
Computing Matrix Functions

Higham, Nicholas J. and Al-Mohy, Awad H.

2010

MIMS EPrint: 2010.18

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Acta Numerica (2010), pp. 159–208 c© Cambridge University Press, 2010

DOI: 10.1017/S0962492910000036 Printed in the United Kingdom

Computing Matrix Functions∗

Nicholas J. Higham and Awad H. Al-Mohy
School of Mathematics

University of Manchester

Manchester, M13 9PL, UK

E-mail: higham@maths.man.ac.uk, almohy@maths.man.ac.uk

The need to evaluate a function f(A) ∈ C
n×n of a matrix A ∈ C

n×n arises
in a wide and growing number of applications, ranging from the numerical
solution of differential equations to measures of the complexity of networks.
We give a survey of numerical methods for evaluating matrix functions, along
with a brief treatment of the underlying theory and a description of two recent
applications. The survey is organized by classes of methods, which are broadly
those based on similarity transformations, those employing approximation by
polynomial or rational functions, and matrix iterations. Computation of the
Fréchet derivative, which is important for condition number estimation, is
also treated, along with the problem of computing f(A)b without computing
f(A). A summary of available software completes the survey.

CONTENTS

1 Introduction 160
2 Theory 160
3 Applications 165
4 Similarity transformations 168
5 Polynomial and rational approximations 174
6 Matrix iterations 183
7 Fréchet derivative 189
8 The f(A)b problem 195
9 The software scene 198
A Cost of Padé versus Taylor approximants 199
References 203

∗ Version of 8-2-10

160 N. J. Higham and A. H. Al-Mohy

1. Introduction

Matrix functions are as old as matrix algebra itself. In his memoir that
initiated the study of matrix algebra, Cayley (1858) treated matrix square
roots. The theory of matrix functions was subsequently developed by many
mathematicians over the ensuing 100 years. Today, functions of matrices are
widely used in science and engineering and are of growing interest, due to
the succinct way they allow solutions to be expressed and recent advances in
numerical algorithms for computing them. New applications are regularly
being found, but the archetypal application of matrix functions is in the
solution of differential equations. Early recognition of the important role of
the matrix exponential in this regard can be found in the book Elementary
Matrices and Some Applications to Dynamics and Differential Equations by
aerospace engineers Frazer, Duncan and Collar (1938), which was “the first
book to treat matrices as a branch of applied mathematics” (Collar 1978).

This article provides a survey of numerical methods for computing matrix
functions and is organized as follows. Section 2 describes some key elements
of the theory of matrix functions. Two recent applications, to networks and
roots of transition matrices, are described in Section 3. The following three
sections describe methods grouped by type: those based on similarity trans-
formations, those employing polynomial or rational approximations, and
matrix iterations. Section 7 treats computation of the Fréchet derivative by
five different approaches and explains how to estimate the condition number
of a matrix function. The problem of computing the action of f(A) on a vec-
tor is treated in Section 8, while Section 9 describes available software. An
appendix gives some new results on the comparison between truncated Tay-
lor series and Padé approximants within the scaling and squaring method
for the matrix exponential.

Throughout, ‖ · ‖ denotes an arbitrary matrix norm unless otherwise
stated. A flop is a floating point operation: +, −, ∗ or /. The unit roundoff
is denoted by u and has the value u = 2−53 ≈ 1.1 × 10−16 in IEEE double
precision arithmetic. We write γ̃k := cku/(1 − cku) with c a small integer
constant.

2. Theory

We are concerned with functions mapping C
n×n to C

n×n that are defined
in terms of an underlying scalar function f . Thus, for example, det(A),
the adjugate (or adjoint) matrix, and a matrix polynomial such as p(X) =
AX2+BX+C (where all matrices are n×n) are not matrix functions in the
sense considered here, and elementwise evaluations such as A 7→ (cos(aij))
also are not of the required form.

The functions of a matrix in which we are interested can be defined in
various ways. The multiplicity of definitions caused some confusion in the

Computing Matrix Functions∗ 161

early years of the subject, until Rinehart (1955) showed all the definitions
to be equivalent, modulo technical assumptions. We give two definitions,
both of which are very useful in developing the theory.

2.1. Definitions

Definition 2.1. (Jordan canonical form definition of f(A)) LetA ∈
C

n×n have the Jordan canonical form Z−1AZ = JA = diag(J1(λ1), J2(λ2),
. . . , Jp(λp)), where Z is nonsingular,

Jk(λk) =




λk 1

λk
. . .
. . . 1

λk


 ∈ C

mk×mk , (2.1)

and m1 +m2 + · · ·+mp = n. Then

f(A) := Zf(JA)Z−1 = Z diag(f(Jk(λk)))Z
−1, (2.2)

where

f(Jk(λk)) :=




f(λk) f ′(λk) . . .
f (mk−1)(λk)

(mk − 1)!

f(λk)
. . .

...
. . . f ′(λk)

f(λk)



. (2.3)

When the function f is multivalued and A has a repeated eigenvalue
occurring in more than one Jordan block (i.e., A is derogatory), we will
take the same branch for f and its derivatives in each Jordan block. This
gives a primary matrix function. If different branches are taken for the
same eigenvalue in two different Jordan blocks then a nonprimary matrix
function is obtained. We will be concerned here only with primary matrix
functions, and it is these that are needed in most applications. For more on
nonprimary matrix functions see (Higham 2008, Sec. 1.4).

Definition 2.2. (polynomial interpolation definition of f(A)) Denote
by λ1, . . . , λs the distinct eigenvalues of A ∈ C

n×n and let ni be the index of
λi, that is, the order of the largest Jordan block in which λi appears. Then
f(A) := r(A), where r is the unique Hermite interpolating polynomial of
degree less than

∑s
i=1 ni that satisfies the interpolation conditions

r(j)(λi) = f (j)(λi), j = 0:ni − 1, i = 1: s. (2.4)

In both these definitions the values f (j)(λi) appearing in (2.4) are assumed
to exist, in which case f is said to be defined on the spectrum of A.

A proof of the equivalence of these two definitions can be found in (Higham

162 N. J. Higham and A. H. Al-Mohy

2008, Thm. 1.12). The equivalence is easily demonstrated for the mk ×mk

Jordan block Jk(λk) in (2.1). The polynomial satisfying the interpolation
conditions (2.4) is then

r(t) = f(λk)+(t−λk)f
′(λk)+

(t− λk)
2

2!
f ′′(λk)+· · ·+

(t− λk)
mk−1

(mk − 1)!
f (mk−1)(λk),

which is just the first mk terms of the Taylor series of f about λk (assuming
the Taylor series exists). Hence, from Definition 2.2,

f(Jk(λk)) = r(Jk(λk))

= f(λk)I + (Jk(λk)− λkI)f
′(λk) +

(Jk(λk)− λkI)
2

2!
f ′′(λk) + · · ·

+
(Jk(λk)− λkI)

mk−1

(mk − 1)!
f (mk−1)(λk).

The matrix (Jk(λk) − λkI)
j is zero except for 1s on the jth superdiagonal.

This expression for f(Jk(λk)) is therefore equal to that in (2.3).

2.2. Properties

One of the most important basic properties is that f(A) is a polynomial in
A ∈ C

n×n, which is immediate from Definition 2.2. However, the coefficients
of that polynomial depend on A. This property is not surprising in view
of the Cayley–Hamilton theorem, which says that any matrix satisfies its
own characteristic equation: q(A) = 0, where q(t) = det(tI − A) is the
characteristic polynomial. The theorem implies that the nth power of A,
and inductively all higher powers, are expressible as a linear combination of
I, A, . . . , An−1. Thus any power series in A can be reduced to a polynomial
in A of degree at most n− 1 (with coefficients depending on A).

Other important properties are collected in the next result, for a proof of
which see Higham (2008, Thm 1.13).

Theorem 2.3. Let A ∈ C
n×n and let f be defined on the spectrum of A.

Then

(a) f(A) commutes with A;
(b) f(AT) = f(A)T ;
(c) f(XAX−1) = Xf(A)X−1;
(d) the eigenvalues of f(A) are f(λi), where the λi are the eigenvalues

of A;
(e) if A = (Aij) is block triangular then F = f(A) is block triangular

with the same block structure as A, and Fii = f(Aii);
(f) if A = diag(A11, A22, . . . , Amm) is block diagonal then

f(A) = diag(f(A11), f(A22), . . . , f(Amm)).

Computing Matrix Functions∗ 163

It is often convenient to represent a matrix function as a power series
or Taylor series. The next result explains when such a series converges
(Higham 2008, Thm. 4.7).

Theorem 2.4. (convergence of matrix Taylor series) Suppose f has
a Taylor series expansion

f(z) =
∞∑

k=0

ak(z − α)k

(
ak =

f (k)(α)

k!

)
(2.5)

with radius of convergence r. If A ∈ C
n×n then f(A) is defined and is given

by

f(A) =
∞∑

k=0

ak(A− αI)k (2.6)

if and only if each of the distinct eigenvalues λ1, . . . , λs of A satisfies one of
the conditions

(a) |λi − α| < r,
(b) |λi − α| = r and the series for f (ni−1)(λ) (where ni is the index of

λi) is convergent at the point λ = λi, i = 1: s.

Four books treat the theory of matrix functions in detail and should be
consulted for more information: Gantmacher (1959, Chap. 5), Horn and
Johnson (1991, Chap. 6), Lancaster and Tismenetsky (1985, Chap. 9), and
Higham (2008).

2.3. Particular functions

We now turn to the definitions of some specific functions. For functions hav-
ing a power series with an infinite radius of convergence the matrix function
can be defined by evaluating the power series at a matrix, by Theorem 2.4.
Thus the matrix exponential is given by

eA = I +A+
A2

2!
+
A3

3!
+ · · · (2.7)

and the matrix cosine and sine by

cos(A) = I − A2

2!
+
A4

4!
− A6

6!
+ · · · ,

sin(A) = A− A3

3!
+
A5

5!
− A7

7!
+ · · · .

A natural question is to what extent scalar functional relations generalize
to the matrix case. For example, are (eA)2 = e2A, eiA = cos(A) + i sin(A),
and cos(2A) = 2 cos(A)2 − I valid equalities for all A? The answer is yes
for these particular examples. More generally, scalar identities in a single

164 N. J. Higham and A. H. Al-Mohy

variable remain true with a matrix argument provided that all terms are
defined and that the functions involved are single-valued. For multivalued
functions such as the logarithm additional conditions may be needed to
ensure the matrix identity is valid; an example is given below. The relevant
general results can be found in (Higham 2008, Sec. 1.3). Relations involving
more than one variable do not usually generalize to matrices; for example,
eA+B 6= eAeB in general.

An important function is the pth root of a matrix, where initially we
assume p is a positive integer. For A ∈ C

n×n we say X is a pth root of
A if Xp = A. Note that defining pth roots implicitly via this equation
gives a wider class of matrices than Definitions 2.1 and 2.2. For example,
[00

1
0]2 = [00

0
0], but Definitions 2.1 and 2.2 provide only one square root of [00

0
0],

namely itself. If A is singular with a defective zero eigenvalue then there
are no primary pth roots, since the pth root function is not defined on the
spectrum of A, but there may be nonprimary pth roots (albeit not obtainable
from Definitions 2.1 or 2.2). Conditions for the existence of pth roots of
singular matrices are nontrivial (Psarrakos 2002). We will concentrate here
on the nonsingular case. Here there are always at least p pth roots and there
are infinitely many if A is derogatory (that is, some eigenvalue appears in
more than one Jordan block).

In the common case where A has no eigenvalues on R
−, the closed negative

real axis, there is a distinguished root that is real when A is real (Higham
2008, Thm. 7.2).

Theorem 2.5. (principal pth root) Let A ∈ C
n×n have no eigenvalues

on R
−. There is a unique pth root X of A all of whose eigenvalues lie in the

segment { z : −π/p < arg(z) < π/p }, and it is a primary matrix function of
A. We refer to X as the principal pth root of A and write X = A1/p. If A
is real then A1/p is real.

In particular, the principal square root A1/2 of a matrix A with no eigen-
values on R

− is the unique square root all of whose eigenvalues lie in the
open right half-plane.

A logarithm of A ∈ C
n×n can be defined as any matrix X such that

eX = A. A singular matrix has no logarithms, but for a nonsingular matrix
there are infinitely many. Indeed if eX = A then eX+2πkiI = A for all
integers k. In practice it is usually the principal logarithm, defined in the
next result, that is of interest (Higham 2008, Thm. 1.31).

Theorem 2.6. (principal logarithm) Let A ∈ C
n×n have no eigenval-

ues on R
−. There is a unique logarithm X of A all of whose eigenvalues lie in

the strip { z : −π < Im(z) < π }. We refer to X as the principal logarithm
of A and write X = log(A). If A is real then its principal logarithm is real.

From this point on, log always denotes the principal logarithm.

Computing Matrix Functions∗ 165

Care is needed in checking functional identities involving the logarithm.
While the relation exp(log(A)) = A is always true (for any logarithm,
not just the principal one), by definition of the logarithm, the relation
log(exp(A)) = A holds if and only if | Im(λi)| < π for every eigenvalue
λi of A (Higham 2008, Prob. 1.39).

For A ∈ C
n×n with no eigenvalues on R

−, the logarithm provides a con-
venient way to define Aα for arbitrary real α: as Aα = eα log(A). From the
relation in the previous paragraph it follows that

log(Aα) = α log(A), α ∈ [−1, 1]. (2.8)

The matrix sign function, introduced by Roberts in 1971 (Roberts 1980),
corresponds to the choice

f(z) = sign(z) =

{
1, Re z > 0,
−1, Re z < 0

in Definitions 2.1 and 2.2, for which f (k)(z) = 0 for k ≥ 1. Thus the
matrix sign function is defined only for matrices A ∈ C

n×n having no pure
imaginary eigenvalues. If we arrange the Jordan canonical form as A =
Z diag(J1, J2)Z

−1, where the eigenvalues of J1 ∈ C
p×p lie in the open left

half-plane and those of J2 ∈ C
q×q lie in the open right half-plane, then

sign(A) = Z

[
−Ip 0
0 Iq

]
Z−1. (2.9)

Another useful representation is (Higham 1994)

sign(A) = A(A2)−1/2, (2.10)

which generalizes the scalar formula sign(z) = z/(z2)1/2.

3. Applications

Matrix functions are useful in a wide variety of applications. We describe
just two recent ones here; more can be found in Higham (2008, Chap. 2).

3.1. Networks

Consider a network representing interactions between pairs of entities in a
system. In recent years much work has focused on identifying computable
measures that quantify characteristics of the network. Many measures are
available in the literature, and they are typically expressed in terms of the
network’s associated undirected graph G with n nodes. The adjacency ma-
trix A ∈ R

n×n of the graph has (i, j) element equal to 1 if nodes i and
j are connected and 0 otherwise. Assume aii ≡ 0, so that there are no
loops in the graph. A walk of length m between two nodes i and j is an
ordered list of nodes i, k1, k2, . . . , km−1, j such that successive nodes in

166 N. J. Higham and A. H. Al-Mohy

the list are connected; the nodes need not be distinct and any of them may
be i or j. When i = j the walk starts and ends at the same node and
is called closed. The walk is a path if all the nodes in the walk are dis-
tinct. Assume that the graph is connected, so that a path exists between
any two distinct nodes. It is a standard fact in graph theory that the (i, j)
element of Am is the number of different walks, if i 6= j, or closed walks,
if i = j, of length m between nodes i and j. A variety of measures have
been built by combining different walk lengths into a single number. Estrada
and Rodŕıguez-Velázquez (2005b) define the subgraph centrality of node i—a
measure of its “well-connectedness”—by

SCi =
(
I +A+

A2

2!
+
A3

3!
+ · · ·

)

ii
= (eA)ii.

By combining walks of all possible lengths connecting node i to itself, and
applying a weighting that decreases rapidly with the walk length, the sub-
graph centrality aims to capture the participation of the node in question
in all subgraphs in the network. The sum of all subgraph centralities of
the nodes in the graph is the Estrada index : trace(eA). Based on similar
reasoning, Estrada and Hatano (2008) define the communicability between
nodes i and j—a measure of how easy it is for “information” to pass from
node i to node j (and a generalization of the notion of shortest path between
the nodes)—by

Cij =
(
I +A+

A2

2!
+
A3

3!
+ · · ·

)

ij
= (eA)ij .

Finally, the betweenness of node r is defined in Estrada, D. J. Higham and
Hatano (2009) by

1

(n− 1)2 − (n− 1)

∑

i,j
i6=j,i6=r,j 6=r

(eA − eA−Er)ij

(eA)ij
,

where Er is zero except in row and column r, where it agrees with A. The
betweenness measures the relative change in communicability when node r
is removed from the network. Experiments in the papers cited above show
that these three measures can provide useful information about practically
occurring networks that is not revealed by most other measures. In this
description A is symmetric, but these concepts can be extended to directed
graphs, for which the adjacency matrix is nonsymmetric. Of course, the ma-
trix exponential owes its appearance to the choice of weights in the sums over
walklengths. Other weights could be chosen, resulting in different matrix
functions in the definitions; see Estrada and D. J. Higham (2008).

When the elements of A not only indicate the existence of a link between
nodes i and j but also assign a positive weight to a link it is natural to

Computing Matrix Functions∗ 167

normalize these definitions. Crofts and D. J. Higham (2009) generalize the
definition of communicability to

Cij = eD
−1/2AD−1/2

,

where D = diag(di) and di =
∑n

k=1 aik is the generalized degree of node i.
They show how this communicability measure is a useful tool in clustering
patients with brain disorders.

Finally, we note that Estrada and Rodŕıguez-Velázquez (2005a) propose
β(A) = trace(cosh(A))/ trace(eA) as a measure of how close a graph is to
being bipartite: β(A) ≤ 1 with β(A) = 1 if and only if the graph G is
bipartite.

3.2. Roots of transition matrices

A transition matrix is a stochastic matrix: a square matrix with nonnegative
entries and row sums equal to 1. In credit risk, a transition matrix records
the probabilities of a firm’s transition from one credit rating to another over
a given time interval (Jarrow, Lando and Turnbull 1997). The shortest pe-
riod over which a transition matrix can be estimated is typically one year,
and annual transition matrices can be obtained from rating agencies such as
Moody’s Investors Service and Standard & Poor’s. However, for valuation
purposes, a transition matrix for a period shorter than one year is usually
needed. A short term transition matrix can be obtained by computing a
root of an annual transition matrix. A six-month transition matrix, for
example, is a square root of the annual transition matrix. This property
has led to interest in the finance literature in the computation or approx-
imation of roots of transition matrices (Israel, Rosenthal and Wei 2001),
(Kreinin and Sidelnikova 2001). Exactly the same mathematical problem
arises in Markov models of chronic diseases, where the transition matrix is
built from observations of the progression in patients of a disease through
different severity states. Again, the observations are at an interval longer
than the short time intervals required for study and the need for a matrix
root arises (Charitos, de Waal and van der Gaag 2008). An early discussion
of this problem, which identifies the need for roots of transition matrices in
models of business and trade, is that of Waugh and Abel (1967).

These applications require a stochastic root of a given stochastic matrix
A, that is, a stochastic matrix X such that Xp = A, where p is typically
an integer, but could be rational. A number of questions arise: does such a
root exist; if so, how can one be computed; and what kind of approximation
should be used if a stochastic root does not exist. These are investigated in
Higham and Lin (2009) and the references therein.

More generally, matrix roots Aα with a real α arise in, for example,
fractional differential equations (Ilić, Turner and Simpson 2009), discrete

168 N. J. Higham and A. H. Al-Mohy

representations of norms corresponding to finite element discretizations of
fractional Sobolev spaces (Arioli and Loghin 2009), and the computation of
geodesic-midpoints in neural networks (Fiori 2008).

In the next three sections we consider methods based on three general
approaches: similarity transformations, polynomial or rational approxima-
tions, and matrix iterations. We do not consider methods based on Defini-
tions 2.1 or 2.2 because neither definition leads to an efficient and numeri-
cally reliable method in general.

4. Similarity transformations

The use of similarity transformations, considered in this section, rests on
the identity f(XAX−1) = Xf(A)X−1 from Theorem 2.3 (c). The aim is
to choose X so that f is more easily evaluated at the matrix B = XAX−1

than at A. When A is diagonalizable, B can be taken to be diagonal, and
evaluation of f(B) is then trivial.

In finite precision arithmetic, this approach is reliable only if X is well
conditioned, that is, if the condition number κ(X) = ‖X‖‖X−1‖ is not
too large. Ideally, X will be unitary, so that in the 2-norm κ2(X) = 1.
For Hermitian A, or more generally normal A, the spectral decomposition
A = QDQ∗ with Q unitary and D diagonal is always possible, and if this
decomposition can be computed then the formula f(A) = Qf(D)Q∗ provides
an excellent way of computing f(A).

For general A, if X is restricted to be unitary then the furthest that A
can be reduced is to Schur form: A = QTQ∗, where Q is unitary and T
is upper triangular. This decomposition is computed by the QR algorithm.
The problem is now reduced to that of evaluating f at a triangular matrix.
The following result gives an explicit formula for the evaluation.

Theorem 4.1. (function of triangular matrix) Let T ∈ C
n×n be up-

per triangular and suppose that f is defined on the spectrum of T . Then
F = f(T) is upper triangular with fii = f(tii) and

fij =
∑

(s0,...,sk)∈Sij

ts0,s1
ts1,s2

. . . tsk−1,sk
f [λs0

, . . . , λsk
], (4.1)

where λi = tii, Sij is the set of all strictly increasing sequences of integers
that start at i and end at j, and f [λs0

, . . . , λsk
] is the kth order divided

difference of f at λs0
, . . . , λsk

.

Proof. See Davis (1973), Descloux (1963), or Van Loan (1975).

While theoretically interesting, the formula (4.1) is of limited computa-
tional interest due to its exponential cost in n. However, the case n = 2 is

Computing Matrix Functions∗ 169

worth noting. For λ1 6= λ2 we have

f

([
λ1 t12
0 λ2

])
=


 f(λ1) t12

f(λ2)− f(λ1)

λ2 − λ1

0 f(λ2)


 . (4.2)

When λ1 = λ2 = λ we have, using a standard relation for confluent divided
differences (Higham 2008, Sec. B.16),

f

([
λ t12
0 λ

])
=

[
f(λ) t12f

′(λ)
0 f(λ)

]
. (4.3)

(This is a special case of (7.10) below.)
A much better way to compute f(T) is from a recurrence of Parlett (1976).

From Theorem 2.3 we know that F = f(T) is upper triangular with diagonal
elements f(tii) and that it commutes with T . The elements in the strict
upper triangle are determined by solving the equation FT = TF in an
appropriate order.

Algorithm 4.2. (Parlett recurrence) Given an upper triangular T ∈
C

n×n with distinct diagonal elements and a function f defined on the spec-
trum of T , this algorithm computes F = f(T) using Parlett’s recurrence.

1 for j = 1:n
2 fjj = f(tjj)
3 for i = j − 1:−1: 1

4 fij = tij
fii − fjj

tii − tjj
+

(j−1∑

k=i+1

fiktkj − tikfkj

)
/ (tii − tjj)

5 end
6 end

Cost: 2n3/3 flops.
The recurrence breaks down when tii = tjj for some i 6= j. In this case,

T can be regarded as a block triangular matrix T = (Tij), with square
diagonal blocks, possibly of different sizes. Then F = (Fij) has the same
block triangular structure by Theorem 2.3 (e) and by equating (i, j) blocks
in TF = FT we obtain

TiiFij − FijTjj = FiiTij − TijFjj +

j−1∑

k=i+1

(FikTkj − TikFkj), i < j. (4.4)

The Sylvester equation (4.4) is nonsingular precisely when Tii and Tjj have
no eigenvalue in common. Assuming that this property holds for all i and j
we obtain the following algorithm.

Algorithm 4.3. (block Parlett recurrence) Given an upper triangu-
lar matrix T = (Tij) ∈ C

n×n partitioned in block m×m form with no two

170 N. J. Higham and A. H. Al-Mohy

diagonal blocks having an eigenvalue in common, and a function f defined
on the spectrum of T , this algorithm computes F = f(T) using the block
form of Parlett’s recurrence.

1 for j = 1:m
2 Fjj = f(Tjj)
3 for i = j − 1:−1: 1
4 Solve for Fij the Sylvester equation (4.4).
5 end
6 end

Cost: Dependent on the block sizes and f .
The problems of how to evaluate f(Tjj) and how to achieve a blocking

with the desired properties are considered in the next section.

4.1. Schur–Parlett algorithm

In order to use the block Parlett recurrence we need to reorder and partition
the matrix T so that no two diagonal blocks have an eigenvalue in common;
here, reordering means applying a unitary similarity transformation to per-
mute the diagonal elements whilst preserving triangularity. But in doing the
reordering and defining the block structure we also need to take into account
the difficulty of evaluating f at the diagonal blocks Tii and the propagation
of errors in the recurrence.

Consider first the evaluation of f(Tii). For notational simplicity, let T ∈
C

n×n play the role of Tii. Assume that derivatives of f are available and
that f has a Taylor series with an infinite radius of convergence. Then we
can evaluate f(T) from the Taylor series. Writing

T = σI +M, σ = trace(T)/n, (4.5)

we evaluate f about the mean, σ, of the eigenvalues:

f(T) =
∞∑

k=0

f (k)(σ)

k!
Mk. (4.6)

If the eigenvalues of T are sufficiently close then the powers of M can be
expected to decay quickly after the (n − 1)st, and so a suitable truncation
of (4.6) should yield good accuracy; indeed, in the special case where T has
only one distinct eigenvalue (tii ≡ σ), M is nilpotent and Mn = 0.

By bounding the truncation error in the Taylor series we can construct the
following algorithm that adaptively chooses the number of terms in order
to achieve the desired accuracy; see Davies and Higham (2003) or Higham
(2008, Sec. 9.1) for the details of the derivation.

Algorithm 4.4. (evaluate function of atomic block) Given a trian-
gular matrix T ∈ C

n×n whose eigenvalues λ1, . . . , λn are “close,” a function

Computing Matrix Functions∗ 171

f having a Taylor series with an infinite radius of convergence, and the abil-
ity to evaluate derivatives of f , this algorithm computes F = f(T) using a
truncated Taylor series.

1 σ = n−1
∑n

i=1 λi, M = T − σI, tol = u
2 µ = ‖y‖∞, where y solves (I − |N |)y = e and N is the strictly

upper triangular part of T . % µ = ‖(I − |N |)−1‖∞
3 F0 = f(σ)In
4 P = M
5 for s = 1:∞
6 Fs = Fs−1 + f (s)(σ)P
7 P = PM/(s+ 1)
8 if ‖Fs − Fs−1‖F ≤ tol‖Fs‖F

% Successive terms are close so check a truncation error bound.
9 Estimate or bound ∆ = max0≤r≤n−1 ωs+r+1/r!, where

ωk = max{ |f (k)(tii)| : i = 1:n }.
10 if µ∆‖P‖F ≤ tol‖Fs‖F , F = Fs, quit, end
11 end
12 end

Algorithm 4.4 costs O(n4) flops, since even if T has constant diagonal, so
that M is nilpotent with Mn = 0, the algorithm may need to form the first
n−1 powers of M . However, n here is the size of a block, and in most cases
the blocks will be of much smaller dimension than the original matrix. Also,
M is an upper triangular matrix, so forming all the powers M2, . . . ,Mn−1

costs n4/3 flops—a factor 6 less than the flop count for multiplying full
matrices.

Now we consider how to reorder and block the Schur factor T . We wish the
Sylvester equations (4.4) to be well conditioned, so that the equations are
solved accurately and errors do not grow substantially within the recurrence.
The conditioning of (4.4) is measured1 by sep(Tii, Tjj)

−1, where

sep(Tii, Tjj) = min
X 6=0

‖TiiX −XTjj‖F
‖X‖F

is the separation of the diagonal blocks Tii and Tjj . The separation is ex-
pensive to compute or estimate accurately, but we can approximate it by a
lower bound that is cheap to evaluate:

sep(Tii, Tjj)
−1 ≈ 1

min{ |λ− µ| : λ ∈ Λ(Tii), µ ∈ Λ(Tjj) }
, (4.7)

where Λ(·) denotes the spectrum. A second goal of the reordering is to

1 In fact, this is a commonly used upper bound for the (interesting part of) the true
condition number (Higham 2002, Sec. 10.3).

172 N. J. Higham and A. H. Al-Mohy

produce diagonal blocks that have close eigenvalues, so that Algorithm 4.4
is efficient.

Denote the reordered upper triangular matrix by T̃ = U∗TU = (T̃ij),
where U is unitary. A reasonable way to satisfy the above requirements for
the diagonal blocks is to ensure that

1 separation between blocks:

min{ |λ− µ| : λ ∈ Λ(T̃ii), µ ∈ Λ(T̃jj), i 6= j } > δ,

2 separation within blocks: for every block T̃ii with dimension bigger
than 1, for every λ ∈ Λ(T̃ii) there is a µ ∈ Λ(T̃ii) with µ 6= λ such that
|λ− µ| ≤ δ.

Here, δ > 0 is a blocking parameter. These conditions produce a blocking
for which the spectra of different diagonal blocks are at least distance δ
apart (thus ensuring that the right-hand side of (4.7) is at most δ−1) while
the eigenvalues within each diagonal block are close, in the sense that every
eigenvalue is at most distance δ from some other eigenvalue. How to obtain
such a reordering is described in Davies and Higham (2003) and Higham
(2008, Sec. 9.3).

The overall algorithm is as follows.

Algorithm 4.5. (Schur–Parlett algorithm) Given A ∈ C
n×n, a func-

tion f having a Taylor series with an infinite radius of convergence, and the
ability to evaluate derivatives of f , this algorithm computes F = f(A).

1 Compute the Schur decomposition A = QTQ∗.
2 If T is diagonal, F = f(T), goto line 10, end
3 Reorder and partition T and update Q to satisfy the conditions above

with δ = 0.1.
% Now A = QTQ∗ is our reordered Schur decomposition,
% with block m×m T .

4 for j = 1:m
5 Use Algorithm 4.4 to evaluate Fii = f(Tii).
6 for i = j − 1:−1: 1
7 Solve the Sylvester equation (4.4) for Fij .
8 end
9 end

10 F = QFQ∗

Cost: Roughly between 28n3 flops and n4/3 flops, and dependent greatly
on the eigenvalue distribution of A.

Algorithm 4.5 is the best available method for general functions f and it
usually performs in a forward stable manner, that is, the forward error is
usually bounded by a modest multiple of cond(f,A)u, where the condition

Computing Matrix Functions∗ 173

number cond(f,A) is defined in Section 7.1. However, the algorithm can be
unstable, and empirically this seems most likely for matrices having large
Jordan blocks. Instability can usually be cured by increasing δ to 0.2, but
Davies and Higham (2003) have shown experimentally that the algorithm
can be unstable for all choices of δ.

4.2. Schur method for matrix roots

For some functions it is possible to compute f(T) by a different method than
the Parlett recurrence. The main cases of practical interest are pth roots. If
X is a square root of the upper triangular matrix T then the diagonal of X
is readily determined and the superdiagonal elements can be obtained from
the equation X2 = T . The corresponding Schur method, due to Björck and
Hammarling (1983), can be arranged as follows.

Algorithm 4.6. (Schur method for square root) Given a nonsingu-
lar A ∈ C

n×n this algorithm computes X =
√
A via a Schur decomposition,

where
√· denotes any primary square root.

1 Compute a (complex) Schur decomposition A = QTQ∗.
2 for j = 1:n
3 ujj =

√
tjj

4 for i = j − 1:−1: 1

5 uij =
tij −

∑j−1
k=i+1 uikukj

uii + ujj

6 end
7 end
8 X = QUQ∗

Cost: 281
3n

3 flops.
Note that Algorithm 4.6 breaks down if uii = −ujj for some i and j, which

can happen only if T has two equal diagonal elements that are mapped
to different square roots—in other words, the algorithm is attempting to
compute a nonprimary square root. The algorithm can compute any primary
square root by a suitable choice of the square roots of the diagonal elements.
The computed square root X̂ satisfies

X̂2 = A+∆A, ‖∆A‖F ≤ γ̃n3 ‖X̂‖2F ,
which is as good a residual bound as the rounded exact square root satisfies
and so is essentially optimal.

For computing real square roots of real matrices it is more appropriate
to employ the real Schur decomposition and thereby work entirely in real
arithmetic; see Higham (1987) or Higham (2008, Sec. 6.2).

For pth roots, more complicated recurrences can be used to solve Xp = T ,
as shown by Smith (2003). The overall Schur algorithm has a cost of O(pn3)

174 N. J. Higham and A. H. Al-Mohy

flops. If p = p1p2 . . . pt is composite, the pth root can be computed by suc-
cessively computing the p1th, p2th, . . . , ptth roots, with a computational
saving. Greco and Iannazzo (2010) show how to use the binary representa-
tion of p to compute X at a cost of O(n2p+ n3 log2 p) flops, which achieves
further savings when p is large and not highly composite.

4.3. Block diagonalization

If we are willing to use non-unitary transformations then we can go beyond
the Schur form to block diagonal form to obtain A = XDX−1, where D is
block diagonal. Such a form can be obtained by first computing the Schur
form and then eliminating off-diagonal blocks by solving Sylvester equa-
tions (Bavely and Stewart 1979), (Golub and Van Loan 1996, Sec. 7.6.3),
(Lavallée, Malyshev and Sadkane 1997). In order to guarantee a well condi-
tioned X a bound must be imposed on the condition numbers of the individ-
ual transformations, and this bound will be a parameter in the algorithm.
The attraction of block diagonal form is that computing f(A) reduces to
computing f(D), and hence to computing f(Dii) for each diagonal block
Dii, and the Dii are triangular if obtained as indicated above. However,
evaluating f(Dii) is still a nontrivial calculation because Algorithms 4.2
and 4.4 may not be applicable. The Schur–Parlett method and the block
diagonalization method are closely related. Both employ a Schur decom-
position, both solve Sylvester equations, and both must compute f(Tii) for
triangular blocks Tii. Parlett and Ng (1985, Sec. 5) show that the two meth-
ods are mathematically equivalent, differing only in the order in which two
commuting Sylvester operators are applied.

5. Polynomial and rational approximations

A natural way to approximate f(A) is to mimic what is often done for scalar
functions: to approximate f(A) by r(A) where r is some suitable polynomial
or rational approximation to f . From scalar approximation theory we may
know some region of C in which f(z) ≈ r(z) is a good approximation.
However, if the spectrum of A lies in this region there is no guarantee that
the matrix approximation f(A) ≈ r(A) is equally good. Indeed if A is
diagonalizable with A = ZDZ−1, then f(A)− r(A) = Z(f(D)− r(D))Z−1,
so that ‖f(A)− r(A)‖ ≤ κ(Z)‖f(D)− r(D)‖. Hence the error in the matrix
approximation is potentially as much as κ(Z) times larger than the error in
the scalar approximation. If A is normal, so that we can take κ2(Z) = 1,
then the scalar and matrix approximation problems are essentially the same.
But for nonnormal matrices achieving a good approximation requires more
than simply approximating well at the eigenvalues.

A general framework for approximating f(A) is as follows.

Computing Matrix Functions∗ 175

Framework 5.1. (for approximating f(A))

(1) Choose a suitable rational approximation r and a transformation func-
tion g and set A← g(A).

(2) Compute X = r(A) by some appropriate scheme.
(3) Apply transformations to X that undo the effect of the initial transfor-

mation on A.

The purpose of step (1) is to transform A so that f(A) ≈ r(A) is a sufficiently
good approximation. Both g and r may depend on A. In the following
subsections we describe how this can be done for some specific functions f .

For a polynomial approximation at step (2) the natural choice when f has
a Taylor series f(x) =

∑∞
i=0 aix

i is the truncated Taylor series

Tk(A) =
k∑

i=0

aiA
i. (5.1)

Among rational approximations the Padé approximants prove to be par-
ticularly useful. Recall that rkm(x) = pkm(x)/qkm(x) is a [k/m] Padé ap-
proximant of f if pkm and qkm are polynomials of degree at most k and m,
respectively, qkm(0) = 1, and

f(x)− rkm(x) = O(xk+m+1) (5.2)

(Brezinski and Van Iseghem 1995), (Baker and Graves-Morris 1996). Thus a
Padé approximant reproduces as many terms as possible of the Taylor series
about the origin. If a [k/m] Padé approximant exists then it is unique.

For the evaluation at step (2) there are many possibilities and which is
best depends very much on r. Consider, first, the case of polynomial r. For a
matrix argument, evaluation by Horner’s method is not of optimal efficiency
for polynomials of degree 4 and higher. More efficient alternatives are based
on explicitly forming certain matrix powers, as is done in a general method
of Paterson and Stockmeyer (1973) and a variant of Van Loan (1979). For
rational r = p/q, the possibilities are more diverse:

(1) Evaluate p(A) and q(A) and then solve the multiple right-hand side
system q(A)r(A) = p(A).

(2) Evaluate r(A) from a continued fraction representation of r in either
top-down or bottom-up fashion.

(3) Evaluate r(A) from a partial fraction representation, ideally with linear
factors but possibly admitting higher degree factors in order to keep the
coefficients real.

The choice of scheme should take into account numerical stability and will,
in general, depend on f . For details of all the above schemes see Higham
(2008, Secs. 4.2, 4.4.3).

We now focus on some specific transcendental functions of interest.

176 N. J. Higham and A. H. Al-Mohy

5.1. Matrix exponential

For Hermitian A, best L∞ approximations to ex can be employed, for which
matrix level error bounds follow immediately from error bounds at the scalar
level, as noted at the start of this section. However, we concentrate in this
section on general matrices.

Truncating the Taylor series is one way to obtain an approximation. Padé
approximation is particularly attractive because the [k/m] Padé approxi-
mants to the exponential function are known explicitly for all k and m:

pkm(x) =
k∑

j=0

(k +m− j)!k!
(k +m)! (k − j)!

xj

j!
, qkm(x) =

m∑

j=0

(k +m− j)!m!

(k +m)! (m− j)!
(−x)j

j!
.

(5.3)
Of course, the truncated Taylor series is just the [k/0] Padé approximant.
Among Padé approximants the diagonal approximants, rm ≡ rmm, are pre-
ferred, because they are more efficient (Moler and Van Loan 1978) and they
have advantageous stability properties (Varga 2000, Chap. 8).

The standard way in which to use these approximations is within the
scaling and squaring method. This method scales the matrix according to
A ← 2−sA, with s chosen so that ‖A‖ is of order 1, evaluates X = rm(A)
for some suitable diagonal Padé approximant rm, then undoes the effect of
the scaling by repeated squaring: X ← X2s

. The method originates with
Lawson (1967). Moler and Van Loan2 (1978) give a backward error analysis
that shows that rm(2−sA)2

s
= eA+E with an explicit bound on E expressed

in terms of ‖A‖. Here, E is measuring the effect of truncation errors in the
Padé approximant and exact arithmetic is assumed. Based on this analysis
they give a table indicating the optimal choice of s and m for a given ‖A‖
and ǫ, where ‖E‖ ≤ ǫ‖A‖ is required, and also conclude from it that Padé
approximants are more efficient than Taylor series. The analysis in Moler
and Van Loan (1978) led to implementations taking a fixed choice of m and
s. For example, the function expm in version 7.1 and earlier of MATLAB
used m = 6 and scaled so that ‖2−sA‖∞ ≤ 0.5. However, a more efficient
and more accurate (in floating point arithmetic) algorithm can be obtained
by using higher degree approximants, with the choice of m and s determined
from sharper truncation error bounds.

We need the following result of Al-Mohy and Higham (2009b), which is a
slightly sharper version of a result of Higham (2005). Let νm = min{ |t| :
qm(t) = 0 } and

Ωm = {X ∈ C
n×n : ρ(e−Xrm(X)− I) < 1 and ρ(X) < νm },

where ρ denotes the spectral radius.

2 This classic paper was reprinted with an update in Moler and Van Loan (2003).

Computing Matrix Functions∗ 177

Table 5.1. Constants θm needed in Algorithm 5.2.

m θm

3 1.495585217958292e-2
5 2.539398330063230e-1
7 9.504178996162932e-1
9 2.097847961257068e0

13 5.371920351148152e0

Lemma 5.1. For A ∈ Ωm we have rm(2−sA)2
s

= eA+∆A, where ∆A =
h2m+1(2

−sA) and h2m+1(x) = log(e−xrm(x)). Moreover,

‖∆A‖
‖A‖ ≤

∑∞
k=2m+1 |ck|‖2−sA‖k

‖2−sA‖ , (5.4)

where h2m+1(x) =
∑∞

k=2m+1 ck x
k.

The bound in the lemma can be evaluated for a given value of ‖A‖ by
determining the coefficients ck symbolically and then summing a suitable
number of the terms in the numerator at high precision. Using a zero-
finder we can therefore determine, for a range of m, the largest value of
‖2−sA‖, denoted by θm, such that the bound is no larger than u = 2−53 ≈
1.1 × 10−16, the unit roundoff for IEEE double precision arithmetic; some
of these constants are given in Table 5.1. By taking account of the cost of
evaluating rm(2−sA)2

s
, we can determine the optimal choice of s and m for

a given ‖A‖. The analysis also needs to ensure that the effect of rounding
errors in the evaluation of rm is not significant. The ideas above were used
by Higham (2005) to derive the following algorithm.

Algorithm 5.2. (scaling and squaring algorithm) This algorithm eval-
uates the matrix exponential X = eA of A ∈ C

n×n using the scaling and
squaring method. It uses the constants θm given in Table 5.1. The algorithm
is intended for IEEE double precision arithmetic.

1 for m = [3 5 7 9]
2 if ‖A‖1 ≤ θm, evaluate X = rm(A), quit, end
3 end
4 A← A/2s with s ≥ 0 a minimal integer such that ‖A/2s‖1 ≤ θ13

(i.e., s = ⌈log2(‖A‖1/θ13)⌉).
5 Evaluate X = r13(A).
6 X ← X2s

by repeated squaring.

The details of how to evaluate rm can be found in Higham (2005), Higham
(2008, Sec. 10.3), or Higham (2009).

Although the derivation of Algorithm 5.2 is based on minimizing the cost

178 N. J. Higham and A. H. Al-Mohy

of the computation, it is a welcome side effect that the accuracy is usually
also improved compared with the previous choices of s and m. The reason is
that the most dangerous phase of the algorithm—whose effect on the overall
numerical stability is still not well understood—is the s squarings, and the
use of high Padé degrees up to m = 13 together with sharper truncation
error bounds tends to produce smaller values of s and hence reduce the
number of squarings.

The long-standing preference of Padé approximants over Taylor series
within the scaling and squaring method needs revisiting with the aid of the
sharper bound of Lemma 5.1. This is done in Appendix A, where we find
that Padé approximants remain preferable.

We now reconsider the choice of s. Figure 5.1 shows what happens when
we force Algorithm 5.2 to choose a particular value of s. For two different
matrices we plot the relative error ‖X− X̂‖1/‖X‖1, where X is an accurate
approximation to eA computed at high precision in MATLAB using the
Symbolic Math Toolbox. For the first matrix, -magic(6)^2 in MATLAB,
we see in the first plot of Figure 5.1 that the relative error is of order 1
with no scaling (s = 0) and it reaches a minimum of 2.2× 10−13 for s = 11.
Algorithm 5.2 chooses s = 12, which is nearly optimal as regards the forward
error. However, for the matrix

A =




−1 −1 −104 −104

−1 −1 −104 −104

0 0 −1 −1
0 0 −1 −1


 (5.5)

we see in the second plot of Figure 5.1 that the error grows mostly mono-
tonically with s. The value s = 12 chosen by Algorithm 5.2 is much larger
than the optimal value s = 0; thus Algorithm 5.2 computes a less accurate
result than the optimum and at significantly greater cost. An explanation
for this behavior can be seen from the following MATLAB computation:

for i = 1:10, fprintf(’%9.1e ’, norm(A^i)^(1/i)), end

2.0e+004 2.8e+002 6.2e+001 2.8e+001 1.7e+001 1.3e+001

9.8e+000 8.2e+000 7.1e+000 6.3e+000

While ‖A‖2 is of order 104, the successive powers of A are smaller than
might be expected, or, in other words, the inequalities ‖Ai‖2 ≤ ‖A‖i2 are
very weak. Since the derivation of Algorithm 5.2 is based on bounding a
power series by making use of such inequalities, it is not surprising that the
algorithm can make a conservative choice of s. To do better, it is necessary
to take account of the behaviour of the powers of A.

Notice that the matrix A in (5.5) is block 2 × 2 block upper triangular
with both diagonal blocks having norm of order 1, while the off-diagonal
block has norm of order 104. In this situation, Algorithm 5.2 is forced to

Computing Matrix Functions∗ 179

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10

−20

10
−10

10
0

10
10

s

‖A‖1 = 1.2e+004

0 2 4 6 8 10 12 14 16
10

−16

10
−14

10
−12

10
−10

s

‖A‖1 = 2.0e+004

Figure 5.1. Scaling argument s versus relative error of scaling and squaring
method, for A given by -magic(6)^2 (top) and (5.5) (bottom). The
symbol • marks the value of s chosen by Algorithm 5.2; � marks the value
given by the algorithm of Al-Mohy and Higham (2009b).

take a large s in order to bring the overall matrix norm down to θ13 ≈ 5.3,
even though this is not necessary as regards computing the exponentials of
of the diagonal blocks. That it might not be necessary to let the off-diagonal
blocks determine s can be seen from the formula (see, e.g., Higham (2008,
Problem 10.12), Van Loan (1978))

exp

([
A11 A12

0 A22

])
=


 e

A11

∫ 1

0
eA11(1−s)A12e

A22s ds

0 eA22


 . (5.6)

Since A12 enters only linearly in the expression for eA it is reasonable to
argue that its norm should not influence s.

This phenomenon, whereby a much larger s is chosen than necessary in
order to approximate eA to the desired accuracy, was identified by Kenney
and Laub (1998), and later by Dieci and Papini (2000), and is referred to as
overscaling.

180 N. J. Higham and A. H. Al-Mohy

Al-Mohy and Higham (2009b) derive a new scaling and squaring algorithm
that exploits the quantities dk = ‖Ak‖1/k for a few values of k. The key idea
is to bound the truncation error for the Padé approximant using these values.
Specifically, it can be shown that with h2m+1 defined as in Lemma 5.1 we
have

‖h2m+1(A)‖ ≤ h̃2m+1(max(dp, dp+1)) if 2m+ 1 ≥ p(p− 1),

where h̃2m+1(x) =
∑∞

k=2m+1 |ck|xk. The algorithm re-uses the θm values
in Table 5.1, but the scaling is now chosen so that max(dk, dk+1), rather
than ‖A‖, is bounded by θm (for some appropriate k and m). In addition
to computing dk for values of k for which Ak must in any case be formed,
the algorithm also estimates dk for a few additional k using the matrix
norm estimator of Higham and Tisseur (2000). The algorithm of Al-Mohy
and Higham (2009b) also incorporates an improvement for the triangular
case; the need for exponentials of triangular matrices arises, for example,
in the solution of radioactive decay equations (Morai and Pacheco 2003),
(Yuan and Kernan 2007). In the squaring phase the diagonal and first su-

perdiagonal of Xi = (rm(T))2
i
(where T is the scaled triangular matrix) are

computed from exact formulae for the corresponding elements of e2
iT , which

both gives a more accurate diagonal and first superdiagonal and reduces the
propagation of errors in the squaring recurrence. The new algorithm gener-
ally provides accuracy at least as good as Algorithm 5.2 at no higher cost,
and for matrices that are triangular or cause overscaling it usually yields
significant improvements in accuracy, cost, or both. Figure 5.1 shows that
for the matrix (5.5) the new algorithm chooses an almost optimal value of
s, yielding a much more accurate solution than Algorithm 5.2.

5.2. Matrix logarithm

For the matrix logarithm we have the expansion

log(I +X) = X − X2

2
+
X3

3
− X4

4
+ · · · , ρ(X) < 1. (5.7)

In order to use Framework 5.1 we need to choose the initial transformation g
to bring A close to the identity. This is achieved by repeatedly taking square

roots until A1/2k
is sufficiently close to I. By (2.8), the square roots are un-

done by scalar multiplication, so the overall approximation is 2kr(A1/2k−I)
for some suitable rational approximation r(x) to log(1 + x). This approx-
imation was originally used by Briggs for computing logarithms of scalars
(Goldstine 1977), (Phillips 2000). For matrices, the approximation leads to
the inverse scaling and squaring method, which was proposed by Kenney
and Laub (1989a).

As for the exponential, the preferred approximations are diagonal Padé

Computing Matrix Functions∗ 181

approximants. The diagonal Padé approximants rm to log(1+x) are known
explicitly in two different forms. They have the continued fraction expansion

rm(x) =
c1x

1 +
c2x

1 +
c3x

1 + · · ·+ c2m−2x

1 +
c2m−1x

1 + c2mx

, (5.8a)

c1 = 1, c2j =
j

2(2j − 1)
, c2j+1 =

j

2(2j + 1)
, j = 1, 2, . . . ,(5.8b)

which is the truncation of an infinite continued fraction for log(1+x). They
can also be represented in linear partial fraction form

rm(x) =

m∑

j=1

α
(m)
j x

1 + β
(m)
j x

, (5.9)

where the α
(m)
j are the weights and the β

(m)
j the nodes of the m-point Gauss-

Legendre quadrature rule on [0, 1], all of which are real.
Analogously to the scaling and squaring method for the exponential, early

algorithms used a fixed Padé degree and a fixed condition ‖A1/2k − I‖ ≤ θ
for determining how many square roots to take. Kenney and Laub (1989a)
take m = 8 and θ = 0.25, while Dieci, Morini and Papini (1996) take m = 9
and θ = 0.35. The use of a degree m dependent on ‖A‖ originates with
Cheng, Higham, Kenney and Laub (2001), who exploit the following result
of Kenney and Laub (1989b).

Theorem 5.3. For ‖X‖ < 1 and any subordinate matrix norm,

‖rm(X)− log(I +X)‖ ≤ |rm(−‖X‖)− log(1− ‖X‖)|. (5.10)

This result says that the error in the matrix Padé approximation is bounded
by the error in the scalar approximation at minus the norm of the matrix.
After each square root is taken, this bound can be used to check whether the
approximation error is guaranteed to be sufficiently small for a particular m.
In designing an algorithm it is necessary to consider whether, when (5.10) is
satisfied for some allowable m, it is worth taking another square root in the
hope that the extra cost will be outweighed by being able to take a smaller
m. Guidance in answering this question comes from the approximation,
valid for large enough k,

‖I −A1/2k+1‖ ≈ 1

2
‖I −A1/2k‖, (5.11)

which follows from (I −A1/2k+1

)(I +A1/2k+1

) = I −A1/2k
.

182 N. J. Higham and A. H. Al-Mohy

Unlike for the exponential, the details of an inverse scaling and squaring
algorithm depend on whether the matrix A is full or triangular, because the
appropriate method for computing the square roots (and hence the cost of
the square root stage) depends on the structure. If A is triangular, or an
initial Schur factorization is computed to reduce to the triangular case, then
the Schur method (Algorithm 4.6) can be used, otherwise a variant of the
Newton iteration is appropriate; see Section 6.1. For evaluating the Padé
approximant the best compromise between speed and accuracy turns out to
be the partial fraction form (Higham 2001).

Cheng et al. (2001) give an inverse scaling and squaring algorithm based
on the above ideas that accepts as input a parameter specifying the desired
accuracy and computes square roots using the product form of the Denman–
Beavers iteration (6.9), with the number of iterations used to compute each
square root carefully chosen to minimize the overall cost. Higham (2008,
Sec. 11.5) gives algorithms for both the full and triangular cases in which
the parameters used in the algorithm’s logic are precomputed, analogously
as for Algorithm 5.2, rather than computed at run-time as in Cheng et al.
(2001).

5.3. Trigonometric Functions

We can apply Framework 5.1 to trigonometric functions by scaling A ←
2−sA in step (1) and using the appropriate double angle formulas in step (3).
This idea was first proposed by Serbin and Blalock (1980) for the matrix
cosine, using cos(2A) = 2 cos(A)2 − I.

It is not known whether Padé approximants rkm to the matrix cosine
and sine exist for all degrees k and m, though they can be determined
symbolically for the range of degrees of practical interest. Higham and
Smith (2003) develop an algorithm that chooses s so that ‖2−sA‖∞ ≤ 1,
approximates cos(A) ≈ r8(2−sA), and then uses the double angle recurrence.
Hargreaves and Higham (2005) extend this approach by choosing the degree
of the Padé approximant and the amount of scaling based on truncation
error bounds expressed in terms of ‖A2‖1/2 instead of ‖A‖, thus using a
more rudimentary version of the approach used for the exponential by Al-
Mohy and Higham (2009b). They also derive an algorithm for computing
both cos(A) and sin(A), by adapting the ideas developed for the cosine and
intertwining the cosine and sine double angle recurrences.

So far there is little work on algorithms for other trigonometric functions.
Some ideas concerning the tangent and inverse tangent for Hermitian ma-
trices are given by Cheng, Higham, Kenney and Laub (2000).

Computing Matrix Functions∗ 183

6. Matrix iterations

Matrix roots, the matrix sign function, and the unitary polar factor (which
we will not consider in this paper) are all amenable to computation by matrix
iterations of the form

Xk+1 = g(Xk), (6.1)

where g is some nonlinear, usually rational, function. The starting matrix
X0 is almost always A in practice, and indeed in some cases A does not
appear in the iteration itself, that is, g is independent of A. Such itera-
tions are attractive because they are easy to implement, requiring just the
basic building blocks of matrix multiplication and the solution of multiple
right-hand side linear systems. It might appear that convergence analysis is
straightforward, reducing to the scalar case that is usually well understood,
but this is not necessarily so. Moreover, the numerical stability of matrix
iterations in finite precision arithmetic is a subtle issue, with small changes
in the form of the iteration sometimes greatly changing the stability.

6.1. Matrix sign function and square root

Two fundamental iterations are the Newton iteration for the matrix sign
function,

Xk+1 =
1

2
(Xk +X−1

k), X0 = A (6.2)

and the Newton iteration for the matrix square root,

Xk+1 =
1

2
(Xk +X−1

k A), X0 = A. (6.3)

The term “Newton iteration” needs explaining. Iteration (6.2) is precisely
Newton’s method applied to the equationX2 = I, assuming that the iterates
are uniquely defined (Higham 2008, Prob. 5.8). Likewise, iteration (6.3)
is Newton’s method applied to X2 = A provided the iterates are uniquely
defined, and the proof (Higham 2008, Lem. 6.8) relies on the fact thatXkA =
AXk for all k. Note, however, that if we select an arbitrary X0 in (6.3) then
the iteration is in general no longer equivalent to Newton’s method, because
the iterates Xk will not now commute with A.

For A ∈ C
n×n having no pure imaginary eigenvalues, the iterates (6.2)

converge quadratically to sign(A). For A ∈ C
n×n with no eigenvalues on R

−

the Xk from (6.3) converge quadratically to the principal square root, A1/2.
These results can be proved at the matrix level without using a transforma-
tion to Jordan form to introduce the scalar case. For the sign iteration the
convergence reduces to the fact that Gk → 0 as k →∞ if the spectral radius
ρ(G) < 1. The convergence of the square root iteration can be shown to be
equivalent to that of the sign iteration for X0 = A1/2. See Higham (2008,
Thms. 5.6, 6.9) for details.

184 N. J. Higham and A. H. Al-Mohy

Table 6.2. Iteration functions fℓm from the Padé family (6.4).

m = 0 m = 1 m = 2

ℓ = 0 x
2x

1 + x2

8x

3 + 6x2 − x4

ℓ = 1
x

2
(3− x2)

x(3 + x2)

1 + 3x2

4x(1 + x2)

1 + 6x2 + x4

ℓ = 2
x

8
(15− 10x2 + 3x4)

x

4

(15 + 10x2 − x4)

1 + 5x2

x(5 + 10x2 + x4)

1 + 10x2 + 5x4

The Newton iteration for sign(A), originally proposed by Roberts (1980),
is the inverse of a member of an infinite Padé family of iterations that have
some remarkable properties. The (ℓ,m) iteration is

Xk+1 = Xk pℓm(I −X2
k)qℓm(I −X2

k)−1 =: fℓm(Xk), X0 = A, (6.4)

where rℓm(ξ) = pℓm(ξ)/qℓm(ξ) is the [ℓ/m] Padé approximant to h(ξ) = (1−
ξ)−1/2. The appearance of h arises from the relation sign(z) = z/(z2)1/2 =
z/(1− (1− z2))1/2 = zh(1− z2).

Table 6.2 shows the first nine iteration functions fℓm from this family.
For ℓ = m and ℓ = m − 1, the polynomials xpℓm(1 − x2) and qℓm(1 − x2)
are, respectively, the odd and even parts of (1 + x)ℓ+m+1 (Kenney and
Laub 1991b), which provides an easy way to generate the iteration functions.
Note that f01 gives the iteration

Xk+1 = 2Xk(I +X2
k)−1, X0 = A, (6.5)

which generates matrices that are the inverses of the those from (6.2), while
f10 gives the Newton–Schulz iteration

Xk+1 =
1

2
Xk(3I −X2

k), X0 = A. (6.6)

This latter iteration can be derived from the Newton iteration (6.2) by ap-
proximating the inverse therein by one step of the Newton–Schulz iteration
for the matrix inverse with Xk as starting value.

The following result of Kenney and Laub (1991b) describes the conver-
gence properties.

Theorem 6.1. (convergence of Padé iterations) Let A ∈ C
n×n have

no pure imaginary eigenvalues and let S = sign(A). Consider the iteration
(6.4) with ℓ+m > 0 and any subordinate matrix norm.

(a) For ℓ ≥ m − 1, if ‖I − A2‖ < 1 then Xk → S as k → ∞ and

‖I −X2
k‖ < ‖I −A2‖(ℓ+m+1)k

.

Computing Matrix Functions∗ 185

(b) For ℓ = m− 1 and ℓ = m,

(S −Xk)(S +Xk)
−1 = [(S −A)(S +A)−1](ℓ+m+1)k

and hence Xk → S as k →∞.

Theorem 6.1 shows that the iterations with ℓ = m − 1 and ℓ = m are
globally convergent (that is, convergent for any A), while those with ℓ ≥
m+ 1 have local convergence, the convergence rate being ℓ+m+ 1 in every
case.

Other interesting properties of the Padé family can be found in Higham
(2008, Thm. 5.9).

The Padé iterations for the sign function have analogues for the square
root that can be derived using the relation (Higham 1997)

sign

([
0 A
I 0

])
=

[
0 A1/2

A−1/2 0

]
. (6.7)

By applying any sign iteration to the matrix [0I
A
0], using (6.7), and then

reading off the (1,2) and (2,1) blocks, a coupled iteration for the square root
is obtained. For example, if we start with the Newton iteration (6.2) we
obtain

Xk+1 =
1

2

(
Xk + Y −1

k

)
, X0 = A,

Yk+1 =
1

2

(
Yk +X−1

k

)
, Y0 = I.

(6.8)

This iteration was originally derived by Denman and Beavers (1976). It
is easy to show that Yk ≡ A−1Xk, and so Xk satisfies (6.3). A general
result of Higham, Mackey, Mackey and Tisseur (2005, Thm. 4.5) shows that
for essentially any sign iteration this approach produces a coupled iteration
with matrices Xk converging to A1/2 and Yk converging to A−1/2, both
with the same order of convergence as the original sign iteration. Thus the
convergence is quadratic for (6.8). A variant of (6.8) that trades a matrix
inverse for a multiplication is obtained by setting Mk = XkYk in (6.8):

Xk+1 =
1

2
Xk(I +M−1

k), X0 = A,

Mk+1 =
1

2

(
I +

Mk +M−1
k

2

)
, M0 = A,

(6.9)

At first sight, it may be unclear why (6.8) or (6.9) might be preferred to
the Newton iteration (6.3), since they require 4n3 flops per iteration versus
8n3/3 flops for (6.3). The answer is that the stability properties of the
iterations are very different.

In general, stability can be defined as follows for a matrix iteration (6.1).

186 N. J. Higham and A. H. Al-Mohy

Definition 6.2. (stability) Consider an iteration Xk+1 = g(Xk) with a
fixed point X. Assume that g is Fréchet differentiable3 at X. The iteration
is stable in a neighborhood of X if the Fréchet derivative Lg(X) has bounded
powers, that is, there exists a constant c such that ‖Li

g(X)‖ ≤ c for all i > 0.

Note that stability concerns behaviour close to convergence and so is an
asymptotic property. The motivation for the definition is that Lg determines
how a perturbation Ek in Xk is propagated through the iteration, and this
perturbation will have a bounded effect near X if the iteration is stable.
Although it is an asymptotic property, this notion proves to be a good
predictor of the overall numerical stability of a matrix iteration. It is some-
times the case that Lg is idempotent, that is, L2

g(X,E) = Lg(X,Lg(X,E)) =
Lg(X,E), in which case stability is immediate. This notion of stability was
introduced by Cheng et al. (2001) and developed further by (Higham 2008,
Sec. 4.9.4).

For the Newton iteration (6.3) we have Lg(X,E) = (E−X−1EX−1A)/2,

and, at the fixed point, Lg(A
1/2, E) = (E−A−1/2EA1/2)/2. The eigenvalues

of Lg(A
1/2) can be shown to be

µij =
1

2
(1− λ1/2

i λ
−1/2
j), i, j = 1:n,

where the λi are the eigenvalues of A, and the µij will be within the unit cir-
cle (which is necessary for stability) only for very well behaved matrices A.
Thus in general the iteration is unstable, and this is easily demonstrated
experimentally. The instability was first identified by Laasonen (1958).
Higham (1986b) explained the instability and derived the stability condi-
tion |µij | < 1.

It is perhaps surprising that the process of rewriting the Newton iteration
in the coupled form given by the Denman–Beavers iteration (6.8) stabilizes
it. The iteration function is now

G(X,Y) =
1

2

[
X + Y −1

Y +X−1

]
.

At the limit X = A1/2, Y = A−1/2 we have

Lg(A
1/2, A−1/2;E,F) =

1

2

[
E −A1/2FA1/2

F −A−1/2EA−1/2

]
, (6.10)

and it is easy to see that Lg(A
1/2, A−1/2) is idempotent. Hence the Denman–

Beavers iteration is stable. The Denman–Beavers iteration is just one of
several ways of rewriting the Newton iteration as a coupled iteration, all of
which are stable; see Higham (2008, Chap. 6) for more details.

3 See Section 7 for the definition of Fréchet derivative.

Computing Matrix Functions∗ 187

The iterations described above are all of limited use in their basic forms.
If we take A = θ ∈ R for some θ ≫ 1 then the sign iteration (6.2) ap-
proximately effects x ← x/2 in the early stages, so many steps are needed
before the asymptotic quadratic convergence comes into effect. In practice
the iterations are used in conjunction with scaling. Usually, scaling consists
of replacing Xk by µkXk for some µk > 0 in the formula for Xk+1 (with a
corresponding change for the other iterate in a coupled iteration), though
more general scalings with more than one parameter can also be considered.
Standard scalings for the Newton sign iteration are

determinantal scaling: µk = |det(Xk)|−1/n, (6.11)

spectral scaling: µk =
√
ρ(X−1

k)/ρ(Xk), (6.12)

norm scaling: µk =
√
‖X−1

k ‖/‖Xk‖. (6.13)

Each of these is in some way trying to bringXk closer to sign(Xk) = sign(A).
Experiments show that there is no clear best scaling, but spectral scaling
does have a finite termination property when A has only real eigenvalues
(Barraud 1979, Sec. 4), (Higham 2008, Thm. 5.11). Corresponding scalings
for the square root iterations can be derived by using the connections with
the sign function in Higham (2008, Thm. 6.9) and (6.7).

A number of linearly convergent iterations have been investigated in the
literature, mostly for the square root and usually with structured matrices
in mind. We mention three of them. First, with A ≡ I −C, is the binomial
iteration,

Xk+1 =
1

2
(C +X2

k), X0 = 0, (6.14)

so called because it is essentially a convenient way of evaluating the binomial

expansion (I − C)1/2 =
∑∞

j=0

(1

2

j

)
(−C)j ≡ I − P . The iterates Xk converge

to I − P if the eigenvalues of C lie in the main cardioid of the Mandelbrot
set stretched by a factor 4 (Higham 2008, Thm. 6.14). If C has nonnegative
elements (C ≥ 0) and spectral radius less than 1 then the convergence is
monotonic from below in the elementwise ordering. An important class of
matrices satisfying the latter condition after scaling is the nonsingular M-
matrices, which are the nonsingular A ∈ R

n×n such that A = sI −B, where
B ≥ 0 and s > ρ(B). If we write A = s(I − C) with C = s−1B ≥ 0
then ρ(C) < 1 and so the binomial iteration converges monotonically when
applied to I − C.

Next, the Pulay iteration (Pulay 1966) writes A1/2 = D1/2 + B with D
diagonal and positive definite (D = diag(A) being the natural choice if it is
positive definite) and computes B as the limit of the Bk from the iteration

D1/2Bk+1 +Bk+1D
1/2 = A−D −B2

k, B0 = 0. (6.15)

188 N. J. Higham and A. H. Al-Mohy

Finally, the Visser iteration (Visser 1937), (Elsner 1970) has the form

Xk+1 = Xk + α(A−X2
k), X0 = (2α)−1I. (6.16)

Both iterations are forms of modified Newton iterations with the Fréchet
derivative approximated by a constant. A sufficient condition for the con-
vergence of the Pulay iteration is that A1/2 −D1/2 is small compared with
D1/2 (Higham 2008, Thm. 6.15). The Visser iteration is related to the bi-
nomial iteration; convergence to A1/2 is guaranteed if the eigenvalues of
I − 4α2A lie in the cardioid referred to above.

For Hermitian positive definite matrices a very good way to compute the
principal square root without computing the spectral decomposition is as
follows (Higham 1986a).

Algorithm 6.3. Given a Hermitian positive definite matrix A ∈ C
n×n

this algorithm computes H = A1/2.

1 A = R∗R (Cholesky factorization).
2 Compute the Hermitian polar factor H of R by applying

(Higham 2008, Alg. 8.20) to R (exploiting the triangularity of R).

Cost: Up to about 152
3n

3 flops.
The algorithm used in step 2 of Algorithm 6.3 employs a (scaled) Newton

iteration for the unitary polar factor that is closely related to the Newton
iteration (6.2) for the matrix sign function.

6.2. Matrix pth root

The Newton iteration for the principal pth root of A analogous to (6.3) is

Xk+1 =
1

p
[(p− 1)Xk +X1−p

k A], X0 = I. (6.17)

As in the p = 2 case, this iteration is unstable except for A with spectrum
clustered around 1. The convergence properties for p > 2, however, are much
more complicated than for p = 2; for convergence, the eigenvalues of A must
lie in regions of the complex plane having a fractal structure. Indeed, these
regions are convergence regions for the map xk+1 = [(p − 1)xk + x1−p

k a]/p,
which is a classic example for the analysis of rational iterations via the theory
of Julia sets (Peitgen, Jürgens and Saupe 1992), (Schroeder 1991).

Iannazzo (2006) identifies a set { z ∈ C : Re z > 0 and |z| ≤ 1 }∪R
+ such

that if the eigenvalues of A lie in the set then the iteration (6.17) converges
quadratically to A1/p. He suggests an algorithm that uses an initial square
root followed by a scaling such that a coupled, stable form of iteration (6.17)
converges for the preprocessed matrix. Instead of applying Newton’s method
to Xp = A, which gives (6.17), we can apply it to X−p = A, which leads to

Computing Matrix Functions∗ 189

the inverse Newton iteration

Xk+1 =
1

p
[(p+ 1)Xk −Xp+1

k A], X0 = c−1I. (6.18)

Here, c > 0 is a parameter, and Guo and Higham (2006) show that the
iteration converges quadratically to A−1/p if all the eigenvalues of A are in
the set

conv{ { z : |z − cp| ≤ cp }, (p+ 1)cp } \ { 0, (p+ 1)cp }, (6.19)

where conv is the convex hull. One useful practical conclusion that can be
drawn is that if A is stochastic and strictly row-diagonally dominant then
iteration (6.18) with c = 1 converges; this is relevant for the application
described in Section 3.2. It is necessary to rewrite (6.18) in a coupled form
for stability:

Xk+1 = Xk

(
(p+ 1)I −Mk

p

)
, X0 =

1

c
I,

Mk+1 =

(
(p+ 1)I −Mk

p

)p

Mk, M0 =
1

cp
A;

(6.20)

we have Xk → A−1/p and Mk → I. Guo and Higham combine this iteration
with an initial Schur reduction to triangular form followed by the computa-
tion of a sufficient number of square roots, computed using Algorithm 4.6,
so that fast convergence is expected for (6.20), if A−1/p is required, or a
variant of (6.20) given by Guo and Higham, if A1/p is required.

Guo (2009, Thm. 5) obtains a more useful convergence result for (6.17)
than Iannazzo’s by proving convergence when the eigenvalues of A lie in the
set { z ∈ C : |z − 1| ≤ 1 }, and he gives an analogue of Guo and Higham’s
algorithm based on the coupled version of (6.17). Guo (2009, Thm. 13)
also shows that if A = I − B with ρ(B) < 1 then Xk from (6.17) satisfies

Xk =
∑∞

i=0 c
(k)
i Bi, where c

(k)
i = bi, i = 0: 2k − 1 and (1− x)1/p =

∑∞
i=0 bix

i.
Thus k steps of the Newton iteration reproduce 2k terms of the binomial
series. He also obtains an analogous result for (6.18).

A Padé family of iterations for the pth root is investigated by Laszkiewicz
and Ziȩtak (2009). A variety of other methods exist for computing pth roots;
see Bini, Higham and Meini (2005).

7. Fréchet derivative

The Fréchet derivative of a matrix function f : C
n×n → C

n×n at A ∈ C
n×n

is a linear mapping

C
n×n Lf (A)

−→ C
n×n

E 7−→ Lf (A,E)

190 N. J. Higham and A. H. Al-Mohy

such that

f(A+ E)− f(A)− Lf (A,E) = o(‖E‖) (7.1)

for all E ∈ C
n×n. Thus it describes the first-order effect on f of perturba-

tions in A. We note that a sufficient condition for the Fréchet derivative to
be defined is that f is 2n − 1 times continuously differentiable on an open
subset of R or C containing the spectrum of A (Higham 2008, Thm. 3.8).

7.1. Condition number

The norm of the Fréchet derivative,

‖Lf (A)‖ := max
‖Z‖=1

‖Lf (A,Z)‖, (7.2)

appears in an explicit expression for the condition number of the matrix
function f at A (Higham 2008, Thm. 3.1):

cond(f,A) := lim
ǫ→0

sup
‖E‖≤ǫ‖A‖

‖f(A+ E)− f(A)‖
ǫ‖f(A)‖ =

‖Lf (A)‖‖A‖
‖f(A)‖ . (7.3)

Ideally, along with f(A) we would like to produce an estimate of cond(f,A).
This can be done by converting the problem to one of matrix norm estima-
tion. Since Lf is a linear operator,

vec(Lf (A,E)) = K(A) vec(E) (7.4)

for some K(A) ∈ C
n2×n2

that is independent of E. We refer to K(A) as
the Kronecker form of the Fréchet derivative. To estimate ‖Lf (A)‖F we
can apply the power method to K(A), since ‖Lf (A)‖F = ‖K(A)‖2. The
resulting algorithm can be written entirely in terms of Lf (A) and L⋆f (A),

the adjoint of Lf (A) defined with respect to the inner product 〈X,Y 〉 =
trace(Y ∗X). When A ∈ R

n×n and f : R
n×n → R

n×n, the adjoint is given
by L⋆f (A) = Lf (AT). In the complex case, L⋆f (A) = Lf (A∗), where f(z) :=

f(z), so that if f has a power series representation then f is obtained by
conjugating the coefficients.

Algorithm 7.1. (power method on Fréchet derivative) Given A ∈
C

n×n and the Fréchet derivative Lf of a function f , this algorithm uses the
power method to produce an estimate γ ≤ ‖Lf (A)‖F .

1 Choose a nonzero starting matrix Z0 ∈ C
n×n

2 for k = 0:∞
3 Wk+1 = Lf (A,Zk)
4 Zk+1 = L⋆f (A,Wk+1)

5 γk+1 = ‖Zk+1‖F /‖Wk+1‖F
6 if converged, γ = γk+1, quit, end
7 end

Computing Matrix Functions∗ 191

A random Z0 is a reasonable choice. However, our preference is to apply
instead of the power method the block 1-norm estimator of Higham and
Tisseur (2000), which is available as normest1 in MATLAB. This produces a
quantity γ with γ ≤ ‖K(A)‖1, where ‖K(A)‖1 ∈ [n−1‖Lf (A)‖1, n‖Lf (A)‖1].

Both the above approaches require the ability to evaluate Lf (A,E) and
L⋆f (A,E). In the rest of this section we discuss several general approaches.

7.2. Power series

When f has a power series expansion the Fréchet derivative can be expressed
as a related series expansion (Higham 2008, Problem 3.6)

Theorem 7.2. Suppose f has the power series expansion f(x) =
∑∞

k=0 akx
k

with radius of convergence r. Then for A,E ∈ C
n×n with ‖A‖ < r,

Lf (A,E) =
∞∑

k=1

ak

k∑

j=1

Aj−1EAk−j . (7.5)

The next theorem, from Al-Mohy and Higham (2009a), gives a recurrence
that can be used to evaluate (7.5), as well as a useful bound on ‖Lf (A)‖.
Theorem 7.3. Under the assumptions of Theorem 7.2,

Lf (A,E) =
∞∑

k=1

akMk, (7.6)

where Mk = Lxk(A,E) satisfies the recurrence

Mk = Mℓ1A
ℓ2 +Aℓ1Mℓ2 , M1 = E, (7.7)

with k = ℓ1 + ℓ2 and ℓ1 and ℓ2 positive integers. In particular,

Mk = Mk−1A+Ak−1M1, M1 = E. (7.8)

In addition,

‖f(A)‖ ≤ f̃(‖A‖), ‖Lf (A)‖ ≤ f̃ ′(‖A‖), (7.9)

where f̃(x) =
∑∞

k=0 |ak|xk.

Proof. Since the power series can be differentiated term-by-term within
its radius of convergence, we have

Lf (A,E) =
∞∑

k=1

akMk, Mk = Lxk(A,E).

The product rule for Fréchet derivatives (Higham 2008, Thm. 3.3) yields

Mk = Lxk(A,E) = Lxℓ1 (A,E)Aℓ2 +Aℓ1Lxℓ2 (A,E) = Mℓ1A
ℓ2 +Aℓ1Mℓ2 .

192 N. J. Higham and A. H. Al-Mohy

Taking ℓ1 = k − 1 and ℓ2 = 1 gives (7.8). It is straightforward to see that

‖f(A)‖ ≤ f̃(‖A‖). Taking norms in (7.5) gives

‖Lf (A,E)‖ ≤ ‖E‖
∞∑

k=1

k |ak|‖A‖k−1 = ‖E‖f̃ ′(‖A‖),

and maximizing over all nonzero E gives ‖Lf (A)‖ ≤ f̃ ′(‖A‖).

7.3. Block triangular matrix formula

If f is 2n− 1 times continuously differentiable on an open subset of R or C

containing the spectrum of A ∈ C
n×n then (Higham 2008, Sec. 3.2)

f

([
A E
0 A

])
=

[
f(A) Lf (A,E)

0 f(A)

]
. (7.10)

Thus Lf (A,E) can be obtained by evaluating f at the 2n × 2n matrix

[A0
E
A] and reading off the (1,2) block. This approach is pragmatic, but for an

O(n3) method its cost is up to 8 times the cost of evaluating f(A) alone, this
multiplier being mitigated by the block triangular, block Toeplitz structure
of the argument. A drawback noted by Al-Mohy and Higham (2009a) is
that since Lf (A,αE) = αLf (A,E) the norm of E can be chosen at will, but
the choice may affect the accuracy of the algorithm used to evaluate (7.10)
and it is difficult to know what is the optimal choice.

We illustrate the use of (7.10) for the matrix square root by applying

the Denman–Beavers iteration (6.8) to Ã = [A0
E
A]. Iterates X̃k and Ỹk are

produced for which

X̃k =

[
Xk Fk

0 Xk

]
, Ỹk =

[
Yk Gk

0 Yk

]
,

where Xk and Yk satisfy (6.8) and

Fk+1 =
1

2

(
Fk − Y −1

k GkY
−1
k

)
, F0 = E,

Gk+1 =
1

2

(
Gk −X−1

k FkX
−1
k

)
, G0 = 0.

(7.11)

From (7.10) we conclude that

lim
k→∞

Fk = Lx1/2(A,E), lim
k→∞

Gk = Lx−1/2(A,E). (7.12)

The iteration (7.11) is due to Al-Mohy and Higham (2009a), who derive it
in this way.

Computing Matrix Functions∗ 193

7.4. Differentiating an algorithm

If we have an algorithm for computing f(A) then we might expect that differ-
entiating it will provide an algorithm for computing the Fréchet derivative.
We describe two situations where this idea proves useful.

Framework 5.1 uses a rational approximation f(A) ≈ r(A). Obviously, we
can approximate Lf (A,E) by Lr(A,E), where the accuracy of this approxi-
mation remains to be investigated. By Fréchet differentiating Framework 5.1
we obtain an algorithm for simultaneously computing f(A) and Lf (A,E).

Framework 7.1. Framework for approximating f(A) and Lf (A,E).

(1) Choose a suitable rational approximation r and a transformation func-
tion g and set A← g(A).

(2) Transform E ← Lg(A,E) (since Lf◦g = Lf (g(A), Lg(A,E)) by the chain
rule for Fréchet derivatives (Higham 2008, Thm. 3.4)).

(3) Compute r(A) and Lr(A,E) by some appropriate scheme.
(4) Apply transformations to r(A) and Lr(A,E) that undo the effect of the

initial transformation on A.

The natural way to obtain Lr(A,E) at step (3) is by differentiating the
scheme for r, which can be done with the aid of the following lemma from Al-
Mohy and Higham (2009a) if the numerator and denominator polynomials
are explicitly computed.

Lemma 7.4. The Fréchet derivative Lrm of the rational function rm(x) =
pm(x)/qm(x) satisfies

qm(A)Lrm(A,E) = Lpm(A,E)− Lqm(A,E)rm(A). (7.13)

Proof. Applying the Fréchet derivative product rule (Higham 2008,
Thm. 3.3) to qmrm = pm gives

Lpm(A,E) = Lqmrm(A,E) = Lqm(A,E)rm(A) + qm(A)Lrm(A,E),

which rearranges to the result.

It can be shown (Al-Mohy and Higham 2009a, Thm. 4.1) that for polyno-
mials p and a class of schemes for evaluating p(A) that contains all schemes
of practical interest, the cost of evaluating p(A) and Lp(A,E) together is at
most three times the cost of evaluating p(A) alone.

Framework 7.1 has been used in conjunction with Algorithm 5.2 by Al-
Mohy and Higham (2009a) to develop a scaling and squaring algorithm that
computes eA and Lexp(A,E) at about three times the cost of computing eA

alone. It improves on an earlier “Kronecker–Sylvester scaling and squaring
algorithm” of Kenney and Laub (1998) that is significantly more expensive
and uses complex arithmetic even when A is real.

The second use of differentiation is to differentiate a matrix iteration. For

194 N. J. Higham and A. H. Al-Mohy

example, we can differentiate the Newton iteration (6.2) for the matrix sign
function to obtain

Yk+1 =
1

2
(Yk −X−1

k YkX
−1
k), Y0 = E, (7.14)

where Xk is defined by (6.2). The following result of Al-Mohy and Higham
(2009a) shows that under reasonable assumptions this procedure will always
produce an iteration having the required derivative as a fixed point.

Theorem 7.5. Let f and g be 2n− 1 times continuously differentiable on
an open subset D of R or C. Suppose that for any matrix X ∈ C

n×n whose
spectrum lies in D, g has the fixed point f(X), that is, f(X) = g(f(X)).
Then for any such X, Lg at f(X) has the fixed point Lf (X,E) for all E.

Theorem 7.5 does not readily lead to a convergence result. If we de-
rive (7.14) by instead applying the Newton iteration to [A0

E
A] (as was done

by Mathias (1996)) then from (7.10) it is easy to see that limk→∞ Yk =
Lsign(A,E). Iteration (7.14) is due to Kenney and Laub (1991a).

7.5. Finite differences

A natural approach is to approximate the Fréchet derivative by the finite
difference

Lf (A,E) ≈ f(A+ hE)− f(A)

h
, (7.15)

for a suitably chosen h. Two types of errors affect this approximation: trun-
cation errors caused by taking a finite h, and rounding errors in floating point
arithmetic caused by subtracting two nearly equal matrices that are both
contaminated by error. A standard argument based on balancing bounds
for the two types of error leads to the choice (Higham 2008, Sec. 3.4)

h =

(
u‖f(A)‖
‖E‖2

)1/2

, (7.16)

for which the overall error has a bound of order u1/2‖f(A)‖1/2‖E‖. The
conclusion is that subtractive cancellation in floating point arithmetic limits
the smallest relative error that can be obtained to order u1/2.

7.6. Complex step approximation

Assume that f : R
n×n → R

n×n and A,E ∈ R
n×n. Replacing E by ihE in

(7.1), where i =
√
−1, and using the linearity of Lf , we obtain

f(A+ ihE)− f(A)− ihLf (A,E) = o(h).

Thus

f(A) ≈ Re f(A+ ihE), (7.17)

Computing Matrix Functions∗ 195

Lf (A,E) ≈ Im
f(A+ ihE)

h
, (7.18)

so that with one function evaluation at a complex argument we can ap-
proximate both f and Lf (A,E). The approximation (7.18) is known as
the complex step approximation; it has been known for some time in the
scalar case (Squire and Trapp 1998), (Giles, Duta, Müller and Pierce 2003),
(Martins, Sturdza and Alonso 2003), (Shampine 2007), and was proposed
for matrices by Al-Mohy and Higham (2010). In the latter paper it is shown
that for analytic f the error in the approximations (7.17) and (7.18) is O(h2)
and that the same is true for the matrix sign function.

An important advantage of the complex step approximation over the fi-
nite difference approximation (7.15) is that h is not restricted by floating
point arithmetic considerations. Indeed practical experience reported in the
papers cited above has demonstrated the ability of the approximation to
produce accurate approximations in the scalar case even with h as small as
10−100, which is the value used in software at the National Physical Lab-
oratory according to Cox and Harris (2004). Al-Mohy and Higham (2010)
show experimentally that when used in conjunction with condition estima-
tion (see Section 7.1) the complex step approximation leads to significantly
more reliable condition estimates than the finite difference approximation.

One caveat is that the underlying method for evaluating f must not em-
ploy complex arithmetic, which rules out methods based on the (complex)
Schur form. The reason is that since the Fréchet derivative is assumed real,
if the evaluation introduces a nontrivial imaginary part at any point then
that term must be subject to massive subtractive cancellation in order for
a final imaginary part of O(h) to be produced. Looked at another way, the
complex step approximation is essentially carrying out a form of automatic
differentiation with h acting as a symbolic variable, and the introduction of
pure imaginary numbers within the evaluation disturbs this process.

8. The f(A)b problem

In many applications, especially those originating from partial differential
equations and those with a large, sparse matrix A, it is the action of f(A) on
a vector, f(A)b, that is required and not f(A). Of course, this is analogous
to the requirement to solve a linear Ax = b without computing A−1 (though
the inverse function is distinguished from the other functions considered in
this paper in that we rarely need to compute it explicitly). We discuss two
general approaches.

8.1. Quadrature and rational approximation

If we have an integral representation f(A) =
∫
r(A, t) dt, where r is a ra-

tional function of A, then we can apply quadrature and approximate f(A)b

196 N. J. Higham and A. H. Al-Mohy

by
∑

i r(A, ti)b. Depending on how r is represented the evaluation of this
approximation reduces to solving one or more linear systems with coefficient
matrices that are polynomials in A. This of course is equivalent to approxi-
mating f(A) by the rational function

∑
i r(A, ti). Two notable examples of

integral representations are (see, e.g., Higham (2008))

log(A) =

∫ 1

0
(A− I)[t(A− I) + I]−1 dt, (8.1)

sign(A) =
2

π
A

∫ ∞

0
(t2I +A2)−1 dt, (8.2)

for which appropriate Gaussian quadrature rules lead to Padé approximants
(for the details for (8.1), see Dieci et al. (1996, Thm. 4.3)).

More generally, for analytic functions f we can employ the Cauchy integral
formula

f(A) =
1

2πi

∫

Γ
f(z) (zI −A)−1 dz, (8.3)

where Γ is a closed contour that lies in the region of analyticity of f and
winds once around the spectrum in the anticlockwise direction. This formula
is equivalent to the definitions given in Section 2.1 (Horn and Johnson 1991,
Thm. 6.2.28). From (8.3) we have

f(A)b =
1

2πi

∫

Γ
f(z) (zI −A)−1b dz, (8.4)

and so quadrature will reduce to solving linear systems with zI − A. Any
method based on (8.4) will need to be specialized to particular classes of f
and matrices A, since the selection of the contour Γ will be crucial to the
efficiency and reliability of the method. Davies and Higham (2005) show
that simply taking Γ to be a circle enclosing the spectrum is not generally
a good choice. Hale, Higham and Trefethen (2008) develop methods for
functions such as the square root and the logarithm with singularities in
(−∞, 0] and for A with eigenvalues on or near the positive real axis. Their
key idea is to use conformal mappings to transform the integral into one for
which the repeated trapezium rule converges very quickly. We mention just
one simple idea used therein, and will not illustrate the conformal mappings
that are the most important part of the technique. For the square root, we
can rewrite the problem as A · A−1f(A) and change variables to w = z1/2,
so that (8.3) becomes

A1/2 =
A

2πi

∫

Γz

z−1/2 (zI −A)−1 dz =
A

πi

∫

Γw

(w2I −A)−1 dw. (8.5)

The transformed integrand is analytic at the origin and hence easier to han-
dle. A natural question is what rational approximation these methods pro-
duce. For f the square root and A with positive real eigenvalues method 3 in

Computing Matrix Functions∗ 197

Hale et al. (2008) produces a certain best rational approximation discovered
by Zolotarev in 1877. The methods in (Hale et al. 2008) are not restricted
to Hermitian matrices but they do require estimates of the spectrum of A.

8.2. Krylov methods

The most studied methods for the f(A)b problem are those based on Krylov
subspaces. By computing a sequence of matrix–vector products with A they
aim to reduce the problem to one of the same form but with a much smaller
matrix. This is done by projecting the problem onto a Krylov subspace

Kk(A, b) = span{b, Ab, . . . , Ak−1b}.
If the Arnoldi process (Saad 2003, Sec. 6.3) with matrix A and starting

vector q1 = b/‖b‖2 completes k steps then we have

AQk = QkHk + hk+1,kqk+1e
T
k , (8.6)

where Qk = [q1, . . . , qk] has orthonormal columns and Hk = (hij) is k × k
upper Hessenberg. The columns of Qk form an orthonormal basis for the
Krylov subspace Kk(A, q1). We can then approximate f(A)b by

fk := ‖b‖2Qkf(Hk)e1, (8.7)

= Qkf(Hk)Q
∗
kb.

The evaluation of f is carried out on the k × k matrix Hk, where k ≪ n
in practice, and can be done by any available method. Effectively, we are
evaluating f on the smaller Krylov subspace Kk(A, q1) and then expanding
the result back onto the original space C

n. This procedure can be viewed as
a form of model order reduction (Antoulas 2005), (Frommer and Simoncini
2008a).

Few convergence results or error bounds are available for (8.7). However,
two results of Saad (1992) provide fundamental insight into this approxima-
tion.

Lemma 8.1. Let A ∈ C
n×n and Qk, Hk be the result of k steps of the

Arnoldi process on A with starting vector q1. Then for any polynomial pj

of degree j ≤ k − 1 we have

pj(A)q1 = Qkpj(Hk)e1.

Theorem 8.2. Let Qk, Hk be the result of k steps of the Arnoldi process
on A ∈ C

n×n with starting vector q1 = b/‖b‖2. Then

‖b‖2Qkf(Hk)e1 = p̃k−1(A)b,

where p̃k−1 is the unique polynomial of degree at most k−1 that interpolates
f on the spectrum of Hk (that is, in the sense of (2.4)).

198 N. J. Higham and A. H. Al-Mohy

The lemma says that the approximation (8.7) is exact if f is a sufficiently
low degree polynomial. The theorem shows that the approximation (8.7) is
an exact approximation not for f but for a Hermite interpolating polynomial
based on the spectrum of Hk.

The use of Krylov methods for the f(A)b problem is an active area of
research. We will not try to give a summary, but instead point out a few
very recent contributions, namely Afanasjew, Eiermann, Ernst and Güttel
(2008), Grimm and Hochbruck (2008), Frommer and Simoncini (2008b), and
Popolizio and Simoncini (2008).

9. The software scene

In this final section we give an outline of available software for computing
matrix functions.

9.1. MATLAB

MATLAB has a number of functions for computing f(A). Function funm

implements the Schur–Parlett algorithm (Algorithm 4.5), and so is appli-
cable to general functions having a Taylor series with an infinite radius of
convergence. When invoked for the exponential it evaluates the exponential
of any 2 × 2 diagonal blocks Tii using an explicit formula (Higham 2008,
Sec. 10.4.3) that, unlike the general formula (4.2), avoids cancellation in
floating point arithmetic. Function sqrtm implements the Schur method for
the matrix square root, Algorithm 4.6. Function expm implements Algo-
rithm 5.2, the scaling and squaring algorithm. Function logm implements a
specialized version of the Schur–Parlett algorithm in which log(Tii) is eval-
uated by an explicit formula (Higham 2008, Sec. 11.6.2) if Tii is 2× 2 or by
the inverse scaling and squaring algorithm if Tii has larger dimension.

The Symbolic Math Toolbox has two relevant functions, which are con-
tained in the MuPAD engine (in MATLAB R2008b the default engine was
changed from Maple to MuPAD). The function numeric::expMatrix (The
MathWorks 2009a) can use hardware floating point arithmetic or variable
precision software floating point arithmetic to compute eA or eAb. By default
a Taylor series is used, apparently without scaling and squaring. Other op-
tions are diagonalization for diagonalizable matrices, interpolation (the form
of interpolating polynomial is not specified), and a Krylov method for eAb
only. The function numeric::fMatrix (The MathWorks 2009b) computes
f(A) for a general function f but requires that A is diagonalizable.

9.2. Octave

GNU Octave (Octave, 2009) is a free “MATLAB-like” system. It includes
a function expm that implements Ward’s (1977) version of the scaling and

Computing Matrix Functions∗ 199

squaring method (which uses fixed Padé degree m = 8, with scaling so that
‖2−sA‖1 ≤ 1), as well as a function thfm for evaluating trigonometric and
hyperbolic functions. The latter function expresses a variety of trigonometric
and hyperbolic functions in terms of the exponential, and inverse trigono-
metric and inverse hyperbolic functions in terms of the logarithm and square
root. For example, it evaluates cos(A) = (eiA + e−iA)/2 (or as Re eiA when
A is real) and arctan(A) = −(i/2) log((I + iA)(I − iA)−1). Some of these
formulas are of uncertain numerical reliability and need careful numerical
stability analysis before they can be recommended for use; cf. the analysis
for the scalar case in Bradford, Corless, Davenport, Jeffrey and Watt (2002)
and Kahan (1987).

9.3. Other software

Algorithm 5.2 is used by the MatrixExp function of Mathematica for ma-
trices of machine numbers and by the NAG Library routine F01ECF (from
Mark 22).

The Matrix Function Toolbox (Higham n.d.) contains over 40 MATLAB
functions implementing many of the algorithms described in Higham (2008).

Sidje (1998) provides a package called Expokit (Sidje n.d.) containing
MATLAB and Fortran codes for computing eA and eAb.

Koikari (2009) gives Fortran 95 code for computing the ψ functions by
scaling and squaring or by a block Schur–Parlett algorithm, and the EX-
PINT package of Berland, Skaflestad and Wright (2007) also contains a func-
tion based on scaling and squaring for evaluating the ψ functions. These
functions are defined by ψk(z) =

∑∞
j=0 z

j/(j+k)!, k = 0, 1, 2, . . . and play an

important role within exponential integrators (Hochbruck and Ostermann
2010).

Acknowledgements

We thank Lijing Lin for her helpful comments on a draft manuscript. This
work was supported in part by EPSRC grant EP/E050441/1 (CICADA:
Centre for Interdisciplinary Computational and Dynamical Analysis).

A. Cost of Padé versus Taylor approximants within the

scaling and squaring method

In this appendix we compare the efficiency of diagonal Padé approximants
and Taylor approximants within the scaling and squaring method for the
matrix exponential, based on the use of refined backward error bounds in
both cases.

For A ∈ C
n×n we use the Paterson-Stockmeyer scheme (see Paterson

and Stockmeyer (1973), Higham (2008, Sec. 4.2)) to evaluate Tm(A) =

200 N. J. Higham and A. H. Al-Mohy

∑m
k=0A

k/k! as

Tm(A) =
ℓ∑

k=0

gk(A)(Aτ)k, ℓ = ⌊m/τ⌋, (A.1)

where 1 ≤ τ ≤ m is an integer and

gk(A) =

{∑τ
i=1A

τ−i/(τk + τ − i)!, k = 0 : ℓ− 1,
∑m

i=ℓτ A
i−ℓτ/i!, k = ℓ.

Horner’s rule is used on (A.1). This scheme evaluates Tm(A) with a number
of matrix multiplications equal to

π̃m = ℓ+ τ − 1− φ(m, τ), φ(m, τ) =

{
1, if τ | m,
0, otherwise.

(A.2)

The choice τ =
√
m approximately minimizes this quantity (Higham 2008,

Sec. 4.2), so we take τ either ⌊√m⌋ or ⌈√m ⌉ since both yield the same
operation count (Hargreaves 2005, Thm. 1.7.4).

Lemma 5.1 is applicable with trivial modifications to any rational ap-
proximation to ex, not just diagonal Padé approximants, so we can replace
rm therein by Tm. Thus, with hm(x) = log(e−xTm(x)) =

∑∞
k=m+1 ck x

k in
Lemma 5.1, we calculate the parameters

θ̃m = max{ θ : h̃m(θ)/θ ≤ u = 2−53 }, (A.3)

where h̃m(x) =
∑∞

k=m+1 |ck|xk, using the techniques described just after

Lemma 5.1. Then we know that Tm(2−sA)2
s

has backward error at most

u = 2−53 for ‖2−sA‖ ≤ θ̃m. We select s as the smallest nonnegative integer

such that 2−s‖A‖ ≤ θ̃m, which is given by s = max(⌈log2(‖A‖/θ̃m)⌉, 0).
Then the number of matrix multiplications required to evaluate Tm(2−sA)2

s

is

⌊m/⌈
√
m ⌉⌋+ ⌈

√
m ⌉ − 1− φ(m, ⌈

√
m ⌉)︸ ︷︷ ︸

π̃m

+ max(⌈log2(‖A‖/θ̃m)⌉, 0).

(A.4)
When s > 0 we are interested in the m that minimizes the cost. To obtain
a suitable measure of the cost we ignore the constant terms in (A.4) (since
they are common to each m) and consider

Cm = ⌊m/⌈
√
m ⌉⌋+ ⌈

√
m ⌉ − φ(m, ⌈

√
m ⌉)− log2(θ̃m). (A.5)

We tabulate θ̃m, π̃m, and Cm, for m = 1: 30, in Table A.3 and find that
m = 16 is the global minimizer of Cm, which suggests using T16(2

−sA)2
s

to approximate eA when ‖A‖ ≥ θ̃16 ≈ 0.78. Corresponding analysis was
done for Padé approximants by Higham (2005) and we use the number of

Computing Matrix Functions∗ 201

Table A.3. The number of matrix products π̃m in (A.2) needed for the

Paterson-Stockmeyer scheme, θ̃m defined by (A.3), and Cm from (A.5).

m θ̃m π̃m Cm m θ̃m π̃m Cm m θ̃m π̃m Cm

1 2.29e-16 0 53.00 11 2.14e-1 5 8.22 21 1.62 8 8.30
2 2.58e-8 1 27.21 12 3.00e-1 5 7.74 22 1.82 8 8.14
3 1.39e-5 2 19.14 13 4.00e-1 6 8.32 23 2.01 8 7.99
4 3.40e-4 2 14.52 14 5.14e-1 6 7.96 24 2.22 8 7.85
5 2.40e-3 3 12.70 15 6.41e-1 6 7.64 25 2.43 8 7.72
6 9.07e-3 3 10.79 16 7.81e-1 6 7.36 26 2.64 9 8.60
7 2.38e-2 4 10.39 17 9.31e-1 7 8.10 27 2.86 9 8.48
8 5.00e-2 4 9.32 18 1.09 7 7.87 28 3.08 9 8.38
9 8.96e-2 4 8.48 19 1.26 7 7.67 29 3.31 9 8.27
10 1.44e-1 5 8.79 20 1.44 7 7.48 30 3.54 9 8.18

matrix multiplications πm from (Higham 2005, Table 2.2), as well as the θi

in Table 5.1.
Now we compare the cost of Taylor and Padé approximants. Assume first

that ‖A‖ ≥ θ13 ≈ 5.4. Computing T16(2
−sA) requires six matrix multiplica-

tions, and so the overall cost from (A.4) of approximating eA is cT := 6 + s,
while Algorithm 5.2, which chooses a nonnegative integer t so that 1

2θ13 <

‖2−tA‖ ≤ θ13, computes r13(2
−tA)2

t
with cost cP := 6 + 4/3 + t, where

the term 4/3 accounts for the solution of the multiple right-hand side linear

system for the Padé approximant. Since 1
2θ13 < 4θ̃16, there are two cases to

consider. First, when ‖2−tA‖ ∈ (4θ̃16, θ13] we have 2−t−3‖A‖ ≤ 1
8θ13 < θ̃16

and hence s = t + 3. Therefore, 1 < cT /cP = (9 + t)/(71
3 + t) ≤ 27/22.

Secondly, when ‖2−tA‖ ∈ (1
2θ13, 4θ̃16] we have 2−t−2‖A‖ ≤ θ̃16 and hence

s = t+ 2. Therefore, 1 < cT /cP = (8 + t)/(71
3 + t) ≤ 12/11.

A remaining question is whether when ‖A‖ < θ13 a Taylor series can be
more efficient than a Padé approximant. The answer can be seen from Figure
A.2, where “◦” indicates the points (θ̃m, π̃m), m = 4, 6, 9, 12, 16, 20, 25, 30,
and “� ” indicates the points (θm, πm + 4/3), m = 3, 5, 7, 9, 13. Notice that
the dotted curve, which represents the cost of Taylor series, lies below the
solid curve in three intervals: [0, θ̃6], (θ3, θ̃9], and (θ5, θ̃12]. Therefore, it is
more efficient to use Tm(A) rather Algorithm 5.2 if ‖A‖ lies in any of these
intervals.

We conclude that any algorithm based on Taylor series will cost up to 23%
more than the Padé approximant-based Algorithm 5.2 and cannot have a
lower cost for ‖A‖ > θ̃12. Moreover the Taylor series requires a larger

202 N. J. Higham and A. H. Al-Mohy

10
−4

10
−3

10
−2

10
−1

10
0

1

2

3

4

5

6

7

8

9

10

‖A‖

Taylor series

Pade approximant

Figure A.2. ‖A‖ versus cost in equivalent matrix multiplications of
evaluating Taylor and Padé approximants to eA in double precision.

amount of scaling (since we are scaling to reduce ‖A‖ below 0.78 instead
of 5.4), which is undesirable from the point of view of possible numerical
instability in the squaring phase.

We repeated the analysis for single precision: u = 2−24 ≈ 6.0× 10−8. For
Padé approximants the optimal degree is now m = 7 with θ7 ≈ 3.9 (Higham

2005), while for Taylor series it is m = 9 with θ̃9 ≈ 0.78. The conclusion is
similar to that for double precision arithmetic: Padé approximation is more
efficient than the Taylor series for ‖A‖ > θ̃9 (up to 31% more efficient),
and only for certain intervals of smaller ‖A‖ is the Taylor series the more
efficient.

In summary, Padé approximants are preferable to truncated Taylor series
within the scaling and squaring method in both single and double precision,
due to their greater efficiency and the lesser amount of scaling that they
require.

Computing Matrix Functions∗ 203

REFERENCES

M. Afanasjew, M. Eiermann, O. G. Ernst and S. Güttel (2008), ‘Implementation of
a restarted Krylov subspace method for the evaluation of matrix functions’,
Linear Algebra Appl. 429(10), 2293–2314.

A. H. Al-Mohy and N. J. Higham (2009a), ‘Computing the Fréchet derivative of
the matrix exponential, with an application to condition number estimation’,
SIAM J. Matrix Anal. Appl. 30(4), 1639–1657.

A. H. Al-Mohy and N. J. Higham (2009b), ‘A new scaling and squaring algorithm
for the matrix exponential’, SIAM J. Matrix Anal. Appl. 31(3), 970–989.

A. H. Al-Mohy and N. J. Higham (2010), ‘The complex step approximation to the
Fréchet derivative of a matrix function’, Numer. Algorithms 53(1), 133–148.

A. C. Antoulas (2005), Approximation of Large-Scale Dynamical Systems, Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA.

M. Arioli and D. Loghin (2009), ‘Discrete interpolation norms with applications’,
SIAM J. Numer. Anal. 47(4), 2924–2951.

G. A. Baker, Jr. and P. Graves-Morris (1996), Padé Approximants, Vol. 59 of
Encyclopedia of Mathematics and Its Applications, second edn, Cambridge
University Press, Cambridge, UK.

A. Y. Barraud (1979), ‘Investigations autour de la fonction signe d’une matrice ap-
plication a l’équation de Riccati’, R.A.I.R.O. Automatique/Systems Analysis
and Control 13(4), 335–368.

C. A. Bavely and G. W. Stewart (1979), ‘An algorithm for computing reducing
subspaces by block diagonalization’, SIAM J. Numer. Anal. 16(2), 359–367.

H. Berland, B. Skaflestad and W. Wright (2007), ‘EXPINT—A MATLAB package
for exponential integrators’, ACM Trans. Math. Software 33(1), Article 4.

D. A. Bini, N. J. Higham and B. Meini (2005), ‘Algorithms for the matrix pth root’,
Numer. Algorithms 39(4), 349–378.

Å. Björck and S. Hammarling (1983), ‘A Schur method for the square root of a
matrix’, Linear Algebra Appl. 52/53, 127–140.

R. J. Bradford, R. M. Corless, J. H. Davenport, D. J. Jeffrey and S. M. Watt (2002),
‘Reasoning about the elementary functions of complex analysis’, Annals of
Mathematics and Artificial Intelligence 36, 303–318.

C. Brezinski and J. Van Iseghem (1995), ‘A taste of Padé approximation’, Acta
Numerica 4, 53–103.

A. Cayley (1858), ‘A memoir on the theory of matrices’, Philos. Trans. Roy. Soc.
London 148, 17–37.

T. Charitos, P. R. de Waal and L. C. van der Gaag (2008), ‘Computing short-
interval transition matrices of a discrete-time Markov chain from partially
observed data’, Statistics in Medicine 27, 905–921.

S. H. Cheng, N. J. Higham, C. S. Kenney and A. J. Laub (2000), Return to the
middle ages: A half-angle iteration for the logarithm of a unitary matrix,
in Proceedings of the Fourteenth International Symposium of Mathematical
Theory of Networks and Systems, Perpignan, France. CD ROM.

S. H. Cheng, N. J. Higham, C. S. Kenney and A. J. Laub (2001), ‘Approximating
the logarithm of a matrix to specified accuracy’, SIAM J. Matrix Anal. Appl.
22(4), 1112–1125.

204 N. J. Higham and A. H. Al-Mohy

A. R. Collar (1978), ‘The first fifty years of aeroelasticity’, Aerospace (Royal Aero-
nautical Society Journal) 5, 12–20.

M. G. Cox and P. M. Harris (2004), Numerical analysis for algorithm design in
metrology, Software Support for Metrology Best Practice Guide No. 11, Na-
tional Physical Laboratory, Teddington, UK.

J. J. Crofts and D. J. Higham (2009), ‘A weighted communicability measure applied
to complex brain networks’, J. Roy. Soc. Interface 6, 411–414.

P. I. Davies and N. J. Higham (2003), ‘A Schur–Parlett algorithm for computing
matrix functions’, SIAM J. Matrix Anal. Appl. 25(2), 464–485.

P. I. Davies and N. J. Higham (2005), Computing f(A)b for matrix functions f , in
QCD and Numerical Analysis III (A. Boriçi, A. Frommer, B. Joó, A. Kennedy
and B. Pendleton, eds), Vol. 47 of Lecture Notes in Computational Science
and Engineering, Springer-Verlag, Berlin, pp. 15–24.

C. Davis (1973), ‘Explicit functional calculus’, Linear Algebra Appl. 6, 193–199.
E. D. Denman and A. N. Beavers, Jr. (1976), ‘The matrix sign function and com-

putations in systems’, Appl. Math. Comput. 2, 63–94.
J. Descloux (1963), ‘Bounds for the spectral norm of functions of matrices’, Numer.

Math. 15, 185–190.
L. Dieci and A. Papini (2000), ‘Padé approximation for the exponential of a block

triangular matrix’, Linear Algebra Appl. 308, 183–202.
L. Dieci, B. Morini and A. Papini (1996), ‘Computational techniques for real loga-

rithms of matrices’, SIAM J. Matrix Anal. Appl. 17(3), 570–593.
L. Elsner (1970), ‘Iterative Verfahren zur Lösung der Matrizengleichung X2−A =

0’, Buletinul Institutului Politehnic din Iasi xvi(xx), 15–24.
E. Estrada and N. Hatano (2008), ‘Communicability in complex networks’, Physical

Review E 77, 036111.
E. Estrada and D. J. Higham (2008), Network properties revealed through ma-

trix functions, Mathematics Research Report 17, University of Strathclyde,
Scotland, UK. To appear in SIAM Rev.

E. Estrada and J. A. Rodŕıguez-Velázquez (2005a), ‘Spectral measures of bipartiv-
ity in complex networks’, Physical Review E 72, 046105.

E. Estrada and J. A. Rodŕıguez-Velázquez (2005b), ‘Subgraph centrality in complex
networks’, Physical Review E 71, 056103.

E. Estrada, D. J. Higham and N. Hatano (2009), ‘Communicability betweenness in
complex networks’, Physica A 388, 764–774.

S. Fiori (2008), ‘Leap-frog-type learning algorithms over the Lie group of unitary
matrices’, Neurocomputing 71, 2224–2244.

R. A. Frazer, W. J. Duncan and A. R. Collar (1938), Elementary Matrices and Some
Applications to Dynamics and Differential Equations, Cambridge University
Press, Cambridge, UK. 1963 printing.

A. Frommer and V. Simoncini (2008a), Matrix functions, in Model Order Reduction:
Theory, Research Aspects and Applications (W. H. A. Schilders, H. A. van der
Vorst and J. Rommes, eds), Springer-Verlag, Berlin, pp. 275–303.

A. Frommer and V. Simoncini (2008b), ‘Stopping criteria for rational matrix
functions of Hermitian and symmetric matrices’, SIAM J. Sci. Comput.
30(3), 1387–1412.

Computing Matrix Functions∗ 205

F. R. Gantmacher (1959), The Theory of Matrices, Vol. one, Chelsea, New York.
M. B. Giles, M. C. Duta, J.-D. Müller and N. A. Pierce (2003), ‘Algorithm devel-

opments for discrete adjoint methods’, AIAA Journal 4(2), 198–205.
H. H. Goldstine (1977), A History of Numerical Analysis from the 16th through the

19th Century, Springer-Verlag, New York.
G. H. Golub and C. F. Van Loan (1996), Matrix Computations, third edn, Johns

Hopkins University Press, Baltimore, MD, USA.
F. Greco and B. Iannazzo (2010), ‘A binary powering algorithm for computing

primary matrix roots’, Numer. Algorithms. To appear.
V. Grimm and M. Hochbruck (2008), ‘Rational approximation to trigonometric

operator’, BIT 48, 215–229.
C.-H. Guo (2009), ‘On Newton’s method and Halley’s method for the principal pth

root of a matrix’, Linear Algebra Appl. doi:10.1016/j.laa.2009.02.030.
C.-H. Guo and N. J. Higham (2006), ‘A Schur–Newton method for the matrix pth

root and its inverse’, SIAM J. Matrix Anal. Appl. 28(3), 788–804.
N. Hale, N. J. Higham and L. N. Trefethen (2008), ‘Computing Aα, log(A)

and related matrix functions by contour integrals’, SIAM J. Numer. Anal.
46(5), 2505–2523.

G. Hargreaves (2005), Topics in Matrix Computations: Stability and Efficiency of
Algorithms, PhD thesis, University of Manchester, Manchester, England.

G. I. Hargreaves and N. J. Higham (2005), ‘Efficient algorithms for the matrix
cosine and sine’, Numer. Algorithms 40(4), 383–400.

N. J. Higham (1986a), ‘Computing the polar decomposition—with applications’,
SIAM J. Sci. Statist. Comput. 7(4), 1160–1174.

N. J. Higham (1986b), ‘Newton’s method for the matrix square root’, Math. Comp.
46(174), 537–549.

N. J. Higham (1987), ‘Computing real square roots of a real matrix’, Linear Algebra
Appl. 88/89, 405–430.

N. J. Higham (1994), ‘The matrix sign decomposition and its relation to the polar
decomposition’, Linear Algebra Appl. 212/213, 3–20.

N. J. Higham (1997), ‘Stable iterations for the matrix square root’, Numer. Algo-
rithms 15(2), 227–242.

N. J. Higham (2001), ‘Evaluating Padé approximants of the matrix logarithm’,
SIAM J. Matrix Anal. Appl. 22(4), 1126–1135.

N. J. Higham (2002), Accuracy and Stability of Numerical Algorithms, second edn,
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.

N. J. Higham (2005), ‘The scaling and squaring method for the matrix exponential
revisited’, SIAM J. Matrix Anal. Appl. 26(4), 1179–1193.

N. J. Higham (2008), Functions of Matrices: Theory and Computation, Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA.

N. J. Higham (2009), ‘The scaling and squaring method for the matrix exponential
revisited’, SIAM Rev. 51(4), 747–764.

N. J. Higham (n.d.), ‘The Matrix Function Toolbox’. http://www.ma.man.ac.uk/

~higham/mftoolbox.
N. J. Higham and L. Lin (2009), On pth roots of stochastic matrices, MIMS EPrint

2009.21, Manchester Institute for Mathematical Sciences, The University of
Manchester, UK; revised January 2010.

206 N. J. Higham and A. H. Al-Mohy

N. J. Higham and M. I. Smith (2003), ‘Computing the matrix cosine’, Numer.
Algorithms 34, 13–26.

N. J. Higham and F. Tisseur (2000), ‘A block algorithm for matrix 1-norm esti-
mation, with an application to 1-norm pseudospectra’, SIAM J. Matrix Anal.
Appl. 21(4), 1185–1201.

N. J. Higham, D. S. Mackey, N. Mackey and F. Tisseur (2005), ‘Functions preserv-
ing matrix groups and iterations for the matrix square root’, SIAM J. Matrix
Anal. Appl. 26(3), 849–877.

M. Hochbruck and A. Ostermann (2010), ‘Exponential integrators’, Acta Numerica.
To appear.

R. A. Horn and C. R. Johnson (1991), Topics in Matrix Analysis, Cambridge Uni-
versity Press, Cambridge, UK.

B. Iannazzo (2006), ‘On the Newton method for the matrix P th root’, SIAM J.
Matrix Anal. Appl. 28(2), 503–523.

M. Ilić, I. W. Turner and D. P. Simpson (2009), ‘A restarted Lanczos approximation
to functions of a symmetric matrix’, IMA J. Numer. Anal. Advance Access
published on June 17, 2009. doi:10.1093/imanum/drp003.

R. B. Israel, J. S. Rosenthal and J. Z. Wei (2001), ‘Finding generators for Markov
chains via empirical transition matrices, with applications to credit ratings’,
Mathematical Finance 11(2), 245–265.

R. A. Jarrow, D. Lando and S. M. Turnbull (1997), ‘A Markov model for the term
structure of credit risk spreads’, Rev. Financial Stud. 10(2), 481–523.

W. Kahan (1987), Branch cuts for complex elementary functions or much ado about
nothing’s sign bit, in The State of the Art in Numerical Analysis (A. Iserles
and M. J. D. Powell, eds), Oxford University Press, pp. 165–211.

C. S. Kenney and A. J. Laub (1989a), ‘Condition estimates for matrix functions’,
SIAM J. Matrix Anal. Appl. 10(2), 191–209.

C. S. Kenney and A. J. Laub (1989b), ‘Padé error estimates for the logarithm of a
matrix’, Internat. J. Control 50(3), 707–730.

C. S. Kenney and A. J. Laub (1991a), ‘Polar decomposition and matrix sign func-
tion condition estimates’, SIAM J. Sci. Statist. Comput. 12(3), 488–504.

C. S. Kenney and A. J. Laub (1991b), ‘Rational iterative methods for the matrix
sign function’, SIAM J. Matrix Anal. Appl. 12(2), 273–291.

C. S. Kenney and A. J. Laub (1998), ‘A Schur–Fréchet algorithm for computing
the logarithm and exponential of a matrix’, SIAM J. Matrix Anal. Appl.
19(3), 640–663.

S. Koikari (2009), ‘Algorithm 894: On a block Schur–Parlett algorithm for ϕ-
functions based on the sep-inverse estimate’, ACM Trans. Math. Software
36(2), Article 12.

A. Kreinin and M. Sidelnikova (2001), ‘Regularization algorithms for transition
matrices’, Algo Research Quarterly 4(1/2), 23–40.

P. Laasonen (1958), ‘On the iterative solution of the matrix equation AX2−I = 0’,
M.T.A.C. 12(62), 109–116.

P. Lancaster and M. Tismenetsky (1985), The Theory of Matrices, second edn,
Academic Press, London.

Computing Matrix Functions∗ 207

B. Laszkiewicz and K. Ziȩtak (2009), ‘A Padé family of iterations for the ma-
trix sector function and the matrix pth root’, Numer. Linear Algebra Appl.
16, 951–970.

P.-F. Lavallée, A. Malyshev and M. Sadkane (1997), Spectral portrait of matrices by
block diagonalization, in Numerical Analysis and Its Applications (L. Vulkov,
J. Waśniewski and P. Yalamov, eds), Vol. 1196 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, pp. 266–273.

J. D. Lawson (1967), ‘Generalized Runge-Kutta processes for stable systems with
large Lipschitz constants’, SIAM J. Numer. Anal. 4(3), 372–380.

J. R. R. A. Martins, P. Sturdza and J. J. Alonso (2003), ‘The complex-step deriva-
tive approximation’, ACM Trans. Math. Software 29(3), 245–262.

R. Mathias (1996), ‘A chain rule for matrix functions and applications’, SIAM J.
Matrix Anal. Appl. 17(3), 610–620.

The MathWorks (2009a), ‘numeric::expMatrix—the exponential of a matrix’.
http://www.mathworks.com/access/helpdesk/help/toolbox/mupad/

numeric/expMatr.html, retrieved on September 29, 2009.
The MathWorks (2009b), ‘numeric::fMatrix—functional calculus for numerical

square matrices’. http://www.mathworks.com/access/helpdesk/help/toolbox/
mupad/numeric/fMatrix.html, retrieved on September 29, 2009.

C. B. Moler and C. F. Van Loan (1978), ‘Nineteen dubious ways to compute the
exponential of a matrix’, SIAM Rev. 20(4), 801–836.

C. B. Moler and C. F. Van Loan (2003), ‘Nineteen dubious ways to compute the
exponential of a matrix, twenty-five years later’, SIAM Rev. 45(1), 3–49.

L. Morai and A. F. Pacheco (2003), ‘Algebraic approach to the radioactive decay
equations’, Amer. J. Phys. 71(7), 684–686.

Octave Version 3.2.2 (2009). http://www.octave.org.
B. N. Parlett (1976), ‘A recurrence among the elements of functions of triangular

matrices’, Linear Algebra Appl. 14, 117–121.
B. N. Parlett and K. C. Ng (1985), Development of an accurate algorithm for

exp(Bt), Technical Report PAM-294, Center for Pure and Applied Mathe-
matics, University of California, Berkeley. Fortran program listings are given
in an appendix with the same report number printed separately.

M. S. Paterson and L. J. Stockmeyer (1973), ‘On the number of nonscalar multi-
plications necessary to evaluate polynomials’, SIAM J. Comput. 2(1), 60–66.

H.-O. Peitgen, H. Jürgens and D. Saupe (1992), Fractals for the Classroom. Part
Two: Complex Systems and Mandelbrot Set, Springer-Verlag, New York.

G. M. Phillips (2000), Two Millennia of Mathematics: From Archimedes to Gauss,
Springer-Verlag, New York.

M. Popolizio and V. Simoncini (2008), ‘Acceleration techniques for approximating
the matrix exponential operator’, SIAM J. Matrix Anal. Appl. 30(2), 657–683.

P. J. Psarrakos (2002), ‘On the mth roots of a complex matrix’, Electron. J. Linear
Algebra 9, 32–41.

P. Pulay (1966), ‘An iterative method for the determination of the square root of
a positive definite matrix’, Z. Angew. Math. Mech. 46, 151.

R. F. Rinehart (1955), ‘The equivalence of definitions of a matric function’, Amer.
Math. Monthly 62, 395–414.

http://www.mathworks.com/access/helpdesk/help/toolbox/mupad/
numeric/expMatr.html
http://www.mathworks.com/access/helpdesk/help/toolbox/
mupad/numeric/fMatrix.html
http://www.octave.org

208 N. J. Higham and A. H. Al-Mohy

J. D. Roberts (1980), ‘Linear model reduction and solution of the algebraic Riccati
equation by use of the sign function’, Internat. J. Control 32(4), 677–687.
First issued as report CUED/B-Control/TR13, Department of Engineering,
University of Cambridge, 1971.

Y. Saad (1992), ‘Analysis of some Krylov subspace approximations to the matrix
exponential operator’, SIAM J. Numer. Anal. 29(1), 209–228.

Y. Saad (2003), Iterative Methods for Sparse Linear Systems, second edn, Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA.

M. Schroeder (1991), Fractals, Chaos, Power Laws: Minutes from an Infinite Par-
adise, W. H. Freeman, New York.

S. M. Serbin and S. A. Blalock (1980), ‘An algorithm for computing the matrix
cosine’, SIAM J. Sci. Statist. Comput. 1(2), 198–204.

L. F. Shampine (2007), ‘Accurate numerical derivatives in MATLAB’, ACM Trans.
Math. Software. Article 26, 17 pages.

R. B. Sidje (1998), ‘Expokit: A software package for computing matrix exponen-
tials’, ACM Trans. Math. Software 24(1), 130–156.

R. B. Sidje (n.d.), ‘Expokit’. http://www.maths.uq.edu.au/expokit, retrieved
October 8, 2009.

M. I. Smith (2003), ‘A Schur algorithm for computing matrix pth roots’, SIAM J.
Matrix Anal. Appl. 24(4), 971–989.

W. Squire and G. Trapp (1998), ‘Using complex variables to estimate derivatives
of real functions’, SIAM Rev. 40(1), 110–112.

C. F. Van Loan (1975), A study of the matrix exponential, Numerical Analysis Re-
port No. 10, University of Manchester, Manchester, UK. Reissued as MIMS
EPrint 2006.397, Manchester Institute for Mathematical Sciences, The Uni-
versity of Manchester, UK, November 2006.

C. F. Van Loan (1978), ‘Computing integrals involving the matrix exponential’,
IEEE Trans. Automat. Control AC-23(3), 395–404.

C. F. Van Loan (1979), ‘A note on the evaluation of matrix polynomials’, IEEE
Trans. Automat. Control AC-24(2), 320–321.

R. S. Varga (2000), Matrix Iterative Analysis, second edn, Springer-Verlag, Berlin.
C. Visser (1937), ‘Note on linear operators’, Proc. Kon. Akad. Wet. Amsterdam

40(3), 270–272.
R. C. Ward (1977), ‘Numerical computation of the matrix exponential with accu-

racy estimate’, SIAM J. Numer. Anal. 14(4), 600–610.
F. V. Waugh and M. E. Abel (1967), ‘On fractional powers of a matrix’, J. Amer.

Statist. Assoc. 62, 1018–1021.
D. Yuan and W. Kernan (2007), ‘Explicit solutions for exit-only radioactive decay

chains’, J. Appl. Phys. 101, 094907 1–12.

http://www.maths.uq.edu.au/expokit

