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Suppose that the state space of a dynamical system has a finite partition, and each element

of the partition is labelled by a letter of some alphabet. Then every trajectory of the system

is naturally labelled by a word in this alphabet. This word is called the combinatorial type

of the trajectory. In applications it is important to decide whether among a certain family

of trajectories there is at least one trajectory of a given type, or whether all the trajectories

in this family have the same type. In this paper we construct algorithms for solving this

sort of questions for a wide class of Pfaffian dynamical systems, which have elementary

(doubly-exponential) upper complexity bounds.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In thispaperwestudycontinuousdynamical systemswhicharecalledPfaffian, andfirst introduced in [9,10]. Thesesystems

are defined by Pfaffian functions, either implicitly (via triangular systems of ordinary differential equations) or explicitly (by

means of equations and inequalities involving Pfaffian functions). Pfaffian functions naturally arise in applications as real

analytic solutions of triangular systems of first order partial differential equations with polynomial coefficients, and include

polynomials, algebraic functions, exponentials, and trigonometric functions in the appropriatedomains [8]. Pfaffian functions

form a large natural class of real analytic functions which have a uniform description and an explicit characterization of

complexity of their representations in terms of formats.

One of the important problems in the theory of dynamical systems is understanding of the behavior of a dynamical system

with respect to viable and invariant sets. In this paper we consider a generalization of this problem for Pfaffian dynamical

systems. Viability constraints and invariants naturally arise when some trajectories of a dynamical system do not satisfy

the imposed requirements. These constraints include state constraints in control theory and verification of safety-critical

systems, power constraints in game theory, ecological constraint in genetics, etc. [1]. Therefore, thegoal is to select trajectories

which are viable in the sense that they satisfy these constraints at each point in time.

In mathematical setting we consider the following problem. Let

γ : G1 × (−T , T) → G2

be a continuous dynamical system, where G1 ⊆ Rk1 is a set of control parameters, (−T , T) is an interval of time and G2 ⊆ Rk2

is a state space. For a fixed parameter x ∈ G1 the map �x : (−T , T) → G2, t �→ γ (x, t) is the trajectory corresponding to x.

Let U ⊂ G1. A subset V ⊂ G2 is viable under the dynamical system γ and the control U if there exists at least one trajectory
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�x , x ∈ U of the system such that ∀t ∈ Tγ (x, t) ∈ V . A subset V ⊂ G2 is invariant under the dynamical system γ and the control

U if for all trajectories �x , x ∈ U of the system, ∀t ∈ Tγ (x, t) ∈ V .

Generalizing these concepts, consider a partitionP := {P1, . . . , Ps} of G2. Then for every trajectory �x there exists aword in

the alphabet of symbols P1, . . . , Ps which corresponds to �x . We will say that a word ω is viable (respectively, invariant) under

the dynamical system γ , the control U, and the partition P , if at least one trajectory �x (respectively, for all trajectories �x)

of the system, with x ∈ U, is (are) labelled by ω.

In this paper we assume that dynamical systems and sets, we are interested in, are semi-Pfaffian. Our goal is to construct

an algorithm for checking viability and invariance with an elementary exponential upper complexity bound. To achieve our

goal we use cylindrical cell decomposition for semi-Pfaffian sets [5].

The outline of the paper is as follows. Section 1presents a brief overviewof Pfaffian functions, upper bounds on topological

complexities of semi- and sub-Pfaffian sets, and algorithms for computing their closures and cylindrical cell decompositions.

In Section 2 we recall the notion of Pfaffian dynamical system, viable and invariant sets. We also explain how to associate a

word to a trajectory. Finally, in Section 3 we propose an algorithm (with the usual for Pfaffian functions theory oracle) for

checking viability and invariance. The complexity of the algorithm is doubly exponential in the format of an input system.

1. Basic definitions and notions

1.1. Pfaffian functions and related sets

In this section we overview the theory of Pfaffian functions and sets definable with Pfaffian functions. The detailed

exposition can be found in the survey [5].

Definition 1.1. A Pfaffian chain of the order r ≥ 0 and degree α ≥ 1 in an open domain G ⊂ Rn
is a sequence of real analytic

functions f1, . . . , fr in G satisfying differential equations

∂fj

∂xi
= gij(x, f1(x), . . . , fj(x)) (1.1)

for 1 ≤ j ≤ r, 1 ≤ i ≤ n. Here gij(x, y1, . . . , yj) are polynomials of degrees not exceeding α.

A function

f (x) = P(x, f1(x), . . . , fr(x)),

where P(x, y1, . . . , yr) is a polynomial of a degree not exceeding β ≥ 1, the sequence f1, . . . , fr is a Pfaffian chain of order r and

degree α, is called a Pfaffian function of order r and degree (α,β).

In order to illustrate the definition let us consider several examples of Pfaffian functions.

(a) Pfaffian functions of order 0 and degree (1,β) are polynomials of degrees not exceeding β.

(b) The exponential function f (x) = eax is a Pfaffian function of order 1 and degree (1, 1) in R, due to the equation df (x) =
af (x)dx. More generally, for i = 1, 2, . . . , r, let Ei(x) := eEi−1(x), E0(x) = ax. Then Er(x) is a Pfaffian function of order r and

degree (r, 1), since dEr(x) = aE1(x) · · · Er(x)dx.
(c) The function f (x) = 1/x is a Pfaffian function of order 1 and degree (2, 1) in the domain {x ∈ R| x /= 0}, due to the

equation df (x) = −f 2(x)dx.

(d) The logarithmic function f (x) = ln(|x|) is a Pfaffian function of order 2 and degree (2, 1) in the domain {x ∈ R| x /= 0},
due to equations df (x) = g(x)dx and dg(x) = −g2(x)dx, where g(x) = 1/x.

(e) The polynomial f (x) = xm can be viewed as a Pfaffian function of order 2 and degree (2, 1) in the domain {x ∈ R| x /= 0}
(but not inR), due to the equations df (x) = mf (x)g(x)dx and dg(x) = −g2(x)dx, where g(x) = 1/x. In some cases a better

way to deal with xm is to change the variable x = eu reducing this case to (b).

(f) The function f (x) = tan(x) is a Pfaffian function of order 1 and degree (2, 1) in the domain
⋂

k∈Z {x ∈ R| x /= π/2 + kπ},
due to the equation df (x) = (1 + f 2(x))dx.

(g) The function cos(x) is a Pfaffian function of order 2 and degree (2, 1) in the domain
⋂

k∈Z {x ∈ R| x /= π + 2kπ}, due
to equations cos(x) = 2f (x)− 1, df (x) = −f (x)g(x)dx, and dg(x) = 1

2
(1 + g2(x))dx, where f (x) = cos2(x/2) and g(x) =

tan(x/2). Also, since cos(x) is a polynomial of degreem of cos(x/m), the function cos(x) is Pfaffian of order 2 and degree

(2,m) in the domain
⋂

k∈Z {x ∈ R| x /= mπ + 2kmπ}. The same is true, of course, for any shift of this domain by amultiple

of π . However, cos(x) is not a Pfaffian function in the whole real line.

As we can see, apart from polynomials, the class of Pfaffian functions includes real algebraic functions, exponentials, log-

arithms, trigonometric functions, their compositions, and other major transcendental functions in appropriate domains

(see [5,6]). Now we introduce classes of sets definable with Pfaffian functions. In the case of polynomials they reduce to

semialgebraic sets whose quantitative and algorithmic theory is treated in [2].

Definition 1.2. A set X ⊂ Rn
is called semi-Pfaffian in an open domain G ⊂ Rn

if it consists of the points in G satisfying

a Boolean combination of some atomic equations and inequalities f = 0, g > 0, where f , g are Pfaffian functions having a

common Pfaffian chain defined in G. A semi-Pfaffian set X is restricted in G if its topological closure lies in G.
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Definition 1.3. A set X ⊂ Rn
is called sub-Pfaffian in an open domain G ⊂ Rn

if it is the image of a semi-Pfaffian set under a

projection into a subspace.

It is worth noting that according to the Tarski-Seidenberg Theorem, the projection of a semialgebraic set is again

semialgebraic.

In the sequel we will be dealing with the following subclass of sub-Pfaffian sets.

Definition 1.4. Suppose Ī ⊂ R is a closed interval. Consider the closed cube Īm+n in an open domain G ⊂ Rm+n
and the

projection map π : Rm+n → Rn
. A subset Y ⊂ Īn is called restricted sub-Pfaffian if Y = π(X) for a restricted semi-Pfaffian set

X ⊂ Īm+n.

Note that a restricted sub-Pfaffian set need not to be semi-Pfaffian.

Definition 1.5. Consider a semi-Pfaffian set

X :=
⋃

1≤i≤M

{x ∈ Rn| fi1 = 0, . . . , fili = 0, gi1 > 0, . . . , giji > 0} ⊂ G, (1.2)

where fis, gis are Pfaffian functionswith a common Pfaffian chain of order r and degree (α,β), defined in an open domain G. Its

format is the tuple (r,N,α,β,n), where N ≥ ∑
1≤i≤M(li + ji). For n = m + k and a sub-Pfaffian set Y ⊂ Rk

such that Y = π(X),

its format is the format of X .

We will refer to the representation of a semi-Pfaffian set in the form (1.2) as to the disjunctive normal form (DNF).

Remark. In this paperwe are concernedwith complexities of computations, as functions of the format. In the case of Pfaffian

dynamical systems these sizes and complexities also depend on the domain G. So far our definitions imposed no restrictions

on an open set G, thus allowing it to be arbitrarily complex and to induce this complexity on the corresponding semi- and

sub-Pfaffian sets. To avoid this we will always assume in the context of Pfaffian dynamical systems that G is “simple”, like

Rn
, or In for open I ⊆ R.

Remark. In this paperwe construct and examine complexities of algorithms for checking satisfiability of viability constraints.

In order to estimate the “efficiency” of a computation we need to specify more precisely amodel of computation. As such we

use a real number machinewhich is an analogy of a classical Turingmachine but allows the exact arithmetic and comparisons

on the real numbers. Since we are interested only in upper complexity bounds for algorithms, there is no need for a formal

definition of this model of computation (it can be found in [3]). In some of our computational problems we will need to

modify the standard real number machine by equipping it with an oracle for deciding feasibility of any system of Pfaffian

equations and inequalities. An oracle is a subroutinewhich canbeusedby a given algorithmany time the latter needs to check

feasibility. We assume that this procedure always gives a correct answer (“true” or “false”) though we do not specify how it

actually works. An elementary step of a real number machine is either an arithmetic operation, or a comparison (branching)

operation, or an oracle call. The complexity of a real numbermachine is the number of elementary steps it makes in theworst

case until termination, as a function of the format of the input.

In the special case of semialgebraic sets, the oracle can be replaced by a proper real number machine, so the algorithm

for checking of satisfiability of viability constraints can be realized as a standard real number machine.

1.2. Cylindrical cell decompositions

Now we define cylindrical decompositions of semi- and sub-Pfaffian sets in a cube Īn, where Ī is a closed interval.

Definition 1.6. A cylindrical cell in Īn is defined by induction as follows.

(1) A cylindrical 0-cell in Īn is an isolated point.

(2) A cylindrical 1-cell in Ī is an open interval (a, b) ⊂ Ī.

(3) For n ≥ 2 and 0 ≤ k < n a cylindrical (k + 1)-cell in Īn is either a graph of a continuous bounded function f : C → R,

where C is a cylindrical (k + 1)-cell in Īn−1 and k < n − 1, or else a set of the form

{(x1, . . . , xn) ∈ Īn| (x1, . . . , xn−1) ∈ C and f (x1, . . . , xn−1) < xn < g(x1, . . . , xn−1)},
where C is a cylindrical k-cell in Īn−1, and f , g : C → Ī are continuous bounded functions such that f (x1, . . . , xn−1) <

g(x1, . . . , xn−1) for all points (x1, . . . , xn−1) ∈ C.

Definition 1.7. A cylindrical cell decomposition D of a subset A ⊂ Īn with respect to the variables x1, . . . , xn is defined by

induction as follows.

(1) If n = 1, then D is a finite family of pair-wise disjoint cylindrical cells (i.e., isolated points and intervals) whose union

is A.
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(2) If n ≥ 2, then D is a finite family of pair-wise disjoint cylindrical cells in Īn whose union is A and there is a cylindrical

cell decomposition of π(A) such that π(C) is its cell for each C ∈ D, where π : Rn → Rn−1
is the projection map onto

the coordinate subspace of x1, . . . , xn−1.

Definition 1.8. Let B ⊂ A ⊂ Īn and D be a cylindrical cell decomposition of A. Then D is compatible with B if for any C ∈ D
we have either C ⊂ B or C ∩ B = ∅ (i.e., some subset D′ ⊂ D is a cylindrical cell decomposition of B).

Definition 1.9. For a given finite family f1, . . . , fN of Pfaffian functions in an open domain G we define its consistent sign

assignment as a non-empty semi-Pfaffian set in G of the kind

{x ∈ G | fi1 = 0, . . . , fiN1
= 0, fiN1+1 > 0 . . . , fiN2

> 0, fiN2+1 < 0, . . . , fiN < 0},
where i1, . . . , iN1

, . . . , iN2
, . . . , iN is a permutation of 1, . . . ,N.

Theorem 1.10 [6,12]. Let f1, . . . , fN be a family of Pfaffian functions in an open domain G ⊂ Rn
, G ⊃ Īn having a common Pfaffian

chain of order r, and degrees (α,β). Then there is an algorithm (with the oracle) producing a cylindrical cell decomposition of Īn

which is compatible with each consistent sign assignment of f1, . . . , fN . Each cell is a sub-Pfaffian set represented as a projection of

a semi-Pfaffian set in DNF. The number of cells, the components of their formats and the complexity of the algorithm are less than

N(r+n)O(n) (α + β)(r+n)O(n
3)
.

We summarize main properties of Pfaffian functions in the following propositions.

• Pfaffian functions can be considered as generalisation of algebraic functions.

• Pfaffian functionshave theuniformdescription and the explicit characterizationof complexity of their representations.

• The class of Pfaffian functions includes exp, trigonometrical functions defined in appropriate domains, and more

generally solutions of a large class of differential equations.

• The structure R = 〈
R,+, *, 0, 1,<, {f1, . . . , fN}〉 is o-minimal, i.e. definable sets have only a finite number of connected

components, in the other words, it has finiteness property.

2. Pfaffian dynamical systems

2.1. Pfaffian dynamics and related sets

We now recall definitions concerning Pfaffian dynamical systems.

Definition 2.1. Let G1 ⊂ Rk1 and G2 ⊂ Rk2 be open domains. A Pfaffian dynamical system is a map

γ : G1 × (−T , T) → G2

with a semi-Pfaffian graph, where G1 is a set of control parameters, (−T , T) is an interval of time, and G2 is a state space.

For a given x ∈ G1 the set

�x = {y|∃t ∈ (−T , T) (γ (x, t) = y)} ⊂ G2

is called the trajectory (or evolution) determined by x, and the graph

�̂x = {(t, y)| γ (x, t) = y} ⊂ (−T , T)× G2

is called the integral curve determined by x.

Definition 2.2. LetU ⊆ G1. A set V ⊆ G2 is called viable under the dynamical system γ and the controlU if there exists x ∈ U

such that for all t ∈ T , γx(t) ∈ V . We say a subset U ⊆ G1 satisfies the constraint V if V is viable under U and the dynamical

system γ .

Definition 2.3. Let U ⊆ G1. A set Inv ⊆ G2 is called invariant under the dynamical system γ and the control U if for all x ∈ U

and for all t ∈ T , γx(t) ∈ Inv.

In the next sections we investigate the behavior of a Pfaffian dynamical system with respect to a given semi-Pfaffian

viability constraint.

2.2. Encoding trajectories by words

Wenow introduce, following [4,9], a technique of encoding trajectories of dynamical systemsbywords. Consider a Pfaffian

dynamical system γ : G1 × (−T , T) → G2, where G1 ⊂ Rk1 and G2 ⊂ Rk2 are open domains, and a partition P := {P1, . . . , Ps}
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of G2 into s semi-Pfaffian sets Pj . Let the graph of γ and each set Pj have a format (r,N,α,β,n), where n ≥ k1 + k2 + 1, and all

Pfaffian functions involved have a common Pfaffian chain. Fix x ∈ G1. Define the set of points and open intervals in R:

Fx := {J| J is a point or an interval in (−T, T)maximal w.r.t. inclusion for the

property ∃i ∈ {1, . . . , s}∀t ∈ J (γ (x, t) ∈ Pi)}.

Let the cardinality |Fx | = r and y1 < · · · < yr be the set of representatives of Fx such that γ (x, yj) ∈ Pij . Then define the word

ω := Pi1 · · · Pir in the alphabet P . Informally, ω is the list of names of elements of the partition in the order they are visited by

the trajectory �x . In our setting ω is called the type of trajectory �x . Introduce the set of words 	 := {ω| x ∈ G1}.

Theorem 2.4 [4,9]. The set 	 is finite and the number of different trajectory types of γ with respect to the partition P is less than

(sN)(r+n)O(n) (α + β)(r+n)O(n
3)
. (2.1)

Theorem 2.5. There is a cell decomposition of the control parameter space G1 such that if x1 and x2 belong to the same cell then

�x1 and �x2 are labelled by the same word.

Proof. Consider the family F = {f1, . . . , fk} of Pfaffian functions in the domain G1 × (−T , T)× G2 consisting of all functions

in variables x, t, y involved in the defining formulas for the graph of the map γ : (x, t) �→ y, and for all sets Pj . According

to Theorem 1.10, there is a cylindrical decomposition D of G1 × (−T , T)× G2 with respect to the variables x, t, y having the

following properties.

(1) D is compatible with each consistent sigh assignment of f1, . . . , fk .

(2) There are at most (2.1) cylindrical cells.

(3) Each of these cells is sub-Pfaffian.

(4) D induces a cylindrical decomposition on G1 which we denote by E .
We claim that for any cell C ∈ E and any two points x1,x2 ∈ C the trajectories �x1 ,�x2 ∈ G2 are intersecting sets P1, . . . , Ps

in the same order (i.e., are encoded by the same word from 	). Indeed, let π : G1 × (−T , T)× G2 → G1 be the projection on

G1. The decomposition D induces cylindrical decompositions D1 and D2 on π−1(x1) and π
−1(x2) respectively. In particular,

each of the integral curves �̂x1 and �̂x2 is decomposed into a sequence of alternating points and open intervals. Due to basic

properties of cylindrical decomposition, there is a natural bijection ψ : D1 → D2 such that

(i) the restriction of ψ to the set of all cells in �̂x1 is a bijection onto the set of all cells in �̂x2 ;

(ii) for each 1 ≤ j ≤ s the restriction of ψ to the set of all cells in (−T , T)× Pj ∩ π−1(x1) is a bijection onto the set of all cells

in (−T , T)× Pj ∩ π−1(x2).

(iii) the bijection ψ preserves the order in which cells appear in the trajectories.

It follows that if a cellB ∈ D1 is a subsetof �̂x1 ∩ ((−T , T)× Pj) for some1 ≤ j ≤ s, thenψ(B) ⊂ �̂x2 ∩ ((−T , T)× Pj).Moreover,

if for cells B1, B2 ∈ D1 there exist t1, t2 ∈ (−T , T) such that t1 < t2 and γ (x1, t1) ∈ B1 ∧ γ (x1, t2) ∈ B2 then there exist t′
1
,

t′
2

∈ (−T , T) such that t′
1
< t′

2
and γ (x2, t

′
1
) ∈ ψ(B1) ∧ γ (x2, t′2) ∈ ψ(B2). The claim is proved.

It follows that the cardinality of 	 does not exceed the cardinality of E which does not exceed the cardinality of D which

in turn is at most (2.1). �

3. An algorithm for checking viability and invariance

Consider a Pfaffian dynamical system γ : G1 × (−T , T) → G2, a semi-Pfaffian subset of control parameters U ⊆ G1, a par-

tition P = {P1, . . . , Ps} of G2, and a word ω in the alphabet of symbols P1, . . . , Ps. Let the graph of γ and the sets U, P1, . . . , Ps
have a format (r,N,α,β,n), and all Pfaffian functions involved have a common Pfaffian chain.

Theorem 3.1. There is an algorithmwhich checks whether the control U satisfies the viability or the invariance constraint ω under

the partition P . The complexity of this algorithm does not exceed

(sN)(r+n)O(n) (α + β)(r+n)O(n
3)
. (3.1)

Proof.We are going to show the main steps of our algorithm. First the algorithm produces the set of words	 corresponding

to the Pfaffian dynamical system γ : G1 × (−T , T) → G2 and the partition P . Consider the family of Pfaffian functions in the

domain G1 × (−T , T)× G2 consisting of all functions in variables x, t, y involved in the defining formulas for the graph of the

map γ : (x, t) �→ y, for the set V , and for the partition P . According to Theorem 1.10, there is a cylindrical decomposition D
with respect to (x, t, y)which is compatible with this family and consists of at most (3.1) cylindrical cells.

This cell decompositionD induces the cell decomposition E (see the proof of Theorem2.5). Using the oracle,which decides

feasibility of any system of Pfaffian equations and inequalities, the algorithm selects the cells from D which are subsets of

{(x, t, y)|y = γ (x, t)}. Denote the set of the selected cells byB. Observe that for anyfixedx′ ∈ G1 the set
⋃

B∈B B ∩ {(x, t, y)|x=x′}
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coincides with the integral curve �̂x′ . Then the algorithm determines the order in which the cells B ∈ B intersected with

{(x, t, y)| x = x′} appear in the trajectory �x′ .
More precisely, for each pair of distinct cells B1,B2 ∈ B the algorithm decides, using the oracle, whether

∃x∃t1∃t2∃y1∃y2 ((x, t1, y1) ∈ B1 ∧ (x, t2, y2) ∈ B2 ∧ (t1 < t2)).

For a given C ∈ E , after all pairs of cells are processed we get the ordered set of cells B1, . . . ,Bk in D such that for any

1 ≤ i ≤ k and any x′ ∈ C the sequence of points and intervals

B1 ∩ {(x, t, y)| x = x′}, . . . ,Bk ∩ {(x, t, y)| x = x′}
forms the integral curve �̂x′ . By the definition of cylindrical decomposition, for any pair Bi, Pj either Bi ⊂ (C × (−T , T)× Pj)

or Bi ∩ (C × (−T , T)× Pj) = ∅. The algorithm uses the oracle to decide for every pair which of these two cases takes place. As

the result, the sequence B1, . . . ,Bk becomes partitioned into subsequences of the kind

(B1, . . . ,Bk1 ), (Bk1+1, . . . ,Bk2 ), . . . , (Bk�−1+1, . . . ,Bk),

where for any i, 0 ≤ i ≤ �− 1, the cells Bki+1, . . . ,Bki+1
lie in C × (−T , T)× Pji for some ji, while Bki ∩ C × (−T , T)× Pji = ∅ and

Bki+1+1 ∩ C × (−T , T)× Pji = ∅. Then thewordω := Pj0 · · · Pj�−1
corresponds to the cellC. Considering all cells in E the algorithm

finds 	.

Then the algorithm collects all cells from E such that their union is U. If at least one of these cells corresponds to the word

ω, then ω is viable. If all of these cells corresponds to ω, then ω is invariant. This completes the description of the algorithm.

A straightforward analysis shows that the complexity of the algorithm does not exceed (3.1), taking into account the

bounds from Theorem 1.10. �

Corollary 3.2. There is an algorithm checking viability and invariance of a set of state space V under the dynamics γ and the

control U. The complexity of this algorithm does not exceed N(r+n)O(n) (α + β)(r+n)O(n
3)
.

4. Conclusion and future research

Wehaveproposedanalgorithmfor checkingviability and invariance in aPfaffiandynamical system. This researchhasbeen

motivated by verification problems of safety-critical large scale continuous and hybrid systems. First step in the suggested

procedure is to construct a cylindrical cell decomposition which is compatible with each sign assignment of the Pfaffian

functions involved in the definitions of a continuous dynamic and a viability constraint. In the second step we encode

trajectories of the Pfaffian dynamical system by finite words. By the construction of cylindrical cell decomposition, the space

of parameters is decomposed to cells in such away that each cell corresponds to oneword. In other words, if points x1 and x2
belong to the same cell the trajectories �x1 and �x2 ∈ G2 are encoded by the same word. This induces a natural marking the

cells of parameters by the words. In the final step we check intersections of a given set of control parameters and the cells of

parameters which marked by the special word. If at least one of them is nonempty, then the given set of control parameters

satisfies the viability constraint. If all of these intersections are nonempty, then this set of control parameters satisfies the

invariance constraint. This algorithm is based on the cylindrical cell decomposition technique and, accordingly, has a double

exponential upper complexity bound. It seems feasible to construct an algorithm with single exponential complexity using

the approach employed in the paper [10].
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