in every run performed the inequality gave a good indication of the true value, and, in
every case, correctly predicted the existence of real roots.
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Figure 3.3: Analysis of the quartic for Model A with Ts = 0.001, ρg = 1.2885 and εs = 0.1.

In conclusion, for Model A there exists a small region of real roots when the relative
velocity is sufficiently small. It is known that the original model of Jackson [15] for
inviscid flow, i.e. ps = 0, is not hyperbolic for small relative velocities, see Lyczkowski et
al. [25], Drew [5] and Stewart & Wendroff [30]. However, by including the solids pressure
term in the solids phase, a new region of real roots for small relative velocities is created.
Moreover, for the model presented here, ps = 0 only if either εs = 0 or Ts = 0. If there is
a region of pure gas, i.e. εs = 0, the quartic has four real roots. When Ts = 0, two of the
roots of the quartic are complex for small relative velocities, but the model is not valid
in this limit, since then there are no velocity fluctuations and hence no collisions between
grains.
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3.2 Model B

We can rewrite the system of equations for Model B in canonical form




ρg

ug

εs

us

Ts




t

+




ug ρg
ρg

εg
(us − ug)

ρgεs

εg
0

c2g
εgρg

ug 0 0 0

0 0 us εs 0
0 0 Ts

εs
us 1

0 0 0 2
3
Ts us







ρg

ug

εs

us

Ts




x

=




0

− β
εgρg

(ug − us)

0
β

ρsεs
(ug − us)

−2βTs

ρsεs




,

where

c2
g =

∂pg

∂ρg

= Cpγgρ
γg−1
g ,

from which the wave speeds can easily be obtained,

λ1,2 = ug ± cg

√
ε−1
g , λ3 = us and λ4,5 = us ± 1

3

√
15Ts.

Hence, Model B is hyperbolic since there are 5 real and distinct eigenvalues. Moreover,
two of the roots are associated with the gas-phase (λ1,2) and three with the solids-phase
(λ3,4,5).

4 Formulations of Models A and B

In order to help maximise the accuracy of the high resolution scheme which is presented
in Section 5, we present four different formulations of the models, two of which are based
on Model A and the other two on Model B. Each is written in conservative variable
form to ensure that shocks propagate at the correct speed and comprises a system of
inhomogeneous conservation laws which may be written as

wt + F(w)x = R + S, (4.1)

where F(w) denotes the flux-function, R denotes the inhomogeneous terms which contain
spatial derivatives of the dependent variables and S denotes the remaining inhomogeneous
terms without such derivatives. The inhomogeneous terms are split in this manner to aid
the numerical discretisation presented in the next section.
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4.1 Formulation AS

The first formulation of Model A gives rise to a system of equations which will be called AS
and involves writing the gas pressure gradient term in the gas-phase equation of motion in
an alternative way. Now, from equations (2.7), (2.8), the equations of motion for Model
A contain the spatial derivative of the gas pressure multiplied by a volume fraction. From
a numerical perspective, it is desirable to have the homogeneous part of the gas phase
equations as similar in form as possible to the standard Euler equations. This is mainly
due to the Jacobian matrix of the system, as written in equations (2.7), (2.8), possessing
repeated roots, and this may cause difficulties in approximating the system. Hence, we
rewrite the gas pressure term as

εg(pg)x = (pg)x − εs(pg)x,

thus obtaining



εgρg

εgρgug

εs

εsus

εsTs




t

+




εgρgug

εgρgu
2
g + pg

εsus

εsu
2
s + εsTs

εsusTs




x

=




0
εs(pg)x

0
−ρ−1

s εs(pg)x

−2
3
εsTs(us)x




+




0
−β(ug − us)

0
ρ−1

s β(ug − us)
−2ρ−1

s βTs




, (4.2)

with Jacobian matrix

J =




0 1 0 0 0
ε−1
g c2

g − u2
g 2ug ρgε

−1
g c2

g 0 0
0 0 0 1 0
0 0 −u2

s 2us 1
0 0 −usTs Ts us




.

4.2 Formulation AP

The second formulation of Model A gives rise to a system of equations which will be called
AP, and the purpose of this reformulation is to write the work-rate term in the granular
temperature equation (2.12) in an alternative way. The inhomogeneous term −ps(us)x

present on the right-hand side of the granular temperature equation is an important term
and, thus, it may create difficulties in numerically approximating the equations. To try
to resolve this difficulty, we use the product rule to re-write this term,

−2

3
εsTs(us)x = −2

3
(εsusTs)x +

2

3
us(εsTs)x,
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and include part of it in the flux-function. The purpose of this is to obtain a less significant
inhomogeneous term on the right hand side. By using this approach, we obtain




εgρg

εgρgug

εs

εsus

εsTs




t

+




εgρgug

εgρgu
2
g + pg

εsus

εsu
2
s + εsTs

5
3
εsusTs




x

=




0
εs(pg)x

0
−ρ−1

s εs(pg)x
2
3
us(εsTs)x




+




0
−β(ug − us)

0
ρ−1

s β(ug − us)
−2ρ−1

s βTs




, (4.3)

with Jacobian matrix

J =




0 1 0 0 0
ε−1
g c2

g − u2
g 2ug ρgε

−1
g c2

g 0 0
0 0 0 1 0
0 0 −u2

s 2us 1
0 0 −5

3
usTs

5
3
Ts

5
3
us




.

4.3 Formulation BS

Turning now to Model B, there is no need to re-write the pressure gradient term in the
gas-phase equation of motion, and the most straightforward way to formulate the model,
system BS, is to write the equations (2.3), (2.4), (2.10), (2.11) and (2.12) as,




εgρg

εgρgug

εs

εsus

εsTs




t

+




εgρgug

εgρgu
2
g + pg

εsus

εsu
2
s + εsTs

εsusTs




x

=




0
0
0
0

−2
3
εsTs(us)x




+




0
−β(ug − us)

0
ρ−1

s β(ug − us)
−2ρ−1

s βTs




, (4.4)

with Jacobian matrix identical to that of Formulation AS.

4.4 Formulation BP

The second formulation for Model B gives rise to the following system of equations BP.
As with system AP for Model A, we re-write the important term present in the granular
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temperature equation by using the product rule, thus obtaining



εgρg

εgρgug

εs

εsus

εsTs




t

+




εgρgug

εgρgu
2
g + pg

εsus

εsu
2
s + εsTs

5
3
εsusTs




x

=




0
0
0
0

2
3
us(εsTs)x




+




0
−β(ug − us)

0
ρ−1

s β(ug − us)
−2ρ−1

s βTs




, (4.5)

with Jacobian matrix identical to that of the system AP.

We emphasise the point made above that the inhomogeneous term, −ps(us)x, on the right
hand side of the granular temperature equation (2.12) plays an important role in both the
evolution and the steady state values of the granular temperature. Moreover, this term
can create difficulties for numerical schemes that do not approximate the inhomogeneous
terms with sufficient accuracy. Thus, it is of great importance that the inhomogeneous
terms are discretised appropriately with the understanding that they play a significant
role in the solution of the equations. Notice that Model A has more inhomogeneous terms
than Model B and as a consequence we may anticipate that Model A will be more difficult
to numerically approximate than Model B.

Having obtained four closely related systems of equations in conservation form, in the
next section we investigate how to obtain accurate numerical approximations to these
systems.

5 High Resolution Scheme

We propose a numerical scheme to approximate the different system discussed in the pre-
vious section. The scheme is chosen to be second order accurate away from discontinuities
and minimises the dispersion present in second order schemes by adding dissipation in
the neighbourhood of a discontinuity, i.e. we choose a high resolution scheme [11]. Since
the system under investigation is inhomogeneous, the high resolution scheme must be
capable of successfully incorporating the inhomogeneous terms. Inhomogeneous terms
are renowned for creating numerical difficulties, see for example LeVeque & Yee [22], with
numerous techniques being developed to try and resolve them, see Gascon & Corberan [7],
LeVeque [20] and Bermúdez & Vázquez [1].

We use a high resolution scheme discussed by Hubbard & Garcia-Navarro [12], which is
based on Roe’s scheme [26]. We consider two different methods of approximating the
inhomogeneous terms: a pointwise method and an upwind method. The upwind method
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Roe Averages

ũg =

√
(εgρg)L(ug)L+

√
(εgρg)R(ug)R√

(εgρg)L+
√

(εgρg)R

ε̃g = 1
2
((εg)R + (εg)L) p̃g = 1

2
((pg)R + (pg)L)

T̃s =

√
(εs)L(Ts)L+

√
(εs)R(Ts)R√

(εs)L+
√

(εs)R

ε̃s = 1
2
((εs)R + (εs)L) c̃g =

{ √
∆pg

∆ρg
if ∆ρg 6= 0

cg(ρg) otherwise

ũs =

√
(εs)L(us)L+

√
(εs)R(us)R√

(εs)L+
√

(εs)R

ρ̃g = 1
2
((ρg)R + (ρg)L) d̃k =

ũ2
g ε̃g−c̃2g−(2ũg−λ̃k)ε̃gλ̃k

ρ̃g c̃2g

Eigenvalues

λ̃S
1,2 = ũg ∓ c̃g

√
ε̃−1
g , λ̃S

3 = ũs and λ̃S
4,5 = ũs ∓

√
T̃s

λ̃P
1,2 = ũg ∓ c̃g

√
ε̃−1
g , λ̃P

3 = ũs and λ̃P
4,5 = 4

3
ũs ∓ 1

3

√
ũ2

s + 15T̃s

Eigenvectors

ẽ1,2 =




1

λ̃1,2

0
0
0




ẽ3 =




1
ũs

d̃3

ũsd̃3

0




ẽ4,5 =




1

λ̃4,5

d̃4,5

λ̃4,5d̃4,5

(λ̃4,5 − ũs)
2d̃4,5




Wave Strengths

α̃3,4,5
k = (λ̃aλ̃b−ũ2

s)∆εs−(λ̃a+λ̃b−2ũs)∆(εsus)+∆(εsTs)

d̃k(λ̃k−λ̃a)(λ̃k−λ̃b)
where a 6= k 6= b

α̃1,2 = ∓ λ̃3α̃3+λ̃4α̃4+λ̃5α̃5−(α̃3+α̃4+α̃5−∆(εgρg))λ̃2,1−∆(εgρgug)

λ̃1−λ̃2

Inhomogeneous Terms

β̃3,4,5
k = (2ũs−λ̃a−λ̃b)r̃4+r̃5

d̃k(λ̃k−λ̃a)(λ̃k−λ̃b)
(k 6= a 6= b) β̃1,2 = ∓ λ̃3β̃3+λ̃4β̃4+λ̃5β̃5−(β̃3+β̃4+β̃5)λ̃2,1−r̃2

λ̃1−λ̃2

Model A r̃2 = ε̃s∆pg, r̃4 = − ε̃s

ρs
∆pg, r̃S

5 = −2
3
ε̃sT̃s∆us and r̃P

5 = 2
3
ũs∆(εsTs)

Model B r̃2 = 0, r̃4 = 0, r̃S
5 = −2

3
ε̃sT̃s∆us and r̃P

5 = 2
3
ũs∆(εsTs)

Table 5.1: Roe Average Values (superscripts denote formulation)
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applies flux-limiters, see Sweby [31], to the inhomogeneous terms as well as the flux-
function to ensure a balance occurs between the terms for steady state problems (known
as the C-property [1], see Appendix B). Both methods have been widely used for the
shallow water equations and Euler’s equations with varying degrees of success. We adapt
the scheme for the Eulerian gas-solid two-phase flow models considered here. The scheme
consists of

wn+1
i = wn

i − s(F∗
i+ 1

2
− F∗

i− 1
2
) + sR∗

i + ∆tSn
i , (5.1)

with numerical flux-function

F∗
i+ 1

2
=

1

2
(Fn

i+1 + Fn
i )− 1

2

5∑

k=1

[
α̃k|λ̃k|(1− Φ(θ̃k)(1− |ν̃k|))ẽk

]
i+ 1

2

.

The inhomogeneous terms not containing first order derivatives, S, are approximated
using a pointwise approach,

Sn
i =




0
−β(ug − us)

0
β
ρs

(ug − us)

− 2
ρs

βTs




n

i

and the inhomogeneous terms containing first order derivatives, R, are approximated by
using an upwind characteristic (CP) method,

R∗
i = R−

i+ 1
2

+ R+
i− 1

2

, (5.2)

where

R±
i+ 1

2

=
1

2

5∑

k=1

[
β̃kẽk(1± sgn(λ̃k)(1− Φ(θ̃k)(1− |ν̃k|)))

]
i+ 1

2

.

The step sizes in space and time are ∆x and ∆t with i and n denoting the spatial and
time grid number, respectively. The upstream and downstream boundaries are at x0 and
xI (I is the total number of spatial grid points), tN is the final time,

s =
∆t

∆x
, ν̃k = sλ̃k, θ̃k =

(α̃k)J+ 1
2

(α̃k)J+ 1
2

, J = i− sgn(ν̃k)i+ 1
2
,

and either the minmod flux-limiter [31],

Φ(θ) = max(0, min(1, θ)), (5.3)

18



or the van Leer [33] flux-limiter,

Φ(θ) =
|θ|+ θ

1 + |θ| , (5.4)

is used.

To ensure the scheme remains stable, the time step is calculated using

∆t =
ν∆x

max(|λ|) ,

where max(|λ|) is the maximum wave speed and ν ≤ 1 is the required Courant number.

The scheme is an adapted form of Roe’s scheme [26], which uses piecewise constant data
to represent the domain and can be viewed as a family of Riemann problems due to a
small discontinuity being present between each neighbouring cell (wR,wL). This allows
the system of homogeneous conservation laws,

wt + Fx = 0

to be rewritten as a linearised Riemann problem,

wt + Ã(wR,wL)wx = 0,

where the Jacobian Ã is constant locally. The numerical solution of the resulting lin-
ear problem requires an appropriate Roe averaged (denoted by ˜ ) Jacobian matrix,
determined by solving

∆F =
5∑

k=1

α̃kλ̃kẽk = Ã∆w,

whilst ensuring that the u-properties of Roe are satisfied. The Roe averaged eigenval-
ues (λ̃) and eigenvectors (ẽ) are then calculated from the Roe averaged Jacobian. The
decomposition,

∆w =
5∑

k=1

α̃kẽk and
1

∆x

5∑

k=1

β̃kẽk = R̃

where ∆w = wR−wL, is then used to obtain the wave strengths (α̃) and inhomogeneous
values (β̃).

A full derivation of the Roe averages for all formulations is presented in Appendix A
and a summary is given in Table 5.1, where the superscripts denote the corresponding
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formulation. The high resolution scheme can now be used to approximate the different
systems of equations arising from the various formulations.

We are now in a position to obtain numerical solutions of the four systems of equations for
a variety of test problems and to compare the results. This allows us to determine which
formulation is the most robust and whether the two models produce different results.

6 Numerical Results

We now investigate the behaviour of the different models and the high resolution scheme
for the gas-solid flow as discussed in Section 2.2. In order to compare the different models,
we consider a variety of test cases all of which consist of a domain OP , 100 m long. Unless
stated otherwise, the high resolution scheme is used with ∆x = 1 m (i.e. 100 grid points)
and a Courant number ν = 0.8.

We only solve the models when they are hyperbolic and require appropriate initial and
boundary conditions for each test case. Unless otherwise stated, the numerical scheme
uses free flow boundary conditions,

wn+1
−i = wn

0 and wn+1
I+i = wn

I ,

For the regime under investigation, the gas phase is subcritical whilst the solids phase can
either be subcritical or supercritical. Thus, if physical boundary conditions are required
only three (if the solids phase is subcritical) or four (if the solids phase is supercritical)
can be prescribed at the upstream boundary.

6.1 Advection Test Problem

The first test case is a simple solids advection problem where an analytical solution can
be obtained, which is very useful in determining that the numerical scheme is behaving
appropriately. The analytical solution is derived by assuming that the gas density and
both phase velocities are constants,

ρg(x, t) = R and ug(x, t) = us(x, t) = U,

then both models simplify to

(εs)t + U(εs)x = 0, ps(x, t) = P and (Ts)t + U(Ts)x = 0,
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Formulation Scheme ∆x = 1 0.5 0.1 0.05 0.01
AS FO 0.9775960 0.7685596 0.3233380 0.1925014 0.0460192
AP FO 0.9775960 0.7685596 0.3233380 0.1925014 0.0460192
BS FO 0.9775960 0.7685596 0.3233380 0.1925014 0.0460192
BP FO 0.9775960 0.7685596 0.3233380 0.1925014 0.0460192

AS HR 0.5624180 0.2785775 0.0277546 0.0079563 0.0003928
AP HR 0.5624181 0.2785775 0.0277546 0.0079563 0.0003928
BS HR 0.5624180 0.2785775 0.0277546 0.0079563 0.0003928
BP HR 0.5624180 0.2785775 0.0277546 0.0079563 0.0003928

Table 6.1: The L1 error of the scheme at t = 10 s.
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Figure 6.1: Results of the Advection Test Problem at t = 10 s (Formulation AS).
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where P is a constant. Thus, we obtain the analytical solution

εs(x, t) = εs(x− Ut, 0) and Ts(x, t) =
P

εs

.

To simulate a solids pulse propagating downstream, we use the initial conditions,

εs(x, 0) =

{
0.1 + 0.1 sin2

(
π
10

(x− 5)
)

if 5 ≤ x ≤ 15
0.1 otherwise

with
R = 1.2885, U = 5 and P = 0.01.

Table 6.1 denotes the L1 error,

||E||1 = ∆x

I∑
i=0

|EN
i |, where E = w(x, t)−wn

i

for the sum of all variables at t = 10 s (N is the total number of time steps required to
reach this time) for both first order (Φ = 0) and high resolution (with minmod limiter)
versions of the scheme (5.1). The numerical solution converges to the analytical solution
as the mesh size is reduced. Notice that the results of all formulations are almost identical
with the first order results producing a higher L1 error than the high resolution scheme.
These findings are verified in Figure 6.1, where it is clear that the first order scheme suffers
more from diffusion. Thus, the results show that the high resolution scheme is superior
to the first order version of the scheme.

6.2 Square Pulse Test Problem

For the second test case, we simulate a square pulse of solids in the centre of the domain,
which is at rest. In this simple simulation, we imagine that ”walls” at x = 40 m and
x = 60 m confine the solids to the region 40 < x < 60 of the domain and they are kept in
suspension by a ”stirrer”. The ”walls” are then removed at time t = 0 and the solids are
allowed to move freely. The initial conditions for this test case consists of

ρg(x, 0) = 1.2885, ug(x, 0) = us(x, 0) = 0, Ts(x, 0) = 0.1εs(x, 0)

and

εs(x, 0) =

{
0.2 if 40 ≤ x ≤ 60,
0.1 otherwise.
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Figure 6.2: Results for the Square Pulse Test Problem at t = 200 s.
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Figure 6.3: Results for the Square Pulse Test Problem at t = 200 s (Fine Mesh).
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Figures 6.2 & 6.3 illustrate the results for the different formulations using the Square
Pulse Test Problem at t = 200 s. The fine mesh results were obtained using a step size
of ∆x = 0.1. All formulations produced practically identical results. However, it is to
be noted that there is a numerical problem with the systems AS and BS. This seems to
be caused by the term −ps(us)x and is due to the stagnation point (at x = 50 m). A
similar problem arises in single-phase gas dynamics in cases where the entropy condition
is violated, see LeVeque [21] for more information. Moreover, it also occurs with the first
order version of the scheme, Φ = 0, thus applying limiters for the approximation of the
inhomogeneous terms with first order derivatives is not the cause of the problem. In our
case, however, it is the approximation of the inhomogeneous term in the granular temper-
ature equation which appears to be responsible. It is rectified by using the systems AP
and BP. Figure 6.4 illustrates the evolution of the test case for the fine mesh results using
Formulation AP. Initially the square pulse starts to collapse with two waves propagating
in opposite directions. The shapes of the waves are such that after 40 seconds a peak
has appeared at each side of the square pulse in the granular temperature. Although it
appears to be similar to an entropy violation, the HLLE scheme [6] was used as a check
and produced identical results to those displayed here, indicating that there is no entropy
violation. Also notice that at 200 seconds, the solids pressure is constant in the region
x = 40 to 60 m and the solution seems to be settling down to a steady state.

6.3 Steady State Test Problem

The simplest family of steady state solutions are obtained by setting the velocities equal,
i.e. ug = us. The inter-phase drag force is then zero. For our purposes, a better steady
state solution of the model is one with different velocities so that the drag force is included.

For the general system, a steady state solution exists if the discharges for both phases are
constant, i.e.

Qg = εgρgug and Qs = εsρsus,

and the three ordinary differential equations

Qg(ug)x + ω1(pg)x + ω2(ps)x = −β(ug − us), (6.1a)

Qs(us)x + ω3(pg)x + ω4(ps)x = β(ug − us) (6.1b)

and

Qs(Ts)x = −2

3
(ps(us)x + 3βTs) . (6.1c)

are satisfied.
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Figure 6.4: Fine Mesh Results of Formulation AP at t = 0 to 200 s.
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To obtain a steady state solution for non-equal velocities, different velocities are imposed
at the upstream boundary and the scheme iterated until a steady state has been reached.
The initial conditions are

ρg(x, 0) = 1.2885, ug(x, 0) = u0
g,

εs(x, 0) = 0.1, us(x, 0) = 1 and Ts(x, 0) = 0.1,

with boundary conditions

ρg(100, t) = 1.2885, ug(0, t) = u0
g, (6.2a)

εs(0, t) = 0.1, us(0, t) = 1 and Ts(0, t) = 0.001. (6.2b)

The condition for a steady state to have been reached is

|wn+1
i −wn

i | ≤ tol ∀i, (6.3)

where tol = 1E-8. However, if the scheme has not converged within t = 150 s (by which
time the solution is very close to the steady state solution), convergence is stopped and
the number of unconverged points is given.

Figures 6.5 & 6.6 illustrate a comparison of the different models using either u0
g = 1.5

m/s or u0
g = 5 m/s, respectively. All models were approximated using the high resolution

scheme either the minmod limiter for u0
g = 1.5 or the van Leer limiter for u0

g = 5. Two
spatial step sizes were used: the standard ∆x = 1 m and a Fine Mesh (FM) of ∆x = 0.1
m.

The results show that as the gas velocity is increased, the gradient of the variables at
the upstream boundary increases due to the drag force dominating the pressure gradient
terms as the difference between the velocities becomes larger. From equations (6.1a) and
(6.1b)

(ug − us)x +

(
ω1

Qg

− ω3

Qs

)
(pg)x +

(
ω2

Qg

− ω4

Qs

)
(ps)x = −β0

(
Qg + Qs

QgQs

)
(ug − us)

2,

where the drag force has been simplified and β0 is assumed to be a constant

β0 =
3CD

4ds

ρ0
gε

0
gε

0
s,

obtained from the boundary values (denoted by a 0 superscript). Supposing the drag force
is large compared with the pressure gradient terms, the latter may be neglected and we
obtain an equation for the difference in velocities

(ug − us)x = −β0

(
Qg + Qs

QgQs

)
(ug − us)

2
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Figure 6.5: Results for the Steady State Test Problem s with u0
g = 1.5 m/s.
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Figure 6.6: Results for the Steady State Test Problem with u0
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with solution

ug − us =
u0

g − u0
s

β0
(

Qg+Qs

QgQs

)
(u0

g − u0
s)x + 1

.

Figure 6.7 illustrates this equation for the boundary values (6.2) with u0
g = 2 to 5. Notice

that there is a vertical asymptote close to the origin,

x∗ =
−1

β0
(

Qg+Qs

QgQs

)
(u0

g − u0
s)

,

which gets closer to the origin as the difference between ug − us increases.

As the difference between the velocities increases at the upstream boundary, a kink be-
comes discernible (in the gas variables) a distance ∆x, (one grid point) away from the
upstream boundary and is due to the effect of the drag force on the gradient in the vari-
ables at the upstream boundary. As the difference between the two velocities increases,
the gradient increases at the upstream boundary and the kink becomes more prominent.
This may be rectified by using a finer space mesh so that the gradient is more accurately
calculated. As the difference between the velocities increases, e.g. ug − us > 5, the drag
force term becomes “stiff” and the scheme becomes unstable.

This test case is sensitive to the type of flux-limiter. If the min mod limiter (5.3) is used
then the scheme requires a larger value of tol as u0

g → 5 in order for (6.3) to be satisfied.
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If the van Leer limiter is used (5.4), the scheme (with formulations S) quickly satisfies
(6.3) with the given value of tol = 1E-8. Unfortunately, the P formulations were unable to
converge within t = 150 s when u0

g = 5, but the results still look acceptable. This seems
to indicate that the scheme is more stable with the van Leer limiter than the minmod
limiter and the lack of convergence of the P formulations is probably due to the “stiff”
drag force term.

Concerning the inter-phase drag force, in Model B, if gravity is present Gidaspow [8]
deduced that the drag force coefficient must be replaced with

βB = βAε−1
s

in order for Archimedes principle to be satisfied. In the problems considered here, gravity
is absent and so the same drag force coefficient was used in both models. Boemer et al. [2]
also illustrated a difference between the models for certain test cases of 2D fluidized beds.
They deduced that Model B results in a physical modification of the problem which can
lead to an artificial increase in the forces carrying the particles. Moreover, even though
Model A is deemed to be more physically correct than Model B, Boemer et al. also
demonstrated that Model B produced numerical results that were closer to experiments
than Model A.

7 Conclusion

In this paper, we have investigated two standard Eulerian two-phase solid-gas flow models
and applied a high resolution scheme to obtain numerical approximations for a variety
of test cases. The results for all formulations were promising with the exception of a
numerical problem occurring in the results of the S formulations. However the problem
can be solved by using the product rule to re-write the term −ps(us)x thus, obtaining the
P formulations.

We have demonstrated that Model A is hyperbolic for a region of small relative velocities,
which is due the inclusion of the solids pressure in the solids phase momentum equation.
The size of the region is dependent on the values of εs, Ts and ρg. Model B is uncondi-
tionally hyperbolic. For small relative velocities, the regime of physical interest, Model A
remains well-posed, although it becomes ill-posed as Ts → 0.

For the test cases investigated here, the gas density ρg remains almost constant and the
gradient of gas pressure is small. Models A and B only differ due to the gas pressure
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derivatives thus, there is little difference between them if the gradient of the gas pressure
term is negligible.

A final conclusion is that both Models A and B can be accurately approximated using
the high resolution scheme presented in this paper.
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A Derivation of Roe Average Values

The numerical scheme discussed in Section 5 is based on Roe’s scheme [26] and thus,
requires Roe averaged values. In this section, we briefly outline the derivation of the Roe
averaged values for the general system.

We require a Roe averaged Jacobian matrix, Ã(wL,wR), which satisfies the following
u-properties [26],

• Ã(wL,wR) must be diagonalisable with real eigenvalues (hyperbolicity);

• Ã(wL,wR) → Ã(w) as wL,wR → w (consistency);

• ∆F = Ã(wL,wR)∆w (conservation).

We obtain such a Roe averaged Jacobian by using the conservation u-property to obtain
Roe averaged values of the variables, which can then be used to obtain the eigenvalues
and eigenvectors.
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A.1 Roe Averages

All Models must satisfy,
∆F = Ã∆w,

where for:

1. Models AS and BS,

Ã =




0 1 0 0 0
ε̃−1
g c̃2

g − ũ2
g 2ũg ρ̃g ε̃

−1
g c̃2

g 0 0
0 0 0 1 0
0 0 −ũ2

s 2ũs 1

0 0 −ũsT̃s T̃s ũs




and F =




εgρgug

εgρgu
2
g + pg

εsus

εsu
2
s + εsTs

εsusTs




.

2. Models AP and BP,

Ã =




0 1 0 0 0
ε̃−1
g c̃2

g − ũ2
g 2ũg ρ̃g ε̃

−1
g c̃2

g 0 0
0 0 0 1 0
0 0 −ũ2

s 2ũs 1

0 0 −5
3
ũsT̃s

5
3
T̃s

5
3
ũs




and F =




εgρgug

εgρgu
2
g + pg

εsus

εsu
2
s + εsTs

5
3
εsusTs




.

All of these Models result in ensuring that the following equations are satisfied:

∆(εgρgug) = ∆(εgρgug), (A.1a)

∆(εgρgu
2
g) + ∆pg = (c̃2

g ε̃
−1
g − ũ2

g)∆(εgρg) + 2ũg∆(εgρgug) + ρ̃g ε̃
−1
g c̃2

g∆εs, (A.1b)

∆(εsus) = ∆(εsus), (A.1c)

∆(εsu
2
s) + ∆(εsTs) = −ũ2

s∆εs + 2ũs∆(εsus) + ∆(εsTs) (A.1d)

and
∆(εsusTs) = −ũsT̃s∆εs + T̃s∆(εsus) + ũs∆(εsTs). (A.1e)

Clearly, equations (A.1a) and (A.1c) are automatically satisfied. To obtain Roe average
values of the velocities, we let

ũ2
g∆(εgρg)− 2ũg∆(εgρgug) + ∆(εgρgu

2
g) = 0

and
ũ2

s∆εs − 2ũs∆(εsus) + ∆(εsu
2
s) = 0.
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Thus, by obtaining the roots of these two quadratic equations (of ũk) we can use one of
the roots for the Roe averaged value,

ũg =

√
(εgρg)L(ug)L +

√
(εgρg)R(ug)R√

(εgρg)L +
√

(εgρg)R

and ũs =

√
(εs)L(us)L +

√
(εs)R(us)R√

(εs)L +
√

(εs)R

.

We can now obtain,

T̃s =

√
(εs)L(Ts)L +

√
(εs)R(Ts)R√

(εs)L +
√

(εs)R

by substituting ũs into (A.1e) and simplifying.

Thus, we only have
ε̃g∆pg = c̃2

g(∆(εgρg)− ρ̃g∆εg),

which can be simplified by letting

c̃2
g =

∆pg

∆ρg

thus,
∆(εgρg) = ε̃g∆ρg + ρ̃g∆εg.

Here, we have two options:

ε̃k =
1

2
((εk)L + (εk)R) and ρ̃g =

1

2
((ρg)L + (ρg)R) (A.2)

or

ε̃k =
√

(εk)L(εk)R and ρ̃g =

√
(εg)L(ρg)L +

√
(εg)R(ρg)R√

(εg)L +
√

(εg)R

. (A.3)

Thus, all the Roe average values have been obtained. Notice that these values ensure that
the other u-properties are satisfied.

A.2 Eigenvalues & Eigenvectors

The eigenvalues and eigenvectors are obtained directly from the corresponding Roe aver-
aged Jacobian matrix. We can easily obtain the eigenvalues for:

1. Models AS and BS,

λ̃1,2 = ũg ∓ c̃g

√
ε̃−1
g , λ̃3 = ũs and λ̃4,5 = ũs ∓

√
T̃s.
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2. Models AP and BP,

λ̃1,2 = ũg ∓ c̃g

√
ε̃−1
g , λ̃3 = ũs and λ̃4,5 =

4

3
ũs ∓ 1

3

√
15T̃s + ũ2

s.

For simplicity (and computational efficiency), the eigenvectors are determined in terms of
the numerical eigenvalues and are obtained by solving:

1. Models AS and BS,



−λ̃ 1 0 0 0

ε̃−1
g c̃2

g − ũ2
g 2ũg − λ̃ ρ̃g ε̃

−1
g c̃2

g 0 0

0 0 −λ̃ 1 0

0 0 −ũ2
s 2ũs − λ̃ 1

0 0 −ũsT̃s T̃s ũs − λ̃







1
e2

e3

e4

e5




= 0.

2. Models AP and BP,



−λ̃ 1 0 0 0

ε̃−1
g c̃2

g − ũ2
g 2ũg − λ̃ ρ̃g ε̃

−1
g c̃2

g 0 0

0 0 −λ̃ 1 0

0 0 −ũ2
s 2ũs − λ̃ 1

0 0 −5
3
ũsT̃s

5
3
T̃s

5
3
ũs − λ̃







1
e2

e3

e4

e5




= 0.

Thus,
e2 = λ̃, (A.4a)

ε̃−1
g c̃2

g − ũ2
g + (2ũg − λ̃)e2 + ρ̃g ε̃

−1
g c̃2

ge3 = 0, (A.4b)

e4 = λ̃e3, (A.4c)

−ũ2
se3 + (2ũs − λ̃)e4 + e5 = 0 (A.4d)

and either
−ũsT̃se3 + T̃se4 + (ũs − λ̃)e5 = 0 (A.4e)

for Models AS and BS or

−5

3
ũsT̃se3 +

5

3
T̃se4 + (

5

3
ũs − λ̃)e5 = 0 (A.4f)

for Models AP and BP. Now, by substituting (A.4a) into (A.4b), we obtain

e3 =
ũ2

g ε̃g − c̃2
g − (2ũg − λ̃)ε̃gλ̃

ρ̃g c̃2
g

=
(λ̃− ũg)

2ε̃g − c̃2
g

ρ̃g c̃2
g

.
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Also, by substituting (A.4c) into (A.4d), we obtain

e5 = e3(λ̃− ũs)
2.

Hence, we obtain

ẽ1,2 =




1

λ̃1,2

0
0
0




and ẽ3,4,5 =




1

λ̃3,4,5

d̃3,4,5

λ̃3,4,5d̃3,4,5

d̃3,4,5(λ̃3,4,5 − ũs)
2




,

where

d̃k =
(λ̃k − ũg)

2ε̃g − c̃2
g

ρ̃g c̃2
g

.

A.3 Wave Strengths

We obtain wave strengths through the decomposition,

∆w =
5∑

k=1

α̃kẽk,

which for all models results in solving

∆(εgρg) = α̃1 + α̃2 + α̃3 + α̃4 + α̃5, (A.5a)

∆(εgρgug) = λ̃1α̃1 + λ̃2α̃2 + λ̃3α̃3 + λ̃4α̃4 + λ̃5α̃5, (A.5b)

∆εs = d̃3α̃3 + d̃4α̃4 + d̃5α̃5, (A.5c)

∆(εsus) = λ̃3d̃3α̃3 + λ̃4d̃4α̃4 + λ̃5d̃5α̃5 (A.5d)

and
∆(εsTs) = d̃3(λ̃3 − ũs)

2α̃3 + d̃4(λ̃4 − ũs)
2α̃4 + d̃5(λ̃5 − ũs)

2α̃5 (A.5e)

for α̃k. The algebraic expressions obtained by solving this set of simultaneous equations
α̃1,2 are complicated. To keep the algebraic expressions in a compact form, we solve
(A.5c), (A.5d) and (A.5e) to obtain α̃3,4,5,

α̃k =
(λ̃aλ̃b − ũ2

s)∆εs − (λ̃a + λ̃b − 2ũs)∆(εsus) + ∆(εsTs)

d̃k(λ̃k − λ̃a)(λ̃k − λ̃b)

where k 6= a 6= b, and then solve α̃1,2 in terms of the other wave strengths,

α̃1,2 = ∓ λ̃3α̃3 + λ̃4α̃4 + λ̃5α̃5 − (α̃3 + α̃4 + α̃5 −∆(εgρg))λ̃2,1 −∆(εgρgug)

λ̃1 − λ̃2

.
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A.4 Inhomogeneous Terms

The values of β̃k are also determined from the decomposition,

∆xR̃ =
5∑

k=1

β̃kẽk,

which for the system results in solving

0 = β̃1 + β̃2 + β̃3 + β̃4 + β̃5, (A.6a)

r̃2 = λ̃1β̃1 + λ̃2β̃2 + λ̃3β̃3 + λ̃4β̃4 + λ̃5β̃5, (A.6b)

0 = d̃3β̃3 + d̃4β̃4 + d̃5β̃5, (A.6c)

r̃4 = λ̃3d̃3β̃3 + λ̃4d̃4β̃4 + λ̃5d̃5β̃5 (A.6d)

and
r̃5 = d̃3(λ̃3 − ũs)

2β̃3 + d̃4(λ̃4 − ũs)
2β̃4 + d̃5(λ̃5 − ũs)

2β̃5 (A.6e)

for β̃k. Here,

r̃2 = ε̃s∆pg, r̃4 = − ε̃s

ρs

∆pg, r̃S
5 = −2

3
ε̃sT̃s∆us and r̃P

5 =
2

3
ũs∆(εsTs)

for Model A and

r̃2 = 0, r̃4 = 0, r̃S
5 = −2

3
ε̃sT̃s∆us and r̃P

5 =
2

3
ũs∆(εsTs)

for Model B. As with the wave strengths, algebraic expressions of β̃1,2 are complicated.
Thus, we solve (A.6c), (A.6d) and (A.6e) to obtain β̃3,4,5,

β̃k =
(2ũs − λ̃a − λ̃b)r̃4 + r̃5

d̃k(λ̃k − λ̃a)(λ̃k − λ̃b)

where k 6= a 6= b, and then solve β̃1,2 in terms of the other values of β̃,

β̃1,2 = ∓ λ̃3β̃3 + λ̃4β̃4 + λ̃5β̃5 − (β̃3 + β̃4 + β̃5)λ̃2,1 − r̃2

λ̃1 − λ̃2

.
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B C-Property Proof

To demonstrate that the numerical scheme satisfies the C-property, we apply the following
basic steady state solution to the numerical scheme,

ρg = R, ug = us = 0, εs = G(x) and Ts =
Ps

εs

.

For this steady state solution, the discharges and pressures are constant. The two ve-
locities must be equal since, in the presence of the drag force, the two velocities tend to
equality if no boundary conditions are prescribed. Thus, the above steady state solution
is the only viable test case without applying boundary conditions.

When we apply this steady state solution to the numerical scheme, the eigenvalues become,

λ̃1,2 = ∓c̃g

√
ε̃−1
g , λ̃3 = 0, λ̃S

4,5 = ∓
√

T̃s and λ̃P
4,5 = ∓1

3

√
15T̃s,

with corresponding eigenvectors

ẽ1,2 =




1

λ̃1,2

0
0
0




, ẽ3 =




1
0

d̃3

0
0




and ẽ4,5
k =




1

λ̃k

d̃k

λ̃kd̃k

d̃k(λ̃4,5 − ũs)
2




.

Since the pressures are constant, the wave strengths simplify to

α̃1,2 =
1

2
(∆(εgρg)− α̃3), α̃3 =

Rε̃s∆Ts

T̃s

and α̃4,5 = 0

and the inhomogeneous terms are all zero, i.e. β̃k = 0.

We can simplify α̃1,2 even further to

α̃1,2 = − R

2T̃s

(
T̃s∆εs + ε̃s∆Ts

)
= − R

2T̃s

∆(εsTs) = 0.

Thus, since α̃k|λ̃k| = 0 for all k, the numerical flux-function becomes

F∗
i+ 1

2
=




0
pg

0
L
0




⇒ F∗
i+ 1

2
− F∗

i− 1
2

= 0.

Hence, the scheme is exact when applied to this steady state solution and thus, satisfies
the C-property.
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C The Gas Energy Equation

For non-isentropic flow, the gas Energy equation

(εgEg)t + (εgug(Eg + pg))x + pg(εg)t = −βug(ug − us)

can be appended to Model A and

(εgEg)t + (ug(εgEg + pg))x = −βug(ug − us)

to Model B, where the total energy per unit volume is

Eg =

(
eg +

1

2
u2

g

)
ρg

and the specific internal energy (for ideal gases) is

eg =
pg

(γg − 1)ρg

⇒ pg = (γg − 1)(Eg − 1

2
ρgu

2
g).

For further discussion on the presence of the time derivative (εg)t, see Gidaspow [10].
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