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A Review on the Numerical Solution of the 1D Euler
Equations

Justin Hudson ∗

Abstract

This paper presents a review on the numerical solution of the Euler equations.
Three different high resolution versions of the following schemes are considered:
Roe’s scheme, the HLLE scheme and the AUSM+ scheme. We present a variety
of test cases, each designed to test the robustness of each scheme and compare the
results to determine which scheme was the most accurate.

1 Introduction

The numerical solution of the Euler equations has been thoroughly researched with nu-
merous papers published on the subject, e.g. Roe [10], Liou [9], Jiang & Shu [6], Yee [16]
and Einfeldt et al. [1]. The Euler equations have been a standard test model for the
derivation of numerous schemes in order to test their accuracy. This is due to a variety
of analytical solutions being obtainable and the full system is homogeneous.

In this paper, we present a brief review of three different numerical schemes and their
accuracy when used to approximate the Euler equations for a variety of test problems.
We are particularly interested in high resolution schemes and adapt versions of Roe’s
scheme [10], the HLLE scheme [1, 2] and the AUSM+ scheme [9, 8]. Four different
test cases are considered to test numerous potential flaws of the schemes and the results
compared to an analytical solution (if it exists) to determine the accuracy of the schemes.

∗School of Mathematics, University of Manchester, Sackville Street, Manchester, M60 1QD
(justin.hudson@manchester.ac.uk)
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We are particularly interested in how robust the schemes are in terms of accuracy and the
maximum CFL number required to minimise numerical oscillations (for computational
efficiency).

In the next Section, we briefly introduce the Euler equations with the schemes discretised
for the equations in Section 3. We then present four different test cases and the numerical
results in Section 4 with a conclusion being presented in Section 5.

2 Euler Equations

We now present a brief discussion on the Euler equations in 1D, but refer the reader to
LeVeque [7] and Toro [12] for a more detailed discussion (and derivation). The Euler
equations governing the flow of a compressible gas in 1D comprise




ρ
ρu
E




t

+




ρu
ρu2 + p
u(E + p)




x

= 0, (2.1)

where ρ is the density, u is the particle velocity, p is pressure and the total energy per
unit volume is

E =

(
e +

1

2
u2

)
ρ.

Here e is the specific internal energy, which for ideal gases is

e =
p

(γ − 1)ρ
⇒ p = (γ − 1)(E − 1

2
ρu2), (2.2)

where γ denotes the ratio of specific heat capacities of the gas.

The Jacobian matrix of the system (2.1) for ideal gases (2.2) is

A =




0 1 0
1
2
(γ − 3)u2 (3− γ)u γ − 1

u
(

1
2
(γ − 1)u2 −H

)
H − (γ − 1)u2 γu


 ,

where the total specific enthalpy is

H =
E + p

ρ
=

a2

γ − 1
+

1

2
u2

2



and the sound speed is

a =

√
γp

ρ
=

√
γ

ρ
(γ − 1)(E − 1

2
ρu2).

The eigenvalues of A are

λ1 = u− a, λ2 = u and λ3 = u + a,

whose corresponding eigenvectors are

e1 =




1
u− a

H − ua


 , e2 =




1
u

1
2
u2


 and e3 =




1
u + a

H + ua


 .

3 High Resolution Schemes

To obtain a numerical approximation of the Euler equations (2.1), we use three different
numerical schemes to determine which is the most accurate. All three schemes are high
resolution schemes, i.e. they are second order accurate away from shocks and satisfy
the Total Variational Diminishing (TVD) property. The first scheme is based on Roe’s
scheme [10] and was discussed by Hubbard & Garcia-Navarro [4], the second scheme is
the HLLE scheme [1], which is an adapted version of the HLL scheme [2], and the third
scheme is the AUSM+ scheme as discussed by Liou [9].

The Euler equations are a system of homogeneous conservation laws,

wt + F(w)x = 0, (3.1)

where F(w) is the flux-function. To obtain a conservative approximation of homogeneous
systems of conservation laws, we only consider numerical schemes of the form

wn+1
i = wn

i − s(F∗
i+ 1

2
− F∗

i− 1
2
), (3.2)

where s = ∆t
∆x

, ∆x and ∆t are the step sizes in space and time respectively, F∗
i+ 1

2

is the

numerical flux and

wn
i ≈

1

∆x

∫ x
i+1

2

x
i− 1

2

w(x, tn) dx

is the numerical approximation.
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To ensure the schemes remains stable, the time step is calculated using

∆t =
ν∆x

max(|λ|) ,

where max(|λ|) is the maximum wave speed and ν ≤ 1 is the required Courant (CFL)
number.

We now present a discussion and discretisation of the three schemes.

3.1 Roe’s Scheme

Hubbard & Garcia-Navarro [4] discussed an adapted form of Roe’s scheme [10], which is
a high resolution scheme. The numerical flux-function is

F∗
i+ 1

2
=

1

2
(Fn

i+1 + Fn
i )− 1

2

p∑

k=1

[
α̃k|λ̃k|(1− Φ(θk)(1− |νk|))ẽk

]
i+ 1

2

where

νk = sλ̃k, θk =
(α̃k)I+ 1

2

(α̃k)i+ 1
2

, I = i− sgn(νk)i+ 1
2
,

and Φ(θk) is the minmod flux-limiter,

Φ(θk) = max(0, min(1, θk)).

Here, the ˜ is called the Roe average and λ̃, ẽ and α̃ are the eigenvalues, eigenvectors and
wave strengths of the Roe averaged Jacobian matrix, Ã. The Roe averaged eigenvalues,
eigenvectors and wave strengths are determined from the Roe decomposition (see [10, 4, 5]
for more details)

∆F =

p∑

k=1

α̃kλ̃kẽk = Ã∆w,

where ∆w = wR −wL and p is the number of components in the system (p = 3 for the
Euler equations).

For the Euler equations (2.1) with ideal gases (2.2), Toro [12] obtained the following Roe
averaged Jacobian matrix,

Ã =




0 1 0
1
2
(γ − 3)ũ2 (3− γ)ũ γ − 1

ũ
(

1
2
(γ − 1)ũ2 − H̃

)
H̃ − (γ − 1)ũ2 γũ


 ,
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whose eigenvalues are

λ̃1 = ũ− ã, λ̃2 = ũ and λ̃3 = ũ + ã

with corresponding eigenvectors

ẽ1 =




1
ũ− ã

H̃ − ũã


 , ẽ2 =




1
ũ

1
2
ũ2


 and ẽ3 =




1
ũ + ã

H̃ + ũã


 ,

where the Roe average values are

ũ =

√
ρLuL +

√
ρRuR√

ρL +
√

ρR

, H̃ =

√
ρLHL +

√
ρRHR√

ρL +
√

ρR

and

ã =

√
(γ − 1)(H̃ − 1

2
ũ2).

Toro also determined the following wave strengths,

α̃2 =
(γ − 1)

ã2

((
H̃ − ũ2

)
∆ρ + ũ∆(ρu)−∆E

)
,

α̃1 =
1

2ã
((ũ + ã) ∆ρ−∆(ρu)− ãα̃2) , and α̃3 = ∆ρ− (α̃1 + α̃2).

3.2 HLLE

Einfeldt et al. [1] discussed an adapted version of the HLL scheme [2] called the HLLE
scheme, which can be viewed as a modification of Roe’s scheme. In this paper, we adapt
the HLLE scheme to a high resolution scheme,

F∗
i+ 1

2
=

1

2
(Fn

i+1 + Fn
i )− 1

2

p∑

k=1

[
α̃kQ̃k(1− Φ(θk)(1− sQ̃k))ẽk

]
i+ 1

2

,

where (
Q̃k

)n

i+ 1
2

=

[
(b+ + b−) λ̃k − 2b+b−

b+ − b−

]n

i+ 1
2

,

b+
i+ 1

2

= max
(
bR
i+ 1

2
, 0

)
, b−

i+ 1
2

= min
(
bL
i+ 1

2
, 0

)

and the numerical signal velocities for the Euler equations with ideal gases are

bR
i+ 1

2
= max

(
ũ + ã, un

i+1 + an
i+1

)
and bL

i+ 1
2

= min (ũ− ã, un
i − an

i ) .

In this paper, we use the Roe average values (in the previous section) to determine λ̃, ẽ
and α̃.
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3.3 AUSM+

Liou [9] discussed an improved version of the AUSM scheme [8], which re-writes the
flux-function, F(w), as a sum of the convective and pressure terms,

F(w) = F(c) + P,

where

F(c) = MaΨ, Ψ =




ρ
ρu
ρH


 and P =




0
p
0


 ,

and discretises them separately. Here, M = ua−1 denotes the Mach number and a the
sound speed. One advantage of this scheme is that the Jacobian matrix does not need to
be calculated. The numerical flux-function of the AUSM+ scheme is

F∗
i+ 1

2
=

1

2
an

i+ 1
2

(
mn

i+ 1
2

(
Ψn

i+1 + Ψn
i

)− |mn
i+ 1

2
| (Ψn

i+1 −Ψn
i

))
+ Pn

i+ 1
2
, (3.3)

where mn
i+ 1

2

is the numerical approximation of the interface mach number,

mn
i+ 1

2
= M+(Mn

i ) +M−(Mn
i+1)

with

M±(M) =

{
1
2
(M ± |M |) if |M | ≥ 1,
±1

2
(M ± 1)2 ± β(M2 − 1)2 otherwise,

and an
i+ 1

2

is the numerical approximation of the sound speed, which for this paper we take
as

an
i+ 1

2
=

√
an

i a
n
i+1.

The mach numbers are approximated using

Mn
i =

un
i

an
i+ 1

2

and Mn
i+1 =

un
i+1

an
i+ 1

2

and the approximation of the pressure terms is

Pn
i+ 1

2
= P+(Mi)P

n
i + P−(Mi+1)P

n
i+1,

where

P±(M) =

{
1
2
(1± sgn(M)) if |M | ≥ 1,

1
4
(M ± 1)2(2∓M)± αM(M2 − 1)2 otherwise.
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We require values of α and β and use the optimal values chosen by Liou [9],

α =
3

16
and β =

1

8
.

So far, the scheme is only first order accurate but we require the scheme to be a high
resolution scheme. Thus, we adopt the approach discussed in Liou [9], which is based on
the MUSCL [14] approach. We first calculate,

wL = wn
i +

1

2
Φ(θn

i )(wn
i −wn

i−1)

and

wR = wn
i+1 −

1

2
Φ

(
1

θn
i+1

)
(wn

i+2 −wn
i+1),

and then use the AUSM+ scheme with wn
i+1 and wn

i replaced with wn
R and wn

L, respec-
tively. We use the minmod flux-limiter and

θn
i =

wn
i+1 −wn

i

wn
i −wn

i−1

for all i. Note that the primitive variables are used for this first step,

w =




ρ
u
H


 .

We can now use the three different schemes to obtain a numerical approximation of the
Euler equations for the four test cases considered in this paper.

4 Numerical Results

We now use the three high resolution schemes to obtain a numerical approximation of
the Euler equations for the different test cases and compare with the exact solution (if
available), which is obtained from the NUMERICA library [13]. A Courant number of
ν = 0.25 will be used for the AUSM+ scheme whereas the other schemes use ν = 0.5. A
spatial step-size of ∆x = 0.01 is also used. All test cases are for a domain of length 1 and
with γ = 1.4.

Unless stated, the basic free flow boundary conditions are used,

wn+1
−i = wn

0 and wn+1
i+I = wn

I
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for i = 1, 2.

If an exact solution is available, the L1 error is calculated,

||E||1 = ∆x

I∑
i=0

|EN
i |, where E = w(x, t)−wn

i (4.1)

for the sum of all variables at t = 0.25 s (N is the total number of time steps required to
reach this time) for each scheme.

4.1 Shock Tube

The first test case is the Shock Tube problem of Sod [11],

ρ(x, 0) =

{
1 if x < 0.5,
0.125 if x ≥ 0.5,

p(x, 0) =

{
1 if x < 0.5,
0.1 if x ≥ 0.5,

and u(x, 0) = 0.

Figure 4.1 illustrates the results at t = 0.25 s. Here, we can see that all three schemes
produced very similar results. However, by looking at the L1 error (4.1), which is displayed
in Table 4.1, we can see that the AUSM+ scheme is the most accurate of the three schemes.
The HLLE scheme is less accurate than Roe’s scheme due to more diffusion being present
and thus, there is more diffusion present near shocks. The AUSM+ scheme produced
the least amount of diffusion near shocks thus, resulting in the scheme being the most
accurate. However, the AUSM+ scheme requires a smaller CFL number than the other
two schemes in order to remain stable. This results in a longer computational run time
for the AUSM+ scheme.

Scheme CFL ∆x = 0.01 0.001 0.0001
Roe 0.5 0.02236295 0.00266800 0.00036183

HLLE 0.5 0.02586942 0.00316410 0.00047531
AUSM+ 0.25 0.01548640 0.00217676 0.00066488

Table 4.1: The L1 error of the schemes for the Shock Tube Problem at t = 0.25 s.

4.2 Modified Shock Tube

The second test case is the modified Shock Tube Problem of Sod (adapted by Toro [12]),

(ρ, u, p)(x, 0) =

{
(1, 0.75, 1) if x < 0.3,
(0.125, 0, 0.1) if x ≥ 0.3,

.
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Figure 4.1: Shock Tube Problem at t = 0.25.
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Figure 4.2: Modified Shock Tube Problem at t = 0.25.
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This test case is designed to test whether the schemes are able to accurately capture
rarefaction waves and not produce an entropy glitch. From Figure 4.2, we can see that
Roe’s scheme has indeed produced an entropy glitch whereas the HLLE and AUSM+
schemes have not. This is due to Roe’s scheme being unable to accurately calculate sonic
rarefaction waves. There are numerous fixes, e.g. Harten & Hyman [3], for Roe’s scheme,
but they require tweaking for each test case. The HLLE scheme could be viewed as a fix
for Roe’s scheme and does not require any tweaking for each test case.

Scheme CFL ∆x = 0.01 0.001 0.0001
Roe 0.5 0.02740905 0.00455440 0.00120341

HLLE 0.5 0.02396336 0.00339343 0.00044190
AUSM+ 0.25 0.02328236 0.00310239 0.00037837

Table 4.2: The L1 error of the schemes for the Modified Shock Tube Problem at t = 0.25
s.

Unfortunately, the L1 error (see Table 4.2) of the HLLE scheme is still not as accurate as
the AUSM+ scheme. As with the previous test case, the HLLE scheme introduces more
dissipation around shocks than the other two schemes. Of course, the HLLE scheme is
more accurate than Roe’s scheme due to the entropy glitch.

One point worth mentioning here is that if the HLLE scheme is used with Φ = 1 then the
scheme reverts to the Lax-Wendroff scheme. Since the Roe average values are used, the
scheme produces an entropy glitch in exactly the same manner that Roe’s scheme does.
However, since near shocks the HLLE scheme is close to first order accurate this is not a
concern and an entropy glitch should not form (as can be seen from the results).

4.3 123 Problem

Our third test case is the 123 Problem of Einfeldt et al. [1],

ρ(x, 0) = 1 p(x, 0) = 0.4 and u(x, 0) =

{ −2 if x < 0.5,
2 if x ≥ 0.5.

From Figure 4.3, we can see that the HLLE and AUSM+ schemes were the only two
which actually produced results. The Roe scheme became unstable almost immediately.
Roe’s scheme solves the linearized Euler equations, but Einfeldt et al. [1] discovered that
if

4γρe

3γ − 1
− (ρu)2 > 0 and (γ − 1)ρe− (ρu)2 ≤ 0,
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Figure 4.3: 123 Problem at t = 0.15.
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then the problem is not linearizable. This is due to the data producing a negative density
or pressure in the linearized form, but a solution does exist. Since the 123 problem lies in
this realm, the problem is not linearizable and thus, Roe’s scheme becomes unstable. The
HLLE scheme overcomes this problem by adding numerical diffusion to the approximation
of the eigenvalues in an attempt to stabilise the scheme. Thus, the failure of Roe’s scheme
can be viewed as an inaccurate approximation of the physical signal velocities, see Einfeldt
et al. [1] for more information.

Although the AUSM+ scheme has produced results, the scheme is highly sensitive to this
test case and as the mesh is refined, a smaller CFL number is required in order to remain
stable and eventually ends up being impractical due to long computational run times.
This is illustrated in the calculation of the specific internal energy,

e =
p

(γ − 1)ρ
,

which for this test case can amplify small errors in the other variables. Notice that the
HLLE scheme is considerably more accurate than the AUSM+ scheme for the specific
internal energy.

4.4 Blast Wave Problem

The final test case is the Blast Wave Problem of Woodward & Colella [15],

ρ(x, 0) = 1, p(x, 0) =





1000 if 0 < x < 0.1,
0.1 if 0.1 < x < 0.9,
100 if 0.9 < x < 1,

and u(x, 0) = 0.

For this test case, walls are present at either side of the domain thus, we use the boundary
conditions

(ρ, p)n+1
−i = (ρ, p)n

i−1, un+1
−i = −un

i−1, (ρ, p)n+1
I+i = (ρ, p)n

I−i+1 and un+1
I+i = −un

I−i+1.

From Figure 4.4, we can see that the Roe and HLLE scheme produced similar results.
However, the AUSM+ scheme became unstable almost immediately using a CFL = 0.5,
but remained stable when a CFL = 0.05 was used (results illustrated).
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Figure 4.4: Blast Wave Problem at t = 0.038.
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5 Conclusion

In this paper, we have presented three high resolution schemes and applied them to
approximate the Euler equations. Four test cases were used to test each numerical scheme
in order to determine their strengths and weaknesses. We illustrated that Roe’s scheme
suffered from an entropy glitch and was unable to approximate the 123 problem due to the
linearization. The HLLE scheme was a lot more robust and could accurate approximate all
test cases, but suffered more from numerical diffusion near shocks. The AUSM+ scheme
also produced very promising results and did not create and entropy glitch. However, the
AUSM+ scheme is very sensitive to the CFL number and requires a smaller CFL number
(0.5) than the other schemes (0.8). Moreover, as the mesh is reduced, an even smaller
CFL number is required to ensure no spurious oscillation occur in the numerical results.
For the blast wave test case, it required a very small CFL number in order for the scheme
to remain stable.

Each scheme has certain test cases where it produced better results than the others, but
the HLLE was the only scheme which could accurately approximate all four test cases.
Thus, overall the HLLE scheme appears to be the most robust out of the three schemes,
but suffers from more diffusion than Roe’s scheme.
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