
Modelling evolvable component systems

Barringer, Howard and Gabbay, Dov and Rydeheard,
David

2009

MIMS EPrint: 2010.54

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 631 631–696

Modelling evolvable component
systems
Part I: A logical framework

HOWARD BARRINGER, School of Computer Science, University of
Manchester, Oxford Road, Manchester, M13 9PL, UK.
E-mail: howard.barringer@manchester.ac.uk

DOV GABBAY, Department of Computer Science, Kings College London,
The Strand, London, WC2R 2LS, UK.
E-mail: dov.gabbay@kcl.ac.uk

DAVID RYDEHEARD, School of Computer Science, University of
Manchester, Oxford Road, Manchester, M13 9PL, UK.
E-mail: david.rydeheard@manchester.ac.uk

Abstract
We develop a logical modelling approach to describe evolvable computational systems. In this account, evolvable
systems are built hierarchically from components where each component may have an associated supervisory pro-
cess. The supervisor’s purpose is to monitor and possibly change its associated component. Evolutionary change
may be determined purely internally from observations made by the supervisor or may be in response to exter-
nal change. Supervisory processes may be present at any level in the component hierarchy allowing us to use
evolutionary behaviour as an integral part of system design.
We model such systems in a revision-based first-order logical framework in which supervisors are modelled as

theories which are at a logical meta-level to the theories of their components. This enables evolutionary change
of the component to be induced by revision-based changes of the supervisor at the meta-level. In this way, the
intervention required in evolutionary change is modelled purely logically.
The hierarchical component-based structure is fairly intricate so we present the basic ideas firstly in a simple

setting, the well-known blocks world, before introducing tree-based structures to represent component hierarchies.
We also introduce some techniques for establishing the behaviour of evolvable systems specified in this logical
framework. The ideas and concepts are driven by example throughout. We conclude with a more substantial
example, that of a simple model of an evolvable system of automated bank teller machines.

Keywords: Evolvable Systems, Logical Frameworks, Reconfigurable Component Systems, Revision-Based Logic,
Minimum Models

1 Introduction

Computational systems may be viewed as evolvable at various levels of abstraction, from
the rather low-level computational-step evolution of a hardware system state, or of a pro-
gram’s computation state, to whole or partial system reconfiguration that may occur in the
maintenance or installation of software or hardware updates. The execution of a program
is evolution of its computation state. It is automatic and usually happens rather quickly,

Vol. 17 No. 6, © The Author 2009. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org
doi:10.1093/jigpal/jzp026

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 632 631–696

632 A logical framework

on a nanosecond timescale. On the other hand, system updates have largely been a non-
automated process requiring explicit user action, although internet-based computing has
changed this view, e.g. automated updates of virus detection software or security updates to
operating systems. These updates are relatively infrequent, being on a timescale of weeks,
months or years. Such timescales of change are studied as ‘Software Evolution’, see e.g. [16].
There are changes to computational systems on timescales between these two extremes
that can also sensibly be considered as evolution, or even adaptation. These changes are typi-
cally invoked at runtime and may be aimed at ensuring, for example, that certain behavioural
requirements are satisfied, or that performance is improved, or that the system adapts its
behaviour to a changing environment. Systems displaying such behaviour are naturally struc-
tured as evolutionary in that we distinguish between normal computational steps and more
radical change brought about by intervention with evolutionary steps. Consider, for example,
supervisory control systems for, say, reactive planning [11], or systems for adaptive query-
ing (evaluating queries over changing databases [7]), or responsive memory management
(variable capacity memory allocation), or data structure repair [5], or hybrid systems which
change their computational behaviour in response to environmental factors which they may
themselves influence [15]. One major area where evolutionary behaviour is a prominent fea-
ture is in business processes, where adaptivity to both internal and external imperatives to
change is important. Thus the full computational modelling of business processes and their
supporting IT structure necessarily includes evolutionary behaviour [1, 12, 13, 20].
In fact, there is increasing focus on developing software systems that feature limited
forms of autonomy, adaptation or evolution. This is quite natural given the ever expanding
application of computer-based processes for supporting human endeavour. Not only is this
important for adaptivity and autonomy of systems, but major companies in the computing
industry have turned, over the last few years, to so-called ‘autonomic computing’ as a way of
responding to the increasing difficulties encountered in software development for massively
complex, distributed and diverse computing environments [14]. The demand is for software
components that can adapt themselves so that behavioural requirements remain satisfied
even in partially known and unpredictably changing computing environments.
A natural architectural model of an evolvable system consists of a hierarchy of compo-
nents in which each component is monitored at runtime by a dedicated supervisory process.
Various names may be used for these supervisory processes, such as supervisors, monitors,
evolvers, managers, controllers etc. Their role is to monitor and respond to the behaviour
of their supervisee components and invoke evolutionary change when particular conditions
arise. Conditions requiring evolutionary action may arise through external influence on the
supervisor as well as through monitoring of the computational behaviour of the supervisee.
In fact, Warboys et al. [1, 12, 13, 20] in modelling business processes take this view to an
extreme in that their system architectures are constructed in such a way that every compo-
nent consists of a pair of an ‘evolver’ and its underlying component, which they call a ‘pro-
ducer’. Thus the fundamental building blocks of their systems are ‘evolver/producer-pairs’.
Moreover, evolvers can create their associated producers, and so the evolvers determine the
entire behaviour of the system.
The dynamic structure of evolutionary change, that is, the way that an evolutionary
step may be invoked in an already running system, needs careful consideration. For such a
step to take place, normal computation must be suspended. This may be an interruption
with immediate termination of an entire system. However, a less comprehensive termination
may be appropriate, for example it may mean running until a ‘quiescent’ state is reached

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 633 631–696

A logical framework 633

(as in [1, 12]) and then possibly just locally i.e. only those components affected by the
evolutionary change need to run to termination. The system then evolves – the dynam-
ics of this may be complex as an evolution may affect many components and may also
introduce or change supervisory processes. Finally, the system is restarted from a suitable
point in the computation and in a suitable state. This new state is usually a modified form
of the state before the evolution, with parts of the state persisting through the evolutionary
change. Clearly the mechanism by which evolutionary actions intervene in normal compu-
tation is important for implementing evolvable systems. However, it is not at a suitable
level of abstraction for tractable specification, design and verification methods for evolvable
systems.
It is with a view to introducing evolution at a higher level of abstraction in system descrip-
tion that we introduce a logical account of evolutionary systems. Mathematical theories of
computation have largely ignored these types of evolutionary behaviours. Attention instead
has focussed on developing models of computation to support effective reasoning about fixed
sequential, parallel and distributed software and hardware. The issue for us is that as one
changes the nature of systems so that adaptation and/or evolution becomes a dominant
feature which is present at a high level of system organisation, how does one specify and
formally reason about such system behaviour? The introduction of evolutionary behaviour
appears to allow considerably more freedom in the way that systems may behave and it is
not at all obvious that traditional methods for modelling the semantics, or for specifying
and reasoning about systems, remain adequate. Our aim is to provide a logical foundation
for modelling evolvable systems that allows considerable flexibility in the design of these
systems, enabling us to distribute evolutionary behaviour amongst components at various
levels in a component hierarchy and supporting effective reasoning about the behaviour of
such evolvable component systems.
In this paper we introduce and develop an appropriate “model-oriented” specification
framework, somewhat akin to VDM or Z but with different logical foundations, where the
focus of attention is on the specification of system state and on actions (or operations) that
change the system state. Component specifications are thus presented as first-order theo-
ries. In a subsequent paper (Part II of this account), we extend component specifications
to include programs which constrain the possible computational paths of a system, and we
describe the semantics of these programs. One approach to semantic modelling has been
explored in [3] where we describe a temporal logic-based approach to specifying evolvable
systems behaviour and give their models in terms of Kripke structures. The Kripke struc-
tures are themselves built from Kripke structures to provide two-level models in which we
maintain a separation between evolutionary steps (between Kripke structures) and normal
computation (within a Kripke structure). We do not pursue this approach to modelling here
— explicit description in terms of Kripke structures becomes unwieldy for highly struc-
tured component-based systems. Instead, we introduce logical structures which capture the
component hierarchy of a system and also model the logical relationship between supervi-
sors and supervisees within a system. Kripke structures are then naturally associated with
a transition-based operational semantics of programs in such a logical model and tempo-
ral specifications are associated with monitoring programs within supervisors. We consider
these issues in the sequel paper.
Let us now turn to the form of component hierarchy that we have in mind. Component
hierarchies are natural not only from a system-structuring perspective but also in terms of
evolutionary behaviour. Supervisory processes are associated with components in a system,

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 634 631–696

634 A logical framework

and these pairs of a supervisor and supervisee themselves form components, from which
new components may be built. These new components, whose subcomponents are evolv-
able, may themselves be evolvable, i.e. have associated supervisory processes to monitor
the sub-hierarchy of (evolvable) components and able to evolve both the subcomponents
and their supervisors. In this way, we may introduce evolutionary behaviour both locally
within components and at various levels in a component hierarchy. We consider a wide range
of possible evolutionary changes, from local changes that involve modifying the structure
within an individual component, or the replacement of a single component with a new one,
through to entire reconfigurations of a component system.
Formalising the relationship between supervisors and their supervisees is the key to devel-
oping a mathematical account of evolvable component behaviour. To describe this logically,
the logical theory of a supervisor needs access to a logical description of the object-level
behaviour and be able to modify these descriptions as the system evolves. That is, the logic
of a supervisor stands in relation to logic of the object-level system as a meta-logic in which
the predicates, types, formulae and other aspects of the object-level logic are available. This
observation itself is not new – there has been considerable interest in meta-level computa-
tional systems and the associated notion of reflection, especially in AI (see, for example,
[17]). What is new here is the incorporation of this idea into the specification and modelling
of component-structured systems and therefore using the idea of meta-level and reflective
systems to provide a mathematical underpinning for the design of systems with distributed
evolutionary capabilities and the logical analysis of the behaviour of such systems.
We express model-oriented component specifications in terms of a revision-based logic. A
component’s state is represented as a set of ground atomic formulae, i.e. formulae with no
free variables built from a single predicate applied to arguments. These formulae correspond
to observations made of the component. This has a natural correspondence with the logical
description of a supervisor as monitoring and observing various ‘facts’ about the object-level
system. These states, as sets of formulae, change as the system runs. We describe the changes
in a ‘belief revision’ style and treat the actions that a component may undertake as revi-
sions to the state, as is standard in revision-based logics [8, 9, 18, 24]. One advantage of this
approach is the built-in persistency — formulae change only when specified by a revision
action, all other formulae remain unchanged. For evolvable systems, this is an appropri-
ate property of the logic as evolutionary steps explicitly change part of the computational
structure and all other parts of the system should remain unchanged.
Supervisors themselves have states of the same form. These states record facts about
the supervisor’s current computational state, and, in addition, contain observations of the
state of the supervisee. Of course, these observations must actually hold in the supervisee
state. We will examine exactly what this means and define a suitable relationship between
supervisor and supervisee states. Revision actions at the meta-level may induce change at
the object-level, that is, if a supervisor undertakes an evolutionary action, the supervisee
must change so that the supervisor and supervisee states remain correctly related. This is
an induced action at the object-level as there is no explicit definition of the action, only that
the state must change to agree with that of the meta-level. In this way we abstract away
from the operational details of how a supervisor executes an evolutionary step. Moreover,
treating the supervisor as a revision system in exactly the same form as the object-level
component allows us to express directly the hierarchical nature of evolvable component-based
systems. The state of such a hierarchical system is built from the states of the constituent
components as a tree of states. By ‘state’ we mean not only the computational state but also

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 635 631–696

A logical framework 635

the information determining the behaviour of the components and their subcomponents. We
need to maintain this in its structured form so that the effect of component reconfigurations
can be determined. Evolutionary steps for component-based systems therefore involve fairly
intricate tree manipulations. This may sound a little complex but, declaratively and logically,
it is fairly straightforward.
The presentation here is example-driven throughout. The next section introduces the basic
idea of describing object-level systems with each action specified as a revision process and
then reflecting the object-level system at a meta-level for monitoring and evolutionary pur-
poses. The example we choose is a ‘blocks world’ [24] where sets of ground atomic formulae
are a standard description of states, and revision is a natural way of describing state change.
Section 3 takes the ideas forward into the world of components, component composition,
development and evolution. We start with a simple example: buffers as components, and
then progress, in Section 4, to a larger-scale example of an evolvable system — a simple
model of an evolvable banking system of automated teller machines. As well as introducing
a logical framework and developing examples within it, we also begin to explore an appro-
priate proof theory which allows us to link logical descriptions of systems to their behaviour.
In Section 5 we reflect on the expressivity, structure and applications of this logical account.
In a sequel to this paper (Part II, in preparation), we consider how to extend this frame-
work to incorporate programs for sequencing actions. We describe a prototype programming
language and its semantics, showing how components may contain programs and how pro-
grams distributed amongst components in a hierarchical assembly are combined to provide a
description of the computation of the overall system. Supervisors, as well as their supervisees,
may contain programs. These allow us to describe monitoring processes and algorithms for
evolutionary behaviour.

2 The Blocks World example

We start with the well-known blocks world [24] and present it in a first-order logic. The
world consists of blocks which may be placed on a table or on other blocks. The state of
a world at any time is represented by a finite set of formulae which describes observations
on the positions of blocks. Actions may be performed to move blocks around and these are
described as ‘revisions’ or ‘updates’ of the state.
We describe this basic model and then show how to extend it with capacities for blocks
and for tables. Section 2.6 introduces the idea of a meta-level description to observe the
blocks world and then in Section 2.7 we show how to evolve a blocks world using meta-level
descriptions of the required evolutionary steps. This meta-level is that of the supervisor
which monitors and invokes evolutionary change in the object-level system. The supervisor
is presented as a revision system in the same form as the object-level blocks world.

2.1 An object-level logical description
We specify the blocks world in terms of states and actions. Consider a first-order language
built from capital letters A, B, C , D, ... for individual constants, each letter denoting a
distinct block; we use the letter T to denote a table. Let the variables x , y range over
individual constants, i.e. blocks or the table. The predicate on(x,y) describes the situation

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 636 631–696

636 A logical framework

D

C

B A

T

FIG. 1. A blocks world situation.

C
A

B

T

D

FIG. 2. Another blocks world situation.

where the block named by x is directly on top of the block/table named by y, and free(x)
indicates that the block or table x is able to have a block placed on it.
The situation depicted in Figure 1 may be described by the set of ground atomic formulae

�0={on(A,T),on(B,T),on(C ,D),on(D,T),free(A),free(B),free(C)}.

We view this set as a collection of known facts about the current state of the system. For
the purposes of the modelling, this set records the entirety of our knowledge about the
positions of blocks in the system. Of course, with just the observations on(x,y) and free(x),
the situation where blocks A and B are swapped is indistinguishable from the current one.
Suppose block A is moved from the table onto block B. The situation, depicted in Figure 2,
may be described by the set of formulae

�1={on(A,B),on(B,T),on(C ,D),on(D,T),free(A),free(C),free(T)}.

We can specify such aMove action in several ways, for example, by pre- and post-conditions,
or by a revision process on the state. One of the key requirements of the interpretation of
actions is that of persistence—everything remains unchanged except for the blocks specifi-
cally moved. A revision-based approach (similar to STRIPS [8] and the Situation Calculus
[18]) is naturally persistent and therefore an appropriate setting for describing blocks world
actions. It also allows us to describe evolutionary actions as we shall demonstrate later. We
thus specify an action by giving conditions under which it may be applied, i.e. a precondition
set, together with a state revision. In this case, because states are simply sets of formulae,
revisions take on a particularly simple form, consisting of a set of formulae to be added to
a state and a set of formulae to be deleted from a state. We adopt the following schema

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 637 631–696

A logical framework 637

notation to define an action to move x to y from z :

Move(x,y,z)
pre {on(x,z),free(x),free(y)}
add {on(x,y),free(z)}
del {on(x,z),free(y)}

We now define the state revisions determined by actions for the case of ground actions
i.e. those obtained from schema by replacing the parameters with ground terms, for example
Move(A,B,T) (this keeps the definitions simple for the moment).

Definition 2.1 (Action revision - preliminary .) Let � be a set of ground atomic formulae
(a state) and α a ground action with pre-α, add-α and del-α the precondition, addition and
deletion sets for α. The revision of � by α, denoted by �∗α is defined when pre-α⊆� and
yields the state (�∪add-α)\del-α.
This preliminary definition requires that the preconditions occur explicitly as formulae in
the state. As an example, consider the ground action Move(A,B,T) and the above state �0.
Firstly, �0∗Move(A,B,T) is defined since the precondition set {on(A,T),free(A),free(B)}
is a subset of �0. Secondly, the revision adds the ground atoms on(A,B) and free(T) to �0
and then on(A,T) and free(B) are deleted. Thus we have:

�0∗Move(A,B,T)=�1
The ground action Move(A,C ,B) is now defined for state �1, in other words, we can move
block A from B onto the top of block C . Indeed we have that

�1∗Move(A,C ,B)={on(B,T),on(A,C),on(C ,D),on(D,T),free(A),free(B),free(T)}=�2.

Alternatively, we could have moved block A on top of block C directly from the initial state
�0, i.e. we have that

�0∗Move(A,C ,T)=�2.

The account above is correct for the moves undertaken. However, there are several issues
which are not addressed. One is the capacity of the table – when a block is removed from the
table (as above), then the table is free to receive a block. However, when a block is placed
on the table, we need to know the capacity of the table to determine whether the table is
free to accommodate further blocks.
Another issue is that theMove action, as defined, allows us to reach states which we would
consider inadmissible, e.g. Move(A,A,T) moves block A onto itself. We now show how to
address these issues in a logical framework.

2.2 Theories
State descriptions, in terms of sets of formulae, and transformations of state as revision
actions, are defined, in general, in the presence of logical theories. These theories describe
the properties and structure of the basic constituents of logical descriptions. As we shall

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 638 631–696

638 A logical framework

see, specifying and building hierarchies of theories is the mechanism we use to describe
computational systems including those that have evolutionary capabilities.
Theories have several roles in this revision-based description of computational systems.
In terms of the validity of action application, whether or not a precondition holds is not
simply a matter of the precondition formula occurring in the state, but is, in general, defined
in terms of whether or not the formula is valid, i.e. holds in certain models of the theory.
Moreover, the problem of specifying the capacity of the table in the blocks world is handled
by axioms (or ‘constraints’) in a theory which specify the number of blocks that a table can
hold. The precondition to actions which move blocks onto a table then requires that the
table has free capacity.
Introducing a theory for the blocks world also addresses another problem, namely that
certain forms of moves should not be accepted. For example, an action Move(A,A,B) which
moves A onto itself, is not valid. We can recognise these invalid moves as they lead to states
that are inconsistent with respect to the theory.
Figure 3 specifies a suitable blocks world theory1. We present it as a typed first-order the-

ory with built-in equality. The theory has TCYPES introducing typed constants for individual
blocks (A, B, etc.) and tables (just one, T) as enumeration types. PREDICATES are presented
as two sets. We distinguish OBSERVATION predicates which are used to define the observ-
able facts. In this case the predicate on is the only observation predicate. ABSTRACTION
predicates are used to describe properties that may not be directly observable. In the case
of the blocks world, we introduce two abstraction predicates, namely free, which we have
already used, and above, which we use to describe properties of blocks world scenarios. As
on is the only observation predicate, states contain only formulae of the form on(b,o), where
b is a constant denoting a block, and o a constant denoting an object (a block or table).
This differs from the preliminary account above – theories allow us to link observations with
abstractions such as freeness. We give a revised account of actions in the presence of a theory
below.
The theory describes the CONSTRAINTS relevant to a blocks world as a collection of named

constraints or axioms. For example, the formula named BWC ensures that no block can be
on itself, that a block is on at most one object, etc. Towers of blocks must be acyclic, hence
the introduction of the transitive above predicate. The constraint named TableSize(T ,2)
restricts the number of blocks that can be placed on table T to two and defines free(T)
in terms of on. Similarly, the constraint named BlockSize(1) restricts the number of blocks
that can be placed on another block to one and also defines freeness of a block. We later
consider the evolution of such a blocks world system (for example changing the table size)
and we will see the need to specify such constraints in a fully parametric fashion. To do this
requires a metalanguage in which we may define formulae in which the number of quantified
variables and the number of conjuncts and disjuncts in the formulae depend on numerical
parameters.
The collection of ACTIONS of the blocks world theory consists of the single action Move

which is defined as a revision of states, adding and deleting observations. The validity of
applying this action is defined in terms of a precondition, which is a set of closed formulae
constructed from both observation and abstraction predicates.

1For an account of axiomatizing blocks worlds, see [4].

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 639 631–696

A logical framework 639

BlocksWorld
TYPES

Blocks dfn= {A,B,C ,D,E,F}
Tables dfn= {T }
Objects dfn=Blocks ∪Tables

OBSERVATION PREDICATES
on :Blocks×Objects

ABSTRACTION PREDICATES
free :Objects
above :Blocks×Objects

CONSTRAINTS

BWC dfn=
∀b,b1,b2 :Blocks,o1,o2 :Objects ·

¬on(b,b) ∧
on(b,o1)∧on(b,o2)⇒(o1=o2) ∧
on(b1,b2)⇒(∃o :Objects ·on(b2,o)) ∧
on(b,o1)⇒above(b,o1) ∧
above(b,b1)∧above(b1,o2)⇒above(b,o2) ∧
above(b1,b2)⇒¬above(b2,b1)

TableSize(T ,2) dfn=
(∃b1,b2 :Blocks ·on(b1,T)∧on(b2,T)∧(b1 �=b2))⇔¬free(T) ∧
∀b1,b2,b3 :Blocks ·on(b1,T)∧on(b2,T)∧on(b3,T)⇒((b1=b2)∨(b2=b3)∨(b1=b3))

BlockSize(1) dfn=
∀b :Blocks ·(∃b1 :Blocks,o :Objects ·on(b1,b)∧on(b,o))⇔¬free(b) ∧
∀b1,b2 :Blocks ·on(b1,b)∧on(b2,b)⇒(b1=b2)

ACTIONS
Move(x :Blocks,y,z :Objects)
pre {on(x,z),free(x),free(y)}
add {on(x,y)}
del {on(x,z)}

FIG. 3. A blocks world theory.

2.3 Logical foundations
It is not the purpose of this paper to set out the logical foundations of revision-based logical
description. However, the notion of semantics for observation states in this approach to
logical description needs to be considered in order to understand and interpret the following
account of evolvable systems.
The syntax of logical descriptions used here is standard, except that we separate out
certain predicate symbols as ‘observation predicates’. Theories are collections of formulae
(called ‘axioms’ or ‘constraints’). Models of a theory consist of standard first-order set-based

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 640 631–696

640 A logical framework

models. That is, a model allocates sets to types, functions to function symbols, and relations
to predicate symbols in such a way that each axiom of the theory holds in the model.
The notion of satisfaction for observation states, however, is not standard. Consider a state

� as a set of formulae which are ground atomic formulae built from observation predicates
only. For an arbitrary closed formula ψ and theory W , it is usual to define ψ as following
model-theoretically from � just when ψ is satisfied in all W -models which satisfy �. We
write this form of satisfaction as � |≈W ψ to distinguish it from a second form of satisfaction
relation which we now introduce.
The form of satisfaction relation appropriate for observationally defined states and revision-
based logic uses minimum models. The definition of minimum models is based upon obser-
vational validity. We write

� |=W ψ

when closed formula ψ is satisfied in all minimum W -models which satisfy �. In an appendix
to this paper, we present a general account of observational states and define the appropriate
minimum models and this satisfaction relation.
A state � is inconsistent with respect to theory W just when � |=W false. Otherwise, we
say � is consistent with respect to theory W .
As an example, consider the blocks world theory W =BlocksWorld and a state

�={on(A,B),on(B,T)}.

We have � |=W ¬on(A,T) as this follows from an axiom of the theory (no block may
be on two different objects) and hence holds in all models of �. However, we also have
� |=W ¬on(C ,T) because the observation on(C ,T) does not hold in all models of �. In
fact, the state � is meant to describe the blocks world scenarios in which there are two
blocks present, A and B, with A on B and B on the table T , and no further blocks and no
further observations except where they follow from those in �. The proviso here is the key
to modelling in this revision-based logic and is what is captured by the relation |=W , which
is the relation appropriate for the logical modelling in this paper.

2.4 Revision by actions
We now define the revision operation of actions in the presence of a first-order theory W .

Definition 2.2 (Action revision - constrained .) Let W be a typed first-order theory, � a set
of ground atomic formulae, and α a ground action of W . Let pre-α, add-α and del-α denote
the precondition, addition and deletion sets for the action α. The revision of � by the ground
action α, written �∗α, is defined when � |=W ∧

pre-α and when the resultant state (�∪
add-α)\del-α is consistent with respect to the theory W.
Using this definition of revision by actions, we present the general Move action as follows:

Move(x,y,z)
pre {on(x,z),free(x),free(y)}
add {on(x,y)}
del {on(x,z)}

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 641 631–696

A logical framework 641

Now freeness no longer occurs in the states and acts only through the capacity constraints
for blocks and for tables.

Example 2.1 In the BlocksWorld theory, consider a state

�0={on(A,B),on(B,C),on(C ,T)}.

The precondition of Move(A,T ,B) is the set {on(A,B),free(A),free(T)}. Clearly on(A,B)
holds in any model satisfying �0 — the formula is present in �0. The formula free(A), how-
ever, is not present in �0 but does hold by virtue of the theory constraint named BlockSize(1).
Similarly, the formula free(T), also not present in �0 holds by virtue of the constraint named
TableSize(T ,2), which requires at least two different blocks to be directly on the table T for
free(T) not to hold. Thus the revision

�0∗Move(A,T ,B)

is defined and yields the state

�1={on(B,C),on(C ,T),on(A,T)}.

Note that the precondition of Move(B,T ,C) does not hold for �1 — free(T) fails to hold
since there are two distinct blocks A and C both on the table T.

There is a further modification to the notion of revision by actions. Consider the Move
action as defined above. The third argument z is, in fact, determined by the state as x has to
be on an object z for a move to take place and this is a requirement in the precondition. We
can thus replace the above specification of Move with the following as long as we redefine
revision.

Move(x,y)
pre {on(x,z),free(x),free(y)}
add {on(x,y)}
del {on(x,z)}

To redefine revision by actions, we allow binding of variables occurring in preconditions.
Notice that there may be more than one valid binding, so that revision becomes non-
deterministic in general. This is indeed what we require, although in certain cases, because
of constraints in the theory, bindings (if they exist) are unique (e.g. for the case of Move
above). A term such as Move(x,y), we call an action term of the theory.

Definition 2.3 (Action revision .) Let W be a typed first-order theory,� a set of ground atomic
formulae, and α an action term of W with variables x̄. Let pre-α, add-α and del-α denote the
precondition, addition and deletion sets for α. Let α(t̄) be a ground instance of α. Consider
a binding [ȳ �→ ū] such that
1. � |=W ∧

pre-α[t̄/x̄][ū/ȳ], and
2. �′ =�∪add-α[t̄/x̄][ū/ȳ])\del-α[t̄/x̄][ū/ȳ] is consistent with respect to the theory W.

Then we say that �′ is a revision of � by the ground action α(t̄), and write �
α(t̄)−→�′.

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 642 631–696

642 A logical framework

The above account is not the only one possible for describing a revision-based logical
system for the blocks world. We discuss here several possible variant formulations.
To determine whether preconditions of an action hold in a state will, in practice, need
automated deduction tools. In general, this is computationally expensive and, initially, we
considered an alternative where preconditions applied through set membership. For this,
we need to cope with cases in which, for example, the freeness of a table is neither known
nor known not to be the case. To formalise such states of knowledge, we introduced non-
deterministic states, with states as sets of sets of ground atomic formulae including possible
freeness. However, we rejected this approach in favour of the more complex precondition
check with single state for at least three reasons. Firstly, this alternative required several
different forms of consistency checking. Secondly, the approach led to a more intricate rela-
tionship between meta- and object-level systems. Thirdly, we ended up with a seemingly
unnecessarily complex configuration structure for components. However, this alternative
approach may have value when considering how to optimise an implementation of this logi-
cal foundations for evolvable systems.
Another possibility is to define states as sets of formulae which are deductively closed
under a given theory. This makes revision under actions very costly to compute. Some
Epistemic Logics adopt the position that inference itself is a revision action on states. This
is not appropriate for the modelling we use here.
It should be noted that the use of abstraction predicates, rather than, say, the inclusion of
capacity constraints directly as formulae in preconditions, is dictated by several considera-
tions. Including capacity constraints as preconditions is not only poor design but also makes
evolutionary steps difficult to define. Consider, for example, an evolution that increases the
capacity of the table. For this to be definable, the table capacity needs to be sufficiently
localised in the description so that the evolutionary step is itself a revision action. This is
therefore a point where the ‘evolvability’ of a system influences the way that systems are
structured.

2.5 Configurations
We now give a general formulation of systems such as the blocks world described above.

Let W be a first-order theory in a typed first-order language L. The predicate symbols of
the theory W are partitioned into OBSERVATIONS and ABSTRACTIONS. Let GroundAtom be
the set of atomic formulae with no free variables built from observation predicate symbols
only. We define State�2GroundAtom — the set of all states.

Let Formula be the set of formulae of the first-order language L and ObsFormula be the set
of atomic formulae built from observation predicates only.

Let ActId denote a finite set of action names, e.g. Move. Define the set

ActionDefs�ActId→(Args×2Formula×2ObsFormula×2ObsFormula)

to contain the pre, add and del sets associated with each action. The set Args is the set of
argument lists.

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 643 631–696

A logical framework 643

Let GroundTerm denote the set of ground terms of W and GroundTerms the set of lists of
ground terms (sometimes denoted GroundTerm∗), then define

GroundAction�ActID×GroundTerms

of ground actions, for example Move(A,T ,B).
We now introduce the notion of a configuration. This is the logical structure around which
we build an account of evolvable systems. A configuration describes the current state as well
as the structure of the theory and the actions:

Definition 2.4 (Configuration .) In a first-order language L, define a configuration as C=
〈�,C,A〉 where:

� is in State (i.e. is a subset of Ob),
C is a finite collection of parametrically named closed formulae of L,
A is in ActionDefs i.e. is s collection of action schema.

A configuration C=〈�,C,A〉 is said to be consistent iff the state � is consistent with respect
to the first-order theory W defined by the constraints C.

Let C=〈�,C,A〉 be a configuration. For action name α, define pre-α as the first element of
the triple A(α), similarly, add-α and del-α name the second and third elements. The revision
of states by actions is defined in Definition 2.3 where the theoryW has the formulae named
in C as constraints.

For a ground action α∈GroundAction and two consistent configurations C=(�,C,A) and
C′ =(�′,C,A), we say that C′ is a revision of C by α iff � α−→�′. In this case, we write
C α−→C′.

2.6 Observing the Blocks World: Beginnings of a supervisor
Our goal is to describe a system that monitors the blocks world and provides a mechanism
for changing the structure of this world. We refer to such a system as a supervisor. If we
regard the blocks world to be object-level, then the supervisor is a meta-level system for
this object-level. We describe the supervisor as a system in the same form as the object-
level, that is, as a collection of revision actions on sets of formulae. Using meta-level revision
actions, the supervisor may record observations about the blocks world as it changes through
object-level actions. This can be thought of as the supervisor ‘monitoring’ the object-level
system.
Let c0,c1,c2,... be a list of distinct labels which the supervisor uses to name particular
configurations at the object-level. We track the configurations through these names and
introduce a successor function s such that c1=s(c0), c2=s(c1), etc. At the supervisor level,
we use the predicate current(ci) to indicate that the name ci refers to the current object-level
configuration that the supervisor is observing.
We reflect the object-level state observations at the meta-level using a holds predicate in
the supervisor configuration. For example, if holds(free(T),c0) is present in a state of the
supervisor, then this is interpreted as an observation of the object-level configuration named
c0 (by the meta-level) in which the object-level formula free(T) holds in the state.

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 644 631–696

644 A logical framework

The supervisor, in fact, observes more than just the observation state at the object-level.
It can observe all the structure of the object-level, including the actions and constraints.
For example, we use the meta-level predicate constraint(TableSize(T ,2)) to indicate that
the constraint named as TableSize(T ,2) is present in the object-level configuration.
Monitoring actions of the supervisor are of the form Observe(P), which record the obser-

vation that the set of formulae P holds in the blocks world configuration. These formulae
may be observation formulae in the current object-level state or may be formulae constructed
from observation and abstraction predicates and which hold in the current observation state.
The effect of Observe(P) at the meta-level is specified using the same approach as above,
i.e. using revisions:

Observe(P)
pre {current(c)}
add {holds(p,s(c)) |p∈P)}∪{current(s(c))}
del {current(c)}

Note that the supervisor is responsible for keeping the current state appropriately named2.
We now give an example of a supervisor execution trace for a blocks world. Let us consider
a blocks world theory with table size constraint of 3. Consider the following blocks world
sequence of states.

�0=

⎧⎪⎪⎨
⎪⎪⎩

on(A,B),
on(B,C),
on(C ,D),
on(D,T)

⎫⎪⎪⎬
⎪⎪⎭
Move(A,T ,B)−−−−−−−→�1=

⎧⎪⎪⎨
⎪⎪⎩

on(A,T),
on(B,C),
on(C ,D),
on(D,T)

⎫⎪⎪⎬
⎪⎪⎭
...

Move(B,T ,C)−−−−−−−→ ...�2=

⎧⎪⎪⎨
⎪⎪⎩

on(A,T),
on(B,T),
on(C ,D),
on(D,T)

⎫⎪⎪⎬
⎪⎪⎭
Move(C ,B,D)−−−−−−−→�3=

⎧⎪⎪⎨
⎪⎪⎩

on(A,T),
on(B,T),
on(C ,B),
on(D,T)

⎫⎪⎪⎬
⎪⎪⎭

An example of a corresponding supervisor trace of this blocks world is depicted below in
terms of the supervisor’s states. We use the notation �M to refer to states of the supervisor
(at the meta-level).

�M0 =
{
current(c0),
holds(free(T),c0)

}
Observe({free(T)})−−−−−−−−−→�M1 =

⎧⎨
⎩
current(s(c0)),
holds(free(T),c0),
holds(free(T),s(c0))

⎫⎬
⎭
Observe({})−−−−−−→ ...

...�M2 =
⎧⎨
⎩
current(s(s(c0))),
holds(free(T),c0),
holds(free(T),s(c0))

⎫⎬
⎭
Observe({})−−−−−−→�M3 =

⎧⎨
⎩
current(s(s(s(c0)))),
holds(free(T),c0),
holds(free(T),s(c0))

⎫⎬
⎭

In this example, the supervisor observes the freeness of the table, i.e. the validity of the
object-level formula free(T). Note that the truth of free(T) is not immediately apparent

2In fact, for the presentation we make here we require the meta-level theory constraint ∀c1,c2 ·current(c1)∧
current(c2)⇒c1=c2 ensuring uniqueness of the current object-level state. We introduce such constraints later to
define meta-level theories for the blocks world.

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 645 631–696

A logical framework 645

FIG. 4. Object-level to meta-level reflection.

from the blocks world state. It is derived from the state using the TableSize constraints.
In the above traces, the initial state of the supervisor �M0 reflects the initial state at the
object-level (we define this relationship between states below). Later we give the supervisor
further powers to view other parts of the object-level configurations, namely the constraints
and the actions. The supervisor action Observe({free(T)}) revises the supervisor state �M0 to
yield the state �M1 . We see that after the next supervisor observation, in the corresponding
object-level state labelled s(s(c0)), free(T) no longer holds as there are three blocks on the
table and so holds(free(T),s(s(c0))) is not a formula in the resulting supervisor state and
Observe({free(T)}) is not a valid revision action. Similarly for the observation after this.
We now define this relationship linking object-level and meta-level states, that is, we
characterise formally the reflective arrow in Figure 4.

Definition 2.5 (State meta-view — first version .) Let WM and W be first-order theories for
meta-level and object-level systems respectively. We say that �M (from a configuration of
WM) is a state meta-view of � (of a configuration of W) when, for all formulae ϕ and
configuration names c, if

{current(c),holds(ϕ,c)}⊆�M

then ϕ is a formula of W and � |=W ϕ.
For the above example of traces, each �Mi is a state meta-view of the blocks world �i .
Note that the state of the supervisor maintains a history of observations. This is a con-
sequence of the naming of the configurations and the persistence inherent in the revision
process. It allows us to use historical observations to determine when meta-level actions
should be applied — in particular, it encodes certain temporal information.

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 646 631–696

646 A logical framework

2.7 Evolving the Blocks World
In the preceding section, we described an action at the meta-level that corresponds to observ-
ing a blocks world state. Here, we show how to define a supervisor action that can expand
the capacity of the blocks world table. Note that in the blocks world theory (Figure 3), the
capacity of the table is fixed and determined by a constraint named TableSize(T ,2). The
meta-level, which has access to all aspects of the blocks world, has the ability to change
these object-level constraints. Recall that a configuration contains constraints as paramet-
rically named formulae. Let the meta-level formula constraint(TableSize(T ,2)) mean that
the object-level configuration has a formula named TableSize(T ,2) amongst its current con-
straints.
Consider a supervisor action Expand(n) which expands the table capacity to size n spec-
ified as follows.

Expand(n :Int)
pre {current(c),constraint(TableSize(T ,m)),m<n}
add {current(s(c)),holds(free(T),s(c)),constraint(TableSize(T ,n))}
del {current(c),constraint(TableSize(T ,m))}

Consider an instance of this action, for example, Expand(4) on a table of size 2. The action
is defined if the blocks world configuration named in the supervisor as c is recorded as
being current and that the current blocks world has a constraint named TableSize(T ,2).
The defined action then specifies that the constraint TableSize(T ,2) is removed in the next
blocks world configuration and replaced by the constraint of capacity of 4. Here we use
the parameterised nature of the naming of constraints, which we define later. Notice also,
that because this is a strict expansion of the table, we can assert at the meta-level that
holds(free(T),s(c)), that is, the table is free to accept further blocks after a strict expansion.
This relies on the consistency of the pre-expansion configuration, i.e. that no more than
2 blocks are on the table.
In the previous section, we gave a preliminary definition relating the meta-level and object-
levels — the state meta-view. This definition now needs modification to take account of the
constraint predicate.

Definition 2.6 (State meta-view — second version .) Let WM and W be first-order theories
for the meta-level and object-level respectively. We say that �M (from a configuration of WM)
is a state meta-view of a configuration C=〈�,C,A〉 of theory W when
1. for all formulae ϕ and configuration names c, if {current(c),holds(ϕ,c)}⊆�M then ϕ is
a formula of W and � |=W ϕ, and

2. for all ground constraint expressions cn, if constraint(cn)∈�M then cn∈C.

This definition relates meta-level states and object-level configurations, but, in itself, is
not sufficient to enable us to define evolutionary actions which may be invoked by the
supervisor. What we need is (1) new meta-level predicates to indicate how evolutionary
actions can enforce change at the object-level, and (2) a relation between states before and
after actions, relating states at the object-level to those at the meta-level. We now show how
to define both of these. By doing so we can ensure the required persistency at the object-
level (for example, an expand action should not change the arrangement of the blocks!), and

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 647 631–696

A logical framework 647

that in this revision-based approach, we have a simple mechanism for induced evolutionary
change.
Firstly, we introduce a meta-level predicate evolve(δ+D,δ

−
D,c) that corresponds to a revision

of the object-level state which adds δ+D and deletes δ
−
D. To ensure that this is correctly

interpreted, we now define the relation of transition meta-view:

Definition 2.7 (Transition meta-view — first version .) Given meta-level states, �M and �M′

of theory WM, and object-level configurations, C=〈�,C,A〉 and C′ =〈�′,C ′,A′〉 of theory W,
such that �M, �M′ are state meta-views of C, C′ respectively, we say that the pair 〈�M,�M′〉
is a transition meta-view of 〈C,C′〉 when if {evolve(δ+D,δ−D,c),current(c)}⊆�M′ and �′ =
�∪δ+D\δ−D is consistent with W then C′ =〈�′,C,A〉.
We now modify the definition of the Expand action to include evolve({},{},s(c)) as a

formula added to the state. This ensures, through the transition meta-view, that Expand
induces a change at the object-level that does not alter the object-level state i.e. the arrange-
ment of blocks on the table.

Expand(n :Int)
pre {current(c),constraint(TableSize(T ,m)),m<n}
add {current(s(c)),holds(free(T),s(c)),evolve({},{},s(c)),

constraint(TableSize(T ,n))}
del {current(c),constraint(TableSize(T ,m))}

To illustrate this, let us extend the execution traces of the supervisor and the blocks world
with an Expand action:

We require that each pair of consecutive states at the meta-level is a transition meta-view
of the corresponding configurations at the object-level. Consider the pairs 〈�M3 ,�M4 〉 and

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 648 631–696

648 A logical framework

〈C3,C4〉 where

�M3 =

⎧⎪⎪⎨
⎪⎪⎩

current(s(s(s(c0)))),
holds(free(T),c0),
holds(free(T),s(c0)),
constraint(TableSize(T ,3))

⎫⎪⎪⎬
⎪⎪⎭
.

In this example, the object-level configuration starts with a constraint of TableSize(T ,3),
which is recorded via the constraint predicate in the meta-level state. The preconditions of
the supervisor action Expand(6) are then satisfied in the supervisor state �M3 . A revision by
Expand(6) is therefore defined and gives rise to the supervisor state �M4 , where:

�M4 =

⎧⎪⎪⎨
⎪⎪⎩

current(s(s(s(s(c0))))),
holds(free(T),c0),holds(free(T),s(c0)),holds(free(T),s(s(s(s(c0))))),
evolve({},{},s(s(s(s(c0))))),
constraint(TableSize(T ,6))

⎫⎪⎪⎬
⎪⎪⎭

Now consider the object-level trace. Assuming that TableSize(T ,3) is indeed the name of one
of the constraints in C, then �M3 is indeed a state meta-view of the corresponding object-level
configuration, where

�3=

⎧⎪⎪⎨
⎪⎪⎩

on(A,T),
on(B,T),
on(C ,B),
on(D,T)

⎫⎪⎪⎬
⎪⎪⎭
.

After the Expand action, the state meta-view requirement is that TableSize(T ,6) a constraint
of C4. Moreover if

�4={on(D,T)}
then�M4 is a state meta-view of C4. However, the pair of (object-level) configurations 〈C3,C4〉
do NOT satisfy the requirements for 〈�M3 ,�M4 〉 to be a transition meta-view of 〈C3,C4〉. The
blocks world configuration has not been preserved. The observations noted at the meta-level
require

�4=

⎧⎪⎪⎨
⎪⎪⎩

on(A,T),
on(B,T),
on(C ,B),
on(D,T)

⎫⎪⎪⎬
⎪⎪⎭
.

in which there is no change in the blocks world state. Secondly, however, because the set of
constraints in the object-level has changed, the transition meta-view relation also fails. We
must therefore modify the previous evolve predicate to include additions and deletions that
may simultaneously occur in the state and in the constraint set, i.e. the predicate is of the
form

evolve(δ+D,δ
−
D,δ

+
C ,δ

−
C ,c)

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 649 631–696

A logical framework 649

where δ+D are the additions to the state, δ
−
D are the deletions to the state, δ

+
C are the additions

to the set of constraints of the configuration and theory, and δ−C are the deletions to this
constraint set.
The definition of the transition meta-view relation is thus modified:

Definition 2.8 (Transition meta-view — second version .) Given meta-level states, �M and
�M′ of theory WM, and object-level configurations, C=〈�,C,A〉 and C′ =〈�′,C ′,A′〉 of theory
W, such that �M, �M′ are state meta-views of C, C′ respectively, we say that the pair
〈�M,�M′〉 is a transition meta-view of 〈C,C′〉 when if {evolve(δ+D,δ−D,δ+C ,δ−C ,c),current(c)}⊆
�M′ and �′ =�∪δ+D\δ−D is consistent in theory W ′, where W ′ is the theory W with constraint
set C revised to C ′ =(C∪δ+C \δ−C), then C′ =〈�′,C ′,A〉.
This definition requires that the revised object-level state �∪δ+D\δ−D is consistent with
respect to the revised set of object-level theory constraints, C∪δ+C \δ−C . In light of this change,
we modify the previous specification of the supervisor Expand action to become the following:

Expand(n :Int)
pre {current(c),constraint(TableSize(T ,m)),m<n}
add {current(s(c)),holds(free(T),s(c)),

evolve({},{},{TableSize(T ,n)},{TableSize(T ,m)},s(c)),
constraint(TableSize(T ,n))}

del {current(c),constraint(TableSize(T ,m))}

With appropriate definitions of the formulae TableSize(T ,3) and TableSize(T ,6), in the
example above, 〈�M3 ,�M4 〉 is indeed a transition meta-view of 〈C3,C4〉. The meta-level action
Expand(6) on a table of size 3 therefore changes the blocks world to evolve to a new system
whose table T has doubled its previous capacity.

Example 2.2 (Contraction .) As another example of a simple blocks world evolution, consider
contraction of the table size. This again is a supervisor action, which, in this case, we define
to reduce the size by one. Notice that we cannot assert freeness of the table at the meta-level
after contraction, as we could for strict expansion. Notice also that, if the table already has a
maximum number of blocks on it, expansion is permitted but contraction does not lead to a
pair of states related as a transition meta-view, since consistency of the resulting object-level
state is required, and thus contraction is not permitted in this case.

Contract()
pre {current(c),constraint(TableSize(T ,m)),m>0}
add {current(s(c)),

evolve({},{},{TableSize(T ,m−1)},{TableSize(T ,m)},s(c)),
constraint(TableSize(T ,m−1))}

del {current(c),constraint(TableSize(T ,m))}

2.8 Changing Blocks World actions
The preceding section considered an evolution of the blocks world in which the object-
level table T of the blocks world had its capacity changed. In this section, we show how a
supervisor can introduce, delete and modify actions of the blocks world.

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 650 631–696

650 A logical framework

Imagine a situation where the blocks world has the following series of moves made quite
often.

C

BB

C

D

T

A
C

A B D

TT

D

C

B

A

A

T

D

The table is used as intermediate location in order to perform a swap of blocks A and C
from the state {on(A,B),on(C ,D),...} to {on(C ,B),on(A,D),...}. The supervisor observes
this common pattern of behaviour and introduces a two-armed robot that is able to swap
the blocks directly without using the table! In other words, the system evolves so that the
following action is introduced at the object-level.

Swap(x,y,u,v)
pre {on(x,u),free(x),on(y,v),free(y)}
add {on(x,v),on(y,u)}
del {on(x,u),on(y,v)}

The supervisor must therefore add this Swap action to the blocks world configuration. To
do this, we extend the meta-level predicate evolve to include the addition and deletion of
actions. Thus, in

evolve(δ+D,δ
−
D,δ

+
C ,δ

−
C ,δ

+
A,δ

−
A,c),

the first four arguments are as before, and δ+A and δ
−
A are the additions and deletions to the

set of actions. For example, the presence of

evolve({},{},{},{},{[action_name �→〈vars,pre,add,del〉]},{},c),

at the meta-level is used to add an action action_name at the object-level specified by

[action_name �→〈vars,pre,add,del〉]

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 651 631–696

A logical framework 651

for sets vars, pre, add, and del . The supervisor might therefore have the following action
defined.

addAction(name,vars,
pre,add,del)

pre {current(c)}
add {evolve({},{},{},{},{[name �→〈vars,pre,add,del〉]},{},s(c)),

current(s(c))}
del {current(c)}

We need to amend the definition of transition meta-view to take account of changing the
actions in the configuration.

Definition 2.9 (Transition meta-view — third version .) Given meta-level states,�M and�M′

of theory WM, and object-level configurations, C=〈�,C,A〉 and C′ =〈�′,C ′,A′〉 of theory W,
such that �M, �M′ are state meta-views of C, C′ respectively, we say that the pair 〈�M,�M′〉
is a transition meta-view of 〈C,C′〉 if {evolve(δ+D,δ−D,δ+C ,δ−C ,δ+A,δ−A,c),current(c)}⊆�M′ and
�′ =�∪δ+D\δ−D is theory W ′ consistent, where W ′ is the theory W with set C revised to
C ′ =(C∪δ+C \δ−C), then C′ =〈�′,C ′,A∪δ+A\δ−A〉.

2.9 A Blocks World supervisor theory
We now bring together the elements of a supervisor of the blocks world and present it as
a typed first-order theory which is at a meta-level to the blocks world theory (Figure 3).
To be a meta-level theory, the theory is equipped with a number of built-in types for the
names of entities of the object-level theory, these include the predicates, variables, formulae
and the other syntactic classes of the object-level. A formula free(T) of the object-level
theory becomes the term “free(T)”, with appropriate conditions to ensure compositionality
of quoting, e.g. “free(T)”=“free”(“T”). See [2] for an exposition of meta-level structure, in
this case for the executable temporal logic METATEM.
For the presentation here, we consider meta-theories that include a type OBSFORMULA

that corresponds to the set of atomic observation formulae of the object-theory (with
OBSFORMULAE as the powerset of OBSFORMULA), a type GROUNDATOM of ground atomic obser-
vation formulae, a type FORMULA that corresponds to the set of formulae of the object theory,
and so on. For notational convenience, we omit quotation marks from object-level entities
quoted at the meta-level when the context is apparent, e.g. the formula constraint(TableSize
(T ,2)) used in the blocks world supervisor theory is actually here denoting the quoted blocks
world level constraint name denoted by the same string of symbols. We abuse notation even
further by allowing meta-level variables to be embedded within quoted object level entities,
such as constraint(TableSize(T ,m)), that uses the meta-level variable m within the tacitly
quoted parametric constraint name.
One crucial aspect of this meta-level to object-level linkage is that when we define a theory
to be meta to another then, if there is a change to the object-theory, that change is directly
reflected in the meta-theory through the types representing the object-level entities. For
example, if a blocks world theory is revised to contain a new predicate then any theory that
has been defined meta to the blocks world theory will automatically be revised to reflect
the updated sets of predicate names, atomic formulae, formulae, etc., that arise through the
addition of the new predicate.

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 652 631–696

652 A logical framework

The blocks world supervisor theory is presented below. It is prefixed with the keyword
META to indicate that this is a theory at a meta-level to an object-level and so has access
to the logic and state of an object-level configuration. Thus, this meta-level theory is to
be combined with an object-level theory to form a joint theory of a supervisor and its
supervisee. Actions of the meta-level theory are run in conjunction with object-level actions
in combinations which we explore later. We do not specify an object-level theory as part
of the meta-level theory. In general, meta-levels can combine with a range of appropriate
object-level theories, so that, as computation proceeds, the meta-level theory may change
the object-level theory that is under its supervision.

META BlocksWorldSupervisor
TYPES

ConfigName
FUNCTIONS

s :ConfigName→ConfigName
c0 :ConfigName

OBSERVATION PREDICATES
current :ConfigName
holds :FORMULA×ConfigName
constraint :CONSTRAINTNAME
evolve : GROUNDATOMS×GROUNDATOMS×

CONSTRAINTNAMES×CONSTRAINTNAMES×
ACTIONNAMES×ACTIONNAMES×ConfigName

CONSTRAINTS

BWEC dfn=
∀c1,c2 :ConfigName ·current(c1)∧current(c2)⇒(c1=c2) ∧
∀δ+D,δ−D,δ+D ′

,δ−D
′ :GROUNDATOMS,

δ+C ,δ
−
C ,δ

+
C

′
,δ−C

′ :CONSTRAINTNAMES,
δ+A,δ

−
A,δ

+
A

′
,δ−A

′ :ACTIONNAMES,
c :ConfigName ·
(evolve(δ+D,δ

−
D,δ

+
C ,δ

−
C ,δ

+
A,δ

−
A,c)∧evolve(δ+D ′

,δ−D
′
,δ+C

′
,δ−C

′
,δ+A

′
,δ−A

′
,c))⇒

(δ+D =δ+D ′)∧(δ−D =δ−D ′)∧(δ+C =δ+C ′)∧(δ−C =δ−C ′)∧(δ+A =δ+A′)∧(δ−A =δ−A′)
ACTIONS

Observe(P :FORMULAE)
pre {current(c)}
add {holds(p,s(c)) |p∈P}∪{current(s(c))}
del {current(c)}
Expand(n :Int)
pre {current(c),constraint(TableSize(T ,m)),m<n}
add {current(s(c)),holds(free(T),s(c)),

evolve({},{},
{TableSize(T ,n)},{TableSize(T ,m)},
{},{},s(c)),

constraint(TableSize(T ,n))}
del {current(c),constraint(TableSize(T ,m))}

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 653 631–696

A logical framework 653

Contract()
pre {current(c)),constraint(TableSize(T ,m)),m>0}
add {current(s(c)),

evolve({},{},
{TableSize(T ,m−1)},{TableSize(T ,m)},
{},{},s(c)),

constraint(TableSize(T ,m−1))}
del {current(c),constraint(TableSize(T ,m))}
addAction(name :ACTIONNAME,

vars :VARNAMES,
pre :FORMULAE,
add :ATOMS,
del :ATOMS)

pre {current(c)}
add {evolve({},{},{},{},

{[name �→〈vars,pre,add,del〉]},{},s(c)),
current(s(c))}

del {current(c)}

The BlocksWorldSupervisor theory has the observation predicates we have introduced
above, namely current, holds, constraint and evolve, together with associated consistency
constraints for current and evolve. The equality in the definition of uniqueness of the evolve
predicate at a configuration is that of set equality. More generally, as we shall see later,
the equality here is the extensional equality of state transformations, which here takes this
particularly simple form. The type ConfigName is introduced for the supervisor’s names
for blocks world configurations together with an initial value c0 and a successor function s.
The actions in this theory are those that we have already introduced.

3 Introducing components

So far, we have introduced a basic notion of configuration for describing a global view of a
system at an object-level and also at a meta-level which allows us to express the monitoring
and evolving of the object-level system.
In this section, we turn to a more structured view of computational systems, extending the
framework to systems built hierarchically from components. To do so, we need to revisit the
logical structure we have presented and modify it to incorporate hierarchically-structured
logical theories. In particular, the notion of a configuration is redefined in terms of tree-
structured elements. As a consequence, definitions of action revision and the meta-view
relations are modified. Because we consider this as an extension of the ideas of the previous
section, we retain the terminology of configurations, meta-views, etc. but redefine them in
this new context.
We motivate the development through an example. We consider various examples of
buffers, i.e. finite storage devices operating on a FIFO principle (First-in, First-out), with
operations of ‘Send’ which removes an element (the first-in) from the buffer and ‘Receive’
which adds an element to the buffer. Later in this section, we consider examples of buffers
with evolutionary capabilities.

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 654 631–696

654 A logical framework

3.1 Buffers as components
At a basic level, we treat a component as a collection of predicates, named constraint for-
mulae and actions, just as we did for the logical theory of the blocks world. As an example,
we present a specification of a theory for a FIFO buffer of fixed but unknown capacity.

Buffer(N :Int)
OBSERVATION PREDICATES

content :Value-list
ABSTRACTION PREDICATES

free

CONSTRAINTS

Uniqueness dfn= ∀l1,l2 :Value-list ·content(l1)∧content(l2)⇒ l1= l2
Size(M :Int INITIALLY N) dfn= (∃l :Value-list ·content(l)∧(|l |<M))⇔ free∧

∀l :Value-list ·content(l)⇒(|l |≤M)
ACTIONS

Send(v)
pre {content(l ::v)}
add {content(l)}
del {content(l ::v)}

Receive(v)
pre {free,content(l)}
add {content(v :: l)}
del {content(l)}

The Buffer component is parameterized by an integer N which represents the initial capacity
of an instance of a Buffer theory. This capacity may be changed by a buffer supervisor, as we
shall. The schema presents two actions Send(v) and Receive(v), together with two predicates,
content and free. The formula content(l) means that the content of the buffer is the list of
values l , and free means that the buffer can accept more input. The predicate content is
treated as an observation and thus can be present in a state of the buffer, whereas free
is an abstraction of a buffer state. Two constraints are specified: the first characterizing
uniqueness of the buffer contents; the second characterizing the freeness and the capacity of
the buffer. In this constraint, we set an initial value (using ‘INITIALLY’) for the capacity so
that each instance of this theory has an initial buffer size.
Our aim is to use component schema to create instances of components within other
components. For example, below we specify a schema No_Buffering that introduces no
new predicates or constraints, but instead specifies how a new component is built from two
instances of buffer subcomponents. Incorporating subcomponents in this way means that
we need to modify the notion of a configuration, which we do in the next subsection.

No_Buffering
COMPONENTS

B1,B2 :Buffer(2)
ACTIONS

Send(v) dfn=B2.Send(v)
Receive(v) dfn=B1.Receive(v)

The No_Buffering schema is also specified to have two actions, Send(v) and Receive(v),
however, in this case they have been identified, respectively, as the send action of the buffer

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 655 631–696

A logical framework 655

B2 and the receive action of B1. The actions of the subcomponents of No_Buffering are
named using the component instance names B1 and B2. At the moment, these are the only
actions that an instance of No_Buffering may undertake, and thus there is no communica-
tion between the two component buffers. As it stands, the No_Buffering schema is not very
useful! Let us introduce internal communication between the two buffers. We specify this
as a joint action, an action that will require B1.Send(v) to be undertaken synchronously
with a B2.Receive(v) action. For simplicity, we will name the new joint action Internal . It
is described as a choice over all values v∈Value. each time a particular value is transferred,
that element of the choice is invoked.

Buffering
COMPONENTS

B1,B2 :Buffer(2)
ACTIONS

Send(v) dfn=B2.Send(v)
Receive(v) dfn=B1.Receive(v)
Internal dfn=|v∈Value B1.Send(v)||B2.Receive(v)

An instance of Buffering acts like a buffer, in the sense that it can receive values, retain
them, and send them out. The action named Internal will simultaneously revise the configu-
ration associated with the Buffering instance by B1.Send(v) and B2.Receive(v) for any value
v. We will give the revision semantics for joint and choice actions later. This configuration
contains associated sub-configurations for the Buffer subcomponents B1 and B2, and hence
the B1.Send(v) action revises the B1 sub-configuration, similarly for B2. Component hier-
archies require a more complex configuration structure than the flat, global configuration
structure that we have used so far. Moreover, evolutionary steps for systems built hierar-
chically from components may involve the reconfiguration of components, such as changing
existing components, adding new components or reconfiguring the system hierarchy. Thus
revision actions no longer operate simply on sets of formulae, but in addition on the tree
structure of the components. We begin to develop this formally in the next section.
As another example, suppose the above component schema is modified to contain a local
variable through which the subcomponents B1 and B2 may pass a single value. This is
sometimes called a ‘latch’. To describe this, we can either specify a separate latch component,
embedded and connected appropriately with the other buffer subcomponents, or we can
specify the latch actions directly within the component schema as below.

BufferingLatch
OBSERVATION PREDICATES

transfer :Value,
ready

COMPONENTS
B1,B2 :Buffer(2)

CONSTRAINTS

Uniqueness dfn= ∀v1,v2 :Value ·transfer(v1)∧transfer(v2)⇒v1=v2

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 656 631–696

656 A logical framework

ACTIONS

Send(v) dfn=B2.Send(v)
Receive(v) dfn=B1.Receive(v)
Internal dfn=|v∈Value B1.Send(v)||TransferIn(v) |TransferOut(v)||B2.Receive(v)

WHERE

TransferOut(v)
pre {transfer(v)}
add {ready}
del {transfer(v)}

TransferIn(v)
pre {ready}
add {transfer(v)}
del {ready}

The actions of BufferingLatch are either a B2 send action, a B1 receive action, or an internal
action of two kinds (separated by the disjunction ‘|’), either a B1 send action in synchrony
with a TransferIn action, or a B2 receive action in synchrony with a TransferOut action.
Note that the TransferIn(v) and TransferOut(v) actions can be performed only in these
synchronous combinations.
Through these examples, we have presented the essence of how we adapt the previous log-
ical descriptions to systems built from components, using the notion of joint action to allow
communication between components. Now we begin the formal treatment of these ideas,
starting with a revised notion of configuration which incorporates component hierarchies.

3.2 A configuration structure for components
Previously, in the blocks world, we defined a configuration as having three elements: a global
state (a set of formulae), a set of constraints and a collection of action definitions. Such a
global configuration is no longer appropriate for hierarchically (and potentially dynami-
cally) structured systems. There are two possible approaches to describing configurations
for hierarchical systems. Each uses a global environment that maintains the definitions of
component schema, together with either

1. a global state containing the observations of all the components — the component
hierarchy is present in the naming scheme for the predicates, prefixing them by the
path amongst the components, or

2. a hierarchical structure, using a tree of local states, one for each component in the
hierarchy; likewise for constraints and actions, each localised at nodes of a tree.

It turns out that it is easier to maintain the separation and linkage of the meta-levels and
the object-levels using the second of these two (equivalent) representations.
We thus define the key notion of a configuration for a component system. This replaces

the previous definition of a configuration for systems not built in terms of components.
Each element of a configuration for a component system is a tree (or forest) representing
the hierarchical nature of component systems.

Definition 3.1 A configuration for a component system is a triple of the form:

Configuration � ObservationState×ComponentMap×SchemaDefs
We define below the constituents of a configuration, that isObservationState, ComponentMap
and SchemaDefs for component systems.

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 657 631–696

A logical framework 657

To ease the presentation, we omit types (e.g. of variables) where possible. The following
basic types are used:

• sets of identifiers - e.g. SchemaID, ComponentID, ConstraintID, ActionID, etc.
• Predicates — the set of sets of predicates;
• Formula — the set of formulae of the relevant logic;
• Formulae — the set of subsets of formulae of the relevant logic;
• ObsFormula — the set of atomic formulae built from observation predicates of the logic;
• GroundAtom — the subset of ObsFormula with no free variables;
• Args — the set of lists of formal arguments;
• Terms — the set of lists of terms, each term built from functions and variables in
accordance with arities and types.

We now give a formal description of the schema used to define instances of components.
Here A⇀B denotes the set of partial functions from A to B.

Definition 3.2

SchemaDefs � SchemaID⇀ComponentSchema

ComponentSchema � Args×Types×Functions×
Predicates×Predicates×
ComponentSchemaMap×
ConstraintSchemaDefs×
ActionDefs

ComponentSchemaMap � ComponentID⇀ComponentSchemaInstance
ComponentSchemaInstance � SchemaID×Terms |

ComponentID×SchemaID×Terms×
ComponentID×ComponentSchemaInstance

ConstraintSchemaDefs � ConstraintSchema∗

ConstraintSchema � ConstraintID×Args×Terms×Formula
ActionDefs � ActionDef ∗

ActionDef � ActionID×Args×ActionBody
ActionBody � BasicAction |PairedActions |JointActions |ChoiceActions
BasicAction � Pre-set×Add-set×Del-set
Pre-set � 2Formula

Add-set � 2ObsFormula

Del-set � 2ObsFormula

ActionName � ComponentIDs×ActionID
ComponentIDs � ComponentID∗

Action � ActionName×Terms
PairedActions � M_Action |MO_Action
M_Action � Action
MO_Action � Action×Action

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 658 631–696

658 A logical framework

JointActions � Actionn,n≥2
ChoiceActions � (Action |PairedActions |JointActions)n, n≥2

In Definition 3.2 above, we define SchemaDefs, which form part of a configuration. Schema
definitions are described in terms of ComponentSchema which capture the formal structure
of the specifications of components that we have presented in this section, consisting of a
list of formal argument names, two sets of predicates, possible subcomponents (given by
a mapping of type ComponentSchemaMap from component identifiers to their associated
schema identifiers and actual arguments, or to a schema for a supervised component), a
set of constraint schema definitions and a set of action definitions. This structure takes
into account supervised component pairings, which remain to be discussed (Section 3.3).
Actions are of various forms including joint actions for the synchronous combination of
actions, and choice actions which represent a (possibly infinite) disjunctive choice of actions.
In Definition 3.3 below, we define ComponentMap which is the second element of a config-
uration and consists of a labelled hierarchy of components. For a basic component, i.e. one
given without an associated supervisor, the structure records the component identifier, the
schema identifier and the actual arguments applied to create the instance, together with
the component constraints (derived from the relevant schema definition) and any subcom-
ponent instances. For an instance of a supervised component, consisting of a supervisor and
a supervisee, the structure records the identifier and component instance of the supervisor,
together with the identifier and component instance of its supervisee.

Definition 3.3

ComponentMap � ComponentID⇀ComponentInstance

ComponentInstance � BasicComponent |SupervisedComponent
BasicComponent � SchemaID×Terms×

Constraints×
ComponentMap

SupervisedComponent � ComponentID×BasicComponent×
ComponentID×ComponentInstance

Constraint � ConstraintID×Terms
Constraints � Constraint∗

Finally, in Definition 3.4 below, we define ObservationState – the first element of a config-
uration – as a labelled hierarchy built from sets of ground atomic formulae. A node in this
hierarchy is a state of either a basic component or a supervised component: for the former,
the state is a set of ground atomic formulae (the local state) together with states of each
of the subcomponents; for the latter, the state is a pair, the first element being the state of
the supervisor, and the second being the state for the supervisee.

Definition 3.4

LocalState � 2GroundAtom

ComponentState � O_State |MO_State

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 659 631–696

A logical framework 659

O_State � LocalState×ObservationState
MO_State � ComponentID×ComponentState×

ComponentID×ComponentState
ObservationState � ComponentID⇀ComponentState

Finite trees in the recursively-defined set of trees ComponentState are built from basic
components which have no subcomponents, i.e. leaves of the tree correspond to the
ObservationState being the empty partial function.
A well-formedness condition on configurations is required:

Definition 3.5 (Well-formedness of configurations .) Let �=〈�,�,	〉 be a configuration.
� is a well-formed configuration if and only if

• � and � have the same component identifier labelling, a labelling which is in accord with
the schema definitions 	;
• constraint schema in 	 are instantiated as constraints in �;
• predicate names appearing in local state descriptions within �, for any (sub)component
of � are present in the associated schema definitions.

The definition of schemas above (Definition 3.2) describes four forms of action definitions.
We here consider only revision by a basic action definitions. We discuss and define paired
action revision in Section 3.3, then consider joint and choice actions in the section after
that. Revision operates on trees rather than sets. To define this, we introduce the following
functions:

getState :ComponentIDs×ObservationState→ComponentState extracts the component
state for a (sub)component located by the path given as the first argument from the
state given as second argument;
update :ComponentIDs × ObservationState ×ComponentState→ObservationState up-
dates the component state for the (sub)component located by the path given as the first
argument in the state given as second argument by the component state given as the
third argument;
getActionBody :ActionID×ComponentIDs×Configuration extracts the action body
whose action identifier is the first argument from the component instance located by the
path given as the second argument from the configuration given by the third argument.
For action body β, name the projections pre-β, add-β and del-β for the precondition,
add and del sets for body β.

We also introduce the ‘flattening’ operations on tree-structured states, yielding a set of
path-prefixed ground atomic formulae:

↓:ObservationState→LocalState
↓� dfn= ⋃{c.(↓�(c)) |c∈dom(�)}

Component states are of two forms, object-level states O_State, and a combination of a
meta-level and object-level state, MO_State. We define the flattening of these as follows:

↓:ComponentState→LocalState
↓〈σ,µ〉 dfn= σ∪↓µ for the O_State case,
↓〈c1,σ1,c2,σ2〉 dfn= c1.(↓σ1)∪c2.(↓σ2) for the MO_State case.

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 660 631–696

660 A logical framework

Definition 3.6 (Local Basic Action Revision .) Let

�=〈�,�,	〉 be a well-formed configuration,
δ=[c �→〈σ,µ〉] be a component state of type O_State within � for a component instance
named by the path p.c of component schema sid,
α=〈aid, t̄〉 be an applied basic action of component instance located at p.c of schema sid,
and β=getActionBody(aid,p.c,�) be the action body associated with α.

Consider a binding [ȳ �→ ū] such that
1. ↓δ |=�p.c

∧
pre-β[t̄/x̄][ū/ȳ], and

2. δ′ =[c �→〈σ ′,µ〉] is consistent for �, where σ ′ =(σ∪add-β[t̄/x̄][ū/ȳ])\del-β[t̄/x̄][ū/ȳ].
Then we say δ′ is a revision of δ by α.

Definition 3.7 (Basic Action State Revision .) Let �=〈�,�,	〉 be a well-formed configura-
tion, a=〈p.c,aid〉 a well-formed action name denoting a basic action of the component
located in � by p.c and α=〈a, t̄〉 a well-formed application to ground terms. Consider �′ =
update(p.c,�,δ′) where δ′ is a revision of getState(p.c,�) by 〈aid, t̄〉 and �′ is consistent
for �. We say that �′ is a revision of � by α, and we write � α−→�′.
Extend basic action revision to configurations as follows: If � α−→�′, then we write

〈�,�,	〉 α−→〈�′,�,	〉.

3.3 Evolvable components
The configuration structure just outlined is fairly complex, combining, as it does, multi-
ple logical theories in a tree structure and incorporating a naming mechanism for locating
elements in the tree. In the previous blocks world, we had a global object-level system and
a related meta-level system. This separation of the two systems is no longer appropriate
as we wish to couple together supervisors and their supervisees to form a supervised com-
ponent (using ‘evolver/producer’ pairs in the Warboys architectural sense [12]). Supervised
components may then be combined, possibly with additional supervisors. In all, a system
consists of a hierarchy of components, some of which may be supervised and each component
is either a basic component or consists of a hierarchy of the same kind.
Supervisors are components which stand in a suitable relationship to the object-level sys-
tem with which it is paired. The ability of a supervisor not only to change the basic internal
structure of a component, as with the blocks world example, but to add new components and
to effect entire reconfigurations of the supervised system means that we have to reconsider
the issue of how supervisors are related to object-level systems. Notice that whatever object-
level system is provided initially, as computation progresses through supervisor actions, the
supervisor is at a meta-level to a changing object-level, and what this object-level is at any
instance depends on the history of the supervisory actions. This means that, although we
may provide an initial object-level system, whenever a supervisory action is invoked, it needs
to access the current structure of the object-level system. This access is provided through
two mechanisms – one is the meta-level access to the object-level logical structure – the
predicates, formulae etc, the other mechanism records in the meta-level state the changes
made to the object-level. We have seen both of these in the blocks world example,but now

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 661 631–696

A logical framework 661

the changes can affect the whole subcomponent hierarchy and so additional predicates are
required to record the effect of these changes.
The ability of the supervisor to make considerable structural changes to the object-level
system also raises issues of naming and description. In describing a component system, the
natural way that a component can access another is through a component name. However,
in the case of a supervisor’s access to the object-level, named components may be created
and destroyed and, an any stage, the names of the existing components depend upon the
history of supervisory actions. Moreover, this evolving landscape of components suggests
that the idea of a schema, as introduced above for components of a fixed structure, may not
be as relevant for supervised structures.
We begin with an example, that of an evolvable buffer. In this case, the evolutionary
actions adjust the buffer’s capacity according to usage. The picture below outlines the main
component structure, pairing an instance of a Buffer_Supervisor component (whose schema
is described below), with a component that is initially (and thereafter too) an instance of
the Buffer schema (from Section 3.1) to create a schema for supervised buffers.

reflected

 : Supervised_Buffer

SB :

SendReceive

Observe

meta
level

object−level

S : Buffer_Supervisor

B : Buffer(2)

 Expand

−

We now describe a schema for such a buffer supervisor presented in a way similar to that
of the blocks world supervisor of the previous section.

META Buffer_Supervisor
TYPES

ConfigName

FUNCTIONS
s :ConfigName→ConfigName
c0 :ConfigName

OBSERVATION PREDICATES
holds :FORMULA×ConfigName
component :COMPONENTMAP
evolve : STATETRANSFORMER×COMPONENTMAP×SCHEMADEFS×ConfigName
current :ConfigName

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 662 631–696

662 A logical framework

CONSTRAINTS

Uniqueness dfn=
∀c1,c2 :ConfigName ·current(c1)∧current(c2)⇒(c1=c2)
∀ δ,δ′ : STATETRANSFORMER,
δM ,δM

′ :COMPONENTMAP,
δS ,δS

′ : SCHEMADEFS,
c :ConfigName ·

(evolve(δ,δM ,δS ,c)∧evolve(δ′,δM ′,δS ′,c))⇒
((δ=δ′)∧(δM =δM ′)∧(δS=δS ′))

ACTIONS
Observe(Q :FORMULAE)
pre {current(c)}
add {holds(q,s(c)) |q∈Q)}∪{current(s(c))}
del {current(c)}
Expand
pre {current(c),

component([B �→bc]),bc=〈sid,ts,cs,cm〉,
Size(m)∈cs}

add {component([B �→bc[(cs∪{Size(2∗m)}\{Size(m)})/cs]]),
evolve(λ�·�,[B �→bc[(cs∪{Size(2∗m)}\{Size(m)})/cs]],[],s(c)),
current(s(c))}

del {component([B �→bc]),current(c)}

The two actions specified are anObserve and an Expand action. The predicate component(x),
for a component map x , reflects in the meta-level state the fact that the component map
x is a part of the component instance map of the object-level configuration (in this case
for the buffer component). Thus, in the precondition of the Expand action, the formulae
component({[B �→bc]}), bc=〈sid,ts,cs,cm〉 and Size(m)∈cs hold if there are appropriate
bindings for the variables such that Size(m) with the variable m appropriately substituted,
is a constraint of the component instance named by B. A configuration for an instance B of
the Buffer schema might, for example, have a component instance map

{[B �→〈Buffer,〈2〉,〈(Uniqueness,〈〉),(Size,〈4〉)〉,[]〉]}

so that B is of schema type Buffer instantiated with argument value 2, containing constraints
named Uniqueness and Size(4), and has no subcomponent instances.
The predicate evolve has the same purpose as that in the blocks world supervisor although
its arguments have changed to reflect the more complex configuration structure. The first
argument is a transformation of object-level states, i.e. it defines the revision process for the
object-level tree-structured state. Thus state transformers are functions from
ObservationState to ObservationState. The second and third arguments provide revisions,
respectively, to the component instance map and the schema definition map. The final

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 663 631–696

A logical framework 663

argument is the meta-level name for the current object-level configuration. These changes
in meta-level predicates and component configurations require new definitions of the two
meta-view relations.

Definition 3.8 (State meta-view — for components .) Let WM and W be the typed first-order
theories for meta-level and object-level systems respectively. We say that �M (from a config-
uration �M of WM) is a state meta-view of a configuration �=〈�,�,	〉 of theory W when,
for any valid non-empty path of basic component identifiers p in �M

• for all formulae ϕ and configuration names c, if p.{current(c),holds(ϕ,c)}⊆↓�M, then
ϕ is a formula of W and ↓� |=W ϕ;
• for all component instance maps θ, if p.component(θ)∈↓�M, then θ⊆�;
• for all schema definition maps σ, if p.schema(σ)∈↓�M, then σ⊆	.
When this holds, we say that �M is a meta-configuration for �.

As components may be hierarchically structured, with supervisor/supervisee pairs them-
selves as components, we extend the above definition to such situations. We define the
notion of state meta-consistency for components.

Definition 3.9 (State meta-consistency — for components .) A well-formed component con-
figuration �=〈�,�,	〉 is said to be state meta-consistent if the component map � refers
• to a basic component containing no subcomponents;
• to a basic component and the extracted configurations for each subcomponent are state
meta-consistent;
• to a supervised component (supervisor/supervisee pair) such that the supervisor config-
uration is a meta-configuration for the supervisee configuration, and both the supervisor
and supervisee configurations are each state meta-consistent.

Definition 3.10 (Transition meta-view — for components .) Given meta-level configurations,
�M=〈�M,�M,	M〉 and �M′ =〈�M′,�M′,	M′〉 in theory WM, and object-level configurations,
�=〈�,�,	〉 and �′ =〈�′,�′,	′〉 of theory W, such that �M, �M′ are, respectively, state
meta-views of �, �′, we say that the pair 〈�M,�M′〉 is a transition meta-view of 〈�,�′〉 when
for any valid non-empty path of basic component identifiers p in �M, if

p.{evolve(δ,θ,σ,c),current(c)}⊆↓�M′

and�′ =δ(�) is theory W ′ consistent, where W ′ is the theory W with component instance
map � updated to �′ =�†θ and component schema definitions 	 updated to 	′ =	†σ,
then �′ =〈�′,�′,	′〉.

When this holds, we say that the configuration pair 〈�M,�M′〉 is a transition meta-configuration
pair for 〈�,�′〉.

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 664 631–696

664 A logical framework

Let us now define a theory, Supervised_Buffer , as a paired component built from an
instance of Buffer_Supervisor which is meta to an instance of a Buffer(2) theory.

Supervised_Buffer
COMPONENTS

SB :(S :Buffer_SupervisorMETA TO B :Buffer(2))
ACTIONS

Send(v) dfn=|Q∈Formulae SB.〈S .Observe(Q),B.Send(v)〉
Receive(v) dfn=|Q∈Formulae SB.〈S .Observe(Q),B.Receive(v)〉
Internal dfn= SB.〈S .Expand,〉

The infix operator ‘META TO’ creates a pair of an object-level system and a system at a
meta-level to it. In this example, the operator creates a pair of a supervisor instance named
S of schema type Buffer_Supervisor and its supervisee instance named B of schema type
Buffer(2). The enclosing component schema Supervised_Buffer has actions Send, Receive
and Internal . The Send and Receive actions are the paired actions of an Observe action of the
S instance of Buffer_Supervisor paired with a Send (or Receive) action of the B instance of
Buffer(2). The Internal action is an evolutionary Expand action of the supervisor inducing
change in the Buffer instance B.
We now define composition and decomposition of configurations for such pairs.

Definition 3.11 (Supervisor-supervisee composition .) Given configurations �M =〈�M ,�M ,
	M 〉 built from theory WM and �O=〈�O,�O,	O〉 built from WO such that �M is a state
meta-view of �O with theory WM meta to WO, we define the configuration pairing constructor

MO(mo,�M ,�O)=〈 [mo �→〈m,�M (m),o,�O(o)〉],
[mo �→〈m,�M (m),o,�O(o)〉],
	M ∪	O〉

for the configuration of the component instance named mo consisting of a supervisor compo-
nent instance m paired with a supervisee instance o.

Definition 3.12 (Supervisor-supervisee decomposition .) Let �=〈�,�,	〉 be a configuration
for a supervised component, i.e.

�=[mo �→〈m,�m,o,�o〉] and
�=[mo �→〈m,�m,o,�o〉],

for appropriate component identifiers mo, m and o, define the supervisor and supervisee
configuration projections of � by

M(�)=〈[m �→�m],[m �→�m],	〉
O(�)=〈[o �→�o],[o �→�o],	〉.

We now give the revision semantics of these paired actions as follows.

Definition 3.13 (Local paired action revision - I .) Consider a well-formed configuration � for
a supervised component instance mo, an action name a=〈〈mo〉,aid〉 referring to a paired

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 665 631–696

A logical framework 665

action body β=〈αM ,αO〉 and a ground instance α=〈a, t̄〉. Let

M(�)αM [t̄/x̄]−→ �′
M and O(�)αO [t̄/x̄]−→ �′

O .

If �′
M is a state meta-configuration for �

′
O, then we say MO(mo,�′

M ,�
′
O) is a revision of

� by α, and we write � α−→MO(mo,�′
M ,�

′
O).

Thus, for a paired action comprising a supervisor action in synchrony with a supervisee
action, a revision of a configuration by the action can be determined by simply deconstruct-
ing the configuration, revising by the separate supervisor and supervisee actions and then
reconstructing the configuration. More interesting are the evolutionary actions, which use
transition meta-views to define revision:

Definition 3.14 (Local paired action revision - II .) Consider a well-formed configuration
� for a supervised component instance mo, an action name a=〈〈mo〉,aid〉 referring to a
paired action body β=〈αM 〉 and a ground instance α=〈a, t̄〉. Let

M(�)αM [t̄/x̄]−→ �′
M

and let �′
O be a configuration such that the pair of supervisor configurations 〈M(�),�′

M 〉 is a
transition meta-configuration pair for the supervisee configurations 〈O(�),�′

O〉, then we say
MO(mo,�′

M ,�
′
O) is a revision of � by α, and write �

α−→MO(mo,�′
M ,�

′
O).

To define the revision of a component configuration by a paired action within a component
hierarchy, we introduce the following two functions on configuration structures:

getConfiguration :ComponentIDs×Configuration→Configuration extracts a configura-
tion for the component instance located by the path given as the first argument within
the configuration which is the second argument.
updateConfiguration :ComponentIDs×Configuration×Configuration→Configuration
updates the third argument configuration by replacing the configuration located by
path given as the first argument with the configuration given by the second argument.

Definition 3.15 (Paired action revision .) Given a well-formed configuration �, an action
name a=〈cs,aid〉 referring to a paired action body and a ground instance α=〈a, t̄〉. Let
α′ =〈〈last(cs),aid〉, t̄〉 and suppose

getConfiguration(cs,�) α′−→�′
cs

with �′ =updateConfiguration(cs,�′
cs,�) consistent, then �′ is a revision of � by α, and we

write � α−→�′.

3.4 Adding components to a system
As we have indicated, there are many different ways in which a system may evolve. In the
blocks world, we demonstrated evolution via changing theory constraints and by adding
actions. Now that we are in the world of component hierarchies, we are able to consider
evolutions of a system which not only modify existing components, as in the case of buffer

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 666 631–696

666 A logical framework

expansion in the previous section, but also add new components into the system. More
generally, an evolution may be an entire reconfiguration of a system of components. For
example, an alternative way to expand a buffer, and perhaps a more natural one in the
component world, is to create a new buffer component and couple it to the existing buffer in
such a way that the composite appears like a buffer. In pictorial terms, we want a supervisor
to achieve the following structural change.

reflected reflected

 : SupervisedBuffering

SB :

 : SupervisedBuffering

SB :

B : Buffering

B : Buffering i

level

Observe

Receive Send

i+1

SendReceive

Observe

meta
level

level
object−level

meta−

object−

S : BufferingSupervisor

addBuffer/delBuffer

S : BufferingSupervisor

addBuffer/delBufferevolves to be

iB : Buffering1 2B : Buffer(2)

−

There are several subtle points involved in this form of evolution, though at first sight
it appears rather straightforward. Firstly, before the evolutionary change the supervisor
instance S oversees a component named B. Indeed B is the handle that S has for the
component instance — the name was passed to S on the creation of the supervisor-supervisee
pair. It is a principle of this approach that a component does not evolve itself, thus the name
of the component that S oversees must remain B although the type of the component B,
i.e. its schema, may change — indeed this is usually the case. If the name of the component
were to change then such a change would need to be induced by a supervisor meta to the
evolvable buffer. Here the buffering component name B is kept the same but its schema
changes. The schema definition for the evolved component must already exist at the time
of evolution, or be created at that time. We also want an addBuffer supervisor action
that can be repeatedly applied, i.e. it should be generic. In the picture, we assume an
indexed family of schema names Bufferingi , and indicate that the evolved buffer has schema
identifier Bufferingi+1. This new component schema has two subcomponents, the previous
buffering instance (renamed) of schema type Bufferingi and a basic Buffer component. The
subcomponents must be appropriately linked, i.e. the new schema must specify the internal
joint action, effecting communication between the Bufferingi and Buffer components, as
well as appropriate external actions. Firstly, we present the object-level schema for the case
when i=1, then we show how a Bufferingi+1 schema can be generated from Bufferingi using
a supervisor.

Buffering1(N :Int)
ABSTRACTION PREDICATES

free

COMPONENTS
B1 :Buffer(N)

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 667 631–696

A logical framework 667

CONSTRAINTS

freeDef dfn= free⇔B1.free
ACTIONS

Send(v :Value) dfn=B1.Send(v)
Receive(v :Value) dfn=B1.Receive(v)
Internal dfn= IDENTITY

Thus a Buffering1 component is formed directly from a Buffer(N) subcomponent instance
B1. The predicate free is defined to be B1’s free predicate. The Send and Receive actions
are those of B1. For the demonstration here it has not been necessary to introduce other
predicates, such as content. However, should some future action require such knowledge, it
can easily be incorporated.
We now show how to define a supervisor action that achieves the desired goal of extending
a buffer with an additional buffer of fixed capacity.
In the following, to simplify the presentation, we have introduced some additional nota-
tion. To help distinguish between meta-level variables and object-level ones, we have used
a plain roman font to refer to the object-level names. Finally, we use the notation idˆi for
the identifier id subscripted by the number i, e.g. if id is the name C , then idˆ2 is the
component identifier C2. We allow arithmetic in labels as in Cˆi+1, for i=2, yields C3.
Not only does the supervisor need to create the new extended component and name its
subcomponents, but also it needs to create a schema for the extended component from the
schema of the unextended component. To do this, it accesses the object-level schema using
the predicate schema to retrieve the definition for Bufferingi that must be present in the
object-level component system for this action to be defined. The supervisor’s state is revised
through the inclusion of

the new current configuration name for the object-level component,
an evolve predicate detailing the object-level schema addition, and
a new schema predicate instance.

The schema for Bufferingi+1 is created with two subcomponents, the first is the existing
Bufferingi schema and the second is the new Buffer . It is endowed with the constraint
named freeDef that defines the abstraction free of the new schema to be the object-level
formula C1.free∨C2.free where C1 and C2 are the subcomponent identifiers. The actions of
the new schema are

linking the new Send action to that of the C2 instance of Buffer ,
linking the new Receive action to that of the C1 instance of Bufferingi , and
connecting the Send action of Bufferingi with the Receive action of Buffer and making
it one of the choices of Bufferingi+1’s Internal action, the other choice being Bufferingi ’s
own Internal actions.

This then is the definition of the supervisor’s action:

addBuffer(N :Int)
pre {current(c),

component([C �→ci as 〈Bufferingˆi,ts,cs,scm〉]),

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 668 631–696

668 A logical framework

schema([Bufferingˆi �→〈vs,ps,cm,csd,asd〉])}
add {current(s(c))

evolve(stateTransformer,newComponent,newBuffer,s(c)),
component(newComponent),
schema(newBuffer)}
where

stateTransformer is
λ�·[C �→〈{},[Cˆ1 �→�(C),

Cˆ2 �→〈{content([])},[]〉]〉]
newComponent is

[C �→〈 Bufferingˆi+1,ts :: 〈N 〉,〈freeDef,〈〉〉,
[Cˆ1 �→ci,
Cˆ2 �→〈Buffer,〈N 〉,〈〈Size,〈N 〉〉,〈〈Uniqueness〉,〈〉〉〉〉]〉]

newBuffer is
[Bufferingˆi+1 �→〈 vs :: 〈N〉,{},{},{},{free},

[Cˆ1 �→〈Bufferingˆi,vs〉,
Cˆ2 �→〈Buffer,〈N〉],
〈freeDef,〈〉,〈〉,free⇔Cˆ1.free∨Cˆ2.free〉,
actions〉]

where
actions is

〈 〈Send,〈v :Value〉,〈〈〈Cˆ2〉,Send〉,〈v〉〉〉,
〈Receive,〈v :Value〉,〈〈〈Cˆ1〉,Receive〉,〈v〉〉〉,
〈Internal,〈〉, 〈〈〈Cˆ1〉,Internal〉,〈〉〉 |

(|v∈Value (〈〈〈Cˆ1〉,Send〉,〈v〉〉||〈〈〈Cˆ2〉,Receive〉,〈v〉〉))〉〉
del {current(c),

component([C �→ci])}

The precondition requires that sufficient of the component instance tree (containing actual
arguments to schemas and instances of constraints, etc.) is available as meta-level obser-
vations to enable the evolve action to specify the de-construction and re-construction of
the state and component instance trees. The component instance tree is rebuilt so that the
top-level component is now of schema type Bufferingi+1, with subcomponents named C1 of
Bufferingi schema and a C2 instance of Buffer(N). The latter subcomponent, i.e. the new
Buffer(N) instance, is created with capacity N and its local state is required to be empty.
The local state of the Bufferingi component, however, is preserved. We present the induced
revision to the component state as a state transformer.
For completeness, we present appropriate BufferingSupervisor and SupervisedBuffering
component schemas.

META BufferingSupervisor
TYPES

ConfigName

FUNCTIONS
s :ConfigName→ConfigName
c0 :ConfigName

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 669 631–696

A logical framework 669

OBSERVATION PREDICATES
holds :FORMULA×ConfigName
component :COMPONENTMAP
schema :SCHEMADEFS
evolve :STATETRANSFORMER×COMPONENTMAP×SCHEMADEFS×ConfigName
current :ConfigName

CONSTRAINTS

Uniqueness dfn=
∀c1,c2 :ConfigName ·current(c1)∧current(c2)⇒(c1=c2)
∀cm1,cm2 :COMPONENTMAP·component(cm1)∧component(cm2)⇒

¬conflict(cm1,cm2)
∀sd1,sd2 :SCHEMADEFS·schema(sd1)∧schema(sd2)⇒¬conflict(sd1,sd2)
∀ δ,δ′ :STATETRANSFORMER,
δM ,δM

′ :COMPONENTMAP,
δS ,δS

′ :SCHEMADEFS,
c :ConfigName ·

(evolve(δ,δM ,δS ,c)∧evolve(δ′,δM ′,δS ′,c))⇒
((δ=δ′)∧(δM =δM ′)∧(δS=δS ′))

where

conflict(m1,m2 :MAP) dfn= ∃x ·(x ∈domm1∧x ∈domm2∧m1(x) �=m2(x))
ACTIONS

Observe(Q :FORMULAE)
pre {current(c)}
add {holds(q,s(c)) |q∈Q)}∪{current(s(c))}
del {current(c)}
addBuffer(N :Int)
pre {current(c),

component([C �→ci as 〈Bufferingˆi,ts,cs,scm〉]),
schema([Bufferingˆi �→〈vs,ps,cm,csd,asd〉])}

...
...

delBuffer
...

...

The addBuffer supervisor action is defined previously. The delBuffer action may be defined
similarly. Finally, we create a SupervisedBuffering component schema by combining the
above supervisor with a buffering component.

SupervisedBuffering
COMPONENTS

SB :(S :BufferingSupervisor META TO B :Buffering1(4))
ACTIONS

Send(v) dfn=|Q∈Formulae SB.〈S .Observe(Q),B.Send(v)〉

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 670 631–696

670 A logical framework

Receive(v) dfn=|Q∈Formulae SB.〈S .Observe(Q),B.Receive(v)〉
Internal dfn= SB.〈S .addBuffer(2),〉 |

SB.〈S .delBuffer,〉 |
|Q∈Formulae SB.〈S .Observe(Q),B.Internal〉

This component is thus the pairing of a BufferingSupervisor component S and a Buffering1
component B together with actions defined on the paired component.

3.5 Joint and choice actions
We have introduced above joint, or shared, actions to allow communication between com-
ponents. The participating actions of a joint action revise the local states of two distinct
components in synchrony. We now define this revision (for two actions, the extension to
more is straightforward).

Definition 3.16 (Local joint action revision .) Given a well-formed configuration � for a com-
ponent instance c and a ground action instance α=〈〈〈c〉,aid〉, t̄〉 with joint action body con-
sisting of a left and right action:

β=〈〈〈pl ,aidl 〉, t̄l 〉,〈〈pr ,aidr 〉, t̄r 〉〉.

Let �pl denote getConfiguration(pl ,�), similarly for �pr . Assume αpl denotes the left action
of β relative to the component located by pl , similarly for αpr . Let

�pl
αpl [t̄l /x̄]−→ �′

pl and �pr
αpr [t̄r /x̄]−→ �′

pr .

Then updateConfiguration(pr ,�′
pr ,updateConfiguration(pl ,�

′
pl ,�)) is a revision of � by α, and

we write � α−→updateConfiguration(pr ,�′
pr ,updateConfiguration(pl ,�

′
pl ,�)).

The independent locality of the revisions allows us to revise the main configuration � sequen-
tially in either order. We re-use definition 3.15 for joint action revision:

Definition 3.17 (Joint action revision .) Let � be a well-formed configuration and α=
〈〈cs,aid〉, t̄〉 a ground action instance referring to a joint action body. Let α′ =〈〈last(cs),aid〉, t̄〉
and suppose

getConfiguration(cs,�) α′−→�′
cs

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 671 631–696

A logical framework 671

with �′ =updateConfiguration(cs,�′
cs,�) consistent for �, then �′ is a revision of � by α,

and we write � α−→�′.

We have also introduced choice actions, specifically for gathering together possible ‘inter-
nal’ actions into a single action. We define the revision semantics for a choice of two actions
(the extension to more than two, including the possibility of infinite choices, is straightfor-
ward):

Definition 3.18 (Local choice action revision .) Given a well-formed configuration � for a com-
ponent instance c and a ground action instance α=〈〈〈c〉,aid〉, t̄〉 referring to the choice action
body β=〈〈〈p1,aid1〉, t̄1〉,〈〈p2,aid2〉, t̄2〉〉. Let �pi =getConfiguration(pi,�), for i=1,2. Assume
αpi denotes the i-th action of β relative to the component located by pi. Let

�pi
αpi [t̄i/x̄]−→ �′

pi .

Then, for i=1 and i=2, updateConfiguration(pi,�′
pi ,�) is a revision of � by α, and we write

�
α−→updateConfiguration(pi,�′

pi ,�), for i=1 and i=2.
Extension of this definition to choice actions at any position in a hierarchy is as for joint
actions.

3.6 Adding and modifying actions of components
The diagram below depicts a component consisting of a network of connected buffers, in
which the buffer B1 has its Send action joint with B2’s Receive action, i.e. establishing a
connection from B1 to B2, and similarly for buffers B3 and B4.

B .Receive(..)1

3B .Receive(..)

2B .Send(..)

B .Send(..)4

B .Receive(..)2

4B .Receive(..)

1B .Send(..) ||

B .Send(..) ||3

1B : Buffer(4) 2

3B : Buffer(4) 4B : Buffer(4)

B : Buffer(4)

A supervisor responsible for this network may change the network configuration to be that
depicted below.

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 672 631–696

672 A logical framework

B .Send(..)4

1B .Send(..) 2B .Send(..)

4B .Receive(..)

3B .Receive(..) || B .Receive(..) ||4

1B .Send(..) ||
B .Receive(..)1

1B : Buffer(4) 2B : Buffer(4)

3B : Buffer(4) 4B : Buffer(4)

B .Receive(..)2

B .Send(..) ||3

Thus the connection from B1 to B2, i.e. the joint action B1.Send(v)||B2.Receive(v) as a
choice over all v∈Value., is to be deleted and replaced with a new connection from B1 to B3,
i.e. a new joint action B1.Send(v)||B3.Receive(v). Similarly for the other connection. Action
schema definitions are part of a component schema. Thus, in order to evolve the network as
desired, a new component schema is required. Let the component schema associated with the
first network of buffers be Network1. The supervisor action therefore creates a new schema,
Network2, built from Network1 but with the appropriate change in joint actions, and then
ensures the instance name of the first network becomes of schema type Network2. Apart
from this change, the component instance tree and state remain the same.
We do not give details of this supervisor. We have already presented all of the evolution-
ary changes needed to specify it — revision of actions, revision of schema, and naming of
components.
In summary, we have seen how we can model a wide range of evolutionary actions in this
framework, from simple changes of constraints, such as the capacity of a table or a buffer,
to changes of actions that systems may execute, through to complex changes of network
connectivity and the reconfiguration of whole systems with new and existing components.

3.7 Evolvable supervisors and hierarchy
The component structure we have introduced supports the concept of a supervisor-supervisee
pair being treated as a component itself. This means that the framework supports hierarchies
of supervisory processes. Consider a simple example depicted in Figure 5. It consists of a
component built from two evolvable buffers, for example those specified earlier in Section 3.3,
coupled to an encoder. The buffers are used to smooth out the variable data rates of devices
to which the component connects.
The buffers, being evolvable, are able to expand and contract according to demand. The
way the buffers expand or contract, however, is fixed and controlled by the evolvable buffer
components’ own internal supervisors. An observer of these evolvable buffers may detect
an undesirably high frequency of expansion and contraction and consequently ‘tune’ the
evolvable buffers. In this situation, we may introduce a supervisor (SE in the diagram)
which evolves supervised subcomponents.

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 673 631–696

A logical framework 673

FIG. 5. An example of a hierarchy of supervisors.

From this simple example, we see that tiered hierarchies of evolvable components with
supervisors at various levels of the hierarchy are readily definable in the framework and
they enable us to model fairly complex evolvable structures. Notice that a special case of
the supervising of supervised components is that where the supervisors at the two levels do
not interfere and therefore both access only the underlying component. We are thus able to
model the common situation of multiple monitors monitoring a common component with
each individually able to change this component.
To show how complex specifications of evolvable systems may be developed, we present an
extended example in Section 4. Before this, we turn now to some preliminary ideas towards
a proof theory for the logical framework.

3.8 Component equivalence: Beginning an analysis of system behaviour
We now consider some aspects of a proof theory associated with this logical framework,
examining how we may reason about the behaviour of evolvable systems and establish results
about system equivalence. We introduce mechanisms for establishing certain forms of equiv-
alence based on those developed in process algebra (see [19]). As an example of a proof
of equivalence, we show in what sense expandable buffers, introduced above, behave as
unbounded buffers.

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 674 631–696

674 A logical framework

Equivalence results are particularly appropriate in an evolutionary setting as we may
require supervisors to modify networks of components by replacing components only with
those of a similar behaviour so as to preserve some overall behavioural requirements. This
is a major topic, covering correctness and the preservation of aspects of the behaviour of
systems through evolutionary change. It is related to many of the issues in system refinement
and development which have been well-studied in the literature.
Recall that we write � α−→�′ for configurations � and �′ when �′ is a revision of �′ by
action α. We consider pairs of component schemas (X ,Y), and a relation (‘correspondence’)
∼ between the actions of X and actions of Y . We say that actions α and β correspond if
α∼β, and refer to ∼ as an action correspondence relation for X and Y .
Definition 3.19 (Component strong similarity and bisimilarity .) Let A and B be component
instances of schemas X and Y , and let �A, etc., be a configuration for component instance A,
etc. Let R be a binary relation over configurations. We call R a strong simulation relation if
for any �A and �B, and any pair of corresponding actions α and β of A and B, if (�A,�B)∈R
then

∀�A′ ·�A α−→�A
′ ⇒∃�B ′ ·�B β−→�B

′ ∧(�A′
,�B

′)∈R.
Furthermore, we say that configuration �B strongly simulates �A, denoted by �A�S �B, if
there is a strong simulation relation R such that (�A,�B)∈R. We extend to components by
defining A�S B if and only if for any configuration �A there is a configuration �B such that
�A�S �B.
For a strong simulation relation R, if we have in addition that for any pair of corresponding
actions α and β of A and B, if (�A,�B)∈R then

∀�B ′ ·�B β−→�B
′ ⇒∃�A′ ·�A α−→�A

′ ∧(�A′
,�B

′)∈R
then we say R is a strong bisimulation over configurations. We extend to components to say
A is strongly bisimilar to B, denoted by A∼S B.
These are adapted from standard definitions in process algebra.

Example 3.1 Consider a component instance A :Buffer(4) based on Buffer(N) schema pre-
sented at the start of Section 3 and an instance B :DoubleBuffer(2) of the component schema
below.

DoubleBuffer(N)
COMPONENTS

B1 :Buffer(N)
B2 :Buffer(N)

ACTIONS

Receive(v) dfn=B1.Receive(v)
Send(v) dfn=B2.Send(v)
Internal dfn=|v∈Value (B1.Send(v)||B2.Receive(v))

Using the obvious correspondence between actions of A and B, namely A.Send(v)∼B.Send(v),
etc., it is relatively straightforward to show that B�S A but A ��S B.

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 675 631–696

A logical framework 675

We introduce a formula �R over the joint theories of A and B to characterize a relation
R on configurations of A and B, namely:

∀l :Value-list ·A.content(l)⇔∃l1,l2 :Value-list ·(l= l1 :: l2)
∧B.B1.content(l1)∧B.B2.content(l2).

More formally, configuration pair (�A,�B)∈R iff ↓�(�A),↓�(�B) |=�A,�B �R.
It remains to show that �R is a strong simulation relation. This is straightforward for

the B�S A, but fails the other way around. The problem arises from the internal move that
the double buffer can make to shift a value from the first buffer to the second. Consider the
flattened double buffer state {B.B1.content([1]),B.B2.content([])}. The flattened state for
the single buffer {A.content([1])} is clearly related via �R. The single buffer can perform
the action A.Send(1). However, revision by the corresponding action on the double buffer,
i.e. B.Send(1), is not defined since its precondition cannot be established — it requires the
element 1 to be present, but its content is empty.

The example illustrates that a weaker form of simulation relation is required, which takes
into account internal actions. In fact we can use the standard process-theoretic notion of
weak simulation. Assume that component actions are classified as external or internal (in
fact, we have been using Internal to denote such internal actions).

Definition 3.20 (Weak revision relation .) Given configurations � and �′ for a component
with an external action α and internal action τ, we say � weakly revises to �′ under α,
denoted by � α�⇒�′, if and only if there exist configurations �i and �i ′ of the component such
that � τ∗−→�i

α−→�i
′ τ∗−→�′ where each τ∗ is a, possibly empty, finite sequence of τ actions.

Definition 3.21 (Component weak similarity and bisimilarity .) Let A and B be component
instances of schemas X and Y , and let �A, etc., be a configuration for component instance
A, etc. Let R be a binary relation over configurations. We call R a weak simulation relation if
for any �A and �B, and any pair of corresponding actions α and β of A and B, if (�A,�B)∈R
then

∀�A′ ·(�A α�⇒�A
′)⇒ ∃�B ′ ·(�B β�⇒�B

′)∧(�A′
,�B

′)∈R.
Furthermore, we say that configuration �B weakly simulates �A, denoted by �A�W �B, if
there is a weak simulation relation R such that (�A,�B)∈R. We extend to components by
defining A�B if and only if for any configuration �A there is a configuration �B for which
we have �A�W �B.
For a weak simulation relation R, if we have in addition that for any pair of corresponding
actions α and β of A and B, if (�A,�B)∈R then

∀�B ′ ·(�B β�⇒�B
′)⇒ ∃�A′ ·(�A α�⇒�A

′)∧(�A′
,�B

′)∈R
then we say R is a weak bisimulation relation over configurations. We extend to components
to say A is weakly bisimilar to B, denoted by A∼W B.
In the above example of single and double buffers, the two systems are weakly bisimilar.
These notions of equivalence are important, not only for establishing behavioural proper-
ties, but also because some models of evolutionary behaviour (e.g. [12]) require processes to
be in particular types of state before evolutionary actions can take place. We now examine
one such notion of appropriate state for evolution actions, that of a ‘quiescent’ state.

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 676 631–696

676 A logical framework

Definition 3.22 (Quiescent states .) Given a component configuration �=〈�,�,	〉, its state
� is said to be quiescent if and only if no internal action τ of the component is defined for
�, i.e. there is no τ such that ↓� |=� pre-τ, where pre-τ is the precondition in the τ action
definition.. A configuration �=〈�,�,	〉 is said to be quiescent if � is a quiescent state.
Definition 3.23 (Reachable quiescent states .) Given a state � of a configuration �, we define
Q�(�) to be the set of quiescent states reachable from � by internal actions τ, i.e.

Q�(�)={�′ |� τ∗−→�′,�′ quiescent}

where τ∗ is a, possibly empty, finite sequence of τ actions. This definition is extended to
configurations: for configuration �, Q(�)={�′ |� τ∗−→�′, �′ quiescent}.
Definition 3.24 (Quiescent action revision relation .) Given configurations � and �′ for a com-
ponent with an external action α and internal action τ, we say � revises to quiescent config-
uration �′ under α, denoted by � α�⇒Q�

′, if and only if there exist configurations �i ′ of the
component such that � α−→�i

′ τ∗−→�′ and �′ is a quiescent configuration.

Definition 3.25 (Quiescent simulation and bisimulation .) Let A and B be component
instances of schemas X and Y , and let �A, etc., denote a configuration for component
instance A, etc. Let R be a binary relation over configurations. We say that R is a quiescent
simulation relation if for any �A and �B, and any pair of corresponding actions α and β of
A and B, if (�A,�B)∈R then

∀�A′ ·(�A α�⇒Q�A
′)⇒ ∃�B ′ ·(�B β�⇒Q�B

′)∧(�A′
,�B

′)∈R.

Furthermore, we say that configuration �B quiescently simulates �A, denoted by �A�Q �B, if
there is a quiescent simulation relation R such that (�A,�B)∈R. We extend to components
by defining A�Q B if and only if for any configuration �A there is a configuration �B for
which �A�Q �B.
For such a quiescent simulation relation R, if in addition we have that for any pair of
corresponding actions α and β of A and B, if (�A,�B)∈R then

∀�B ′ ·(�B β�⇒Q�B
′)⇒ ∃�A′ ·(�A α�⇒Q�A

′)∧(�A′
,�B

′)∈R

then we say R is a quiescent bisimulation relation over configurations. We extend to compo-
nents to say A is quiescently bisimilar to B, denoted by A∼Q B.
We have the following results:

Theorem 3.1 For any component instances A and B,

1. A�S B⇒A�W B
2. A�S B⇒A�Q B.
Quiescent states provide a natural way to relate states of different components. Are there
conditions under which one can conclude that quiescent simulation and weak simulation

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 677 631–696

A logical framework 677

define the same relation, i.e. under what conditions on A and B does A�W B⇒A�Q B
hold, and what are the conditions for A�Q B⇒A�W B?
Consider the case of A�W B⇒A�Q B. If the situation depicted below can be established

then the result will follow.

τ∗
ΓA

BΓ
’

BΓ
q q

ΓB
’

q
ΓA

’q
ΓA

ΓB

AΓ
RQ

RQ

WRWR

τ∗τ∗

τ∗β

τ∗α

β

α

τ∗

τ∗

τ∗

’

Let RW be a weak similarity relation between component instances A and B. Consider any
weakly similar configurations �A and �B and quiescent configurations �

q
A and �

′q
A reach-

able as in the diagram through action α. By definition of weak similarity, there exists a
corresponding action β and configuration �′

B that completes the front face rectangle of the
diagram. Assume the source and target configurations of β are non-quiescent. If it can be
shown that by allowing the configuration �B to reach a quiescent state first, revision by β is
still defined and leads to a quiescent configuration �′q

B , also a quiescent configuration from
�′
B , then clearly a quiescent similarity relation RQ can be constructed using the q super-
scripted configurations in the diagram. The maximality of RW implies the maximality of
RQ . We thus need the following definition in order to establish the result.

Definition 3.26 (Internal interference freedom .) If for any component configurations �, �′,
�q , �′q and external component action α such that � α�⇒�′, �q α−→ τ∗−→�′q and �q ∈Q(�) we
have that �′q ∈Q(�′) then we say that α is free of internal interference. A component is said
to be free of internal interference if all its external actions are free of internal interference.

Theorem 3.2 Given component instances A and B such that A�W B and all external actions
α in A and their corresponding actions in B are free from internal interference, and A and
B have no infinite internal chatter, then A�Q B.
Consider now the other direction A�Q B⇒A�W B. The relevant diagram is:

β
B
’ΓB

’
AΓAΓ

BΓ
q q

ΓB
’

q
ΓA

’
q

ΓA

RQRQ

WRWR

α τ∗τ∗

β

τ∗

τ∗

τ∗

τ∗

α

τ∗ τ∗ Γ

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 678 631–696

678 A logical framework

By the definition of quiescent similarity, a maximal relation RQ exists such that the q
superscripted configurations in the commuting cube are all quiescent. If action α is free from
internal interference, then we can add the top face of the cube. Similarly for the bottom
face. We then claim that the relation obtained by associating configurations (�A,�B) and
(�′
A,�

′
B) is a weak simulation relation.

Theorem 3.3 Given component instances A and B such that A�Q B and all actions α in A
and their corresponding actions in B are free from internal interference, and A and B have
no infinite internal chatter, then A�W B.
Example 3.2 Consider again the buffers B :DoubleBuffer(2) and A :Buffer(4) from Exam-
ple 3.1. The double buffer component has internal moves corresponding to the transfer of
values from the first buffer to the second. Quiescent states of B :DoubleBuffer(2) can be
characterized by the formula

B.B1.content([])∨¬B.B2.free.

For all states that do not satisfy the above formula, the internal (joint) action B1.Send(v)||B2.
Receive(v) will be defined for some value v, and for all states that satisfy the formula, the
internal action is not defined.
As in the previous example, we use a formula over the joint theories for components A
and B to characterize a quiescent (bi)simulation relation between the components. Indeed,
the same formula as before will suffice, namely

∀l :Value-list ·A.content(l)⇔∃l1,l2 :Value-list ·(l= l1 :: l2)∧B.B1.content(l1)∧B.B2.content(l2).

Furthermore, since one can show that the Send and Receive actions of component A are free
of interference by the action Internal (representing an internal τ action), we have established
that the components are weakly bisimilar.

As a final example in this section, we consider the original form of evolvable buffer, the
theory Supervised_Buffer of Section 3.3. There is clearly a sense in which this behaves as
an unbounded buffer, for whilst any instance of it is a bounded buffer, it always has the
capability of expanding its capacity when required. We now formulate this result:

Example 3.3 We begin by defining the theory of unbounded buffers by modifying that for
bounded buffers, removing the size constraint and the freeness predicate:

Unbounded_Buffer
OBSERVATION PREDICATES

content :Value-list
CONSTRAINTS

Uniqueness dfn= ∀l1,l2 :Value-list ·content(l1)∧content(l2)⇒ l1= l2
ACTIONS

Send(v)
pre {content(l ::v)}
add {content(l)}
del {content(l ::v)}

Receive(v)
pre {content(l)}
add {content(v :: l)}
del {content(l)}

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 679 631–696

A logical framework 679

Consider the correspondence of the Send and Receive actions between the two component
theories Supervised_Buffer and Unbounded_Buffer, and the internal action of Expand in
Supervised_bBuffer. Using this correspondence and internal action, the theory Supervised
_Buffer is weakly bisimilar to the theory Unbounded_Buffer .
Here the weak bisimilarity may be established directly, as the internal actions are not those
of interaction between components (as above), but are evolutionary expansion actions which
leave the contents unchanged.

In summary, we have begun, in this section, the development of techniques to reason
about evolvable systems, introducing some of the key ideas for establishing equivalence
results. Clearly, there is much more to be done in this direction in order to develop a full
account of reasoning techniques for evolvable systems in this framework.

4 Banks, ATMs, cards, chips, PINs and all that jazz

We now present an extended example of an evolvable system within the logical framework
to illustrate how such systems may be developed and how they may be structured around
evolutionary capabilities.
The example is that of an imaginary bank, the Bank of New Island, with its extensive
network of twentieth century automated teller machines (ATMs). Recently it has lost its
previously highly-valued customers’ trust and confidence through a series of major attacks
of debit card fraud. The Board of Governors agreed to fund a major overhaul of the bank’s
ATM network. The Board members, being only too aware of the high cost of increasing
security on such a massive scale, believed a novel adaptive or evolutionary approach may be
appropriate, and sponsored the University of NoMoreDisasters to collaborate with the bank
on the design of the new system.
In this section, we use a highly simplified model of the proposed system to illustrate the
revision-based logical modelling of evolvable systems.

4.1 ATMs old and the new
The bank’s old form of ATM, although comprising distinct hardware components, such as
magnetic strip readers, note counters, keypads, displays, etc., had its local software built in a
somewhat unstructured, monolithic, fashion. Only limited security checks were programmed
and certainly not easily changed (indeed the whole ATM network would need to be shutdown
to perform even minor upgrades). The design of the proposed system is such that each
individual ATM will monitor, adapt and evolve its behaviour, including its security checking,
to fit best with the bank’s and its customers’ desires and expectations. The individual
(software) components used in the ATM will themselves also be evolvable and the network
of ATMs will naturally support dynamic evolution.

4.2 The old system
The original banking system consists of a non-evolvable version which we now describe. The
banking system is modelled as a component consisting of two types of component, a bank
records component and a series of automated teller machine components (ATMs). Figure 6

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 680 631–696

680 A logical framework

ATM
n

1
ATM

3..
ATM

ATM
2..

BankingSystem

Bank

Records

Dispenser

Keypad

Reader
Card

Display

ATM

Note

FIG. 6. The banking system component structure.

shows a number of ATMs linked to a central bank records component. In the formal model
we simplify to just two ATM subcomponents:

BankingSystem
COMPONENTS

bank :BankRecords
atm1 :ATM
atm2 :ATM

ACTIONS
checkBalance(acc :Account,bal :Int)

dfn= 〈bank.checkBalance(acc,bal)||atm1.checkBalance(acc,bal)〉 |
〈bank.checkBalance(acc,bal)||atm2.checkBalance(acc,bal)〉 |

debitAccount(acc :Account,n :Int)
dfn= 〈bank.debitAccount(acc,n)||atm1.debitAccount(acc,n)〉 |

〈bank.debitAccount(acc,n)||atm2.debitAccount(acc,n)〉 |

We model two actions of the banking network – checking an account balance and debiting
an account. These actions are joint between an ATM component and the BankRecords
component. The BankRecords component is responsible for maintaining customer account
details. We model this below via the accounts predicate. Note that the checkBalance action
has no effect on the (specified) observation state.

BankRecords
OBSERVATION PREDICATES

accounts :Account×Int
CONSTRAINTS

unique dfn= ∀a :Account,i,j :Int ·((account(a,i)∧accounts(a,j))⇒ i= j)

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 681 631–696

A logical framework 681

ACTIONS
checkBalance(acc :Account,bal :Int)
pre {accounts(acc,bal)}
add {}
del {}
debitAccount(acc :Account,n :Int)
pre {accounts(acc,bal)}
add {accounts(acc,bal−n)}
del {accounts(acc,bal)}

We describe an automated teller machine, ATM , with four components, a card reader, a
note dispenser, a keypad and a display screen.

ATM
OBSERVATION PREDICATES
COMPONENTS

CR :CardReader0
ND :NoteDispenser
KP :KeyPad
DS :DisplayScreen

ACTIONS
checkNotesAvailable(n :Int)
pre {ND.noteStore(m),m≥n}
add {}
del {}
checkBalance(acc :Account,bal :Int)
pre {∃pin :PIN ·CR.currentCard(acc,pin)}
add {}
del {}
debitAccount(acc :Account,n :Int)
pre {∃pin :PIN ·CR.currentCard(acc,pin)}
add {}
del {}

Following insertion of a card into the ATM’s card reader, and its subsequent validation, the
customer may request withdrawal of funds. The ATM will then check that the customer’s
account has sufficient funds (a checkBalance enquiry with the BankRecords component),
check availability of notes in the NoteDispenser , debit the account (a joint debitAccount
action with the BankRecords component) and serve the customer the appropriate number
of notes (via the NoteDispenser component).

CardReader0
OBSERVATION PREDICATES

currentCard :Account×PIN
cardAccepted,cardRejected
swallowedCard :Account×PIN

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 682 631–696

682 A logical framework

CONSTRAINTS

unique dfn= ∀a1,a2 :Account,p1,p2 :PIN ·
((currentCard(a1,p1)∧currentCard(a2,p2))⇒(a1=a2∧p1=p2))∧

¬(cardAccepted∧cardRejected)∧
∀a :Account,p1,p2 :PIN ·

((swallowedCard(a,p1)∧swallowedCard(a,p2))⇒(p1=p2))
ACTIONS

cardIn(acc :Account,pin :PIN)
pre {¬∃a :Account,p :PIN ·currentCard(a,p)}
add {currentCard(acc,pin)}
del {cardAccepted,cardRejected}
validateCard(userPin :PIN)
pre {currentCard(acc,userPin)}
add {cardAccepted}
del {}
cardOut
pre {currentCard(acc,pin)}
add {}
del {currentCard(acc,pin)}
swallowCard
pre {currentCard(acc,pin),¬cardAccepted}
add {swallowedCard(acc,pin),cardRejected}
del {currentCard(acc,pin)}

The CardReader component (for security level 0) is abstracted to holding the account and
PIN (Personal Indentification Number) for the card currently in the ATM card reader and
any cards that have not been returned to the customer. The cardIn action is defined when
no card is present (a currentCard(acc,pin) atom will not be in the state) and makes the
account number of the card (modelled as an argument to the action) a state observation.
Validation of the current card is noted by the validateCard action. This action is defined
when the user-supplied PIN is the same as that stored on the card and the effect of the
action is to record as an observation cardAccepted. The cardOut action simply removes the
observation from the state. The swallowCard action removes the currentCard observation
and adds the fact that the card is swallowed, swallowedCard(acc,pin), as well as its rejection.
Although strictly not necessary, we have ensured that the action can only be defined when
the current card has not been accepted.

NoteDispenser
OBSERVATION PREDICATES

noteStore :Int
CONSTRAINTS

unique dfn= ∀i,j :Int ·((noteStore(i)∧noteStore(j))⇒ i= j)

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 683 631–696

A logical framework 683

ACTIONS
dispenseNotes(n :Int)
pre {noteStore(m),m≥n}
add {noteStore(m−n)}
del {noteStore(m)}

The NoteDispenser component maintains a count of the number of the notes held and is
made observable so that the ATM can check availability of notes requested by a customer.
The NoteDispenser component’s own action dispenseNotes reduces the count by the given
argument.

4.3 The new system
Let us now investigate a more refined version of the above ATM banking system, one in
particular that has been structured to support adaptive validation and security checking.
Firstly, though, we add a supervisor to the note dispenser component in order to handle its
re-stocking.

META NoteDispenserSupervisor
TYPES

ConfigName

FUNCTIONS
s :ConfigName→ConfigName
c0 :ConfigName

OBSERVATION PREDICATES
holds :FORMULA×ConfigName
current :ConfigName
evolve :STATETRANSFORMER×COMPONENTMAP×SCHEMADEFS×ConfigName

CONSTRAINTS
...

ACTIONS
Observe(Q :FORMULAE)
pre {current(c)}
add {holds(q,s(c)),current(s(c)) |q∈Q}
del {current(c)}
stockNotes(n :Int)
pre {current(c),holds(noteStore(m),c)}
add {evolve(λ�·[C �→〈 local(�(C))∪{noteStore(n)}\{noteStore(m)},

subStates(�(C))〉],
[],[],s(c)),

current(s(c)),holds(noteStore(n,s(c))}
del {current(c)}

Two actions have been initially specified, a standard observation action that can be used
to track the quantity of notes in the dispenser, together with an action to restock the

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 684 631–696

684 A logical framework

dispenser. This latter action induces change in the associated note dispenser component
through the presence of the evolve predicate as a meta-level observation. Of course, we could
have incorporated such a straightforward change as an action directly in the note dispenser
component. We believe, however, it is better software engineering practice to maintain a clear
separation of concerns, i.e. let a supervisor be responsible for ensuring good (and timely)
stock levels. Although not specified here, the supervisor may have been programmed to
have been more adaptive and replenish with differing levels of stock according to expected
demand, based on previous usage patterns.
We define a composite evolvable note dispenser below.

SupervisedNoteDispenser
OBSERVATION PREDICATES

noteStore :Int
COMPONENTS

SND :(S :NoteDispenserSupervisorMETA TO (ND :NoteDispenser))
CONSTRAINTS

alias dfn= ∀m :Int ·noteStore(m)⇔ND.noteStore(m)
ACTIONS

dispenseNotes(n :Int) dfn=|Q∈Formulae SND.〈S .Observe(Q),ND.dispenseNotes(n)〉
internal dfn= SND.〈S .stockNotes(1000),〉

This component schema replaces NoteDispenser in the previous ATM schema. We could
develop further levels of monitoring and evolutionary change for the note dispenser, for
example, enabling changes to note denominations, currency being served, etc. Instead, we
focus on aspects of the card reader componentry.
Firstly, we specify some generic monitoring aspects of a supervisor for a card reader
component. The currently specified card reader component records whether a card is rejected
or accepted. Based just on this, there can then be a number of different types of temporal
criteria that may be monitored. For example, the system may be programmed to monitor
the ratio of rejected to accepted cards over a rolling 24-hour basis, or just on a daily basis,
or over a fixed number of evening/night hours, etc. We introduce a meta-level observation
predicate criterion parameterized by a criterion type and value; the value may represent
series data (necessary to compute rolling ratios, etc.), and use the function updateCriterion
to update the criterion value associated with a particular criterion type. We also assume an
observation predicate clock that provides time information.

META CardReaderSupervisor
TYPES

ConfigName
CriterionType dfn= ...

CriterionValue dfn= ...
...

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 685 631–696

A logical framework 685

FUNCTIONS
s :ConfigName→ConfigName
c0 :ConfigName
MaxKnownSecurityLevel :Int
updateCriterion :CriterionType×CriterionValue×Int×Time→CriterionValue

OBSERVATION PREDICATES
clock :Time
criterion :CriterionType×CriterionValue
securityUpgrade : Int×STATETRANSFORMER×

COMPONENTTRANSFORMER×SCHEMATRANSFORMER
holds :FORMULA×ConfigName
current :ConfigName
evolve :STATETRANSFORMER×COMPONENTMAP×SCHEMADEFS×ConfigName

CONSTRAINTS
...

ACTIONS
idle
pre {}
add {}
del {}
observeAccept(X :2CriterionType)
pre {current(c),clock(t),∧ct∈X criterion(ct,cvct)}
add {holds(cardAccepted,s(c)),current(s(c)),∧

ct∈X criterion(ct,updateCriterion(ct,cvct,1,t))}
del {current(c),∧ct∈X criterion(ct,cvct)}
observeReject(X :2CriterionType)
pre {current(c),clock(t),∧ct∈X criterion(ct,cvct)}
add {holds(cardRejected,s(c)),current(s(c)),∧

ct∈X criterion(ct,updateCriterion(ct,cvct,0,t))}
del {current(c),∧ct∈X criterion(ct,cvct)}

So far the supervisor has only monitoring actions specified, the principal actions being
observeAccept and observeReject, which record results of desired statistical analyses. For
simplicity’s sake, let us assume that the card reader supervisor has pre-programmed trans-
formations that it can apply to the card reader in order to increase the level of security
checking it uses when validating a card. We have specified a basic level of security check-
ing (level 0) as being a simple check of user supplied PIN against the PIN stored on the
card. A higher level might be for the ATM to check with the bank on the card’s recent
transaction history to determine whether its current use is out of the norm, and then,
if so, to proceed through further security checks, for example via questions agreed previ-
ously with the customer. It may also be possible to invoke other forms of unique customer
identification, e.g. finger prints, iris prints, etc., depending upon hardware capability and

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 686 631–696

686 A logical framework

information stored on chip. The following action schema abstracts the update via three
transformations that are stored by the supervisor. The supervisor observation predicate
securityUpgrade(level,st,ct,cs) records the fact that st, ct and cs are, respectively, state,
component instance and component schema transformers to yield a card reader at security
level level . The upgradeSecurityChecking action applies these transformers in the appropriate
way to the observation state, component instance map and schema map of the object-level
configuration for the card reader component by the addition of a suitably instantiated evolve
predicate in the supervisor’s observation state.

upgradeSecurityChecking(level : int)
pre {current(c),securityUpgrade(level,st,ct,cs),

component(thisComp as [C �→〈CardReaderSL,_,_,_〉]),
level>SL}

add {current(s(c)),component(ct(thisComp)),
evolve(st,ct(thisComp),cs(CardReaderSL),s(c))}

del {current(c),component(thisComp)}

The supervisor will determine when to apply the above upgrade action. We have not spec-
ified this but its application will be dependent on a combination of security criterion values
(computed through the monitoring aspect of the supervisor) passing certain thresholds. A
downgrade action could be defined in a similar way.
A relevant question is then what happens if a security upgrade is determined desirable
but none available locally to the supervisor. In principle, such situations should be observed
by a higher-level supervisor, which may then be able to supply an appropriate upgrade.
However, the lack of upgrade may proceed to the top of the component hierarchy, in which
case no upgrade of the required kind has been made available.

SupervisedCardReader
OBSERVATION PREDICATES

currentCard :Account×PIN
COMPONENTS

SCR :(S :CardReaderSupervisorMETA TO (CR :CardReader0))
CONSTRAINTS

alias dfn= ∀a :Account,p :PIN ·currentCard(a,p)⇔CR.currentCard(a,p)
ACTIONS

cardIn(acc :Account,pin :PIN)dfn= SCR.〈S .idle,CR.cardIn(n)〉
validateCard(userPin :PIN)dfn=|X∈2CriterionType SCR.〈S .observeAccept(X),CR.validateCard(userPin)〉
cardOut dfn= SCR.〈S .idle,CR.cardOut〉
swallowCard dfn=|X∈2CriterionType SCR.〈S .observeReject(X),CR.swallowCard〉
internal dfn= SCR.〈S .upgradeSecurityChecking(1)〉 |

... |
SCR.〈S .upgradeSecurityChecking(S .MaxKnownSecurityLevel)〉

The schema SupervisedCardReader can now be used in place of the CardReader schema in
the previous ATM schema presentation.

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 687 631–696

A logical framework 687

ATM
OBSERVATION PREDICATES
COMPONENTS

CR :SupervisedCardReader
ND :SupervisedNoteDispenser
KP :KeyPad
DS :DisplayScreen

ACTIONS
checkNotesAvailable(n :Int)
pre {ND.noteStore(m),m≥n}
add {}
del {}
checkBalance(acc :Account,bal :Int)
pre {∃pin :PIN ·CR.currentCard(acc,pin)}
add {}
del {}
debitAccount(acc :Account,n :Int)
pre {∃pin :PIN ·CR.currentCard(acc,pin)}
add {}
del {}

internal dfn=CR.internal |ND.internal | ...

The original banking system was presented as a component consisting of a bank records
subcomponent and two ATM subcomponents. Given the evolvable nature of the ATM’s
subcomponents, it is now appropriate to restructure the two ATM subcomponents as a
network of ATMs. The network component may then be endowed with its own supervisor
that can oversee the evolution of the individual ATMs and potentially take pre-emptive
action by enforcing security checking updates on one ATM that may be in a similar situation
to another ATM, for which an update has already been determined necessary.

ATM_Network
COMPONENTS

atm1 :ATM
atm2 :ATM

ACTIONS
checkBalance(acc :Account,bal :Int)

dfn= atm1.checkBalance(acc,bal) |atm2.checkBalance(acc,bal)
debitAccount(acc :Account,n :Int)

dfn= atm1.debitAccount(acc,n) |atm2.debitAccount(acc,n)
internal dfn= atm1.internal |atm2.internal

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 688 631–696

688 A logical framework

The ATM network supervisor schema is presented in a similar way to the card reader super-
visor. We assume local predicate criterion to record the results of time series statistical
analyses that are performed when the supervisor observes that an ATM subcomponent has
undergone an evolution (via observeCR). The local updateCriterion function is over the ATM
identifier as well as the updated security level. The network supervisor has the wherewithal
not only to enforce an update in security even though locally it may not appear to be deemed
necessary, but also to update the card reader supervisor, for example, with additional secu-
rity transformations. To keep the level of detail low, we include just the former supervisor
action (as upgradeCR_Security).

META ATM_NetworkSupervisor
TYPES

CriterionType dfn= ...

CriterionValue dfn= ...

ConfigName

FUNCTIONS
s :ConfigName→ConfigName
c0 :ConfigName
updateCriterion :CriterionType×CriterionValue×CID×Int×Time

OBSERVATION PREDICATES
clock :Time
criterion :CriterionType×CriterionValue
holds :FORMULA×ConfigName
current :ConfigName
evolve :STATETRANSFORMER×COMPONENTMAP×SCHEMADEFS×ConfigName

ACTIONS
idle
pre {}
add {}
del {}
observeCR_Evolve(atm :CID,X :2CriterionType)
pre {current(c),atm.CR.SCR.S .current(c1),clock(t),∧

ct∈X criterion(ct,cvct)}
add {holds(atm.CR.SCR.S .current(s(c1)),s(c)),current(s(c)),

holds(atm.CR.SCR.S .evolve(n,_,_,_,s(c1)),s(c))∧
ct∈X criterion(ct,updateCriterion(ct,cvct,atm,n,t))}

del {current(c),∧ct∈X criterion(ct,cvct)}

upgradeCR_Security(atm :CID,level : int)
pre {current(c),securityUpdate(level,st,ct,cs),

component(thisComp as [C �→〈...,[atm �→〈..., [CR �→〈CardReaderSL,...〉,
...],...〉],...〉])}

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 689 631–696

A logical framework 689

add {current(s(c)),component(ct(thisComp)),
evolve(st,ct(thisComp),cs(CardReaderSL),s(c))}

del {current(c),component(thisComp)}

The ATM network component and its associated supervisor are then composed and finally
included in a revised banking system component.

SupervisedATM_Network
COMPONENTS

SNet :(S :ATM_NetworkSupervisor META TO (ATM_Net :ATM_Network))
ACTIONS

checkBalance(acc :Account,bal :Int) dfn=
SNet.〈S .idle,ATM_Net.checkBalance(acc,bal)〉

debitAccount(acc :Account,n :Int) dfn=
SNet.〈S .idle,ATM_Net.debitAccount(acc,n)〉

internal dfn=
|atm∈CID,X∈2CriterionType SNet.〈S .observeCR_Evolve(atm,X),ATM_Net.internal〉 |
SNet.〈S .updateCR_Security〉

Finally, the overall banking system is given below.

BankingSystem
COMPONENTS

bank :BankRecords
atmNet :SupervisedATM_Network

ACTIONS

checkBalance(acc :Account,bal :Int) dfn=
〈bank.checkBalance(acc,bal)||atmNet.checkBalance(acc,bal)〉

debitAccount(acc :Account,n :Int) dfn=
〈bank.debitAccount(acc,n)||atmNet.debitAccount(acc,n)〉

internal dfn= atmNet.internal

To summarise, we have outlined, using a highly simplified model of a banking ATM system,
how decisions about evolutionary behaviour can be incorporated in a design in the proposed
logical framework. The structuring of the design and the elements of the components are
fairly natural for this application – communication between components is described by joint
actions and evolution through meta-level components. The examples of this paper suggest
that this revision-based logical framework provides a useful setting for the description of
fairly complex evolvable systems.

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 690 631–696

690 A logical framework

5 Conclusions

We have shown how, starting with a simple revision-based logical description of a system, we
can incorporate notions of evolution using meta-level logics. By introducing tree-structured
logical descriptions and associated revision operations, we can extend the framework to
evolvable systems built from hierarchies of evolvable components.
Although the examples we have developed within this framework are preliminary and
application to large-scale design is yet to be undertaken, it is clear that the framework allows
us to use evolutionary structuring as an integral part of the architecture of software systems,
enabling evolution to be incorporated at various levels of a system design. This therefore
is another dimension for software design in which design decisions about the appropriate
evolutionary structure are required. Even for the small examples of this paper, there is a
choice of where supervisory processes should be placed and what their evolutionary powers
should be. This appears to open a range of interesting issues in software engineering.
It may be worthwhile to reflect briefly on the structure of the logical framework that
we have proposed, not least because it may seem unduly complicated. One of the initial
difficulties we found in formulating an account of evolvable systems was to get the level
of abstraction correct. The actual mechanisms involved in internal monitoring (such as the
‘insertion of probes’) and in invoking evolutionary change (such as local termination and
system decomposition), whilst possibly necessary for implementing such systems, are not at
the right level of abstraction for software design and development methods. What we have
managed to achieve with this framework is a logical description of individual components
and the way they combine, and also of the relationship of supervisors to supervisees through
the meta-view relations which provide a behavioral description of the effects of monitoring
and of evolutionary intervention.
A key to the account is the introduction of ‘configurations’ which describe not only the
current state of a system, but also its logical theory and the collection of its actions. What
perhaps we haven’t brought out in the above development is how the form of configurations
is determined not only by the descriptive power of the specifications that we want but also
by the capabilities of evolution. Each form of evolutionary step makes a change to the con-
figuration. In order for this change to be described as a simple revision of the configuration
we need to ensure that the relevant property of the system is suitably localised in the con-
figuration. For example, a change to the capacity of the table in the blocks world example
should not involve extensive ‘editing’ of action descriptions and parts of the supporting the-
ory, but needs to be localised, in this case as a constraint in the object-level theory. Not
only does this need to be localised but the way that these constraints are used in specifying
the behaviour of a system needs to be through a naming of the formula – an ‘abstraction’
predicate – rather than use of the formula itself. By doing so, a revision which changes the
formula but keeps its name allows the constraint to change but its use to persist.
Much of the intricacy in our account lies in needing to provide a meta-description of the
(changing) logic of each object-level system. As is recognised in mathematical logic, and also
in the provision of generic logical frameworks in automated reasoning, describing in detail
the structure of a logical system is itself a non-trivial task. However, it is generic: that is,
the way that, say, formulae are built is, to a large extent, independent of the actual logic
and its constants. Moreover, some of the actions of supervisors have the same genericity. For
example, the ‘observe’ actions for monitoring system behaviour are of the same structure
whatever system is being observed. A similar comment applies to ‘evolve’ actions invoked

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 691 631–696

A logical framework 691

through evolve predicates defined in terms of object-level configurations. At the moment,
this genericity is not exploited — it is inherent in the specification of one theory as ‘meta’
to another.
A further comment about the form of configurations: we use the same descriptive frame-
work at the meta-level as we do at the object-level. That is, supervisors are described as
systems in the same form as that of the object-level systems, with the same kind of states,
revision actions and configurations. This enables us to build hierarchies of evolvable sys-
tems, with local supervisors able to monitor and evolve parts of systems, including other
supervisors.
The introduction of component-based systems is a natural move in software engineer-
ing, and indeed the form of architecture for evolution that we propose lends itself readily
to a component-based description. Moreover, introducing components has not altered the
basic logical structure of evolution through meta-level processes. However, the overhead in
structural and notational terms is quite heavy. The first change required was simply intro-
ducing a naming scheme for components alongside the tree hierarchy of components and of
schema. Amongst several possible equivalent structures, it is not clear which is the best for
describing systems built out of evolvable components. Each is fairly complex, but much of
this complexity is unavoidable and arises from the very nature of component-based system
construction.
It may be useful to summarise the new features which arise when components are intro-
duced into the logical framework:

1. Revision is no longer the simple process of augmenting and/or restricting sets of for-
mulae. Not only do states and configurations in the tree change, but the structure of
the tree itself may change, and for evolutions involving general reconfigurations of a
system, these tree manipulations can themselves be complex. Standard revision logics
consider only simple revisions but, as we have shown, it is possible to extend the notion
of revision to hierarchical systems.

2. Component-based systems are built from components which are either fixed (unevolv-
able) or consist of a pair of a supervisor and supervisee. In the latter case, what is
any higher supervisor observing? The answer is the synchronous pairs of actions of the
supervisor and supervisee. These paired actions consist either of (1) a normal compu-
tational step of the component together with a monitoring step, or (2) an evolutionary
step invoked by the supervisor and the corresponding induced evolutionary action in
the component.

3. Components may communicate vertically through supervisory processes, or horizontally
with each other (including the possibility of supervisors communicating with each other)
through joint actions which are defined as disjoint revisions on the two component
states.

In this paper, we have introduced a logical framework. What we have not considered here
is programming in this logical framework. That is, we have not considered languages and
mechanisms for the sequencing of revision actions, nor have we considered how to describe
conditional actions. For example, we may wish the supervisor action of Expand in the blocks
world to be invoked only when the table is observed to be full by the supervisor, or instead, we
may use historical information, for example, invoking Expand when the supervisor observes
that the table has been full three times in the last ten actions, say. More generally, we may

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 692 631–696

692 A logical framework

expect to use formulae of various temporal logics as conditions under which evolutionary
actions may be invoked.
In a follow-up paper (Part II, in preparation), we present an account of programming
for evolvable systems using a simple Guarded-Command language of revision actions. Each
component comes equipped with its program and for each way that components combine,
there is a combination of programs to form a new program for the combined system which
expresses how the individual programs are to be sequenced. The particular combination of
a supervisor with a supervisee expresses the monitoring and evolutionary capabilities of this
combination. We have developed an SOS-style operational semantics for this language and
also a trace-based denotational semantics. There is much further work in this area, including
the incorporation of temporal logics, developing the relationship with runtime monitoring,
and investigating specialist monitoring languages.
Another area which this paper opens up is the automated logical monitoring of evolvable
systems. The logical framework, because it is based on revision logics, provides a logical
abstract machine whose computational steps are revision actions on sets of formulae and, for
component-based systems, on trees of states. A description of a system within the framework
may then be ‘run’ on this abstract machine. Notice that for its implementation, the logical
abstract machine needs access to automated theorem-proving tools to implement validity
checks for preconditions, consistency checks on states, and to test the validity of meta-view
relations.
How are system descriptions (with programs) in this logical framework related to actual
evolutionary programs in, say, Java, and how do we pass from system specifications to Java
programs which implement them? A further question is: Is there a notion of ‘Evolve Java’ in
which the structuring mechanisms for evolution that we have introduced here are present as
an extension of Java? We are considering some of these issues at the moment and also the
relationship between the logical abstract machine and runtime verification of evolutionary
programs (e.g. in Java).
Finally, the proof-theory which we have begun in this paper requires considerable develop-
ment to provide a basis for us to reason about the behaviour of systems described within the
logical framework and to establish the requisite control and safety properties of evolutionary
systems.

A Appendix: Models and satisfaction for revision-based logics

In this appendix, we present a brief account of the logic underlying the logical framework of
the paper. This introduces a non-standard notion of satisfaction which we define in terms
of an ‘observational’ order on models, and minimum models under this order.
A revision-based logic describes states of a system in terms of sets of formulae, which we
consider to be ‘observations’ or ‘facts’ about states. Models of these state descriptions are
not simply models of the formulae. The descriptions are intended to be ‘full descriptions’ in
a sense which we make precise.
Mathematically, this account is straightforward, but is very general: The closed formulae
that serve as ‘facts that may be observed’ are arbitrary formulae. The form of the logic and
that of the axioms is unrestricted and models are general set-based models.

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 693 631–696

A logical framework 693

A.1 Models and satisfaction
We consider a typed, first-order (classical) logic L with formulae Form(L) built from a
signature of function and predicate symbols.
Set-theoretic models are standard:

Definition A.1 Let L be a first-order typed logic. A model α of L is an allocation of a set α(T)
for each type T of L, a function α(f) :α(T1)×···×α(Tn)→α(T) for each function symbol
f :T1×···×Tn→T of L, and a relation α(r)⊆α(T1)×···×α(Tn) for each predicate symbol
r :T1×···×Tn of L.
For logics with equality, the equality symbol is treated as equality of elements in models.
Where the logic allows enumeration types, these are interpreted strictly: Each declared
constant c of an enumeration type T denotes a distinct element of α(T) and this exhausts
α(T) i.e. ∀x ∈α(T).∃ constant c :T .α(c)=x .

The definition of the interpretation of a formulae ψ∈Form(L) in a model is standard.
A closed first-order formula ψ is satisfied in a model α, written

α |≈ψ,
iff the interpretation of ψ in α is true. We use this special symbol |≈ here as we reserve |=
for another satisfaction relation which we introduce later and which is used in the logical
framework above.
We extend this to sets of closed formulae �: α |≈� iff for all ψ∈�, α |≈ψ.
For a set of closed formulae � and closed formula ψ, we write

� |≈ψ
iff for all L-models α, α |≈� �⇒ α |≈ψ.
For first-order typed theory W , we say α is a model of W (or α is a W -model) when,
for all ψ∈W , α |≈ψ. We write � |≈W ψ iff for all W -models α, if α |≈� then α |≈ψ. For
typed theories with equality, the standard rules for equality (equivalence and substitution)
are assumed. For types described as enumeration types, the distinctness and exhaustiveness
of the enumerations are assumed in the theory.

A.2 Observations and minimum models
LetO be a set of closed L-formulae which we interpret as a collection of ‘possible observations
or facts’ about a model (O may be empty).

Definition A.2 For theory W of L and �⊆O, a W-model α satisfies � iff α |≈�. Let
ModW (�) be the set of all W -models that satisfy �.
We define a pre-order � on ModW (�) by

α�β iff ∀ϕ∈O.α |≈ϕ �⇒ β |≈ϕ.
We now consider minimum models in ModW (�) under this pre-order, i.e. models α∈
ModW (�) such that for all models β∈ModW (�), α�β, that is:

∀ϕ∈O.α |≈ϕ �⇒ ∀β∈ModW (�). β |≈ϕ.

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 694 631–696

694 A logical framework

Minimum models are “observationally equivalent”, i.e. for two minimum models α and β,

∀ϕ∈O.α |≈ϕ iff β |≈ϕ.

However, minimum models need not be isomorphic or logically equivalent.

Minimum models need not exist – it depends on the theory W , the choice of observations
O and the set � (see later).
We introduce another satisfaction relation, |=, defined using minimum models:

Definition A.3 For W an L-theory, �⊆O, for a set of closed L-formulae O, and ψ a closed
L-formula, write

� |=W ψ

iff for all α minimum in ModW (�), α |≈ψ.
Note that � |≈W ψ �⇒� |=W ψ.

A.3 Characterising minimum models
We now consider the existence of minimum models, first beginning with a characterisation
theorem.

Theorem A.1 (Characterising minimum models .) Consider a theory W of L and �⊆O, for
a set of closed L-formulae O. Define T (�)⊆Form(L), by

T (�)=�∪{¬ϕ |ϕ∈O and ¬(∀β∈ModW (�).β |≈ϕ)}.

Then α∈ModW (�) is minimum iff α |≈T (�).
Proof. If α∈ModW (�) is minimum, then for all ϕ∈O,

α |≈ϕ⇔� |≈W ϕ

(by definition of minimum). Hence, for ϕ∈O,

� �|≈W ϕ⇒α |≈¬ϕ.

Thus α |≈T (�).
Conversely, suppose α |≈T (�). Then for all ϕ∈O, if α |≈ϕ then � |≈W ϕ (since, if not
i.e. � �|≈W ϕ then α |≈¬ϕ – contradiction). Hence, ∀β∈ModW (�). β |≈ϕ. Thus α is minimum.
Corollary A.1 (Existence of minimum models .) Consider a theory W of L and �⊆O, for a
set of closed L-formulae O. A minimum model in ModW (�) exists iff T (�) is W -consistent,
i.e. there is a model γ ∈ModW (�) with γ |≈T (�).

We now characterise the satisfaction relation |= in terms of |≈. This provides a justifi-
cation for the ‘absence as negation’ interpretation that may be imposed on observational
descriptions.

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 695 631–696

A logical framework 695

Corollary A.2 (Characterising satisfaction for minimum models .) Consider a theory W of L
and�⊆O, for a set of closed L-formulaeO. Define T (�)⊆Form(L) as above (Theorem A.1).
Then, for any closed ψ∈Form(L), we have

� |=W ψ iff T (�) |≈W ψ.

Proof. Assume � |=W ψ, i.e. for all α∈ModW (�) minimum, α |≈ψ. But by Theorem A.1, α
is minimum iff α |≈T (�). Thus, for all α∈ModW (�) with α |≈T (�), α |≈ψ, i.e. T (�) |≈W ψ.
Conversely, assume T (�) |≈W ψ, i.e. ∀α∈ModW (�). α |≈T (�)⇒α |≈ψ. But α |≈T (�) iff

α is minimum. Hence � |=W ψ as required.

For application to evolvable systems, the sets �⊆O are the ‘states’ of the system, where
O is the set of ground atomic formulae built from the observation predicates of the theory.
The form of satisfaction � |=ψ that we need is that defined above (Definition A.3) in terms
of minimum models. The characterisation of this relation (Theorem A.2) in terms of stan-
dard satisfaction allows us to implement and automate the underlying logic of this logical
framework for evolvable systems.

A brief note on this account: Other authors, for example [6], [21], [23], [10] and [22], have
considered orders on models and minimum, or minimal, models but the logical settings and
definitions of order differ from that here. When restricted to Herbrand models, the mini-
mum models here (when they exist) coincide with minimal models under inclusion. Special
cases of the construction of T (�) from � occur in various accounts of ‘circumscription’ and
‘augmentation’ in logics for Artificial Intelligence (see, for example, in [6], [21] and [10]).

References
[1] D. Balasubramaniam, R. Morrison, G. N. C. Kirby, K. Mickan, B. C. Warboys,
I. Robertson, R. A. Snowdon, R. M. Greenwood, and W. Seet. A software architecture
approach for structuring autonomic systems. In Proceeding of ICSE 2005 Workshop on
the Design and Evolution of Autonomic Application Software (DEAS 2005), St Louis,
MO, USA, 2005. ACM Digital Library.

[2] H. Barringer, G. Gough, D. Brough, D. Gabbay, I. Hodkinson, A. Hunter, R. Owens,
P. McBrien, M. Reynolds, and M. Fisher. Languages, meta-language and METATEM, a
discussion paper. Journal of the IGPL, 4(2):255–272, 1996.

[3] H. Barringer and D. Rydeheard. Modelling evolvable systems: A temporal logic view. In
Artemov, Barringer, d’Avila Garcez, Lamb, and Woods, editors, We Will Show Them!
Essays in honour of Dov Gabbay on his 60th Birthday, volume 1, pages 195–228. College
Publications, 2005.

[4] S. A. Cook and Yongmei Liu. A complete axiomatization for blocks world. J. Logic and
Computation, 13(4), 2003.

[5] B. Demsky and M. Rinard. Data structure repair using goal-directed reasoning. In
Proceedings of the 2005 International Conference on Software Engineering, St. Louis,
Missouri, 2005.

[6] D. W. Etherington, R. E. Mercer, and R. Reiter. On the adequacy of predicate circum-
scription for closed-world reasoning. Computational Intelligence, 1:11–15, 1985.

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

[16:51 16/11/2009 jzp026.tex] Paper Size: a4 paper Job: JIGPAL Page: 696 631–696

696 A logical framework

[7] K. Eurviriyanukul, A. A. A. Fernandes, and N. W. Paton. A foundation for the replace-
ment of pipelined physical join operators in adaptive query processing. In Current
Trends in Database Technology (EDBT Workshops), pages 589–600. Springer, 2006.

[8] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2(3–4):189–208, 1971.

[9] D. M. Gabbay. Fibring Logics. Oxford University Press, 1999.
[10] M. R. Geneseret and N. J. Nilson. Logical Foundations of Artificial Intelligence. Morgan

Kaufmann Publishers, 1987.
[11] M. P. Georgeoff and A. L. Lansky. Reactive reasoning and planning. In Proceedings of

the Sixth National Conference on Artificial Intelligence, pages 677–682, Seattle, WA.,
July 1987.

[12] R. M. Greenwood, I. Robertson, B. C. Warboys, and B. S. Yeomans. An evolutionary
approach to process system development. In Proceedings of the International Process
Technology Workshop, Villard de Lans (Grenoble), 1999.

[13] R. M. Greenwood, B. C. Warboys, R. Harrison, and P. Henderson. An empirical study
of the evolution of a software system. In Proceedings of the 13th IEEE Conference
on Automated Software Engineering, pages 293–296, Honolulu, 1998. IEEE Computer
Society Press.

[14] J. O. Kephart and D. M. Chess. The vision of autonomic computing. IEEE Computer,
36(1):41–50, 2003.

[15] X. D. Koutsoukos, P. J. Antsaklis, M. D. Lemmon, and J. A. Stiver. Supervisory control
of hybrid systems. In Proc. of the IEEE, Special Issue on Hybrid Systems, volume 88,
pages 1026–1049, 2000.

[16] M. M. Lehman and J. F. Ramil. Software evolution: Background, theory, practice.
Information Processing Letters, 88(1–2):33–44, 2003.

[17] P. Maes and D. Nardi (Eds). Meta-Level Architectures and Reflection. North-Holland,
1988.

[18] J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence 4,
pages 463–502. Edinburgh University Press, 1969.

[19] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[20] R. Morrison, D. Balasubramaniam, G. N. C. Kirby, K. Mickan, B. C. Warboys,

R. M. Greenwood, I. Robertson, and R. A. Snowdon. A framework for supporting
dynamic systems co-evolution. Automated Software Eng., 14(3):261–292, 2007.

[21] D. Perlis and J. Minker. Completeness results for circumscription. Artificial Intelligence,
28(1):29–42, 1986.

[22] P. Rondogiannis and W. W. Wadge. Minimum model semantics for logic programs with
negation-as-failure. ACM Trans. Comput. Logic, 6(2):441–467, 2005.

[23] J. C. Shepherdson. A sound and complete semantics for a version of negation as failure.
Theor. Comput. Sci., 65(3):343–371, 1989.

[24] T. Winograd. Understanding Natural Language. Academic Press, New York, 1972.

Received April 26, 2007

 at U
niversity of M

anchester on June 11, 2010
http://jigpal.oxfordjournals.org

D
ow

nloaded from

http://jigpal.oxfordjournals.org

