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Background

The coexistence of multiple disciplinary perspectives on the same class of critical applications
(aerospace) and investigation (formal) methods leads naturally to the opportunity to define
multidisciplinary approaches. Thus, work in this area will likely underline the importance of
some research problems from aerospace to the formal methods community, and promote new
formal techniques combining the principles of artificial intelligence and control engineering.

The source of new problems for formal methods comes from the great diversity of aerospace
systems. These can be satellites, unmanned aerial vehicles (UAVs), terrestrial or other kinds of
flying robots. These systems can be involved in complex activities such as space exploration,
telecommunication support, fire detection, geo-mapping, weather prognoses, geo-rectification,
search and rescue, naval traffic surveillance, tracking high value targets. From these applica-
tions, new research problems appear: autonomy, collective behaviour, information fusion, cog-
nitive skills, coordination, flocking, etc. In addition, new concepts must be formalised: digital
pheromones, swarms, system of systems of robots, sensing, physical actuation, and so on.

Aerospace systems are not only safety critical, but also mission critical and have very
high performance requirements. For example, there is no safety issue regarding a planetary
rover, but the system performance must justify the great cost of deploying it. Consequently,
aerospace enriches traditional formal methods topics with new (or, at least, rarely investigated)
research issues.

Formal methods could greatly benefit from integration with approaches from other disci-
plines, and many such opportunities are now appearing. A good example is the problem of
coordination for platoons of UAVs or satellites, which have been successfully, tackled using var-
ious techniques from control engineering and numerical tools from dynamic programming. In
addition, there exist an abundance of examples artificial intelligence techniques in aerospace
(target tracking, rover planning, multi-agent technologies and so on). The implementation of
these methods could benefit from formal development. From the cross-fertilization of related
multidisciplinary approaches, we expect more robust, safe and mechanizable development and
verification methods for aerospace systems.

Workshop

The main workshop objective is to promote a holistic view and interdisciplinary methods for
design, verification and co-ordination of aerospace systems, by combining formal methods
with techniques from control engineering and artificial intelligence. The very demanding safety,
robustness and performance requirements of these systems require unprecedented integra-
tion of heterogeneous techniques and models. The aim of FMA is to bring together active
researchers from all the above areas to discuss and present their work. Relevant topics in-
clude, but are not limited to (all with a focus on potential application in aerospace design or
engineering):

• new modeling paradigms
• trajectory specification languages
• formal verification of safety and performance properties
• run-time monitoring
• combining formal and analytical techniques in modeling and verification
• autonomous systems
• heterogeneous and hybrid system models
• multi-agent coordination
• probabilistic and stochastic modeling and verification methods
• agent technologies



Format

The workshop format comprises three types of activities:

– Plenary lectures;
– Presentations of peer reviewed contributed papers;
– Contributed talks on ongoing research project or recent research trends that are not suffi-

ciently disseminated across relevant academic communities.

Our plenary speakers are well known experts in the area of verification of space systems and
area traffic management systems.

Klaus Havelund from the Jet Propulsion Laboratory at NASA will introduce the participants to
the subtleties of run time verification of the log files for NASA’s next 2011 Mars mission MSL
(Mars Science Laboratory). The specific challenges include the design of

– a suitable specification language,
– verification algorithms of execution traces against formal specifications, and
– techniques of combining run time analysis with formal testing.

Henk Blom from the National Laboratory of Aerospace, Amsterdam, will introduce the audi-
ence into the world of verification for future air traffic management systems from a control engi-
neering perspective. The techniques involved are of probabilistic nature and, in their most gen-
eral form, are known as stochastic reachability analysis. Although the formal aspects of control
engineering verification are less transparent, stochastic reachability analysis is the continu-
ous counterpart of probabilistic model checking, which is a well established formal verification
technique.

Three contributed papers have been selected for presentation. These describe novel ap-
proaches to three complementary topics in the area of formal development and verification
with applications to aerospace systems. The contributed talks unite experts who very rarely at-
tend a common scientific event. A major objective of the FMA workshop is the cross-fertilization
of the multi-disciplinary approaches to the development and verification of aerospace systems.
The abstracts of these talks indicate a possible common framework in the form of hybrid sys-
tems. The behaviour of these systems results from the interaction between discrete and con-
tinuous dynamics. Experts in the area of hybrid systems will interact with experts in software
engineering in a quest for improved inter-disciplinary techniques for enhancing the quality of
control software in avionics. In addition to formal verification, other topics specific to formal
methods will be discussed, including observability, multi-agent systems, requirements analy-
sis, synchronous languages, etc. Moreover, we hope that the formal methods experts will be
challenged by unusual topics such as the stability of real-time control systems and stochastic
abstractions for hybrid systems. Most importantly, experience reports on practical development
of aerospace systems will be presented and these may provide insights, problems and bench-
marks for future approaches.

We hope you enjoy the workshop . . . . . . . . . . . . . . . . . . . . . Manuela Bujorianu and Michael Fisher
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Runtime verification is the discipline of monitoring and analyzing program execu-
tions. A typical scenario consists of determining whether an execution trace satisfies
a user-provided specification. Research challenges include development of expressive
and convenient specification languages, development of decision procedures for fast
analysis of traces against specifications, and minimization of impact on an instrumented
running program being monitored. In this presentation, we motivate and show how a
temporal rule-based runtime verification system has been applied to log file analysis in
support of the software testing effort for NASA’s next 2011 Mars mission MSL (Mars
Science Laboratory).

RULER [2] is a general-purpose conditional rule-based system, which has a simple
and easily implemented algorithm for effective runtime verification, and into which one
can compile a wide range of temporal logics and other specification formalisms used
for runtime verification. RULER has been designed with expressive power as well as
specification convenience in mind. A RULER specification consists of a set of rules
operating on a set of facts. A fact is of the form F(v1, ...,vn), where F is an identifier
and v1, . . . ,vn are values of various domains. For example, FileSent(127) is a fact. Facts
include observed events as well as internally generated state. A rule triggers when its
condition (a predicate over the set of facts) is satisfied, and as a result the rule will add
and/or remove facts from the set. Specifications can be parameterized with data, or even

? Part of the research described in this publication was carried out at the Jet Propulsion Labo-
ratory, California Institute of Technology, under a contract with the National Aeronautics and
Space Administration.



with specifications, allowing for temporal logic combinators to be defined. The system
has been developed in Java and can be directly applied to monitoring JAVA programs,
using for example ASPECTJ [5] for code instrumentation.

The LOGSCOPE [4] system is a derivation from RULER, developed specifically for
supporting testing of MSL flight software. It is implemented in PYTHON in order to
integrate well with other test scripts written for MSL, also written in PYTHON. The
LOGSCOPE specification language removes some of RULER’s generality, resulting in
the interesting subset of data parameterized state machines, and adding a simple user-
friendly temporal logic. The temporal logic is mapped to the core parameterized state
machines. A description of the process of introducing LOGSCOPE as part of the MSL
testing effort is presented in [3]. The system has been used by test engineers to analyze
log files generated by running the flight software. The temporal logic was instrumental
in achieving test engineer acceptance of the technology. Detailed logging is already part
of the MSL system design approach, and hence there is no added instrumentation over-
head caused by this approach. While post-mortem log analysis prevents the autonomous
reaction to problems possible with online runtime verification, it provides a powerful
tool for test automation.

A combined presentation of the two systems is presented in [1]. We will conclude
with a brief mention of the current effort to unify these two systems, providing more
expressive temporal capability in rule specifications.
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Model checking has been used to verify the correctness of digital circuits, security protocols, com-
munication protocols, as they can be modelled by means of finite state transition model. However,
modelling the behaviour of hybrid systems like UAVs in a Kripke model is challenging. This work
is aimed at capturing the behaviour of an UAV performing cooperative search mission into a Kripke
model, so as to verify it against the temporal properties expressed in Computational Tree Logic
(CTL). SMV model checker is used for the purpose of model checking.

1 Introduction

Increase in computational power, improvements in control techniques and other technological advances
have led to increased focus on cooperative control of multiple agents in recent years. Cooperating multi-
agent systems find application in large number of areas - mobile robots, micro satellite clusters, un-
manned aerial vehicles (UAVs), automated highway systems and internet agents. Cooperating multiple-
agents offer a large number of benefits such as: increase in the success rate of mission, large area coverage
by improvements in latency and information gathering, increase in the computational power offered by
distributed computing and graceful degradation in performance

Cooperative UAV control problems that have received recentattention include cooperative formation
[17], cooperative task allocation, cooperative path planning, cooperative search and many others. Co-
operative search problems have applications in a number of military and civilian applications, such as
surveillance and reconnaissance operations, search and rescue; hazard monitoring, battle damage assess-
ment, agricultural coverage tasks and security patrols [26].

Due to the mission critical nature of UAV systems, it is highly important to ensure the correctness
of these systems and check if the system meets the design requirements. The failure of control software
of the Arian-5 rocket and the Mars rover are hard remainders of what can happen when systems don’t
perform as per specifications. Verification is the process ofverifying the correctness of the system
and whether it satisfies the specifications. The common verification processes aresimulation, testing,
deductive verification, andmodel checking[14]. Simulation is performed on the abstract model of the
system, where as testing is done on the actual system. Simulation and testing involve giving certain
inputs and checking whether the outputs are as expected. These methods are cost effective way to find
the errors. However, checking all of the possible interactions and possible faults is almost impossible

∗PhD Student., DoIS, Cranfield University.
†Professor and Head of the Autonomous Systems Group., DoIS, Cranfield University.
‡Professor., DoIS, Cranfield University.
§Professor., DoIS, Cranfield University.
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2 Modelling and Verification of Multiple UAV Mission Using SMV

using simulation and testing. They only ensure that the system works for the inputs they are tested for.
Testing will demonstrate the presence of bugs, but will not demonstrate the absence of bugs. Even if the
system passes all the testing, we can’t claim that the systemis completely free from errors, as no amount
of testing is exhaustive enough.

The mission planning software of multiple UAV systems involves concurrency as it deals with mul-
tiple UAVs. It is also reactive, as it constantly interacts with the environment in which the UAVs operate.
It is impossible to completely verify such a software systemusing traditional testing. In addition, concur-
rency bugs are one of the most difficult ones to test in a traditional way. Moreover, autonomous systems
operate in harsh and unpredictable environments and it is difficult to predict before hand the kind of
situations that may arise during the mission to carry out testing [7] [5] [20]. Hence, there is a need for
formal verification methods, like deductive verification and model checking, which can clarify with high
degree of certainty that the system meets its requirements.NASA has been working on developing for-
mal verification techniques for their intelligent autonomous system involving multiple rovers or satellites
[8] [18].

Deductive verification is proof-based. It refers to axioms and proof rules to prove the correctness
of the system. System description is made in some formal language and leads to a setΓ of appropriate
formulas in an appropriate logic. The setΓ constitutes a formal logical inference system for deduction.
A system specification is an another formulaϕ of a chosen logic. The verification consists of finding a
proof within the given formal logical system, which would demonstrate that the specification formulaϕ
is inferred from the axioms and inference rules of the formalsystemΓ, ie Γ |= ϕ . The formal systemΓ
is assumed to be sound and complete. Deductive verification is well recognized in computer scientists
and has significantly influenced the area of software development. However, deductive verification is
time-consuming and can be performed only by experts in logicand mathematics.

Model checking, as the name suggests, is model-based. It is an automatic technique for verifying
finite state systems. It involves developing a simplified model which captures the essential features of
the systems. The specifications which are to be verified on thesystem are specified, usually in terms
of logical statements. Then a model checker, a software tool, systematically examines all the system
scenarios to check whether the system satisfies the specifications [4].

In [10] SPIN model checker has been used to verify the safety properties of multi-robot system
expressed in Linear Temporal Logic (LTL). In [19] timed automata framework has been used to model
the robots andUppaal model checker has been used to verify the properties of multiple-robot system
expressed in Computational Tree Logic (CTL). This paper presents formal modelling of multiple-UAV
mission by means of Kripke model and verification of some of the mission properties expressed in CTL.
Kripke model offers benefits of using graph theoretic approaches to analyze the system model. SMV
model checker is used for verifying the properties, as it is one of the most popular model checkers that
supports CTL. In our previous work [23], we reported Kripke model of the behaviour of a single UAV
performing a search and verification of its properties expressed in CTL.

The rest of the paper is organized as follows: Section-2 gives an overview of model checking tech-
nique. The multiple UAV mission and single UAV behaviour performing the search are discussed in
Section-3. Verification of the UAV behaviour using SMV modelchecker is presented in Section-4.

2 Overview of Model Checking

Model checking is a technique to verify finite state machine abstraction of the system. The system is
represented by finite state modelM and a temporal logic formulaφ expressing some desired specification.
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A model checker is used to checkM against the specificationφ . The model checkers outputs either true,
if M satisfiesφ i.e M |= φ , or a counter example, if it does not. These different steps of model checking
are discussed in detail below.

2.1 Model

The first step in model checking is to construct aformal modelof the system. As model checking can
be performed only on finite state systems, the system should be represented as a finite state transition
diagram. We are primarily concerned with reactive systems like UAV systems and their behaviour over
time. Reactive systems are systems which maintain constantinteraction with the environment in which
they operate. The family of reactive systems include many classes of programs whose correct and reliable
construction is particularly challenging, including concurrent programs, embedded and process control
programs, and operating systems. Typical examples of such systems are air traffic control systems,
operating systems, and perpetual ongoing processes such asa nuclear reactors.

Reactive systems need to interact with the environment frequently and often do not terminate. There-
fore, they can’t be adequately modelled by input-output behaviour. Reactive systems can be modelled
by capturing the features by means ofstate. A state is an instantaneous description of the system that
captures the variables at a particular instant of time. The change from one state to the other as a result
of some action determines thetransition of the system. Acomputationis an infinite sequence of states
where each state is obtained from the previous state by some transition.

Kripke structureor Kripke modelis a type of state transition graph to capture this intuitionabout the
behaviour of reactive systems. Kripke structure consists of a set of states, a set of transitions between
the states, and a function that labels each state with a set ofproperties that are true in that state. Paths
in Kripke structure model computations of the system. Although the model of the system is abstract and
simple, it should be expressive enough to capture the aspects of temporal behaviour for reasoning about
the system. Formal representation of Kripke structure is given below.

A Kripke model is represented by a tripletM = (S,R,L) over a set of atomic propositionsAP [14].
A concise representation of a Kripke model whose nodes are states is shown in Figure 1.

1. S is a finite set of states.

2. R⊆ S×S is the transition relation.

3. L : S→ 2AP is a function that labels each state with the set of atomic propositions true in that state.

p,q

rq, r

S0

S1

S2

Figure 1: Kripke model representation of a finite state system
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2.2 Specification

The properties of the system are usually specified in temporal logic. Temporal logic is a formalism for
describing sequences of transitions between states in a reactive system. It is used for specifying and
verifying the correctness of digital circuits and computerprograms. In classical logic, such as predicate
logic, the truth value of a statement is independent of time,whereas in temporal logic the truth value
changes dynamically with time. As we are trying to capture the behaviour of multiple UAV group
over time, temporal logic suits the purpose of specificationlanguage for specifying requirements of the
system. There are two fundamental representation types of temporal logic: CTL and LTL. The distinction
is how they handle the underlying computation tree.

CTL considers branching of time and allows future paths at any given point of time. The temporal
operators quantify over the paths that are possible from a given state. The CTL operators are AX, EX,
AG, EG, AU, EU, AF and EF. These operators are pairwise operators. The first of the pair is either A
or E. A represents ‘along all paths’ and E represents ‘there exists at least one path’. The second one of
the pair is X, F, G, or U meaning ‘next state’, ‘some future state’, ‘all future states(globally)’ and ‘until’
respectively. CTL has the following syntax given in Backus Naur form:

φ := ⊥|⊤|p|(φ)|(¬φ)|(φ ∧φ)|(φ ∨φ)|φ → φ |AXφ |EXφ |A[φ ∪φ ]|E[φ ∪φ ]|AGφ |EGφ |AFφ |EFφ , (1)

wherep ranges over atomic formulas.

2.3 Verification

Many automatic model checkers are available, e.g. SMV [15],SPIN[9], KRONOS, HYTECH, NuSMV.
SMV model checker has been developed by McMillan in the 90s. It uses SMV language for description
of the system model. It accepts temporal specifications expressed either in CTL or LTL. SMV has been
used for model checking digital circuits [11], security protocols [13], embedded systems [12] and web
applications [16].

3 Mission planning for Multiple UAVs

In recent years there has been a growing interest in employing UAV teams to cooperatively search a given
area. The operations of such groups include reconnaissance, surveillance, battle damage assessment,
fire monitoring and chemical cloud detection. UAVs are suitable for these operations as they are too
dangerous for human pilots. Some of the tasks such as monitoring forest fire propagation and mapping
chemical cloud propagation can only be carried out by a groupof UAVs and can’t be carried out by a
single UAV [21], [6], [25], [26].

Hierarchical approach is used extensively for cooperativecontrol because of its simplicity and ease
of design [21] [1] [24]. Each layer has different functionalities. This is done to simplify design and
to deal with different aspects of the systems in separate layers. Partitioning may result in sub-optimal
solution, but as each of these layers have different bandwidths dealing them separately can be justified.
The decision making layer operates at very low rate, whereasthe path planning layer operates at moderate
rate and auto-pilot operates at high rate. The control architecture for multiple UAV mission is shown in
Figure 2. The top layer performs as decision making layer taking inputs regarding the state of the UAVs
from the middle layer. The middle layer is the path planning and guidance layer. The bottom layer
consists of controllers for each UAV.
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Figure 2: Architecture for multiple-UAV cooperative control

3.1 Cooperative UAV Search

This research is aimed at developing a verifiable multiple UAV mission for cooperatively searching a
given area. The mission is to search a given bounded area for static targets and threats using a group
of UAVs for the purpose of environmental monitoring. No or little information is available about the
area being searched. The UAVs must cooperatively search theenvironment and mark the positions of
targets and threats. Each UAV has a communication link to broadcast the findings and to receive updates
from other UAVs of the group. Each UAV has sensors to monitor the environment for the presence of
threats and targets. It is assumed that inter-UAV communications are instantaneous, noiseless and have
unbounded communication range. It is assumed that each UAV has sufficient processing power for path
planning and enough storage to store the global picture of the area being searched. The velocity of the
UAVs is 20 m/s and the minimum turn radius is 25 m.

Each UAV stores on board a model of the environment in form of a“search map”. The positions of
targets, positions of threats identified by the UAVs in the group and decisions of the other UAVs in the
group are stored in this search map. This search map is constantly updated to reflect new information
gathered and changes in the state of the UAVs. Sharing information is essential to ensure cooperation
for decentralized control approach [2], [26]. As no centralized control is present, sharing of information
among the UAVs helps in achieving cooperation. The environment being searched is divided into square
cells. Based on the information in search map each UAV will identify an adjacent cell free from threats
and other UAVs. The path planning layer generates a path starting from its present position, to the
selected neighbouring cell with selected intial and destination headings.

The area to be searched is a square area of 2000X2000 metres. The area is discretized into square
cells of 100x100 metres. Discretizing the area into cells helps in reducing the state space and also to
visualize the state of location of the UAV. Each cell is identified by coordinates of the centre of cell.
The UAVs move through the search area by selecting one of the neighbouring cells. The neighbouring
five cells around the cell, in which UAV is flying, are marked asshown in Figure 3 for the purpose of
identification. The cell with arrow corresponds to the cell in which the UAV is flying at the time of
decision making and the direction of arrow indicates the current heading of the UAV. Cell marked with 1
corresponds to the cell just ahead in the direction of current heading. When cell1 is free, the UAV moves
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1 32

54

Figure 3: Neighbouring cells marked for decision making

into it. If cell1 contain a threat or it is already chosen by other UAV in the group, the UAV moves into
cell3. The order of preference in selecting a neighbouring cell in decreasing order is - cell1, cell3, cell5,
cell2 and cell4. When the UAV reaches the north-most cell it moves into cell5. When the UAV reaches
the south-most cell it moves into cell4. The UAV flies in a pathwhich connects the centre of present cell
and the centre of the chosen neighbouring cell. The initial heading and destination headings of the path
are either 90◦ or 270◦. This is done to discretize the heading of the UAV to just two values in order to
capture the UAV heading in finite state transition model. Theheading is measured with respect to the
east. Heading of 90◦ corresponds to the UAV flying north. The destination headingof the path is same
as the initial heading if the UAV selects cell1 or cell2 or cell3. If not, the destination heading is opposite
direction to the initial heading. Each UAV in the group repeats this behaviour of selecting a neighbouring
free cell.

The decision making layer passes the information of the current and destination cells, current and
destination headings to the path planning layer as shown in Figure 4. The path planning layer takes inputs
from the decision making layer and generates a flyable path from the current cell to the destination cell
with specified starting heading and destination heading. The flight dynamics of the UAV are not taken
into account. It is assumed that the flight controller present on the UAV will take inputs from the path
planning and guidance layer and follows the generated path.

Decision Making

Path Planning

Current and destination cell 
coordinates

Initial and destination 
headings

Position Information

Figure 4: Information exchange between decision making layer and path planning layer

Dubins paths are used to generate path between the way pointsidentified by the decision making
layer. The decision making layer passes the inputs to the path planning layer which then produces
a Dubins path for the initial and destination poses. Dubins path produces the shortest path between
two points by concatenation of circular arcs and their connecting tangents [3] [22]. A straight line is
the shortest path between two points. However, for UAVs withconstraints on initial heading and final
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heading and minimum turning radius, the shortest path is given by concatenation of circular arcs and
straight line [3]. Four Dubins curve typesLRL, RSR, RSL, LSRhave been used.L, S, R denote turning
left, straight line and turning right respectively. It is assumed that the UAVs fly with a constant altitude.
Hence, 2D Dubins paths are used for path planning. 2D Dubins paths for different turning radii and
different heading angles are shown in Figure 5.

Figure 5: 2D Dubins paths for different turning radii and heading angles

The search strategy discussed above is implemented inMATLAB. The trajectories of two UAVs in the
group for a flying time of 600 seconds is shown in Figure 6. The red dots indicate the cells with threats.

Figure 6: Simulation result of multiple UAV mission
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4 Model Checking UAV Misssion

4.1 Kripke Model of UAV Mission

The behaviour of an UAV in the group performing the mission has been captured in Kripke model. CTL
has been used to specify the properties because of its expressiveness and ease of modelling in Kripke
model. As SMV model checker is a popular model checker for checking CTL properties is has been
chosen for our work. SMV language is used for the descriptionof the corresponding Kripke model.

The state of the UAV is captured by the current values of the programs variables. The state of the
position of the UAV is captured by means of the coordinates ofthe centre of the cell. State variables
current cell and destination cell capture the present and destination cell coordinates respec-
tively. The initial values forcurrent cell, initial heading are assigned using the keywordinit
as shown in Figure 7. The movement of the UAV from one cell to the next cell is modelled by assigning

init(current_cell) := [10 , 10];

init(initial_heading):=90;

Figure 7: SMV code showing assignment of initial values

one of the five neighbouring cells to the state variablecell. The state variablesinitial heading and
destination heading capture the initial and destination headings of the UAV pathconnecting the
present cell and the destination cell. The destination heading of the path becomes the initial heading for
the next path and the destination cell becomes current cell,once the UAV moves to the destination cell.
The SMV code modelling these transitions is shown in the Figure 8.

next(initial_heading) := destination_heading;

next(current_cell) := destination_cell;

Figure 8: SMV code showing transitions

The state variablesnorth cell andsouth cell model the inputs from the navigation system re-
garding the present position of the UAV in the search area. The values fornorth cell andsouth cell

are assigned deterministically as shown in the Figure 9. Thestate variables likethreat in cell1model

north_cell := case

current_cell[2]=1950:1;

1:0;

esac;

south_cell := case

current_cell[2]=50:1;

1:0;

esac;

Figure 9: SMV code showing assignment

the environment in which the UAV is operating and model the presence of threats around the UAV. As
these variables are purely environmental and the UAV has no control over the location of threats, they
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are declared as non-deterministic. The state variables like other uav selected cell1 model the de-
cisions made by other UAVs in the group. These variables are declared as non-deterministic, as the
decisions of the other UAVs are not determined by the state ofUAV. As the UAV’s decisions are based
on the information from the sensors which senses the presence of threats in the immediate neighbour-
hood, only five cells around the UAV are considered as shown inthe Figure 3. For example the presence
of threat in the cell11 is modelled by assigning value 1 to theboolean state variablethreat in cell1.
The movement of the other UAVs in the group are captured by theboolean state variables. For example
the selection of the any UAV in the group to move into cell1 is modelled by assigning 1 to the state
variableother uav selected cell1.

The destination heading is either 90◦ or 270◦ based on the present heading and the destination cell
chosen. The coordinates of the destination cell depend on the selection of the neighbouring cell and
the coordinates of the current cell. A snippet of SMV code showing the assignment of destination cell
coordinates to the state variabledestination cell is shown in the Figure 10.

destination_cell:=

case

cell=cell1 : case

initial_heading =90 : [current_cell[1] , current_cell[2]+100];

initial_heading =270: [current_cell[1] , current_cell[2]-100];

esac;

cell=cell2 : ..

..

..

..

..

esac;

Figure 10: SMV code showing assignment of destination cell coordinates

4.2 Specification and Verification of Properties

CTL is used to express the properties that the UAV mission is expected to satisfy. The property that
“when the UAV is flying with a heading of 90◦ and not in the north-most cell, then it flies straight when
there is no threat ahead and no other UAV has chosen cell1” is expressed by the formula:

AG(initial heading= 90∧¬threat in cell1∧¬other uav selected cell1∧

¬north cell→ cell = cell1)

Similarly, formula for the case when the UAV heading is 270◦ is expressed as:

AG(initial heading= 270∧¬threat in cell1∧¬other uav selected cell1∧

¬south cell→ cell= cell1)

The safety property that “the UAV doesn’t enter a cell when either a threat is present orother UAV
in the group has already chosen to enter that cell” is specified by the following formula for the case of
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cell1:

AG(threat in cell1∨other uav selected cell1→¬(cell= cell1))

The property that “the UAV has a initial heading of either 90◦ or 270◦ in its path” is expressed by
the following formula

AG(initial heading= 90∨initial heading= 270)

The Kripke model is verified against the above properties using SMV model checker. Intel 2.2 GHz
processor is used for verificaion and resources used are: user time of 0.046875 sec and system time of
0.015625 sec. SMV produced a output of true for all the above properties. The situation when the UAV
is deadlocked and cannot decide where to move next is found bymeans of violation of the property that
“ the UAV chooses one of the five neighbouring cells”. This property can be expressed in CTL as the
following formula

AG(¬(cell= no free cell))

The violation of the above property is simulated and the Figure 11 shows a case when the UAV is
deadlocked and cannot move any further, as all the neighbouring cells contain threats.

Figure 11: Simulation of a case showing deadlock

5 Conclusion and Future Work

The behaviour of an UAV performing multiple-UAV cooperative search is modelled by Kripke model and
some of the properties of the mission are expressed in CTL. SMV model checker is used for verifying
the correctness of the model against the temporal specifications. A deadlock has been found and the
trace generated by SMV has been simulated. In future, concurrency issues, properties like area coverage,
liveness, reachability and fairness have to be verified.
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Abstract 
In spite of advances in formal and probabilistic verification approaches, fault and event trees still 
are the dominant techniques used for safety risk analysis in aviation. However, the combination 
of concurrent, dynamic and random effects that appear in air traffic cannot properly be captured 
by these classical techniques. In this lecture it will be explained how safety risk modeling and 
analysis can be formulated as a problem of estimation rare event probability of a large scale 
stochastic hybrid system. Subsequently it is explained how rare event estimation theory for 
diffusions can be extended to a large scale stochastic hybrid system (SHS) where a very huge 
number of rare discrete modes may contribute significantly to the rare event estimation. 
Essentially, the approach taken is to develop a compositional model of the air traffic operation 
considered in the form of a large scale SHS, subsequently to introduce a suitable aggregation of 
the discrete modes of this large scale SHS, and then to develop importance sampling and Rao-
Blackwellization relative to these aggregations. The practical use of this approach is 
demonstrated for the estimation of mid-air collision probability for an advanced air traffic 
application. 
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Abstract. This article presents a complete scheme for the development
of Critical Embedded Systems with Multiple Real-Time Constraints. The
system is programmed with a language that extends the synchronous
approach with high-level real-time primitives. It enables to assemble in
a modular and hierarchical manner several locally mono-periodic syn-
chronous systems into a globally multi-periodic synchronous system. It
also allows to specify flow latency constraints. A program is translated
into a set of real-time tasks. The generated code (C code) can be exe-
cuted on a simple real-time platform with a dynamic-priority scheduler
(EDF). The compilation process (each algorithm of the process, not the
compiler itself) is formally proved correct, meaning that the generated
code respects the real-time semantics of the original program (respect of
periods, deadlines, release dates and precedences) as well as its functional
semantics (respect of variable consumption).

1 Introduction

Embedded systems have successfully been implemented with synchronous lan-
guages in the past. In particular, data-flow synchronous languages (Lustre/
Scade [6], Signal [1]) are well adapted for describing precisely the data flow
between the communicating processes of the system. In [5] we proposed an ex-
tension of synchronous languages to design multi-periodic systems efficiently,
by assembling several synchronous nodes into a multi-periodic synchronous pro-
gram. Such an approach allows to describe the real-time aspects and the func-
tional aspects of a system in the same framework. The purpose of the paper is
to give an overview of the language capabilities and to describe the compilation
chain through the programming of a case study. The generated code is targeted
for a simple real-time platform with the earliest-deadline-first (EDF) scheduling
policy [9]. We present the whole compilation chain but we do not get into the
details of the proofs, which can be found in [4]. We focus more particularly on
the generated code, which gives a concrete illustration of the compilation and
summarizes our contribution.

? This work was funded by EADS Astrium Space Transportation



1.1 Motivation

The development of an industrial critical system may involve several teams,
which separately define the different functions of the system. The functions are
then assembled by the integrator, who describes the communications between
the functions. Currently, this integration process lacks a formal language to ease
the design process and to ensure the correctness of the global system.

We consider the simplified Flight Control System of Fig. 1 as a case study.
This system controls the attitude, the trajectory and the speed of an airplane
in auto-pilot mode. It consists of three communicating sub-systems. Each sub-
system consists of several operations (represented by boxes in the figure) and
executes repeatedly at a periodic rate. The fastest sub-system executes at 10ms,
it acquires the state of the system (angles, position, acceleration) and computes
the feedback law of the system. The intermediate sub-system is the piloting loop,
it executes at 40ms and manages the flight control surfaces of the airplane. The
slowest sub-system is the navigation loop, it executes at 120ms and determines
the acceleration to apply. The required position of the airplane is acquired at
the slow rate.

Fig. 1. Flight control system

The three sub-systems are first defined separately by different teams. The
integrator then assembles them in the global system and specifies how they
communicate. The language focuses on this assembly level.

1.2 Contribution

The main novelties of our approach are: first the integrator can develop the
complete system in a unified formal framework (a high-level formal language) and
second the language along with its compiler covers the development of the system
from its design to its implementation, through automated code generation.

This relies on two different research domains. On the one hand, schedul-
ing theory focuses mainly on satisfying system real-time constraints but usu-
ally disregards system functional behaviour. This ensures the correctness of the



temporal properties of the system, but makes it hard to verify the functional
correctness of the system. In the case of multi-periodic systems, this often leads
to non-deterministic process communications. On the other hand, synchronous
languages focus on the correctness of the functional behaviour of the system and
ensure that it is deterministic. However, classic synchronous languages abstract
from real-time (except some recent extensions discussed in Sect. 7), which makes
them ill-adapted to the implementation of multi-periodic systems.

Our work combines scheduling theory and synchronous languages to en-
sure both the functional and the temporal correctness of multi-periodic sys-
tems. This is particularly suitable for the implementation of critical systems.
The integrator programs the system with the language introduced in [5], which
extends synchronous languages with high-level real-time primitives. The com-
piler then generates the set of real-time tasks corresponding to this program.
Tasks are then translated into C threads, each one containing the functional
code of a task completed with a deterministic data-exchange protocol that does
not require synchronization primitives (such as semaphores). The threads are
scheduled concurrently with the EDF policy. They can be preempted by the
scheduler during their execution but preemptions do not jeopardize the func-
tional correctness of the system. The use of an EDF scheduler departs from the
classic compilation scheme of synchronous languages, which translates a pro-
gram into a “single-loop” sequential code [7]. The single-loop scheme relies on a
static-priority non-preemptive scheduling policy, which makes it ill-adapted for
implementing multi-periodic processes. A dynamic-priority preemptive policy
like EDF allows to achieve better processor utilization (to execute more time-
consuming processes). The complete compilation process has been implemented
in OCaml and is about 3000 code lines long. It generates C code with calls to
the real-time primitives defined in the real-time extensions of POSIX [13].

1.3 Paper Outline
Sect. 2 gives an overview of the language for specifying multi-periodic systems
and shows how the case study can be programmed. We then detail the com-
pilation process. The correctness of the system is first verified by a series of
static analyses (Sect. 3). We then translate the program into a set of real-time
tasks (Sect. 4). The preservation of the synchronous semantics during inter-task
communications is ensured by a buffering protocol described in Sect. 5. We can
then translate the tasks into C code for a simple real-time platform (Sect. 6). A
comparison with related works is given in Sect. 7.

2 A Synchronous Real-Time Language

2.1 Informal Presentation

We present the language through the programming of the Flight Control System
of Fig. 1. The different operations of the Flight Control System are first declared
as imported nodes, named after the initials of the operations (for instance, PA
stands for “Position Acquisition”):



imported node PA( i : i n t ) returns ( o : i n t ) wcet 1 ;
imported node AA( i : i n t ) returns ( o : i n t ) wcet 1 ;
. . .

The declaration of an imported node specifies the inputs and outputs of the
node with their types and the worst case execution time (wcet) of the node. For
instance, the node PA has one input i of type int, one output o of type int and
its wcet is 1.

For each sub-system, we define an intermediate node that groups the oper-
ations of the sub-system. Node definitions are modular and hierarchical. There
are several ways to decompose the Flight Control System into nodes and it is
also possible to program the whole system as a single node. However, the dif-
ferent decompositions produce the same behaviour as intermediate nodes are
flattened during the compilation (see Sect. 4.1). We choose to group operations
by sub-systems (and by rates) for better readability. In the following, the suffix
_o stands for “observed”, _r for “required” and _i for “intermediate”. The node
for the acquisition loop is defined as follows:
node a c qu i s i t i o n ( angle , pos , acc ) returns ( pos i , a c c i , a ng l e r )
l e t

po s i = PA( pos ) ;
a c c i = AA( acc ) ;
ang l e r = FL( ang le ) ;

te l

This node has three inputs and three outputs, the types of which are left un-
specified and will be inferred by the type-checker of the language (see Sect. 3).
The body of the node (the let ... tel block) is a set of equations that define
how the outputs of the node are computed from its inputs. All the variables and
expressions of a program are flows. For example, the constant value 0 stands for
an infinite constant sequence. Nodes are applied point-wisely to their arguments.
So, for instance, at each repetition of node acquisition, the output pos_i is
obtained by applying node PA to input pos.

Similarly, we define a node for the piloting loop and for the navigation loop:
node p i l o t i n g ( ang l e r , a c c i , a c c r ) returns ( order )
var acc o ;
l e t

acc o = PF( a c c i ) ;
order = PL ( ang l e r , acc o , a c c r ) ;

te l
node nav igat ion ( pos i , po s r ) returns ( a c c r )
var pos o ;
l e t

pos o = NF( po s i ) ;
a c c r = NL( pos o , po s r ) ;

te l

So far, each node could be defined with the existing Lustre language as each
sub-system is mono-periodic. For the main node FCS however, we use new primi-
tives to handle rate transitions (when operations of different rates communicate)
and to specify the real-time constraints of the different operations:
node FCS ( pos r : r a t e (120 , 0 ) ; angle , pos , acc ) returns ( order : due 15)
var ac c i , acc r , ang l e r , p o s i ;
l e t

a c c r = nav igat ion ( p o s i /ˆ12 , po s r ) ;



order = p i l o t i n g ( ang l e r /ˆ4 , a c c i /ˆ4 , (0 fby a c c r )∗ˆ3 ) ;
( pos i , a c c i , a ng l e r ) = a c qu i s i t i o n ( angle , pos , acc ) ;

te l

When a faster node consumes a flow produced by a slower node, we under-
sample the flow using operator /ˆ. e/ˆk only keeps the first value out of each k
successive values of e. For instance flow acc_i is under-sampled by factor 4 as
its consumer (piloting) is 4 times slower than its producer (acquisition).

For communications from slow to fast operations, we first delay the flow with
operator fby. The operator fby inserts a unitary delay: expression cst fby e
produces the value cst at its first iteration and then the previous values of e (ie e
delayed by the period of e). We then over-sample the delayed flow with operator
∗̂ . e ∗̂ k over-samples e by a factor k. Each value of e is duplicated k times in the
result. For instance the flow acc_r is delayed and then over-sampled by a factor
3 as its consumer (piloting) is 3 times faster than its producer (navigation).
We use a delay before over-sampling the flow to avoid reducing the deadline for
the production of the flow. In the case of flow acc_r for instance, without a
delay the deadline for NL would be lower than 40.

For now, we have only described the ratio between the execution rates of the
nodes. The declaration of the node inputs simply specifies that pos_r has clock
(120, 0) (ie that it has period 120 and phase 0) and all the different rates of the
system are deduced from this information by the clock calculus (see Sect. 3).
The declaration of output order, imposes a deadline constraint (due 15), which
requires it to be produced less than 15ms after the beginning of its period, to
respect some external environment constraint. Its period is left unspecified (its
inferred value is 40ms). The behaviour of the new operators is illustrated in Fig.
2, in which we give the value of each expression at each repetition of the system.

date 0 10 20 30 40 . . .

angle_r an0 an1 an2 an3 an4 . . .

angle_r/^4 an0 an4 . . .

date 0 40 80 120 160 . . .

acc_r ac0 ac1 . . .

0 fby acc_r 0 ac0 . . .

(0 fby acc_r)*^3 0 0 0 ac0 ac0 . . .

Fig. 2. Behaviour of real-time operators

2.2 Formal Definition: Strictly Periodic Clocks

In the synchronous approach, the computations performed by the system are
split into a succession of instants, where each instant corresponds to one repeti-
tion of the system. The synchronous assumption requires that for each instant,
computations end before the end of the instant. Computations can be activated
or deactivated at different instants using clocks. Clocks define the temporal be-
haviour of the program on the logical time scale of instants.



To define formally the real-time operators presented in the previous section,
we introduce a new class of clocks called strictly periodic clocks. Given a set of
values V, a flow is a sequence of pairs (vi, ti)i∈N where vi is a value in V and ti
is a tag in N, such that for all i, ti < ti+1. The clock of a flow is its projection
on N. A tag represents an amount of time elapsed since the beginning of the
execution of the program. Each value of a flow must be computed before its
next activation: vi must be produced during the time interval [ti, ti+1[. After
precedence encoding, the deadline may actually be less than ti+1, this will be
detailed in Sect. 4.3.

Definition 1. (Strictly periodic clock). A clock h = (ti)i∈N, ti ∈ N, is strictly
periodic if and only if: ∃n ∈ N∗, ∀i ∈ N, ti+1 − ti = n.

n is the period of h, denoted π(h) and t0 is the phase of h, denoted ϕ(h).

Definition 2. The term (n, p) ∈ N∗ × Q+ denotes the strictly periodic clock α
such that π(α) = n and ϕ(α) = π(α) ∗ p

A strictly periodic clock defines the real-time rate of a flow and is uniquely
characterized by its phase and by its period. Strictly periodic clocks relate logical
time (instants) to real-time. Locally, each flow has its own notion of instant (it
must end before its next activation), and globally we can compare flows that
do not share the same notion of instants by relating instants to real-time. We
introduce periodic clock transformations to formalize such rate transitions:

Definition 3. Let α be a strictly periodic clock, operations /., ∗. and →. are
periodic clock transformations, that produce new strictly periodic clocks satisfying
the following properties:

– π(α/.k) = k ∗ π(α), ϕ(α/.k) = ϕ(α), k ∈ N∗

– π(α ∗. k) = π(α)/k, ϕ(α ∗. k) = ϕ(α), k ∈ N∗

– π(α→. q) = π(α), ϕ(α→. q) = ϕ(α) + q ∗ π(α), q ∈ Q

Rate transition operators apply periodic clock transformations to flows. If e has
clock α, then e/ˆk has clock α/.k, e ∗ˆk has clock α ∗. k and e ∼> q has clock
α→. q.

2.3 Syntax

The syntax of the language is close to Lustre. It is extended with real-time prim-
itives based on strictly periodic clocks. The grammar of the language is given in
Fig. 3. A program consists of a list of node declarations (nd). Nodes can either
be defined in the program (node) or implemented outside (imported node), for
instance by a C function. Node durations must be provided for each imported
node, more precisely an upper bound on worst case execution times (wcet). The
external code provided for imported nodes can itself be generated by a standard
synchronous language compiler (like Lustre), in case developers want to pro-
gram the whole system using synchronous languages. The clock of input/output



parameters (in/out) of a node can be declared strictly periodic (x : rate(n, p), x
then has clock (n, p)) or unspecified (x). A deadline constraint can be imposed
on outputs (x : rate(n, p) due n′, the deadline is n′). The body of a node con-
sists of an optional list of local variables (var) and a list of equations (eq). Each
equation defines the value of one or several variables using an expression on flows
(var = e). Expressions may be immediate constants (cst), variables (x), pairs
((e, e)), initialised delays (cst fby e), applications (N(e)) or expressions using
strictly periodic clocks (epck). Values k, n, n′, q must be statically evaluable.
Value q must be an element of Q+.

cst ::= true | false | 0 | ...
var ::= x | var, var
e ::= cst | x | (e, e) | cst fby e | N(e) | epck
epck ::= e/ˆk | e ∗ˆk | e ∼> q
eq ::= var = e | eq; eq
in ::= x : rate(n, p) | x | in; in
out ::= x : rate(n, p) | x : rate(n, p) due n′ | x | out; out
nd ::= node N(in) returns (out)[ var var; ] let eq tel

| imported node N(in) returns (out) wcet n;

Fig. 3. Language grammar

3 Static Analyses

Synchronous languages are targeted for critical systems. Therefore, the compi-
lation process puts strong emphasis on the verification of the correctness of the
programs to compile. This consists of a series of static analyses of the program,
which are performed before code generation.

The first analysis performed by the compiler is the type-checking. The lan-
guage is a strongly typed language, in the sense that the execution of a program
cannot produce a run-time type error. Each flow has a single, well-defined type
and only flows of the same type can be combined. The type-checking of the lan-
guage is fairly standard [12]. For the example of the Flight Control System, the
type-checker produces the flowing type for node FCS: (int*int*int*int)->int.
This means that the node takes four integer inputs and produces one integer out-
put. This type is inferred from the types of the imported nodes.

The causality check verifies that the program does not contain cyclic defi-
nitions: a variable cannot instantaneously depend on itself (i.e. not without a
fby in the dependencies). For instance, the equation x=x+1; is incorrect, it is
similar to a deadlock since we need to evaluate x+1 to evaluate x and we need
to evaluate x to evaluate x+1.

The clock calculus (defined in [5]) verifies that a program only combines
flows that have the same clock. When two flows have the same clock, they
are synchronous as they are always present at the same instants. Combin-
ing non-synchronous flows leads to non-deterministic programs as we access
to undefined values. For instance we can only compute the sum of two syn-
chronous flow, because the value of the sum is ill-defined when only one of



the two flows is absent (when the two flows are absent the sum flow is simply
absent, which is well-defined). The clock calculus ensures that a synchronous
program will never access to undefined values. For the example of the Flight
Control System, the clock-calculus produces the following clock for node FCS:
((120,0)*(10,0)*(10,0)*(10,0))->(40,0). This means that inputs angle,
acc, position have period 10, while input position_r has period 120. The
output order has period 40 (though its deadline is 10). These static analyses
ensure that a program accepted by the compiler has a deterministic behaviour.

4 Translation into Real-Time Tasks

This section details how the compilation process translates the input program
into a set of real-time tasks. We first extract a task graph from the program,
where tasks are related by precedence constraints. We then encode task prece-
dences in task real-time attributes to obtain a set of independent tasks.

4.1 Task Graph Extraction

Tasks A synchronous program consists of a hierarchy of nodes, the leaves of
which are predefined or imported nodes. The task graph generation process first
inlines intermediate nodes appearing in the main node recursively, replacing each
intermediate node call by its set of equations. For instance, the program of the
Flight Control System of Sect. 2.1 is translated into a single node (the main
node FCS) containing one node call to each imported node, PA, AA, FL, PF, PL,
NF, NL, one node call to operator ∗̂ , one node call to operator fby and three
node calls to operator /ˆ.

This “flattened” main node is then translated into a task graph. Each im-
ported node call is translated into a task. Each variable of the node and prede-
fined operator call is also translated into a vertex but will later be reduced to
simplify the graph (see Sect. 4.1). The clustering of several nodes into the same
task to reduce the number of generated tasks is beyond the scope of this paper.
We could probably reuse existing strategies, for instance those suggested in [3].

Task Precedences In order to respect the synchronous semantics, for each
data-dependency there must be a precedence from the task producing the data
to the task consuming it. Task precedences are deduced from data dependencies
between expressions of the program. Similarly to [7], we say that an expression
e′ precedes an expression e when e syntactically depends on e′. This occurs ei-
ther when e′ appears in e or when x appears in e and we have an equation
x = e. Let g = (V,E) denote a task graph, where V is the set of tasks of the
graph and E is the set of task precedences of the graph (a subset of V × V ).
For instance, the flattened Flight Control program contains the two equations
pos_o=NF(pos_i/^12); pos_i=PA(pos);. These equations produce the follow-
ing graph: ({NF,PA,/^12,pos,pos_i,pos_o}, {pos→ PA, PA→ pos_i, pos_i→
/^12, /^12→ NF, NF → pos_o}).



Task Graph Reduction We then simplify the intermediate graph structure.
First, each input of the main node is translated into a (sensor) task and each
output of the main node is translated into a (actuator) task. Second, we remove
variables from the graph, replacing recursively each pair of precedence N → x→
M , where x is a local variable, by a single precedence N →M .

We finally translate predefined nodes into precedence annotations. A prece-
dence τi

ops→ τj represents an extended precedence, where ops is a list of precedence
annotations op, with op ∈ {∗̂ k, /ˆk,∼> q, fby}. op.ops denotes the list whose
head is op and whose tail is ops and ε denotes the empty list. For instance, the
precedences PA→ pos_i, pos_i→ /^12, /^12→ NF are simplified into a single

extended precedence PA
/ˆ12→ NF. When the rewriting terminates, every task of the

graph corresponds to either an imported node or a sensor or an actuator. The
reduced task graph of the Flight Control System is given in Fig. 4.

Fig. 4. Reduced task graph for the Flight Control System program

4.2 Real-Time Characteristics Extraction

Each task τi of the graph is characterized by its real-time attributes (Ti, Ci, ri, di).
τi is instantiated periodically with period Ti. It cannot start its execution be-
fore all its predecessors, defined by the precedence constraints, complete their
execution. Ci is the (worst case) execution time of the task. ri is the release
date of the first instance of the task. The subsequent release dates are ri + Ti,
ri + 2Ti, etc. di is the relative deadline of the task. The absolute deadline Di[j]
of the instance j of a task τi is the release date Ri[j] of this instance plus the
relative deadline of the task: Di[j] = Ri[j] + di. Task real-time characteristics
are extracted as follows:

– Periods: The period of a task is obtained from its clock cki. We have Ti =
π(cki).

– Deadlines: By default, the deadline of a task is its period (di = Ti). Dead-
line constraints can also be specified on the production of a node output
(o: due n).

– Release Dates: The initial release date of a task is the phase of its clock:
ri = ϕ(cki).

– Execution Times: The execution time Ci of a task is directly specified by
the wcet of the imported node declaration. For simplification, we consider
that the run-time overhead due to task preemptions is negligible.



4.3 Precedence Encoding

Simple Precedences Encoding [2] showed that a set of dependent tasks
(task related by precedence constraints) can be reduced to a set of indepen-
dent ones (without precedences) obtaining an equivalent problem under the
EDF policy, by adjusting task release dates and deadlines such that precedences
are encoded in the adjusted real-time characteristics. The adjusted absolute
deadline D∗

i of a task is: D∗
i = minτj∈succ(τi)(Di,min(D∗

j − Cj)). If we want
to perform a schedulability test, the adjusted release date of a task is: R∗

i =
maxτj∈pred(τi)(Ri,max(R∗

j +Cj)). If we only want to schedule the program cor-
rectly, the adjusted release date of a taskR∗′

i is:R∗′

i = maxτj∈pred(τi)(Ri,max(R∗′

j )).
For simplification, we only consider the second encoding in the following.

Extended Precedences Encoding Fig. 5, shows that we can unfold extended
precedences between tasks into simple precedences between task instances. The
precedence encoding technique can then be applied to the “unfolded” graph.

(a) A
/ˆ2→ B (b) A

∗̂ 2→ B (c) A
fby→ B (d) A

∼>1/2→ B

Fig. 5. Encoding extended precedences

More formally, let τi[n] → τj [n′] denote a precedence from task instance τi[n]
to task instance τj [n′]. From the semantics of predefined operators, we have
τi

ops→ τj ⇒ ∀n, τi[n] → τj [gops(n)], with gops defined as follows:

g∗̂ k.ops(n) = gops(kn) g/ˆk.ops(n) = gops(dn/ke)
g∼>q.ops(n) = gops(n) gfby.ops(n) = gops(n+ 1)
gε(n) = n

The precedence relation is an over-approximation of the data-dependency re-
lation. Indeed, there is a data dependency between τi[n] and τj [n′], meaning
that τj [n′] consumes the data produced by τi[n], if and only if τi

ops→ τj ∧ n′ =
gops(n) ∧ gops(n) 6= gops(n+ 1).

We can then adapt the encoding to our context. For each precedence τi
ops→ τj ,

we must adjust the release dates and deadlines of each instance τi[n] such that
R∗

i [n] ≤ R∗
j [gops(n)] and D∗

i [n] ≤ D∗
j [gops(n)] − Cj . Concerning release dates,



we can easily prove that thanks to the synchronous semantics we already have
Ri[n] ≤ Rj [gops(n)], so release dates do not need to be adjusted. Concerning
deadlines, we need to transpose the formulae to relative deadlines to fit our task
model. From the definition of relative deadlines: D∗

i [n] ≤ D∗
j [gops(n)] − Cj ⇔

di[n] ≤ dj [gops(n)] + rj + gops(n)Tj − ri − nTi − Cj .

Deadline Calculus In practice we do not need to unfold extended precedences
to perform their encoding. Instead, we represent the sequence of deadlines of the
instances of a task as a finite repetitive pattern called deadline word. A unitary
deadline specifies the relative deadline for the computation of a single instance
of a task. It is simply an integer value d. A deadline word defines the sequence
of unitary deadlines for each instance of a task. The set of deadline words is
defined by the following grammar: w ::= (u)ω u ::= d | d.u. Term (u)ω denotes
the infinite repetition of word u. In the following, w[n] denotes the nth unitary
deadline of deadline word w (n ∈ N).

Let wi denote the deadline word of task τi. A precedence τi
ops→ τj is encoded

by a constraint relating wi to wj of the form:

wi ≤Wops(wj) +∆ops(Ti, Tj)− Cj + rj − ri

where, for all n,Wops(wj)[n] = wj [gops(n)] and∆ops(Ti, Tj)[n] = gops(n)Tj−nTi.
Let ψops(τj) = Wops(wj) +∆ops(Ti, Tj)− Cj + rj − ri.

Property 1. ∆ops(Ti, Tj) is periodic and can be represented as a deadline word.
The set of deadline words is closed under operation Wops and under deadline
words addition. As a consequence, ψops(τj) is a deadline word.

Proof. By induction.

Property 2. The deadline words of a task graph g = (V,E) can be computed
with complexity O(|V | + |E| ∗ |wmax|), where wmax denotes the deadline word
which has the longest size in the task graph.

Proof. A reduced task graph is a DAG (when we do not consider delayed prece-
dences), so we can compute the deadline words of the graph by performing a
topological sort working backwards (starting from the end of the graph). As the
complexity of a topological sort is O(|V |+ |E|), the complexity of the algorithm
is O(|V | + |E| ∗ |wmax|) where wmax denotes the longest deadline word in the
task graph.

For instance, for the Flight Control System program, we take CPA = 1,
CAA = 1, CFL = 3, CPF = 4, CPL = 6, CNL = 20, CNF = 5. To simplify, we
take null durations for sensors and actuators. The result of the deadline calculus
is: wPA = (10)ω, wAA = (5.10.10.10)ω, wFL = (9.10.10.10)ω, wPF = (9)ω,
wPL = (15)ω, wNL = (120)ω, wNF = (100)ω. The deadline words of tasks AA
and PA state that, each first repetition out of four successive repetitions the two
tasks have a shorter deadline as PF and PL execute. Notice that if we set deadline
5 for all the instances of AA (instead of a deadline word), this example is not
schedulable.



5 Communication Protocol

As task precedences are encoded in task deadlines, inter-task communications do
note require synchronization primitives (like semaphores for instance). Indeed,
as long as tasks respect their deadlines, data is produced before being consumed,
so tasks simply read from and write to some communication buffers allocated in
a global shared memory when they execute. However, to respect the synchronous
semantics, the input of a task must not change during its execution. Therefore,
we propose a communication scheme, which ensures that the input of a task
remains available until its deadline.

For a precedence τi
ops→ τj , data produced by τi[n] may be consumed by

τj [gops(n)] after τi[n + 1] has started. This is illustrated in Fig. 6, which shows
the schedule of two tasks related by extended precedences. Vertical lines on the
time axis represent task periods and marks represent task preemptions. An arrow
from A at date t to B at date t′ means that task B may read at time t′ from the
value produced by A at time t. In Fig. 6(a), 6(c) and 6(d), when A[1] executes,
it must not overwrite the data produced by A[0] because it is consumed by B[0]
and B[0] is not complete yet. Therefore, we need a buffer to keep the value of
A[n] after A[n+ 1] has started. In Fig. 6(b), the same data is consumed several
times but A[1] can freely overwrite the data produced by A[0], so no specific
communication scheme is required.

A A

B B

(a) A
/ˆ2→ B

A A

B B B B

(b) A
∗̂ 2→ B

A A

B B

(c) A
fby→ B

A A

B B B

CC C C C C

(d) A
∼>1/2→ B, A

∗̂ 4→ C

Fig. 6. Communications for extended precedences

The communication protocol allocates a buffer for each extended precedence
of the graph. The producer of the data writes to the buffer only if gops(n) 6=
gops(n+ 1) (see the definition of data-dependencies in Sect. 4.3). The consumer
simply reads from this buffer each time it executes. We allocate a double-buffer
when the precedence contains a fby or a ∼>, to keep the previous and the
current value of the data. This communication scheme is illustrated in more
details in Sect. 6.1. It is of course not optimal because in many cases when we
consider a set of precedences from a single task τi to several tasks τj we can use
the same communication buffer for some of the tasks τj . Optimization will be
treated in future work, we could for instance adapt the communication scheme
proposed by [15] to our language.

6 Code Generation

The compiler generates C code with calls to the real-time primitives defined
in the real-time extensions of the POSIX standard (POSIX.13 [13]). The code



generation can easily be adapted to any real-time operating system that pro-
vides dynamic priority scheduling. Each task is translated into a thread and
the threads are executed concurrently by an EDF scheduler modified to handle
deadline words.

6.1 Task Code Generation

The generated code consists of a single C file. The file starts with the decla-
ration of one global variable for each communication buffer. For instance, for
the communication from PF to PL (acc_o before graph expansion), we have the
declaration: int PF_o_PL_i1 (named after the output of the producer and the
input of the consumer). For the communication from PL to FL, we have the
declaration: int PL_o_FL_i2[2], as there is a delay between the two tasks.

The file then contains a function for each task of the task set. The function
mainly consists of an infinite loop, that wraps the function of the corresponding
imported node with the code of the communication protocol. One step of the loop
corresponds to the execution of one instance of the task. Once buffer updates
are complete, the function signals to the scheduler that the current task instance
completed its execution so that it can schedule another task.

For instance, the function for task PL is given in Fig. 7. The value returned
by the external function PL is a single integer so we can directly assign its return
value to an integer variable. When the external function returns a tuple, the out-
put value is returned as a struct pointer in the parameters of the function. The
variable NL_o_PL_i3 is the communication buffer for precedence NL fby .∗̂ 3→ PL.
It is an array of size 2 as the precedence contains a delay. The delay is initialised
at the beginning of the function. PL alternatively reads from value 1 and from
value 0 of the array, starting with value 1 (NL_o_PL_i3[(instance+1)%2]). PL
then copies its output value to the communication buffer PL_o_order for prece-
dence PL → order. Instruction invoke_scheduler(0) signals the completion
of the task instance.

void ∗PL fun (void ∗ arg ) {
NL o PL i3 [ 1 ]=0 ; int i n s t ance =0;
while (1 ) {

PL o = PL( FL o PL i1 , PF o PL i2 , NL o PL i3 [ ( i n s t ance +1)%2]);
PL o order=PL o ;
i n s tance++;
invoke s chedu l e r ( 0 ) ;

}
}

Fig. 7. Code generated for task PL

The functions for tasks FL and NL, which produce data used by PL are given in

Fig. 8. Variable FL_o_PL_i1 is the communication buffer for precedence FL
/ˆ4→

PL. It is updated once every 4 iterations, (update_FL_o_PL_i1[instance%4]).

For precedence NL fby .∗̂ 3→ PL, NL alternatively copies its output value to the
value 0 and to the value 1 of the buffer NL_o_PL_i3.



void ∗FL fun (void ∗ arg ) {
int update FL o PL i1 [ 4 ]={1 ,0 , 0 , 0} ; int i n s t ance =0;
while (1 ) {

FL o = FL( ang l e FL i1 ) ;
i f ( update FL o PL i1 [ i n s t ance %4])

FL o PL i1=FL o ;
i n s tance++;
invoke s chedu l e r ( 0 ) ;

}
}
void ∗NL fun (void ∗ arg ) {

int i n s t ance =0;
while (1 ) {

NL o = NL( NF o NL i1 , pos r NL i2 ) ;
NL o PL i3 [ i n s t ance%2]=NL o ;
i n s tance++;
invoke s chedu l e r ( 0 ) ;

}
}

Fig. 8. Code generated for tasks FL and NL

The main function then creates one thread for each task, initializes the EDF
scheduler and attaches the threads to it. For instance, the thread for task PL is
created by the following function call: pthread_create(&tPL,&attrPL,PL_fun,
NULL). tPL is the thread created for this task. attrPL contains the real-time
attributes of the task. PL_fun is the function executed by the thread. The last
parameter NULL stands for the arguments of PL_fun.

6.2 Implementing EDF with Variable Deadlines

We choose to prototype the scheduler using MaRTE Operating System [14],
which was designed specifically to ease the implementation of application-specific
schedulers while remaining close to the POSIX model. We modify the EDF sched-
uler provided with the OS to support deadline words. To summarize, the EDF
scheduler is defined as a high-priority thread created by the main function of the
file. The scheduler thread is itself scheduled by the kernel of the OS. It becomes
active only when scheduling actions must be taken, which is when the following
scheduling events (implemented by means of signals) occur: the current instance
of a task completes its execution or a new task instance is released. The sched-
uler then computes the most urgent task among the ready tasks (tasks released
and not complete yet), resumes the execution of the corresponding thread where
it stopped and suspends the execution of the currently executing thread, if any.
The scheduler thread then becomes inactive until the next scheduling event.

The support of deadline words requires very few modifications. We define
deadline words and modify the structure describing task real-time attributes as
shown in Fig. 9. Then, we modify the function that programs the next instance
of a task when the current instance completes. For a task τi, the attributes of
which are described by the value t_data, the release date and the deadline of
its new instance are computed as described in Fig. 10 (Di[n] = Ri[n] + di[n]).
The function incr_timespec(t1,t2) increments t1 by t2 and the function
(t1,t2,t3) sets t1 to t2+t3.

We can see that the overhead due to the support of deadline words remains
very reasonable. Altogether, we modified about 20 lines of code of the original



typedef struct dword { struct t imespec ∗dds ; int wsize ; } dword t ;
typedef struct thread data {

struct t imespec per iod ;
struct t imespec i n i t i a l r e l e a s e ;
dword t dword ;
struct t imespec nex t dead l i n e ;
struct t imespec n e x t r e l e a s e ;
int i n s t ance ;

} th r ead data t ;

Fig. 9. Data type representing task real-time attributes

dword t dw = t data−>dword ; t data−>i n s t ance++;
i n c r t ime spe c (&t data−>nex t r e l e a s e ,& t data−>per iod ) ;
add t imespec (&t data−>next dead l ine ,& t data−>nex t r e l e a s e ,

&(dw . dds [ t data−>i n s t ance%dw. ws ize ] ) ) ;

Fig. 10. Releasing a new task instance

EDF scheduler, which is 300 lines of code long. We compiled and executed the
C code generated for the Flight Control System and it behaved as expected.

7 Related Works

The language used in this article relies on a specific class of clocks to handle
the multi-periodic aspects of a system. Real-time periodic clocks have also been
introduced in [3], but they do not include clock transformations to efficiently
handle rate transitions. Our rate-transition operators are also very similar to the
rate transition blocks of Simulink [10]. Yet, as far as we know, for models using
such blocks, the code generation tool (Real-Time Workshop) relies on a Rate-
Monotonic scheduler [9] used with semaphores to handle task communications,
which is not an optimal scheduling policy for this scheduling problem.

The scheduling of multi-rate Synchronous Data Flow (SDF) is a well studied
problem (see for instance [8, 16, 11]). In particular [16] studies the implemen-
tation of SDF with a dynamic scheduler using preemption. However, though
multi-rate systems are at the chore of SDF graphs, SDF operations are not pe-
riodic, they are not released periodically and their relative deadline is not their
period. As a consequence, these results do not apply to our problem.

[15] deals with the execution of a set of synchronous tasks, the semantics
of which is very close to our task sets, with a dynamic scheduler. However, the
authors do not detail how the synchronous task set is obtained, for instance
how it is translated from a synchronous language, and task precedences are not
specified in the task set.

A simple solution to the problem of scheduling tasks related by extended
precedences is to unfold the extended precedence graph on the hyperperiod of
the tasks and use [2] to encode the simple precedences of the unfolded graph. This
solution replaces each task τi byHP/Ti duplicates (whereHP is the hyperperiod
of the tasks) in the unfolded graph. This can lead to important computation
overhead at execution as the scheduler needs to make its decisions according to
a task set that will contain many tasks. Our solution does not duplicate any
task, so the scheduler takes less time to make its decisions.



8 Conclusion

We proposed a language for programming critical systems with multiple real-time
constraints, along with its compiler, which automatically translates a program
into a set of independent real-time tasks programmed in C with POSIX.13 real-
time extensions. The generated code is schedulable optimally by a slightly mod-
ified EDF scheduler and requires no synchronization primitives. Though tasks
are scheduled concurrently and preemptions are allowed, the generated program
respects the real-time and the functional semantics of the original program.
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The timed automata formalism is an important model for specifying and analysing real-time systems.
Robustness is the correctness of the model in the presence ofsmall drifts on clocks or imprecision in
testing guards. A symbolic algorithm for the analysis of therobustness of timed automata has been
implemented. In this paper, we re-analyse an industrial case lip synchronization protocol using the
new robust reachability algorithm. This lip synchronization protocol is an interesting case because
timing aspects are crucial for the correctness of the protocol. Several versions of the model are
considered: with an ideal video stream, with anchored jitter, and with non-anchored jitter.

1 Introduction

Timed automata [2] is a widely used and successful formalismto analyse real-time systems. Timed
automata are automata extended by clock variables that can be tested and reset. Numerous real-time
systems have been specified and analysed by the tool UPPAAL [5, 17] and the approach can be said to
be mature and industrially applicable.

However, if we want to implement a system then robustness becomes an issue. We need to know if
the system is resilient with respect to small perturbations. Timed automata in its original form may be
crucially dependent on perfect precision of the clocks. Therefore, several publications have suggested
alternative semantics of timed automata that take into account perturbations. In particular, the skewed
clocks automata from [1] can have arbitrary rates for clocks, the “tube languages” from [9, 11] deal with
open sets of trajectories, “perturbed” timed automata from[14] are subjected to an infinitesimal noise,
and the implementable timed automata from [19, 20] should beimplementable using discrete clocks.

Semantics can only be said to be successful if it can be applied in practice. In this paper we are
interested in the work that was initiated by Puri [13]. He considered drifting clocks and showed that
timed automata models are not robust with respect to safety properties, meaning that a model proven to
be safe under the standard ideal semantics might not be safe even if clocks drift by an arbitrarily small
amount. The region based algorithm has been proposed to calculate set of states that are reachable for
anyclock drift. Puri’s approach has been extended by the introduction of the concept of stable zone [7],
which made it possible to implement an efficient algorithm that can be used in practice.

To check the new performance of the new algorithm the best wayis to apply it to an industrial case
study. On the UPPAAL homepage [17] a number of case studies can be found in which the UPPAAL tool
has been applied. We investigated several of them and we havechosen the case study where a lip syn-
chronisation algorithm is analysed. This algorithm is usedto synchronize multiple information streams
sent over a communication network, in this case audio and video streams of a multimedia application.
We chose this case study mainly because timing is an important aspect of synchronisation and therefore
this algorithm can be expected to be sensitive to small disturbances of the clock drift.
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Structure of the paper The rest of the paper is organised as follows. Section 2 introduces the lip
synchronisation problem. Section 3 presents the modellingformalism and tool used in the analysis of
the lip synchronisation protocol. Section 4 provides a description of a model of the lip synchronisation
protocol. Section 5 presents the verification results and Section 6 gives a concluding discussion.

2 Lip Synchronisation Problem

The problem of lip synchronisation has been present in the literature [16, 4]. Here we present it briefly,
for more detailed description look in [6]. In this paper, we consider the problem of synchronising of audio
and video streams. We consider a scenario when audio and video are transmitted as separate streams that
need to be synchronised at the sink.

The overview of the basic configuration can be seen in Figure 1. There are two stream sources: one
for sound and one for video. These streams arrive at a presentation device. We need to ensure that both
streams play synchronised within certain level of tolerance. This is the problem that lip synchronisation
protocol addresses.

The protocol is implemented using several components:soundandvideomanagers, and acontroller.
Communication between components is done using signals. When presentation device receives sound
packet it sends asavail 1 signal to theSound Manager. At an appropriate moment the Sound Manager
sendsspresentsignal to the Presentation Device to indicate that the packet should be played. TheVideo
Managerhas similar behaviour and uses signalsvavail andvpresent. TheController contains the main
body of the protocol. It receives signalssreadyandvreadyfrom the managers. The signals indicate that
sound and/or video packets can be presented. The Controllerdecides if it is the correct time to play the
packet. Confirmation is done usingsokandvoksignals, respectively. If it is not possible to synchronise,
the Controller signals an error and enters an error state.

The requirements for acceptable synchronisation between the two streams are the following:

• The time granularity is 1 millisecond.

• A sound packet is presented every 30 milliseconds and no jitter is allowed.

• Optimally, a video packet should be presented every 40 milliseconds. However, we allow some
margin of error:

– video frames may precede sound frames up to 15 milliseconds and may lag up to 150 mil-
liseconds.

– we allow a 5ms jitter that is, a video package may be no less than 35 ms late and no more
than 45 ms away from ideal presentation time (Anchored Jitter) or from previous packet
(Non-anchored Jitter)

3 Modelling Formalism

3.1 Timed Automata

For our purposes we use the existing timed automata model from [6]. The modelling formalism is based
on a network of timed automata. The network of timed automataconsists of the parallel composition

1names are usually prefixed with s for sound and v for video
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Figure 1: Overview of the structure of the lip synchronisation system

of a number of timed automata, and a configuration. A timed automaton is an automaton consisting of
locations and edges that are extended with real valued variables called clocks.

Edges and locations are labelled. The labels of an edge may consists of several optional components:
a guard, a synchronisation label, a set of clocks to reset, and assignments to integer variables. The guard
on clocks and/or on data variables expresses under which conditions we are allowed to take a transition.
If there is no guard, the condition is interpreted as true. Because later we consider a so called robust
semantics, we limit guards on clocks to the form :x ≤ c or x ≥ c wherex is a real valued clock and
c is natural number. We also allow a formula that is a combination of the above terms using logical
and. When we take a transition we may perform a synchronisation.The synchronisation label must be
synchronised with its counter part. The synchronisation rules are similar as in CSS [12]. When there is
no synchronisation, a label is interpreted as an internal action (similar toτ-actions).

The labels of locations consist of the name of a location, an optional invariant, and can be marked
ascommittedor urgent. An invariant is a constraint on clocks, indicating how longwe can stay in a
location. It is similar to guard but only upper bound constraints are allowed. When a location is marked
as committed, we have to leave this location without any delay or any interleaving actions. This is useful
to ensure atomicity of sequence of transitions. When a location is urgent time is not allowed to pass in
that location.

The configuration consists of the names of timed automata composing the system, global variables,
and channels. The synchronisation happens through channels and synchronisation labels are names of
channels. Channels can beurgent. When a channel is urgent, we have to take that transition as soon as
possible that is without delay. There can be no guards on edgewith urgent channel.

The state of timed automaton is of the form(q̄,v) where q̄ is a control vector andv is the clock
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valuation. The control vector shows the current location for each timed automata in the network and the
clock valuation indicates value of each clock and integer variables. The initial state consists of initial
locations for each timed automaton and all clocks and variables equal to value 0. From a state it is
possible to take two types of transitions:delayandedgetransition. When we take a delay transition, all
clocks are progressing at the same speed within the values allowed by the location invariants. An edge
transition can be internal or a synchronisation. An internal transition can occur when the network is at
the location in which it can take an edge with no synchronisation label. The guard must be satisfied by
the current clock valuations. A synchronisation transition occurs when two edges can synchronise over
complementary synchronisation labels. Guards of both edges must be satisfied.

3.2 Model Checking

The continuous time leads to infinitely many states. Fortunately, as noted in [2] similar states can be
grouped intoregions. However region automaton is not the most efficient representation of the state
space of a timed automaton. It suffers from a combinatorial state explosion, which is dependent on the
size of the constants used.Zonesare used as a more efficient representation of the state space[8, 10, 21]
as they represent the state space in a more aggregated way. Inthe tool UPPAAL [5] more effective zone
based algorithm is used.

The UPPAAL tool is able to check for reachability properties. Those properties are of the form:

ϕ ::= ∀3β | ∃2β β ::= a | β1∧β2 | ¬β | β1 ⇒ β2

wherea is an atomic formula being either an atomic clock (or data) constraint or a component location
(Ai at l). Atomic clock (data) constraints are integer bounds on individual clock (data) variables (e.g.
1≤ x≤ 3).

Intuitively for ∀2β to be satisfied all reachable states must satisfyβ . For∃3β to be satisfied some
reachable state must satisfyβ .

3.3 Robustness Problem

Clocks in a timed automata network are synchronous. Puri [14] has shown that this assumption is not ro-
bust to even infinitely small clock drifts. In short, it meansthat we can reach states that are not reachable
in normal semantics foranyvalue of the clock drift. He proposed new reachability semantics for timed
automata and we will call it therobust semantics. The idea is to have a parametrised reachability, where
a parameter defines how much clocks are allowed to drift. In normal reachability, when time progresses
by t time units, the new clock valuation isv+ t. When we allow clock drift parametrised byε , the new
clock valuation can haveε small differences between clocks. Formally

v′ (xi)−v(xi) ∈ [(1− ε) t,(1+ ε)t] , for i = 1, . . . ,n

wheren is number of clocks,v′ is a valuation after the time transition andv is a clock valuation before
the time transition. LetReachε(s0) denote the reachable set of states from the initial states0 in the robust
semantics. Unfortunately parametric model checking of timed automata with three clocks and only one
parameter is known to be undecidable [3, 18]. What Puri proposes is the reachability when the driftε is
infinitely small. Formally

Rε→0(s0) =
⋂

ε>0

Reachε(s0)
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(c) Reachable set of states in the robust semantics

Figure 2: Example of timed automaton with different reachability under normal and robust semantics.
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Puri shows that calculatingRε→0(s0) is decidable. He proposes a region based algorithm.
It may seem thatRε→0(s0) andReach(s0) are the same sinceε is small, but this is not the case.

Consider the example shown in Figure 2(a). This timed automaton has two clocksx and y and four
locations. From location Init we can only go to locationq1 and the value of the clocks will bex = 1
andy = 0. In the precise semantics, following the cycle between locationsq1 andq2, we will get the
reachable set of statesReach(S )s0 depicted in Figure 2(b). We want to avoid Err location. The Err
location is not reachable for bothα = 2 andα = 3.

Now we consider the case for the robust semantics. Lete1 be edge from locationq1 to q2 ande2 edge
from locationq2 to q1. Notice that for any 0≤ β ≤ 1 the following sequence of transitions is possible:

(q1;x = β ,y = 0)
2−β
→ ε

e1→ε (q2;x = 0,y = 2−β + ε)
β−ε
→ ε

e2→ε (q1;x = β − ε ,y = 0). Hence, if we cycle
sufficient number of times for anyε > 0 we can reach state(q1;x = 0,y = 0) which is not reachable in the
normal semanticsS . Thus, the Err location is robustly reachable forα = 2. This shows that the normal
semantics is not robust with respect to small clock perturbations. Even small changes in the clock drift
may lead to a dramatic change in the behaviour of a system. We avoid the Err location only in the normal
semantics, but not in the robust semantics. We say that such safety property is non-robustly satisfied. If
a system has non-robustly satisfied property it is not implementable because its correctness depends on
the mathematical idealization of the normal semantics.

3.4 Verification Tool

Puri proposed an algorithm to calculateRε→0(s0) that is based on regions. Basically the algorithm finds
regions that are on the cycle in the region graph. Such regions have the property that we can drift form any
point to any other point in that region in robust semantics. When a part of such a region is encountered in
the search, the whole region is added to the reachable set of states. In [7] the notion of astable zonehas
been introduced. Basically the stable zone has the same property as the region on the cycle that is, we
can drift from any point in the stable to any other point in that stable zone. Thus, this is a good starting
point for the zone based algorithm to calculate robust reachability. Together with the Aalborg University
the prototype tool is being developed based on UPPAAL 4.1.1 and it is used in this paper.

4 The Model

In this section UPPAAL model is presented. It follows the specification given in [6] which in turn was
derived from the specification given in LOTOS [15]. The modelrepresents the specification of the video
and sound managers and the synchroniser from Figure 1.

The model is shown in Figure 3. Sound and Video Managers are modelled by automataVideoMgr,
SoundMgr, VideoWdg, SoundWdgand UrgMon. The Synchronizer consists ofSynch, VideoSynch,
SoundSynchandSoundClock. The external environment that is the sound and video streams are modelled
by VideoStrandSoundStr. We briefly discuss the components.

The stream managers Both stream managers are quite simple. After receiving a signal vavail or
savail indicating that the video or sound packet is available, theyforward the signal immediately to the
synchroniser usingvreadyandsready. The immediacy is ensured by marking the locationsvm2andsm2
as committed. Next the manager waits for a confirmation from the controller (the confirmation signal
comes from the watchdogs) meaning that the packet can be played. This is done using signalsvokkand
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chan savail, vavail, sready, vready, spresent, vpresent, sokk, vok,

vokk, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sclock, ums, ume;

urgent chan sok;

Int vmins;

clock t1, t2, t3, t4, t5, t6, t7;

system SoundStr, VideoStr, SoundMgr,

VideoMgr, SoundWdg, VideoWdg, SoundSynch,

VideoSynch, SoundClock, Synch, Urgmon;

Figure 3: A model of Lip Synchronisation Protocol
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sokk. The confirmation is immediately forwarded to the presentation device using signalsvpresentand
spresent. Since the presentation device is not modelled, those actions are internal.

The watchdog timers The role of watchdog timers is to ensure that the time betweenpresentations of
subsequent media packets is within certain time bounds. We discuss the video watchdog. The timing
requirement is that consecutive video packets are played between 35 ms and 45 ms. Initially the watchdog
waits for the first packet to arrive (signalvok) and sends immediately the confirmation to the video
manager using signalvokk. We ensure that no time passes betweenvok andvokksignals. The signals
vok and vokk constitute in a way a complex signal that allows synchronisation betweenVideoSynch,
VideoMgr andVideoWdg. After presenting the first packet the time is measured untilthe next packet
arrives. In order to ensure proper timing of the presentation of the packet, the transition leaving location
vw3 is guarded by 35≤t4≤ 45. If vokdoes not occur before 45 ms passes,vlateerror is given.

TheSoundWdgis slightly more complicated because we must ensure that sound packets are played
exactly every 30 ms. Similarly to the video watchdog it waitsfor the confirmation (signalsok)that the
first packet should be presented and relays the signal to theSoundMgrusing the signalsokkwithout time
delay. After that the clock t3 is used to measure the time between consecutive presentations of the sound
packets. To ensure that exactly 30 ms passes between sound packets,UrgMon is used and signalsok is
marked as urgent. If a sound packet is not available in 30 ms the slateerror is generated.

The synchroniser The role of aSynchis to initialise the other automata. Depending on whether a sound
or a video packet arrives first, automata can be initialised in two ways. If signalvreadyor sreadyarrives
then we confirm that the packet can be presented (signalvok or sok) and initialiseSoundClock(signal
stdor sti) then initialiseVideoSych(signalsv1or ss1) and at last we initialiseSoundSynch(signalssv0or
ss0). Note that all locations except sy1 are committed to ensurethat initialisation is done immediately.

The sound clock TheSoundClockis a discrete clock that ticks every millisecond. It is started at the
moment the first sound packet arrives. It can be initialised by signalsti if the sound packer is first or by
combination ofstdandsclocksignals if video packet arrives first.

The clock is used to compute the skew between sound and video streams. The skew is stored in
vminsvariable. Every time the clock ticks it is decreased by one.

The sound synchroniser TheSoundSynchcan be initialised it two ways. If a sound packet is first it
receivesss1signal and starts the repeating behaviour immediately. If avideo packet is first then it checks
if there is a synchronisation error - it can happen only when the first sound packet does not arrive within
15 ms after the first video packet. This is the requirement of the lip synchronisation. After the fist sound
packet arrives it initialisesSoundClockthrough thesclocksignal and starts the repeating behaviour

The repeating behaviour is very simple. If it receives signal sreadythat the sound packet has arrived,
it send a signalsokindicating that it can be presented.

The video synchroniser The VideoSynchis quite complex. Similarly asSoundSynchit can be ini-
tialised in two ways. If the video packet arrives first it goesimmediately to the repeating behaviour
through signalsv1. If sound packet arrives first, it checks if a video packet is received within 150 mil-
liseconds but not earlier than 15 milliseconds from the sound packet. If more than 150 milliseconds have
passed thenvsyncherror is generated.
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In the repeating behaviour,VideoSynchchecks if there is too much skew between sound and video
packets. After receivingvreadysignal, it checks the lip synchronisation requirement immediately (the
t1≤ 0 invariant). Now we have three possibilities:

• The video presentation is more than 150 milliseconds later than the sound presentation. This is
true whenvminsis less than−150. In such casevsyncherror is generated.

• The video is more than 15 ms early with respect to the sound packet. This is the case ifvmins> 15.
In such case the presentation of the video frames are postponed. We enter a state where we are
forced to wait one millisecond. After that we check the synchronisation requirement again.

• The video and the sound packets are sufficiently synchronised. In such case we send a signalvok
to present a video packet and we update thevminsvariable.

The media streams The informal specification of the protocol does not make any assumptions about
the streams. Several possible streams are modelled and are further described in Section 5.

5 Verification

5.1 Verified properties

vi1
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(t7 ≤ 40)

vavail!
t7 := 0

vavail!
t7 == 40
t7 := 0

Ideal

vi1

vi2 (t7 ≤ 40)

vi3 (t7 ≤ 10)

vavail!
t7 := 5

t7==40
t7 := 0

vavail!

Anchored

vi1

vi2
(t7 ≤ 45)

vavail!
t7 := 0

vavail!
t7 ≥ 35
t7 := 0

NonAnch

Figure 4: Three variations of video stream

We have followed [6] and we assumed that the sound stream is ideal and arrives every 30 ms. The
perturbations may affect the video stream. There are three possible video streams that are investigated:

• An ideal video stream that delivers a video frame every 40 ms.

• A video stream withanchored jitterthat have a rate of 40 ms and a variation of±5 ms.

• A video stream withnon-anchored jitterwhere the variability between each two consequent frames
is minimally 35 ms and maximally 45 ms.

Figure 4 shows automata representing different variationsof the video stream.
Another variation that was investigated is the initial delay of video and sound streams. The first

option is that the starting time of streams is left unspecified; the other possibility is that both streams
start at the same time.
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The verification is done using error location reachability.Each error location reachability was done
using normal and robust semantics. The reachability properties are all of the form:

E3A.l and not(B1.l1 or . . . Bn.ln)

The answer to such a query will be positive if there exists a path in timed automata network which will
eventually reach locationl in A but all locationsl i in Bi will be avoided. The locationl will be the
error location we are checking. The second part is to ensure that timed automata network did not reach
another error location as this might have caused another error location to be reachable. The following
error location have been modelled and checked for reachability:

• Initial sound synchronisation error in theSoundSynch(location s07)

• Initial video synchronisation error in theVideoSynch(location v06)

• Video synchronisation error in theVideoSynch(location v07)

• Video late error in theVideoWdg(location vw5)

• Sound late error in theSoundWdg(location sw5)

5.2 Results

We have implemented the algorithm for the robust semantics in a prototype tool based on UPPAAL 4.1.1.
The normal semantics reachability analysis is done using UPPAAL 4.1.1. Our implementation at best
can be as good as a depth first search for the normal reachability. Thus all the results presented here are
run using depth first search. Experiments were performed on aPC with an AMD 1.2 GHz processor with
768MB of RAM. In [6] the state space was reduced by marking theerror locations as committed. We
have not done this optimisation.

Error location Ideal Anchored Non-anchored
Init Sound Synch(s07) T 0.5 T 0.1 T 0.2
Init Video Synch(v06) T 1.5 T 56.7 T 55.7

Video Synch (v07) F 3.3 T 57.9 T 26.5
Video Late (vw5) F 3.3 T 0.2 F 55.5
Sound Late (sw5) F 3.2 F 61.8 F 57.2

Init Sound Synch(s07*) T 0.1 T 0.2 T 0.2
Init Video Synch(v06*) T 7.4 T 4613.3 T 1260.1

Video Synch (v07*) T 3378.2 T 3168.4 T 674.9
Video Late (vw5*) F 5636.4 T 7.5 F 5834.5
Sound Late (sw5*) F 5378.2 F 5591.2 F 5724.4

Table 1: Verification results for streams with possible initial delay for both normal and robust semantics
(marked with *)

Table 1 gives the results of the verification of the lip-synchronisation protocol for the various reach-
ability properties. In the leftmost column we have a type of error that can occur. In the case of the error
location being not reachable we mark it with F and if the errorlocation is reachable we put T. In the
second column we have a verification time given in seconds.
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We can see that for all kinds of video streams, the initial sound and video synchronisation errors can
occur. This can be explained by the fact that video or sound stream can postpone sending packet. This
allows for the gap between sound and video packet to be arbitrarily long and reaching error location.

The anchored and non-anchored video streams can encounter video synchronisation error and can
reach location vw07. In both cases it is enough to wait as longas possible but avoiding initial video
synchronisation error and then the gap between sound and video packet can be enlarged due to allowed
jitter.

Only in the case of the video stream with anchored jitter video frames can be late. In anchored jitter
maximal gap between two consecutive packets is 50 ms. This is5 ms more than allowed gap thus video
frames can be late.

Error location Ideal Anchored Non-anchored
Init Sound Synch(s07) F 0.2 F 0.4 F 86.1
Init Video Synch(v06) F 0.2 F 0.5 F 85.1

Video Synch (v07) F 0.2 F 0.5 T 36.8
Video Late (vw5) F 0.2 T 0.2 F 83.1
Sound Late (sw5) F 0.2 F 0.5 F 81.8

Init Sound Synch(s07*) F 81.8 F 153.2 F 178.4
Init Video Synch(v06*) F 391.1 F 397.2 F 357.9

Video Synch (v07*) T 275.4 T 293.7 T 244.2
Video Late (vw5*) F 394.4 T 9.2 F 385.4
Sound Late (sw5*) F 391.5 F 385.3 F 401.2

Table 2: Verification results for streams without initial delay for both normal and robust semantics
(marked with *)

The results where both streams are forced to start at the sametime are shown in Table 2. The
presentation format is the same as in Table 2. In such a situation the initial synchronisation errors are not
reachable. In the case of an ideal video stream we do not encounter any errors. In the case of an anchored
video stream again the video can be late. The reason is the same as previously. The non-anchored video
stream can lead to out of video synchronisation error. This is because the gap can accumulate over time.

The second part of Table 1 and Table 2 shows the result for the robust semantics. They are marked
with * next to the location name. It is worth mentioning here that if some location is reachable in the
normal semantics then it is reachable in the robust semantics. The main difference between normal and
robust semantics is that a video synchronisation error is always possible for all kinds of video stream,
with or without allowed initial delay.

We try to explain this for the case of ideal video stream without initial delay, as all other cases are
less restrictive. The variable vmins is decreased every millisecond. The timing is provided by the clock
t5. In the case of an ideal video stream, every 40 ms (ensured by clock t7) a video packet is sent. If vmins
is small enough, so we do not have to enter location v04 and vmins is increased by 40. Thus over time
vmins oscillates around the same base value. Now assume thatclocks t5 and t7 desynchronise byε every
millisecond. For sufficiently many cycles the base value over which vmins oscillates can be changed
up or down. If vmins is too large it will be remedied by visiting location v04, but no such mechanism
exists when vmins is getting smaller. Finally we will reach v07 and video synchronisation error will
occur. Other types of errors use the clocks that cannot accumulate the drift because their reset time is
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synchronised with the signals. So the verification results from normal and robust semantics are the same.

The conclusion is that if we play video long enough we are not able to guarantee that the protocol
will not desynchronise, no matter how precise clocks we have. We are only able to guarantee proper lip
synchronisation for a playback with limited time.

Deadlocks In [6] in addition the deadlock detection is done. We do not dodeadlock detection as
current status of the theory does not allow the tool to detectdeadlocks robustly. The main limiting factor
is the fact that we do not allow the guards to be strict. To do the deadlock detection we need to detect
when we reach state that cannot leave through any transition. For that we need to complement guards
on the edges and that introduces strict inequalities. The brief manual analysis of the specification reveals
that new deadlocks can be reached in robust semantics. For example non-anchored video can send video
packet at 45 ms but because of slight desynchronisation clock t4 have value 45+ ε thus edge leading to
location vw4 is not enabled any more.

As a side note let us mention that in [6] authors report one deadlock and they expected the other
deadlock that should be detected by the UPPAAL, but full state search did not revealed it. It appears that
the reason for not detecting the deadlock must have been the early imperfection of the UPPAAL tool, as
the current version 4.1.1 detect both deadlocks.

6 Conclusions

We have re-verified a lip synchronisation protocol using robust semantics. The original protocol has
been previously model checked using UPPAAL [6] and has been presented in a number of different
formalisms [16, 15, 4].

The verification results using robust semantics are slightly different from normal semantics. The
choice of case study was done to maximise probability of different results so this result was anticipated.
The robust reachability analysis allowed us to identify theproblem with the lip synchronisation protocol.
For a continuous playback we are not able to make the clocks precise enough to ensure that video and
sound do not become desynchronised. The sound and video can stay synchronised only for a limited
time, and this time is depending on the precision of the clocks.

The verification of the lip synchronisation protocol gave usalso the possibility to evaluate the per-
formance of the robust reachability algorithm. The verification of a lip synchronisation using robust
semantics takes significantly more time than verification using normal semantics. The main reason is
that the model uses the variable vmins as a kind of discrete clock which divides the state space into many
small pieces. This forces our algorithm to add many stable zones, which is expensive.

The limitation of our algorithm is its inability to detect deadlocks. In the case of the industrial case
study this is important feature. We believe that the abilityto detect deadlocks would identify more prob-
lems - mostly connected to the way time-out is modelled. Another limitation is that it is not possible
to use strict guards. In the context of robustness where we allow small clock drifts, we believe that
differentiating between strict and non-strict guards is not an essential feature. Unfortunately this feature
is needed for deadlock detection. This will be an important direction of our future work. At the mo-
ment only reachability properties can be analysed. Future research will investigate the extension of the
algorithm with the possibility to check liveness properties.
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Abstract 

The paper addresses the problem of defining a theoretical physical agent framework that satisfies practical 
requirements of programmability by non-programmer engineers and at the same time permitting fast realtime 
operation of agents on digital computer networks. The objective of the new framework is to enable the 
satisfaction of performance requirements on autonomous vehicles and robots in space exploration, deep 
underwater exploration, defense reconnaissance, automated manufacturing and household automation.  

1. Introduction 

Agent theory has a substantial history within the field of computer science and has been theorized over 
greatly, stemming from the widely held view that an agent is a system most appropriately described by the 
intentional stance, wherein the agent is an entity subject to anthropomorphism [1]. Whilst, to date, there is no 
panacea for agent theory, significant contributions have been made relating to what properties an agent 
should have and how these properties should be formally represented and reasoned about [1,2,3,4,5]. 
Application areas for agent systems have been presented for the realms of software, industry and autonomous 
control systems [1,5,6]. 

Agent architectures are divisible into three groups: reactive, deliberative and hybrid. Reactive architectures 
operate through a mapping of data to action, in a stimulus-response fashion, as exhibited by Brook’s 
subsumption architecture. Subsumption architectures present intelligence as an emergent property resultant 
from a hierarchy of finite state machines such that there is a behavioral response resultant from goal oriented 
desires; there is no form of planning. Such simplistic architectures are advantageous in dynamic environments, 
though in addition to the difficulty of engineering a set of behaviors to achieve a particular task, undesired 
behaviors may also evolve. Moreover, omitting the ability for such agents to reason eliminates the possibilities 
of planning and learning: both highly desirable proactive traits for agents [7,8]. 

Deliberative architectures can be separated into symbolic and intentional systems; these latter architectures 
are based upon abstracted notions written within the intentional stance. Intentional systems, as philosophized 
over by Dennett, encompass system descriptions abstracted out using human notions such as belief and intent 
[9]. Such abstractions allow irrelevant details to be omitted and hence save in computational complexity, 
permitting subsequent reasoning to be based upon high level notions and not modeling physics as would be 
resultant from modeling within the physical stance. Both deliberative theories are strongly bound to logical 
systems and it is these engines which are used for agent reasoning. The earliest cited use of such logical 
formalism within agent reasoning is that of the possible world semantics, as presented by Hintikka, now 
commonly formulated in a Kripke structure using normal modal logic [1]. Unlike reactive systems, deliberative 
architectures do not imply any form of output, merely theorizing over system knowledge. By definition an 
agent is proactive, thus requiring some form of output: early work involving the integration of action and 
knowledge is from Moore, who presents a formalism wherein knowledge is used as a pre-condition for action. 
This is in agreement with Hintikka, who postulated that not only is knowledge is the goal of inquiry, but what 



‘decisions and actions are based upon’. This work was closely followed by a theory of intention by Cohen and 
Levesque [10]. 

Symbolic architectures are logical systems, wherein the environment is represented symbolically and 
manipulated through reasoning. It is common practice now that the symbolic representations are logical 
formulae and it is these which are manipulated: this syntactic manipulation is theorem proving. Such 
manipulation permits an agent not only to reason about the consequence of current percepts, but states of 
the world which it may bring about. Although advantageous in both mathematical rigor and concept, since 
human knowledge can be considered as symbolic, it is difficult to translate the world effectively into symbolic 
representation and the computation times required for formal proofs generally precludes implementation on 
real time systems, even if using a concurrent theorem proving mechanism [10] . 

Intentional systems are rooted in philosophy and based upon logical reasoning of the intentional stances used 
to represent the agent. Epistemic and doxastic logic, the logic of knowledge and belief respectively, are two 
forms of logic which fit within the anthropomorphist nature of an agent. A logical framework wherein beliefs, 
desires and intentions are primitive attitudes, as formulated by Rao and Georgeff, has proven to be the most 
popular: the three BDI primitives are highly cited within literature and used within numerous agent 
programming languages including the logic based PRS, Jason and 3APL, as well as the Java based 
implementations of JADE, Jadex and JACK [2,3,4]. 

Systems aiming to combine the timely nature of reactive architectures and the mathematical rigor of 
deliberative architectures are termed as hybrid, or layered architectures. Layered systems, as their name 
would suggest, involve a hierarchy of interacting subsystem layers; these layers may be horizontal or vertical. 
Complexities of information bottlenecks and the need for internal mediation within horizontal architectures 
are partially alleviated within vertical architectures, though these structures do not provide for fault tolerance.  
Both horizontal and vertical architectures have been implemented within TouringMachines and InterRRaP 
respectively [12].  

Possibly the most widely known BDI implementation is PRS [13, 14]. PRS is a situated real time reasoning 
system that has been applied to the handling of space shuttle malfunctions, threat assessment and the control 
of an autonomous robot. Within the PRS framework a knowledge database, detailing how to achieve particular 
goals or react to certain situations, is interfaced by an interpreter. Conceptually this is similar to a horizontally 
layered TouringMachine, though notions if intention are contained and consequently placing PRS as a 
deliberative BDI model. Whilst certainly a notable and proven method, the knowledge database is fixed and 
invoked upon perceived condition triggers for the particular knowledge item of relevance. The set of possible 
agent behaviors is restricted by the number of knowledge items programmed and held within the library: an 
agent cannot add knowledge items during runtime, self generated or otherwise. 

Here we propose interleaving of physical stances within the intentional stances used to abstract and reason 
about the system in order to enrich the reasoning process. Some might question the validity of such an 
approach as beneficial to aiding means–end reasoning, since conceptually we are providing an elaborate plan 
mechanism, which could be instigated within the PRS architecture. However, PRS interprets percepts and in 
conjunction with goals, will select a particular pre-formed plan to run: we are proposing the possibility for 
physical stances to act internal to deliberation as well as being the result of deliberation; not instigated as a 
result of deliberation until a preferential alternative is selected.  

 

2. An agent framework for unstructured physical environments   

A physical agent system (PAS) is a 3-tuple consisting of the agent, the environment in which the agent exists 
and a coupling between the agent and environment. 



Definition A physical agent system,  is defined by   

 

where is a set of agents,  ,    is a set of environment objects, , and  is a set 

of couplings between  and any members of the joint set  .  Couplings between 
members of    are called communications, and couplings between members of   are called physical 

interactions, . Couplings between members of  and  are called action and sensing, in the environment.  

A coupling is an abstract object at this stage of our discussion that will be specified later for its types, attribute 
and models (see Section 4). In this paper we are interested in physical agents that are not pure software 
agents but ones that have a set of environmental objects associated with them and are called the “body” of 
the agents. Strictly speaking a body is a set of environmental objects associated with a set of agents.  

Definition The body association of agents is a map, β, defined by splitting  and  into a disjoint set of sets of 
agents and sets of environmental objects, respectively: 

, , 

and allocating to each  a subset of  :   where   .  

In exceptional circumstances the  may be allowed not to be disjoint, meaning that agent teams can 
“share some body parts”, but this is not the norm. For logical clarity one should organize teams of agents, such 
that  is a disjoint union.  

 

Definition.  A single physical agent is a tuple    consisting of the three main constituents of any 
agent: its physical engine, its rational behavior engine and its continuous engine.  

 

 

 

 

 

  

 

 

This formal representation of a physical agent has been created to serve three practical purposes in 
engineering autonomous systems that interact with the physical environment: 

1. Easy programming by engineers through defining sensing and actuation for the physical engine, 
definition of prediction in the continuous world (using the continuous engine) and by defining goals 
and behaviour constraints for the rational behavior engine. 

Processes of a single physical agent  

Π: Physical Engine Σ: Rational Behaviour Engine 

Ω: Continuous Engine 



2. Formal verifiability of the complete hybrid system of the agent system and its environment class, 
based on assumptions made on probabilities of physical engine malfunctions, numerical precision of 
the continuous engine and a hybrid system model-class of the environment.  

3. Fast realtime operation on digital computers with asynchronous processes running in parallel. Any 
physical agent must have at least one process for each of  . Realtime functionality may well 
require that some or all of  are split into several, or many, sub processes.  

If any of these practical requirements are not met then the uptake of the agent system by industry can be 
seriously limited. 

The physical engine can be a complex process or set of processes. It can contain a multitude of devices, 
including communication, sensor and actuator devices, as well as sensor data abstractors  (SDAs), control data 
developers (CDDs) and feedback processes (FBPs) for realtime processing of perception and actions of the 
agent. The SDAs are to symbolize events for the CDDs are to develop symbolic action into control signals for 
the actuators and the FBPs are needed for linking CDD and SDA pairs into realtime feedback loop executors. 

Definition. A physical engine   is a quad tuple, , where is a set of communication devices,  is 
a set of sensor data abstractors,  is a set of control data developers and is a set of realtime feedback loop 
executors. For practical reasons any of  may be empty, but this is not true for , which represents 
communication devices and consequently may never be empty. 

Definition. A software agent is a physical agent that has only communication devices present within its 
physical engine, i.e. all of  are empty.  

The rational behavior engine, , is formally defined so as to permit the accommodation of simple reactive 
subsumption based architectures as well as deliberative belief-desire-intention, i.e. BDI  agent architectures. 
Whatever agent architecture is implemented, they must handle sensed event abstractions, agent action 
abstractions and decision making processes (DMPs).  

From a theoretical point of view, it is the DMPs where agent architectures mostly differ in complexity. Given a 
set of  abstractions, one can define simple behavior rules for a reactive subsumption architecture, or 
one can define a deliberative agent decision making process. The latter can use a belief set that can influence 
goal list prioritization and commitments to intentions that are executed, while monitoring beliefs and changing 
action if necessary. Of course a BDI architecture may involve more complex  abstractions, however 
the overall architecture described above remains valid. As the next section will show, humans formulate their 
behavior rules in abstract temporal logic statements, so to satisfy the requirement of “ease of programming”, 
it would be inappropriate to ignore temporal logic as a fundamental component of the DMP. As described 
later, and as one of the main contributions of this paper, there will be another equally important component 

of any capable advanced agent, that is via Ω, the continuous engine. The Ω moves beyond logic and facilitates 
the handling of unknown unstructured environments by the agent.    

A question remains relating to the complexity that the DMP going to take on.  It is inevitable that the DMP will 
be implemented using the abstractions of   plus some memory and suitable data structures. These 
data structures may possibly be different resolution maps of the world in which the agent resides that may be 
uncertain in their fine detail. Similar to the way we (as humans) use maps to learn the abstract layout of 
streets or connections of metro lines, robots may only have a rough and highly abstract guide to the world. In 
the case of the metro line maps even the rough geometry of where the lines go in the city is neglected and the 
map is only useful to know how the stations are connected. These examples from human context point to the 
importance of a robot needing maps with different resolutions to make goal achievement and planning fast. In 
an unknown environment, for which there are no detailed maps available, the robot must implement SLAM 
(self localization and mapping) techniques.  



Apart from maps there may also be a need for a memory for abstract skills (SAM) execution. Although the 
Physical Engine has  for the actual execution of physical contact with the world, physical skills are to 
be controlled at an abstract level in feedback/feedforward. Speed of execution in some skills may require 
sending out a sequence of abstract commands in  for execution, without concurrent feedback but rather 
details relating to the end result of the abstract command sequence. For humans this happens in driving a car 
where we learn what action to take in a particular situation, such a requirement to swerve or perform an 
emergency stop, and feedback can only be registered with some delay; speed of feedback is limited.  
Abstracted physical skills command sequences, and their feedback mechanisms, are learnt and improved upon 
by actually practicing the activity, a testament to the phrase “practice makes perfect”. The same should be 
true for robots as it is too laborious for programmers to develop physical skills of robots and the DMP system.  
Additionally, self-learning skills also infers learning how skills fit into the DMP system: integrity of the DMP 
operation is preserved. This integrity may become fragmented if programmers develop code for physical skills 
of agents and this highlights the importance of learning skills execution (LSE) and skills abstract memory (SAM) 
at an abstract level using discrete symbols .  

Most physical agents developed so far do not have a DMP with LSE and SAM. Existing robots tend to link 
abstractions directly with a limited set of physical actions. Using LSE and SAM the set of performable actions 
can be several magnitude greater than the set of abstractions for sensing and actions in , which may 
be called primitives of sensing and actions from which more complex ones can be built. Good choice of 
primitives in will fundamentally influence the sophistication of physical abilities that the robot will be 
able to learn via practice.  

Other components of DMP can be: 

• Planning of movements in the physical world  

• High level planning of goal achievement using various resolutions of world maps (self-learned or 
acquired)  

• Ultimate goals of operation and behaviour constraints at higher levels of abstraction 

The following definition grasps the minimum of what the DMP must contain for a capable physical agent, 
without specifying the actual mechanisms of operation, i.e. no “agent architecture” is specified.  

 Definition. A rational behavior engine  is a tuple,   that contains a granulated multi-

resolution and physical multi-domain world models W, abstract physical skills memory, ,  goal achievement 

memory (problem solving memory),   abstract formulation of behavior constraints, C, abstract formulation 

of short and long term goals, G. 

Although no specific agent architecture is required, we will briefly outline how some of the best known 
architectures fit into this. In all cases the   are assumed to be common. 

Subsumption architectures: 

The  of a physical agent with “subsumption architecture” can for instance be filled in by the following: 

  – Empty sets. 

C                  – A set of “if A then B” rules where the premises A are propositional logic formulae in terms 
of abstraction symbols in  or in . The conclusions are propositional logic formulae of symbols in  .  

BDI  architectures in Jason or similar agent oriented languages: 

  – Modeling structures in various physical domains and varying resolution 



  – Plans and logic rules programmed in the agent programming language 

     – Goal symbols that appear at the head of some plans  

METATEM deliberative agents using temporal logic : 

   – Modeling structures in various physical domains and varying resolution 

  – Databases of symbol vectors in terms of  and temporal propositional logic connections 

     – Temporal logic statements in terms of higher level abstractions as explained by temporal logic 
formulas using abstraction from: . 

The latter realization is the most natural for humans in terms of goal definitions and executions of tasks in a 
logical manner.  The question of modeling structures relating to the continuous world, and their role in 
planning and decision making, has so far been neglected. It is a fact however, that decisions can be influenced 
by hypothetical planning and not decision to be made first and then planning put into motion. This latter can 
lead to the agent making bad decisions. This fact and that initial abstractions in   as prescribed by the 
designer of the agent, may not be sufficient to capture the essence of the changing world correctly, leads us to 
the next section defining the “Continuous engine” of the physical agent. 

Definition. The continuous engine, Ω, is a tuple   where M is a set of approximate 
continuous models of the world,    is a continuous time simulator that uses analytical and empirical data 
based dynamic models to predict future state of the world, O is an optimizer that can optimize continuous 

time planning of actions, B is a Boolean evaluator of propositions in terms of σ statements and L is a library of 
useful numerical computations in terms of continuous variables.  

As W is the primary, symbolic model of the world with relationships stored on symbols, the M is related to W. 
The M is a collection of models from various physical domains (geometric, mechanical, electrical, gravitational, 
heat, fluid flow, etc…) that make symbolic descriptions in W either more precise in numerical or in qualitative, 
time evolution sense.  Even without precise numerics, the agent may perform a simulation using the 
simulation tools in S to see possible qualitative outcomes in terms of   abstractions.  These qualitative 

outcomes of predictions can be used to make the right decisions and planning by Σ.   

The O is a set of optimization tools of continuous problems. The agent can perform planning in continuous 
time and can set up a problem formulation. Then it searches in O for a suitable optimization tool. The results 
are formulated and used at the symbolic level of .  Optimization for path planning, robust feedback 
control or a low complexity numerical dynamical model may all be tools that are available in O. 

B is important since Boolean values of primitives in σ in prediction (simulation) outcomes must be inferred by 

some continuous computations that cannot be performed elsewhere except in the continuous engine  Ω .  B 
contains a Boolean valued functional, by example “will the agent body be within the allowed boundary if it 
carries on moving the same way for the next 10s” is an evaluation that is not done in symbolic computation 

but using M, S and B: the statement is converted into a symbolic temporal logic statement for  Σ . 

Finally L is a library of auxiliary computations with continuous quantities: for instance equation solvers for 
linear systems of equations, nonlinear equation solvers and generic nonlinear optimizers. Use of L by the agent 

assumes that the agent is capable of setting up problems in Σ by first abstracting them and picking a solution  
tool from L.  

It is evident that Σ and Ω run hand-in-hand, i.e. the Σ frequently delegates computations to Ω, and then uses 

the output from Ω to continue deliberation of prescribe action. 



 

 

3. Programming of  Physical Agents by Non-programmers  
 

A human being is represented here as a “super agent” that has considerably more in its DMP then the formal 
agents to be engineered. The extra features of the human DMP can be briefly summarized as follows: 

• Conceptual structures formed from  abstractions. 

• Seamless manipulation of conceptual structures to achieve lowest complexity models of the 
environment for goal achievement. 

• Rich set of skills to cope with in various situations in a physical environment. This includes manual 
skills as well as skills of analytical modelling performed in the head or on a computer.  

• Near “completeness” of abstract knowledge in an artificially created physical environment that 
permits reliable operation of human agents by design of the environment. 

The latter is an interesting point: our educational system complements the human built environment to be 
safe for humans by providing skills to cope and introducing laws and unwritten conventions to render the 
human – physical world interactions relatively safe for mature adults.  

Unfortunately, physical agents that we discuss in this paper do not enjoy the kind of advantages as listed.  
Instead the problem is to find a mapping of these human capabilities into formal agent properties that make 
them safe and achieving goals despite the very limited resources they have relative to humans. To do that we 
will formalize the human capabilities a bit further. 

 

4. An Example  Software Implementation Using J2M  

There are many ways to implement the agent architecture described above. Ideally C, C++ could be used for all 
the components to permit operation on all platforms (Windows, Linux, Unix, MacOS and embedded systems) 
but there are both practical and legacy issues that make realization biased towards software systems that have 
ready tools available and which would be far too expensive to reproduce. For instance the MATLAB family of 
toolboxes provides a rich set of numerical processing, optimization and simulation algorithms that can be 
exploited. Similarly the Java environment has numerous software components in the area of agent reasoning 
that may be implemented directly. The following table provides some possible options for the software 
platform to be used for the implementation of the agent architecture outlined in Sections 2-4.   

 

Π platform Σ platform Ω platform 
C C C 
C++ C++ C++ 
Java Java Java 
MATLAB Java MATLAB 
SIMPOL SIMPOL SIMPOL 

 

In the following we describe a possible software implementation in terms of MATLAB+Java+MATLAB (J2M) 
that has the advantage of minimal programming effort due to the rich set of programming tools presently 

available. Within the J2M implementation, the Π and Ω platforms are developed within MATLAB, whilst the Σ 



platform is exclusively developed using Java. Although it is theoretically possible to form a rational engine 
within a MATLAB framework, since MATLAB does not allow for multi-threaded code execution, this would be a 
restricting factor. Also, to do so would neglect the existing frameworks which have been developed in more 
suitable languages. It should be noted that the high level prototyping in J2M may be converted into concise 
machine code for embedded applications. A description of the J2M will follow, within which we are assuming 
the implementation of a physical agent, that is one for which  are not empty. 

The physical engine, Π, is an element within an environment; this environment may be purely numerical, 
instantiated within a virtual world or a true dynamic real world environment. Regardless of construct, the 
physical engine is capable of extracting relevant abstract data from the inhabited world to be encapsulated 

within  and communicated to the rational engine, , via . This is the only interaction mechanism Π has with 
.  

Within the developed implementation, the physical engine continually passes sensory information to the 
rational engine, which is used to update W, though the rational engine may chose to ignore information it 
receives. 

Sensor data, , may relate to position and velocity information given in some coordinate frame, as would be 
required for roving vehicles such as UAVs or AUVs.  may also relate to other functional data types such as 
temperature and pressure information, extracted from relevant sensors. The way in which  is communicated 
to  is critical, since  must be in the position to update W correctly based upon information received via . 
FIPA provides a comprehensive treatment of software standards and specifications for interacting agents and 
agent based systems, to enable intelligible communication between agents and agent processes. For the 
instance of sensor data flow from the physical engine to the rational engine, communication is unidirectional 
and so the communication considerations are reduced to the rational agent requiring knowledge only of the 
communicating entity (in this case ) and the subject matter ( ). W is updated as a consequence of , from 
which  will evaluate the appropriate actions and this may instantiate invocations of . 

During the rational agent deliberation cycle, a point may be reached wherein calls to the continuous engine 
are required. Instances of these calls have already been entered upon; here we shall concentrate on the data 
flow. The continuous engine is constructed within MATLAB and consequently all functionality of this system is 
achieved through use of the appropriate m-files.  requests execution of a component from , either S, O, B 
or L, dependent upon the solution sought by the deliberation cycle occurring within , and also requests a 
response in the form of a pointer, character array, numerical or Boolean value. 

Communication between  and  is more complex than that of the data pushing performed by Π, since 
actions executed by  are conditional upon input from , and in turn  expects some form of result. 
Consequently we are presented with the need for more elaborate communications protocols to ensure 
efficient interaction between  and . Messaging from  is of the form <mc,cc,rc>, whereby mc is a character 
string specifying the particular m-file to be executed, based upon the data encapsulated within cc and 
expecting the number of returned evaluations to be the number specified within rc. Since  is aware of the 
continuous engine invocation instance, the data type being returned by  need not be specified. Return dialog 
from  to  is in a similar format, of the form <mr,rr>, wherein mr signifies the m-file which was executed and 
rr the result of the routine. This format could be interpreted within the FIPA framework as <in-reply-to, data>. 

MATLAB is unable to function in a multi-threaded nature and so  is restricted to parallel processes only; this 
is not true for , which is intrinsically multi-threaded: whilst waiting for a response from ,  is able to 
continue other forms of deliberation which are unrelated to problems associated with the current  task. An 
example of such an instance is that of vehicle path optimization:  requests execution of O from  based upon 

current  and M. Whilst O is executing within ,  is still capable of monitoring  from Π and dealing with any 
instances which may arise, such as the need for control reconfiguration. Upon completion of O within , the 



relevant response (in this instance a pointer to the file detailing the optimized path) is sent to , from which 
the invoking thread may be resumed. Ultimately all threads within  result in some form of action to be 

completed by Π and this requires some form of assertion by ; note that the prescription of ‘no-action’ 

represents the simplest assertion which may be prescribed by . In the same way that Π acts to ‘push’ data to 

,  prescribes action for Π: here  prescribes the initiation of  which acts directly upon . Returning to the 

example of path following,  initiates  within Π relating to the task of path following using the plan formed by 
 and accessed by the file pointer provided to  by , which is consequently available to .  executes 

without additional action from , using internal feedback devices, though  is capable of over-riding the 
execution of a . 

All engines run concurrently:  is continuously feeding data to , which prescribes action to  via  and 
invokes intermittent communication with .  Whilst   and  do not communicate directly, shared memory 
between these engines allows access of the results from   by : such an instance is invoked when  is tasked 
with path optimization. Here  is invoked by  to optimize a path, or thruster sequence, and this plan is stored 
within a file. A pointer to this file passed to , which communicates this pointer to . If instructed to follow the 
plan,  reads the file directly and acts accordingly. A schematic of the J2M construct, indicating interaction of 
the three agent engines, is given within Figure 1. 

 

 

Figure 1: J2M Framework Construct 

An example implementation of the presented agent framework has been developed based upon a spacecraft 
agent scenario. Within the scenario a spacecraft agent is tasked with acquiring and tracking a geostationary 
orbital location upon a failed orbital insertion. During the simulation the agent is also presented with instances 
of actuator failure, requiring control reconfiguration in order to achieve the mission objective.  

The agent world is developed within Simulink (MATLAB), and is inclusive of disturbances resulting from Earth 
oblateness (triaxiality), solar radiation pressure and Luni-Solar third-body perturbations [15]. The agent is not 

aware of these impacting factors: within the continuous engine, Ω, the relevant physics engine for internal 
simulation which may be utilized are based upon the Hill equations, a simplification of the orbital dynamics 
with respect to the desired orbital location [16]. The spacecraft agent is availed with numerous possible 
control methodologies, afforded by the considerable amount of literature available on the subject of 



spacecraft control, inclusive of planning, adaptive and reactive control systems [17-23]. It is the task of the 
reasoning engine to select an appropriate control methodology to deal with the presented scenario, perform 
the appropriate control and analyse the resultant output in order to improve performance. Concurrent to the 
control requirements, the spacecraft agent is tasked with monitoring internal systems and reacting accordingly 
to any diagnostics made. Within simulation, the actuators present the agent with situations of gain reduction 
and propellant supply issues resulting from supply valves being stuck open/closed and a fuel-line breach. 

The upper level Simulink block is shown within Figure 2, with the VRML sink linking to a virtual world shown in 
Figure 3. Whilst not essential, it was chosen to include a VRML world to aid visualization of the dynamical 
processes occurring as a result of agent action or inaction. The world is initialized with the agent in an 
undesired location and with a state representative of a failed orbit insertion. A sphere indicates the desired 
geostationary location bounds: when within these bounds the sphere surface is green; when in violation of the 
bounds the surface is red. Note that for visualization purposes, scales have been altered greatly. 

 

 

Figure 2: Agent Simulink Environment 



 

Figure 3: Agent VRML World Initialized State 

Agent percepts are taken from the simulated world, from which abstractions are made and passed to the 
rational engine developed within Java. As presented within the proposed agent framework, the rational engine 
may task the continuous engine and these results may be used within deliberation to result in a rationalized 
prescription of action: agent action is currently limited to thruster actuation and internal reconfiguration to 
adapt for faulty thrusters.  

Using the presented framework within the simulation, successful geostationary orbit attainment and 
regulation has been achieved in the presence of unknown disturbances and actuator failure, necessitating 
online control reconfiguration. 

 

Summary 

This paper has discussed and presented a theoretical physical agent framework that satisfies the practical 
requirements of programmability by non-programmer engineers and realtime operation of deployed agents. 
The presented framework has been developed and implemented within simulation for autonomous spacecraft 
control tasked with position tracking, subject to orbit insertion error, unmodeled orbital perturbations and 
control reconfiguration requirements under the presence of actuator performance degradation and failure. 
Further development of this model, and the extension of the existing framework to additional agent scenarios, 
is the subject of continued research. 

 

References 

[1] Michael Wooldridge and Nicholas R. Jennings, Intelligent Agents: Theory and Practice. Knowledge 
Engineering Review Journal, 1995, volume 10, pp 115-152. 



[2] Anand S. Rao and Micheal P. Georgeff, Formal Models and Decision Procedures for Multi-Agent Systems. 
Technical note 61: Australian Artificial Intelligence Institute, June 1995. 

[3] Rafael H. Bordini, Jomi F. Hubner and Micheal Wooldridge, Programming Multi-Agent Systems in 
AgentSpeak Using Jason. Published by John Wiley and Sons, 2007 

[4] Fabio Bellifemine, Giovanni Caire and Domonic Greenwood, Developing Multi-Agent Systems With Jade. 
Published by John Wiley and Sons, 2007. 

[5] H. Van Dyke Parunak, Practical And Industrial Applications of Agent-Based Systems, 1998. 

[6] Sandor M. Veres, Autonomous Control Systems Using Agents: An Introduction. In, Proceedings of IEE 

Workshop on Agent Based Control Systems. IET (IEE), 1-10 (2005).  

[7] Sandor M. Veres and Aron G Veres, Learning and Adaptation in Physical Agents. In, 9th IFAC Workshop 
"Adaptation and Learning in Control and Signal Processing" (ALCOSP'07), St Petersburg, Russia, 29-31 Aug 
2007. , 6pp. 

[8] Sandor M. Veres and Aron G. Veres, Learning and Adaptation of Skills in Autonomous Physical Agents. In, 
17th World Congress of International Federation of Automatic Control (IFAC), Seoul, Korea, 6-10 Jul 2008. 
Seoul, Korea, Elsevier - Pergamon Press, 6pp, 2671-2676. 

[9] Daniel C. Dennett, The Intentional Stance. Published by MIT Press, 1989. 

[10] Cohen, P. R. and Levesque, H. J. (1990). Intention is choice with commitment. Artificial Intelligence, 42:213-
26 

[11] Michael Fisher, An Open Approach to Concurrent Theorem-Proving. Technical report, Department of 
Computing, Manchester Metropolitan University. 

[12] Michael Wooldridge, An Introduction to MultiAgent Systems. Published by John Wiley and Sons, 2002. 

[13] Georgeff, M. P. and Lansky, A. L. (1987). Reactive Reasoning and Planning. In Proceedings of the Sixth 
National Conference on Artificial Intelligence (AAAI-87), pages 677-682, Seattle, WA. 

[14] K. L. Myers, Procedural Reasoning System User’s Guide: A Manual for Version 2.0. Technical report, 
Artificial Intelligence Center, SRI International, Menlo Park, CA, 2001. 
 
[15] David A. Vallado and Wagne D. McClain, Fundamentals of Astrodynamics and Applications (Space 
Technology Library). Published by Springer Link, 2001. 
 
[16] Marcel J. Sidi, Spacecraft Dynamics and Control, Published by Cambridge University Press,1997. 

[17] S. M. Veres, S. B Gabriel, D. Q Mayne and E. Rogers, Analysis of Formation Flying Control of a Pair of Nano-

satellites. AIAA Journal of Guidance, Control, and Dynamics, 25 (5). pp. 971-974. 

[18] R. Pongvthithum, S. M. Veres, S. B. Gabriel and E. Rogers, Universal Adaptive Control of Satellite Formation 

Flying, International Journal of Control, Volume 78( 1), January 2005 

[19] D. Ya. Rokityanski and S.M. Veres, Application of Ellipsoidal Estimation to Satellite Control. Mathematical 

and Computer Modelling of Dynamical Systems, 11, (2), pages 239-249 (2005). 

http://eprints.soton.ac.uk/23735/�
http://eprints.soton.ac.uk/49913/�
http://eprints.soton.ac.uk/66022/�
http://eprints.soton.ac.uk/23291/�


[20] N.K. Lincoln and S.M. Veres. Components of a Vision Assisted Constrained Autonomous 
Satellite Formation Flying Control System. International Journal of Adaptive Control and Signal Processing, 
21(2-3):237–264, October 2006. 

[21] S.M. Veres, (2006) Autonomous formation flying of satellite robots: the mechanical control layer. In 

Proceedings, TAROS 2006: Towards Autonomous Robotic Systems, Guildford, UK, 4-6 Sep 2006. . 

[22] S.M. Veres, Thanapalan, K., Gabriel, S. and Rogers, E. (2006) Reconfigurable Controller Design For 
Operational Safety in Satellite Formation Flying. In Proceedings, International Control Conference 2006, 
Glasgow, Scotland, UK, 30 Aug - 1 Sept, 2006. 

[23] Sandor M. Veres and Nicholas K. Lincoln, Sliding Mode control for Agents and Humans. In Proceedings, 
TAROS'08, Towards Autonomous Robotic Systems 2008, Edinburgh, UK, 1-3 Sept 2008. Edinburgh, UK, IC 
London, 13pp, 61-73. 

 

 

 
 

http://eprints.soton.ac.uk/43846/�
http://eprints.soton.ac.uk/43870/�
http://eprints.soton.ac.uk/43870/�
http://eprints.soton.ac.uk/66023/�


Observability and Diagnosability of Hybrid Systems with
Application in Air Traffic Management

Maria Domenica Di Benedetto1, Stefano Di Gennaro2, and Alessandro D’Innocenzo3

DEWS Centre of Excellence for Research,
Department of Electrical and Information Engineering, University of L’Aquila, Italy.

1. dibenede@parades.rm.cnr.it
2. digennar@dis.uniroma1.it
3. adinnoce@seas.upenn.edu

October 14, 2009

Abstract

In an Air Traffic Management (ATM) closed-loop system with mixed computer-controlled and human-
controlled subsystems, recovery from non-nominal situations implies the existence of an outer control
loop which has to identify these situations and act accordingly to prevent them to evolve into accidents.
The purpose is to develop algorithms with guaranteed performances for assisting human operators in
detecting critical situation and avoiding the propagation of errors and other non–nominal events. Esti-
mation methods and observer design techniques are essential in this regard for the design of a control
strategy for error propagation avoidance and/or error recovery. Various aspects need to be taken into
account in the study of error detection for ATM: psychological models which can be used for the study
of ATM; stochastic hybrid models describing the dynamics involved in error evolution control, captur-
ing the essential features of ATM; observability/diagnosability and observer/diagnoser design for these
hybrid models; the applicability of theoretical results on observers to a realistic ATM situation.

We propose a novel definition of observability motivated by safety critical applications given with
respect to a subset of critical discrete states, that model unsafe or unallowed behaviors. For the class
of discrete event systems, we address the problem in the setting of formal (regular) languages and
propose a novel observability verification algorithm. For the class of switching systems, we charac-
terize the minimal set of extra output information to be provided by the continuous signals in order to
satisfy observability conditions, and propose a milder observability notion that allows a bounded delay
in state observation. For the class of hidden Markov models, we analyze decidability and complexity
of the verification problem.

We also introduce a definition of diagnosability, which corresponds to failure detection in finite time.
Given a plant, a system is diagnosable if, within a finite time bound and only using the observable
output of the plant, it is possible to detect that a fault has occurred. The concept of diagnosability is
tightly related to observability: diagnosability generalizes observability. We tackle diagnosability veri-
fication for hybrid automata using an abstraction technique. We propose a procedure for constructing
an abstraction of a hybrid automaton, which belongs to a subclass of timed automata called durational
graph. We prove, as a second contribution of this paper, that the proposed diagnosability verification
problem belongs to the complexity class P.



Submitted to:
FMA 2009

c© A. Cimatti, M. Roveri, A. Susi, S. Tonetta
This work is licensed under the
Creative Commons Attribution License.

Formalization and Validation of Safety-Critical Requirements∗

Alessandro Cimatti
FBK-irst

Trento, Italy
cimatti@fbk.eu

Marco Roveri
FBK-irst

Trento, Italy
roveri@fbk.eu

Angelo Susi
FBK-irst

Trento, Italy
susi@fbk.eu

Stefano Tonetta
FBK-irst

Trento, Italy
tonettas@fbk.eu

The validation of requirements is a fundamental step in the development process of safety-critical
systems. In safety critical applications such as aerospace, avionics and railways, the use of formal
methods is of paramount importance both for requirements and for design validation. Nevertheless,
while for the verification of the design, many formal techniques have been conceived and applied,
the research on formal methods for requirements validation is not yet mature. The main obstacles
are that, on the one hand, the correctness of requirements is not formally defined; on the other hand
that the formalization and the validation of the requirements usually demands a strong involvement
of domain experts.

We report on a methodology and a series of techniques that we developed for the formalization
and validation of high-level requirements for safety-critical applications. The main ingredients are
a very expressive formal language and automatic satisfiability procedures. The language combines
first-order, temporal, and hybrid logic. The satisfiability procedures are based on model checking and
satisfiability modulo theory. We applied this technology within an industrial project to the validation
of railways requirements.

1 Introduction

Formal methods are widely used in the development process of safety-critical systems. The application
of formal verification techniques relies on the formalization of the system’s design into a mathematical
language. Several formal languages are available according to the different aspects that are relevant to the
verification, and many design tools can automatically formalize the design into one of these languages.

Hybrid systems are often used to formalize safety-critical designs because they can capture the in-
teraction between an embedded system and its environment. In particular, hybrid automata combine a
finite state machine representing the discrete controller with constraints over dense-domain variables that
represent the physical entities.

Many techniques have been conceived in order to verify the design according to the required level
of automation and the expressiveness of the property of interest. State-of-the-art approaches mix model
checking [CGP99] and theorem proving in order to tackle the verification of infinite-state systems with a
sufficient level of automation.

Another important aspect of the development process is the correctness of the requirements. Very
often bugs in the late phases are caused by some flaws in requirements specification. These are difficult
to detect and have a huge impact on the cost of fixing the bug. Nevertheless, formal methods on require-
ments validation are not yet mature. In particular there is no precise definition of correct requirements.

The most relevant solution has been proposed in the context of the property-based approach to de-
sign, where the development process starts from listing a set of formal properties, rather than defining
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RailCheck, service contract ERA/2007/ERTMS/02. S. Tonetta has been supported by the Provincia Autonoma di Trento (project
ANACONDA).
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2 Formalization and Validation of S.-C. Requirements

an abstract-level model. The requirements validation is performed with a series of checks that improve
the confidence in the correctness of the requirements. These checks consist of verifying that the require-
ments do not contain contradictions, that they are not too strict to forbid desired behaviors, that they are
not too weak to allow undesired behaviors. This process relies on the availability of a sufficiently expres-
sive logic so that properties as well as desired and undesired behaviors can be formalized into formulas.
The approach considers a one-to-one mapping between the properties and the logical formulas. This
allows for traceability of the formalization and the validation results, and for incremental and modular
approaches to the validation.

In the context of safety-critical applications, the choice of the language used to formalize the re-
quirements is still an open issue, requiring a delicate balance between expressiveness, decidability, and
complexity of inference. The difficulty in finding a suitable trade-off lies in the fact that the requirements
for many real-world applications involve several dimensions. On the one side, the objects having an ac-
tive role in the target application may have complex structure and mutual relationships, whose modeling
may require the use of rich data types. On the other side, static constraints over their attributes must be
complemented with constraints on their temporal evolution.

One of the main obstacle in applying this approach to the industrial level is that requirements are
often written in a natural language so that a domain knowledge is necessary both to formalize them
and to define which behaviors are desirable and which not during the validation process. Since domain
experts are typically not advanced users of formal methods, we should provide with a rich but friendly
language for the formal specification and an automatic but scalable engine for the formal verification.

In this paper, we report on a methodology and a series of techniques that we developed for the for-
malization and validation of high-level requirements for safety-critical applications. The methodology
is based on a three-phases approach that goes from the informal analysis of the requirements, to their
formalization and validation [CRST08a]. The methodology relies on two main ingredients: a very ex-
pressive formal language and automatic satisfiability procedures. The language combines first-order,
temporal, and hybrid logic [CRST08b, CRST09, CRT09]. The satisfiability procedures are based on
model checking and satisfiability modulo theory. We applied this technology within an industrial project
to the validation of railways requirements. The tool [CCM+09] integrates, within a commercial environ-
ment, techniques for requirements management, for model-based design, and advanced techniques for
formal validation with the model checker NuSMV [CCGR00].

The rest of the paper is organized as follow: in Section 2, we outline the proposed methodology,
giving details on the chosen language in Section 2.1 and on the validation procedure in Section 2.2;
in Section 3, we describe the project where the methodology was applied; in Section 4, we review the
related work, and in Section 5, we conclude.

2 A methodology for the formalization and validation of requirements

Our methodology has been presented in [CRST08a]. It consists of three main steps:

• Informal analysis. The first activity in the methodology is the informal analysis of the set of
requirements. In this phase, first the requirement fragments are identified and categorized on the
basis of their characteristics. Then, they are structured according to their dependencies.

• Formalization. The second phase consists of the formalization of each categorized requirement
fragment identified in the informal analysis by specifying the corresponding formal counterpart.
The link between informal and formal is used for requirements traceability of the formalization
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against the informal textual requirements, and to select directly from the textual requirements
document a categorized requirement fragment to validate.

• Formal validation. The third phase aims at improving the quality of the requirements. This goal is
achieved by performing several analysis, based on the use of formal techniques, which may help
to pinpoint flaws that are not trivial to detect in an informal setting. It consists of the definition
of a series of validation problems and the analysis of the results given by an automatic validation
check. These problems include checks to identify inconsistencies, and to increase the confidence
that the categorized requirement fragment and its corresponding formalized counterpart meet the
design intent: for instance, a flaw may be in the fact that some desired behaviors have been ruled
out by an over-constraining set of requirements; conversely, some undesired behavior may have
not been ruled out by under-constraining requirements.

There are three main checks that are performed to validate the selected set of formalized requirement
fragments, namely, checking logical consistency, scenario compatibility, and property entailment:

• Logical Consistency to formally verify the absence of logical contradictions in the considered
formalized requirement fragments. It is indeed possible that two formalized requirement frag-
ments mandate mutually incompatible behaviors. Note that this check does not require any domain
knowledge.

• Scenario compatibility to verify whether a scenario is admitted given the constraints imposed by
the considered formalized requirement fragments. Intuitively, the check for scenario compatibility
can be seen as a form of simulation guided by a set of constraints. The behaviors used in this phase
can be partial, in order to describe a wide class of compatible behaviors. The check for scenario
compatibility can be reduced to the problem of checking the consistency of the set of considered
formalized requirement fragments with the constraint describing the scenario.

• Property entailment to verify whether an expected property is implied by the considered formalized
requirement fragments. This check is similar in spirit to model checking, where a property is
checked against a model. Here the considered set of formalized requirement fragment plays the
role of the model against which the property must be verified. Property checking can be reduced
to the problem of checking the consistency of the considered formalized requirement fragments
with the negation of the property.

If one of the check reveals a problem, two causes are possible: the first one is that the formalization
is not correct due to an improper use of the formal language or to an ambiguity of the informal specifica-
tion; the second possibility is that there is a flaw in the informal specification that need to be corrected.
An inspection of the diagnostic information can be carried out in order to discriminate among the two
possibilities in order to take the most appropriate corrective action.

In fact, the above checks not only produce a yes/no answer, but they can also provide the domain
expert with diagnostic information of different forms:

• Traces. When consistency and scenario checking succeeds, it is possible to produce a trace wit-
nessing the consistency, i.e. satisfying all the constraints in the considered formalized requirement
fragments. Similarly, when a property check fails the tool provides a trace witnessing the violation
of the property by the formalized requirement fragments.

• Unsatisfiable core. If the specification is inconsistent or the scenario is incompatible, no behavior
can be associated to the considered formalized requirement fragments; in these cases, the tool can
also generate diagnostic information in the form of a minimal inconsistent subset. This information
can be given to the domain expert, to support the identification and the fix of the flaw.



4 Formalization and Validation of S.-C. Requirements

2.1 A property specification language for safety-critical applications

The success of the methodology relies on the availability of a specification language which is enough
expressive to represent the requirements of safety-critical applications, and enough simple to be used by
domain experts and analyzed with automatic techniques.

In order to specify requirements in the context of safety-critical applications we adopt a fragment
of first-order temporal logic. The first-order component allows to specify constraints on objects, their
relationships, and their attributes, which typically have rich data types. The temporal component allows
to specify constraints on the temporal evolution of the possible configurations. We enriched the logic with
constructs able to specify hybrid aspects of the objects’ attributes such as derivatives of the continuous
variables and instantaneous changes of the discrete variables. The logical formulas are consequently
interpreted over hybrid traces where continuous evolutions alternate with discrete changes. Finally, the
logic has been designed in order to be suitable for an automatic analysis with model checking techniques.

As described in [CRST09], we use a class diagram to define the classes of objects specified by the
requirements, their relationships and their attributes. The class diagram basically defines the signature of
the first-order temporal logic. The functional symbols that represent the attributes and the relationships
of the objects are flexible in the sense that their interpretation change at different time points. Quantifiers
are allowed to range over the objects of a class, and can be intermixed with the temporal operators.

The basic atoms of the logic are arithmetic predicates of the attributes and relationships of objects.
As described in [CRT09], the “next” operator can be used to refer to the value of a variable after a discrete
change, while the “der” operator can be used to refer to the first derivative of continuous variables during
a continuous evolution.

The temporal structure of the logic encompasses the classical linear-time temporal operators com-
bined with regular expressions. This combination is well established in the context of digital circuits and
forms the core of standard languages such as the Property Specification Language (PSL) [EF06].

On the lines of PSL, we also provide a number of syntactic sugar which increases the usability of the
language by the domain experts. This includes natural language expressions that substitute the temporal
operators, the quantifiers, and most of the mathematical symbols. The resulting language resembles the
Controlled Natural Language (CNL) used in [NF96].

2.2 Model checking techniques for requirements validation

The validation process of the proposed methodology relies on a series of satisfiability checks: consis-
tency checking is performed by solving the satisfiability problem of the conjunction of the formalized
requirements. The check that the requirements are not too strict is performed by checking whether the
conjunction of the requirements and the scenario’s formulas is satisfiable. Finally, the check that the
requirements are not too weak is performed by checking whether the conjunction of the requirements
and the negation of the property is unsatisfiable.

Unfortunately, the satisfiability problem of the chosen language is undecidable. The undecidability
comes independently from the combination of temporal and first-order logics, from the combination of
the uninterpreted functions and quantifiers, and from the hybrid component of the logic.

Nevertheless, we want to keep such expressiveness in order to faithfully represent the informal re-
quirements in the formal language. Thus, we rely on automatic albeit incomplete satisfiability proce-
dures.

First, we fix a number of objects per class so that it is possible to reduce the formula to equi-satisfiable
one free of quantifiers and functional symbols [CRST09]. As described in [CRST08b], we can automat-
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ically find a bound on the number of objects for classes under certain restrictions.
Second, we translate the resulting quantifier-free hybrid formula into an equi-satisfiable formula in

the classical temporal logic over discrete traces. In this case, we exploit the linearity of the constraints
over the derivatives to guarantee the existence of a piecewise-linear solution and to encode the continuity
of the continuous variables into quantifier-free constraints.

Third, we compile the resulting formula into a Fair Transition System (FTS) [MP92], whose ac-
cepted language is not empty iff the formula is satisfiable. For the compilation we rely on the works
described in [CRT08, CRST08b]. We apply infinite-state model checking techniques to verify the lan-
guage emptiness of the resulting fair transition system. In particular, we used Bounded Model Checking
(BMC) [BCCZ99], particularly effective in solving the satisfiable cases and producing short models,
and Counterexample-Guided Abstraction Refinement (CEGAR) [CGJ+00], more oriented to prove the
unsatisfiability cases.

The language non-emptiness check for the FTS is performed by looking for a lasso-shape trace of
length up to a given bound. We encode this trace into an SMT formula using a standard BMC encoding
and we submit it to a suitable SMT solver. This procedure is incomplete from two point of views: first,
we are performing BMC limiting the number of different transitions in the trace; second, unlike the
Boolean case, we cannot guarantee that if there is no lasso-shape trace, there does not exist an infinite
trace satisfying the model (since a real variable may be forced to increase forever). Nevertheless, we find
the procedure extremely efficient in the framework of requirements validation.

In order to prove the emptiness of the FTS, we use predicate abstraction. We adopt a CEGAR loop,
where the abstraction generation and refinement are completely automated. The loop consists of four
phases: 1) abstraction, where the abstract system is built according to a given set of predicates; the
abstract state space is computing by passing to the SMT solver an ALLSAT problem; 2) verification,
where the non-emptiness of the language of the abstract system is checked; if the language is empty,
it can be concluded that also the concrete system has an empty language; otherwise, an infinite trace
is produced; the abstract system is finite so that we can used classical model checking techniques; 3)
simulation: if the verification produces a trace, the simulation checks whether it is realistic by simulating
it on the concrete system; if the trace can be simulated in the concrete system, it is reported as a real
witness of the satisfiability of the formula; the trace is simulated by checking the satisfiability of the
SMT problem; 4) refinement: if the simulation cannot find a concrete trace corresponding to the abstract
one, the refinement discovers new predicates that, once added to the abstraction, are sufficient to rule out
the unrealistic path; also this step is solved with an SMT solver.

3 The ETCS project

The European Train Control System (ETCS) is a project supported by the European Union aiming at the
implementation of a common train control system in all European countries to allow the uninterrupted
movement of train across the borders. ETCS is based on the implementation on board (in a suitable
computer based equipment) of a set of safety critical functions of speed and distance supervision and of
information to the driver. Such functions rely on data transmitted by track-side installations through two
communication channels: fixed spot transmission devices, called balises, and continuous, bidirectional
data transmission through radio according to the GSM standard. ETCS is already installed in important
railway lines in different European countries (like Spain, Italy, The Netherlands, Switzerland) and instal-
lations are in progress in other countries, such as Sweden, UK, France, Belgium and also non-European
railways such as China, India, Turkey, Arabia, South Korea, Algeria and Mexico.
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Since 2005, the European Commission decided to give the European Railway Agency (ERA) the
role of system authority for ETCS, with the responsibility of managing the evolution of the specifications
(change control management), ensuring their consistency, and guaranteeing the backwards compatibility
of new versions with the old ones.

In 2007, ERA issued a call to tender for the development of a methodology complemented by a set of
support tools, for the formalization and validation of the ETCS specifications. The activity poses many
hard problems. First, the ETCS documents are written in natural language, and may thus contain a high
degree of ambiguity. Second, the ETCS specifications are still in progress, and receive contribution by
many people with different culture and background. Third, the ETCS comprises a huge set documents,
and comes with severe issues of scalability.

The EuRailCheck project, originated from the successful response to the call to tender by the con-
sortium composed by “Registro Italiano Navale (RINA)”, a railway certifying body, “Fondazione Bruno
Kessler - irst”, a research center, and “Dr. Graband and Partners”, a railway consultancy company.

Within the project, we developed a support tools, covering the various phases of the described
methodology, based on the integration of algorithmic formal verification techniques within traditional
design tools.

Moreover, a realistic subset of the specification was formalized and validated applying the developed
methodology and tools.

The results of the project were then further exploited and validated by domain experts external to
the consortium. The evaluation was carried out in form of a workshop, followed by hands-on train-
ing courses. These events were attended by experts from manufacturing and railways companies, who
provided positive feedback on the applicability in the large of the methodology.

3.1 Tool support

The EuRailCheck supporting tool, which has been designed and developed within the project, considered
several user and technical requirements such as easy of use, and openness.

The technological basis was identified in two tools provided by IBM: the RequisitePro suite was
used as a front end for the management of the ETCS informal requirements; and, the Rational Software
Architect (RSA) was used for the management of the formalization of the ETCS requirements into UML
class diagrams and CNL constraints.

RSA was used for its openness in the manipulation of UML specification, and its customizability
thanks to the embedded Eclipse platform it is built upon. RSA was used as a gluing platform, and
all the modules were developed as plug-ins for RSA. The main functionalities include RequisitePro
custom tagging, annotation of UML diagrams with CNL (syntax checking, completion), support for
the instantiation to finite domains, control of the validation procedure. Moreover, we also developed,
relying on the API provided by RequisitePro and on the Eclipse platform, the traceability links among
the informal requirements classified in RequisitePro and their formal counterpart in UML and CNL
inside RSA.

The verification back-end is based on an extended version of the NuSMV/CEGAR [CCGR00] model
checker, able to deal with continuous variables, and to analyze temporally complex expressions in
RELTL [EF06, CRST09, CRT09].

A view of the software components of EuRailCheck tool is given in Figure 1.
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Figure 1: The EuRailCheck architecture.

4 Related work

Several works faced with the problem of the formal specification and validation of requirements. Some
of them focused on the problem of formalizing natural language specifications, other focused on the
formal specification languages to be used in such a task, other proposed a methodological approach to
the requirements representation and validation.

On the first side, works such as [FGR+94] and [AG06] aim at extracting automatically from a natural
language description a formal model to be analyzed. However, their target formal languages cannot
express temporal constraints over object models. Moreover, they miss a methodology for an adequate
formal analysis of the requirements.

Several formal specification languages such as Z [Spi92], B [Abr96], and OCL [OMG06] have been
proposed for formal model-based specification. They are very expressive but require a deep background
in order to write a correct formalization. Alloy [Jac02] is a formal language for describing structural
properties of a system relying on the subset of Z [Spi92] that allows for object modeling. An Alloy
specification consists of basic structures representing classes together with constraints and operations
describing how the structures change dynamically. Alloy only allows to specify attributes belonging to
finite domains (no Reals or Integers). Thus, it would have been impossible to model the Train position as
requested by the ETCS specifications. Although Alloy supports the “next” operator (“prime” operator)
to specify the temporal evolution of a given object, it does not allow to express properties using LTL and
regular expressions.

Among the methodological approaches, in [HJL96], a framework is proposed for the automated
checking of requirement specifications expressed in Software Cost Reduction tabular notation, which
aims at detecting specification problems such as type errors, missing cases, circular definitions and non-
determinism. Although this work has many related points to our approach, the proposed language is
not adapt to formalize requirements that contain functional descriptions of the system at high level of
abstraction with temporal assumptions on the environment. Formal Tropos (FT) [BGG+04, SPGM05,
FLM+04] and KAOS [DDMvL97, vL09] are goal-oriented software development methodologies that
provide a visual modeling language that can be used to define an informal specification, allowing to
model intentional and social concepts, such as those of actor, goal, and social relationships between
actors, and annotate the diagrams with temporal constraints to characterize the valid behaviors of the
model. Both in FT and in KAOS a specification consists of a sequence of class declarations such as
actors, goals. Each declaration associates a set of attributes to the class. The temporal behavior of
the instances is specified by means of temporal constraints expressed in a typed first-order LTL. On
the formalization part, our methodology is similar to the FT and the KAOS ones, but it differs in the
expressiveness of the formalization language. FT and KAOS are limited to LTL temporal operators,
while our approach allows to express constraints and properties with a logic that mixes LTL with regular
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expression.

5 Conclusions

In this paper we described a recent research line that we are pursuing in the context of requirement
validation for safety-critical applications. We developed an end-to-end methodology for the analysis
of requirements, which combines informal and formal techniques. The property-based approach guar-
antees traceability, by allowing for a direct correspondence between the components of the informal
specification and their formalized counterparts. The formal specification language mixes linear-temporal
logic with first-order and hybrid components. Automatic albeit incomplete techniques based on model
checking are used to check consistency, entailment of required properties, and possibility of desirable
scenarios.

The methodology has been applied in a project with industrial partners for the formalization and
validation of railways requirements. During the project, we developed a tool that integrates, within a
commercial environment for traditional requirements management and model-based design, advanced
techniques for formal validation. The tool has been used and validated by potential end users external to
the project’s consortium.

In the future, we will pursue the following lines of activity. First, we will investigate the application
of automated techniques for Natural Language Processing (e.g. automated tag extraction, discourse
representation theory), in order to increase the automation of the first phase of the methodology. Second,
we will explore extensions to the expressiveness of the formalism, the relative scalability issues of the
verification tools. In particular, we want to integrate optimization such as the ones described in [CRST07]
and in [Ton09].
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Abstract. The property that every control system should posses is sta-
bility, which translates into safety in real-life applications. A central tool
in systems theory for synthesizing control laws that achieve stability are
control Lyapunov functions (CLFs). Classically, a CLF enforces that the
resulting closed-loop state trajectory is contained within a cone with a
fixed, predefined shape, and which is centered at and converges to a de-
sired converging point. However, such a requirement often proves to be
overconservative, which is why most of the real-time controllers do not
have a stability guarantee. Recently, a novel idea that improves the de-
sign of CLFs in terms of flexibility was proposed. The focus of this new
approach is on the design of optimization problems that allow certain
parameters that define a cone associated with a standard CLF to be de-
cision variables. In this way non-monotonicity of the CLF is explicitly
linked with a decision variable that can be optimized on-line. Conserva-
tiveness is significantly reduced compared to classical CLFs, which makes
flexible CLFs more suitable for stabilization of constrained discrete-time
nonlinear systems and real-time control. The purpose of this overview
is to highlight the potential of flexible CLFs for real-time control of
fast mechatronic systems, with sampling periods below one millisecond,
which are widely employed in aerospace and automotive applications.

1 Introductory Overview

One of the interesting problems in nonlinear control systems is the synthesis
of control laws that achieve stability [1, 2]. Control Lyapunov functions (CLFs)
[3, 4] represent a powerful tool for providing a solution to this problem. The
classical approach is based on the off-line design of an explicit feedback law
that renders the derivative of the CLF negative. An alternative to this approach
is to construct an optimization problem to be solved on-line, such that any of
its feasible solutions renders the derivative of a candidate CLF negative. This
method can be traced back to the early results presented in [5], followed by the
more recent articles [6, 7], where synthesis of CLFs is performed in a receding
horizon fashion.

All the above works mainly deal with the continuous-time case, while con-
ditions under which these results can be extended to sampled-data nonlinear



systems using their approximate discrete-time models can be found in [8]. An
important article on control Lyapunov functions for discrete-time systems is [9].
Therein, classical continuous-time results regarding existence of CLFs are repro-
duced for the discrete-time case. A significant relaxation in the off-line design of
CLFs for discrete-time systems was presented in [10], where parameter depen-
dent quadratic CLFs are introduced. Also, interesting approaches to the off-line
construction of Lyapunov functions for stability analysis were recently presented
in [11], [12] and [13].

Despite the popularity of CLFs within systems theory there is still a signifi-
cant gap in the application of CLFs in real-time control in general, and control of
fast systems (i.e. systems with a very small sampling interval) in particular. The
main reason for this is conservativeness of the sufficient conditions for Lyapunov
asymptotic stability which are employed by most off-line and on-line methods
for constructing CLFs.

To illustrate this consider the graphical depiction in Figure 1. Classically, a

Fig. 1. A graphical illustration of classical CLFs (ρ ∈ [0, 1), c ∈ R>0).

CLF enforces that the resulting closed-loop state trajectory is contained within
a cone with a fixed, predefined shape, which is centered at and converges to a
desired converging point. This cone is obtained by characterizing the evolution
of the state via its state-space position at each discrete-time instant, with re-
spect to a corresponding sublevel set of the Lyapunov function. Typical examples
of relevant classes of systems for which classical CLFs are overconservative are
linear and nonlinear chains of integrators with bounded inputs and state con-
straints [14] and discontinuous nonlinear and hybrid systems [15]. Furthermore,
in many real-life control problems classical CLFs prove to be overconservative.
For example, consider the control of a simple electric circuit, such as the Buck-
Boost DC-DC converter. At start-up, to drive the output voltage to the reference
very fast, the inductor current must rise and stay far away (e.g., 5[A]) from its



Fig. 2. A graphical illustration of flexible CLFs (c ∈ R>0).

corresponding steady-state value (e.g., 0.01[A]) for quite some time. Another
typical and very relevant real-life example is control of position and speed in
mechatronic devices, such as electromagnetic actuators. For a given position ref-
erence, the speed must increase very fast at start-up and then return to its steady
state value, which is equal to zero. In both cases enforcing a classical CLF design
is obviously conservative.

Motivated by such examples, recently, in [16], a methodology that reduces
the conservatism of CLF design for discrete-time nonlinear systems was pro-
posed. Rather than searching for a global CLF (i.e. on the whole admissible
state-space), therein the focus was on relaxing CLF-type conditions for a prede-
termined local CLF through on-line optimization problems, as it is graphically
illustrated in Figure 2. The goal of this overview is to highlight the potential of
flexible CLFs for real-time control of fast mechatronic systems, with sampling
periods below one millisecond, which are widely used in aerospace and automo-
tive applications. This includes control of electro-magnetic actuators [17] and a
real-time application to the control of DC-DC power converters.
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Abstract. Current approaches to the engineering of space software such
as satellite control systems are based around the development of feedback
controllers using packages such as MatLab’s Simulink toolbox. These
provide powerful tools for engineering real time systems that adapt to
changes in the environment but are limited when the controller itself
needs to be adapted.

We are investigating ways in which ideas from temporal logics and agent
programming can be integrated with the use of such control systems to
provide a more powerful layer of autonomous decision making. This paper
will discuss our initial approaches to the engineering of such systems.

1 Introduction

Modern control systems are limited in their ability to react flexibly and au-
tonomously to changing situations by the complexity inherent in analysing sit-
uations where many variables are present.

We are particularly interested in the control of satellite systems. Consider the
problem of a single satellite attempting to maintain a geostationary orbit. Cur-
rent satellite control systems maintain orbits using feedback controllers. These
implicitly assume that any errors in the orbit will be minor and easily corrected.
In situations where more major errors occur, e.g. caused by thruster malfunc-
tion, it is desirable to modify or change the controller. The complexity of the
decision task is a challenge to the imperative programming approach.

We approach the problem from the perspective of rational agents and hybrid
systems. We consider a satellite to be an agent which consists of a discrete
(rational decision making) part and a continuous (calculation) part. The discrete
part use the Belief-Desire-Intention (BDI) theory of agency [4] and governs high
level decisions about when to generate new feedback controllers. The continuous,
calculational part is used to derive controllers and to calculate information from
continuous data which can be used in the decision making process.
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Fig. 1. Implemented Hybrid Agent Architecture

2 Architecture

Our prototype system is shown in figure 1. We have implemented a simulated
environment and real time satellite control system in MatLab. The continuous
agent part is also implemented in MatLab using the Simulink tool kit. MatLab
has no easy provision for threaded execution which forces us to use separate
instances for the Real Time aspects (i.e. the feedback controller and simulated
environment) and for the Continuous Agent part. The agent also contains a
discrete agent part which is currently implemented in the Gwendolen agent pro-
gramming language3. Gwendolen is implemented on top of Java.

The real time control system sends information (which may be pre-processed)
to the agent part of the system. When it acts, the discrete part of the agent may
either cause the continuous agent part to perform some calculation (and wait
for the results) or it may send an instruction to the real time control system
to alter its controller. Since the new controller has been created on the fly by
the continuous part some aspects of this controller are stored in the shared file
system (accessed by both MatLab processes).
? Work funded by EPSRC grants EP/F037201/1 and EP/F037570/1
3 The choice of language was dictated entirely by convenience. It is a subject for

further work to examine more widely used BDI-languages and evaluate which is
most appropriate for the system.



3 BDI Programming Aspects

The architecture lets us represent the high-level decision making aspects of the
program in terms of the beliefs and goals of the agent and events it observes. So,
for instance, when it observes the event that the satellite is in a new position
(information relayed to it by the real time controller) the discrete agent part can
call on the continuous part to calculate whether this position is within accept-
able bounds of the desired orbit (i.e. whether the existing real-time controller
is capable of maintaining the orbit). If, as a result of this it gains a belief that
the satellite has strayed from the orbit it can request the continuous part to
calculate a new path for the satellite to follow using techniques described in [3].

Similarly, if the satellite has strayed from its bounds, the discrete agent part
can examine its beliefs about the current status of the thrusters and, if necessary,
instruct the continuous part to generate a new feedback controller which takes
into account any malfunctions or inefficiencies in the thrusters.

Such programs can be expressed compactly in the BDI-programming style
without the need for programming up large decisions trees to consider all possible
combinations of thruster status and satellite positions. This should then reduce
the possibility for error in the decision-making parts of the program and opens
the possibility that existing techniques for model checking such programs [1] can
be adapted to verify this part.

4 Future Work

We are currently working on prototype system and case study which will allow
us to make comparisons of the agent approach to autonomous decision-making in
satellite systems to approaches based on finite state machines. We also are inter-
ested in investigating the use of temporal logic and model checking to generate
forward planning capabilities for the agent along the lines of those investigated
by Kloetzer and Belta [2].
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Extended abstract

In collaboration with major European manufacturers, the SPaCIFY project aims at bringing advances
in MDE to the satellite flight software industry. It focuses on software development and maintenance
phases of satellite lifecycle. The project advocates a top-down approach built on a Domain-Specific
Modeling Language (DSML) named Synoptic. The aim of Synoptic is to support all aspects of embed-
ded flight-software design. As such, Synoptic consists of heterogeneous modeling and programming
principles defined in collaboration with the industrial partners and end users of the SPaCIFY project.

Used as the central modeling language of the SPaCIFY model driven engineering process, Synoptic
allows to describe different layers of abstraction: at the highest level, the software architecture models the
functional decomposition of the flight software. This is mapped to a dynamic architecture which defines
the thread structure of the software. It consists of a set of threads, where each thread is characterized by
properties such as its frequency, its priority and its activation pattern (periodic, sporadic).
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2 Synoptic: a DSML for embedded flight-software

A mapping establishes a correspondence between the software and the dynamic architecture, by
specifying which blocks are executed by which threads. At the lowest level, the hardware architecture
permits to define devices (processors, sensors, actuators, busses) and their properties.

Finally, mappings describe the correspondence between the dynamic and hardware architecture on
the one hand, by specifying which threads are executed by which processor, and describe a correspon-
dence between the software and hardware architecture on the other hand, by specifying which data is
transported by which bus for instance. Figure 1 depicts these layers and mappings.

Figure 1: Global view: layers and architecture mappings

The aim is to synthesize as much of this mapping as possible, for example by appealing to internal or
external schedulers. However, to allow for human intervention, it is possible to give a fine-grained map-
ping, thus overriding or bypassing machine-generated schedules. Anyway, consistency of the resulting
dynamic architecture is verified by the SPaCIFY tool suite, based on the properties of the software and
dynamic model.

At each step of the development process, it is also useful to model different abstraction levels of the
system under design inside a same layer (functional, dynamic or hardware architecture). Synoptic offers
this capability by providing an incremental design framework and refinement features.

To summarize, Synoptic deals with data-flow diagrams, mode automata, blocks, components, dy-
namic and hardware architecture, mapping and timing.

The functional part of the Synoptic language allows to model software architecture. The correspond-
ing sub-language is well adapted to model synchronous islands and to specify interaction points between
these islands and the middleware platform using the concept of external variables.

Synchronous islands and middleware form a Globally Asynchronous and Locally Synchronous (GALS)
system.

Software architecture The development of the Synoptic software architecture language has been
tightly coordinated with the definition of the GeneAuto language [1]. Synoptic uses essentially two
types of modules, called blocks in Synoptic, which can be mutually nested: data-flow diagrams and
mode automata. Nesting favors a hierarchical design and enables viewing the description at different
levels of detail.
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By embedding blocks in the states of state machines, one can elegantly model operational modes:
each state represents a mode, and transitions correspond to mode changes. In each mode, the system may
be composed of other sub-blocks or have different connection patterns among components.

Apart from structural and behavioral aspects, the Synoptic software architecture language allows to
define temporal properties of blocks. For instance, a block can be parameterized with a frequency and a
worst case execution time which are taken into account in the mapping onto the dynamic architecture.

Synoptic has a formal semantics, defined in terms of the synchronous language SIGNAL [2, 3]. On
the one hand, this allows for neat integration of verification environments for ascertaining properties of
the system under development. On the other hand, a formal semantics makes it possible to encode the
meta-model in a proof assistant. In this sense, Synoptic will profit from the formal correctness proof and
subsequent certification of a code generator that is under way in the GeneAuto project.

Synoptic is equipped with an assertion language that allows to state desired properties of the model
under development. We are mainly interested in properties that permit to express, for example, coherence
of the modes (“if component X is in mode m1, then component Y is in mode m2” or “. . . can eventually
move into mode m2”). Specific transformations extract these properties and pass them to the verification
tools.
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Abstract. NASA’s new age of space exploration augurs great promise for deep 
space exploration missions whereby spacecraft should be independent, 
autonomous, and smart. Nowadays NASA increasingly relies on the concepts of 
autonomic computing, exploiting these to increase the survivability of remote 
missions, particularly when human tending is not feasible. Autonomic 
computing has been recognized as a promising approach for the development of 
self-managing spacecraft systems that employ onboard intelligence and rely 
less on control links. The Autonomic System Specification Language (ASSL) is 
a framework for formally specifying and generating autonomic systems. As part 
of long-term research targeted at the development of models for space 
exploration missions that rely on principles of autonomic computing, we have 
employed ASSL to develop formal models and generate functional prototypes 
for NASA missions. This helps to validate features and perform experiments 
through simulation. Here, we discuss our work on developing such missions 
with ASSL.   
 
Keywords: space exploration missions, autonomic computing, formal 
specification, NASA, ASSL 

1 Introduction 

Autonomic Computing (AC) is an emerging field for the development of large-scale 
self-managing complex systems [1]. The idea is that complex systems such as 
spacecraft can autonomously manage themselves and deal with dynamic requirements 
and unanticipated threats. NASA is currently looking at AC with interest, recognizing 
in its concepts a promising approach to developing new class of space exploration 
missions, where spacecraft should be independent, autonomous, and “smart”. 
Autonomic software may make spacecraft capable of planning and executing many 
activities onboard  to meet the requirements of changing objectives and harsh external 
conditions. Examples of such AC-based unmanned missions are the Autonomous 
Nano-Technology Swarm (ANTS) concept mission [2] and the Deep Space One 
mission [1].  The development of systems implying such large-scale automation 
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implies sophisticated software, which requires new development approaches and new 
verification techniques.  

Practice has shown that traditional development methods cannot guarantee 
software reliability and prevent software failures, which is very important in complex 
systems such as spacecraft where software errors can be very expensive and even 
catastrophic (e.g., the malfunction in the control software of Ariane-5 [3]). Thus, 
formal methods need to be employed in the development of autonomic spacecraft 
systems. When employed correctly, formal methods have proven to be an important 
technique that ensures quality of software [4]. In the course of this research, to 
develop models for autonomic space exploration missions, we employ the ASSL 
(Autonomic System Specification Language) formal method. Conceptually, ASSL is 
an AC-dedicated framework providing a powerful formal notation and computational 
tools that help developers with problem formation, system design, system analysis 
and evaluation, and system implementation [5]. 

2 Preliminaries 

2.1 Targeted NASA Missions 

Both NASA ANTS and the NASA Voyager missions are targets of this research. 
Other space-exploration missions, such as NASA Mars Rover and ESA’s Herschel 
are a subject of interest as well.  

2.1.1 NASA ANTS 

The ANTS (Autonomous Nano-Technology Swarm concept sub-mission PAM 
(Prospecting Asteroids Mission) is a novel approach to asteroid-belt resource 
exploration. ANTS provides extremely high autonomy, minimal communication 
requirements to Earth, and a set of very small explorers with a few consumables [2]. 
The explorers forming the swarm are pico-class, low-power, and low-weight 
spacecraft, yet capable of operating as fully autonomous and adaptable agents.  

There are three classes of ANTS spacecraft: rulers, messengers and workers. 
By grouping them in certain ways, ANTS forms teams that explore particular 
asteroids. The internal organization of a team depends on the task to be performed and 
on the current environmental conditions. In general, each team has a group leader 
(ruler), one or more messengers, and a number of workers carrying a specialized 
instrument. The messengers are needed to connect the team members when they 
cannot connect directly. 

2.1.2 NASA Voyager 

The NASA Voyager Mission [6] was designed for exploration of the Solar System. 
The mission started in 1977, when the twin spacecraft Voyager I and Voyager II were 
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launched (cf. Figure 1). The original mission objectives were to explore the outer 
planets of the Solar System. As the Voyagers flew across the Solar System, they took 
pictures of planets and their satellites and performed close-up studies of Jupiter, 
Saturn, Uranus, and Neptune. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Voyager Spacecraft [6]. 

After successfully accomplishing their initial mission, both Voyagers are now on an 
extended mission, dubbed the ―Voyager Interstellar Mission. This mission is an 
attempt to chart the heliopause boundary, where the solar winds and solar magnetic 
fields meet the so-called interstellar medium [7]. 

2.2 ASSL 

The ASSL framework provides a powerful formal notation and suitable mature tool 
support that allow ASSL specifications to be edited and validated and Java code to be 
generated from any valid specification [6]. ASSL is based on a specification model 
exposed over hierarchically organized formalization tiers. This specification model is 
intended to provide both infrastructure elements and mechanisms needed by an 
autonomic system (AS). The latter is considered as being composed of special 
autonomic elements (AEs) interacting over interaction protocols, whose specification 
is distributed among the ASSL tiers. Note that each tier is intended to describe 
different aspects of the AS in question, such as service-level objectives, policies, 
interaction protocols, events, actions, etc. This helps to specify an AS at different 
levels of abstraction imposed by the ASSL tiers. 

Table 1 presents the multi-tier knowledge model of ASSL. As shown, the latter 
decomposes an AS in two directions: 

1) into levels of functional abstraction;  
2) into functionally related tiers (sub-tiers).  
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Table 1. ASSL Multi-Tier Model 

AS 

AS Service-Level Objectives 
AS Self-Management Policies 
AS Architecture 
AS Actions 
AS Events 
AS Metrics 

ASIP 
AS Messages 
AS Channels 
AS Functions 

AE 

AE Service-Level Objectives 
AE Self-Management Policies 
AE Friends 

AEIP 

AE Messages 
AE Channels 
AE Functions 
AE Managed Elements 

AE Recovery Protocols 
AE Behaviour Models 
AE Outcomes 
AE Actions 
AE Events 
AE Metrics 

 
With the first decomposition, an AS is presented from three different perspectives, 
these depicted as three main tiers (main concepts):  

• AS Tier forms a general and global AS perspective exposing the architecture 
topology, general system behaviour rules, and global actions, events, and 
metrics applied to these rules. 

• ASIP Tier (AS interaction protocol) forms a communication perspective 
exposing a means of communication for the AS under consideration.  

• AE Tier forms a unit-level perspective, where an interacting sets of the AS’s 
individual components is specified. These components are specified as AEs 
with their own behaviour, which must be synchronized with the behaviour 
rules from the global AS perspective. 

3 Research  

In this section, we present our research objectives and current trends. 
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3.1 Objectives 

This research emphasizes the ASSL formal development approach to autonomic 
systems (ASs). We believe that ASSL may be successfully applied to the 
development of experimental models for space-exploration missions integrating 
autonomic features. Thus, we use ASSL to develop experimental models for NASA 
missions in a stepwise manner (feature by feature) and generate a series of prototypes, 
which we evaluate in simulated conditions. Here, it is our understanding that both 
prototyping and formal modeling, which will aid in the design and implementation of 
real space-exploration missions, are becoming increasingly necessary and important 
as the urgent need emerges for higher levels of assurance regarding correctness. 

3.2 Benefits for Space Systems 

Experimental modeling of space-exploration missions can be extremely useful for the 
design and implementation of such systems. The ability to compare features and 
issues with actual missions and with hypothesized possible autonomic approaches 
gives significant benefit. In our approach, we develop space-mission models in a 
series of incremental and iterative steps where each model includes new autonomic 
features. This helps to evaluate the performance of each feature and gradually 
construct a model of more realistic space exploration missions. Different prototypes 
can be tried and tested (and benchmarked as well), and provide valuable feedback 
before we implement the real system. Moreover, this approach helps us to discover 
eventual design flaws in existing missions and the prototype models.  

3.3 Modeling NASA ANTS and NASA Voyager with ASSL 

ASSL has been successfully used to specify autonomic features and generate 
prototype models for two NASA projects—the ANTS (Autonomous Nano-
Technology Swarm) concept mission (cf. Section 2.1.1) and the Voyager mission (cf. 
Section 2.1.2). In both cases the generated prototype models helped to simulate space-
exploration missions and validate features through simulated experimental results.  

In our endeavor to develop NASA missions with ASSL, we emphasized modeling 
ANTS self-managing policies [8] of self-configuring, self-healing and self-scheduling 
and the Voyager image-processing autonomic behavior [9]. In addition, we proposed 
a specification model for the ANTS safety requirements. In general, a complete 
specification of these autonomic properties requires a two-level approach. They need 
to be specified at the individual spacecraft level (AE tier) and at the level of the entire 
system (AS tier). Here, to specify the self-managing policies we used four base ASSL 
elements: 

• a self-management policy structure — which describes the self-managing 
policy under consideration. We use a set of special ASSL constructs such as 
fluents and mappings to specify such a policy [5]. With fluents we express 
specific situations, in which the policy is interested, and with mappings we 
map those situations to actions.  
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• actions — a set of actions that can be undertaken by ANTS in response to 
certain conditions, and according to that policy. 

• events — a set of events that initiate fluents and are prompted by the actions 
according to the policies. 

• metrics — a set of metrics [5] needed by the events and actions. 

3.4 Formal Verification 

The ASSL framework toolset provides verification mechanisms for automatic 
reasoning about a specified AS. The base validation approach in ASSL comes in the 
form of consistency checking. The latter is a mechanism for verifying ASSL 
specifications by performing exhaustive traversal to check for both syntax and 
consistency errors (type consistency, ambiguous definitions, etc.). In addition this 
mechanism checks whether a specification conforms to special correctness properties, 
defined as ASSL semantic definitions. Although considered efficient, the ASSL 
consistency checking mechanism cannot handle logical errors (specification flaws) 
and thus, it is not able to assert safety (e.g., freedom from deadlock) or liveness 
properties. Currently, a model checking validation mechanism able to handle such 
errors is under development [10].  

4 Conclusion 

In this research, we place emphasis on modeling autonomic properties of space-
exploration missions with ASSL. With ASSL we model such properties through the 
specification of self-managing policies and service-level objectives. Formal 
verification handles consistency flaws and operational Java code is generated for valid 
models. Generated code is the basis for functional prototypes of space-exploration 
missions employing self-managing features. Those prototypes may be extremely 
useful when undertaking further investigation based on practical results and help 
developers test the autonomic behavior under simulated conditions. 
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Abstract

In this talk I will give an overview of model-checking hybrid systems with using the tool Ariadne. I will
first give an overview of hybrid systems and the theoretical difficulties involved in their analysis. I will
then discuss how hybrid systems are modelled in Ariadne, and the problems that the tool can solve.
I will then give an overview of the core functionality of the tool, including the use of Taylor function
models. I will give a simple example of safety verification for a nonlinear hybrid system. Finally, I will
give perspectives for future development, including support for nondeterministic or stochastic noise.
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Abstract

Engineering systems like communication networks or automotive and air traffic control systems,
financial and industrial processes like market and manufacturing models, and natural systems like
biological and ecological environments exhibit complex behaviors arising from the composition and
interactions between their heterogeneous components. Hybrid Systems are mathematical models that
are by construction intended to describe such complex systems. The presence of uncertainty, which
is virtually unquestionable in many biological systems and often inevitable in engineering systems,
naturally leads to the employment of stochastic hybrid models.

This talk will discuss the use of stochastic hybrid models in the verification and control of a large
class of engineering and biological systems. In particular, the study will concentrate on understanding
the theoretical and computational issues associated with problems of verification of controlled stochas-
tic hybrid systems, and will propose techniques to attain formal abstractions of these models.


