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Finite Elements and Anisotropic EIT reconstruction

William R. B. Lionheart!,Kyriakos Paridis'
1School of Mathematics, The University of Manchester, Manchester, UK.

E-mail: bill.lionheart@manchester.ac.uk

Abstract. We study the indeterminacy of the inverse problem for the finite element
approximation to the anisotropic inverse problem of EIT

1. Introduction

It is well known that many body tissues such as muscle have an anisotropic conductivity. It is
also known that the inverse problem for anisotropic EIT does not have a unique solution even
with complete data (arbitrarily many, arbitrarily small electrodes) of arbitrary precision [1].
The usual numerical treatment of EIT uses a finite element (FE) model to solve the forward
problem and the conductivity in this model is adjusted to fit the measured data. Extending
the usual approach to the isotropic problem we approximate the potential as piecewise linear on
tetrahedra elements and it seems natural to represent the anisotropic conductivity as a constant
symmetric matrix on each tetrahedron.

There are two pit-falls with this approach. The finite element system matrix can have non
zero elements only for pairs of vertex indices corresponding to an edge in the FE mesh. The
diagonal elements are simply the negative of the sum of the off diagonal elements for that row
or column so the maximum number of degrees of freedom in our FE model is the number of
edges. Representing the anisotropic conductivity as a symmetric matrix on each element gives
6n; degrees of freedom (n; is number of tetrahedra) — more than n. the number of edges. This
means that even if we knew the FE system matrix (let alone just the boundary data) we still
could not uniquely determine the conductivity matrix on each tetrahedron uniquely.

However this is not the non-uniqueness that arises in the continuum problem. Let o(z) =
(0i;(x)) be an anisotropic conductivity on a domain @ C R3, and let F : @ — Q be a smooth
invertible map (diffeomorphism) with F'(z) = x for x € 99 then the known non-uniqueness in
EIT arises as the Neumann-Dirichlet map (transfer impedance) defined by

R, : oVu-n— ulpg (1)
(where V - oVu = 0) satisfies
R, = R; (2)
for another conductivity
- DF(x)To(x)DF(x)
F = 3

where DF(z) is the Jacobian matrix of F. Using a fixed finite element mesh does not reveal
this non-uniqueness in the inverse problem as a smooth map I’ does not preserve the mesh. So



in this obvious approach we have chosen one of the infinite family of anisotropic conductivities
consistent with the data simply by our choice of mesh.

In this paper we look at the singular value decomposition of the linearised forward problem
(Jacobian) for anisotropic EIT, and we show for a variety of meshes the problem of determining
edge conductances exhibits the same ill-conditioning as the isotropic problem, with no further
drop in rank of the Jacobian. This indicates that we are as likely to be as successful in recovering
edge conductances from EIT data as we are isotropic conductivities on elements. This shifts the
problem of anisotropic EIT to finding a mesh, and an assignment of anisotropic conductivity
matrices on elements, consistent with a prior: data.

2. Finite element formulation

The finite element mesh consists of vertices x; € Q i = 1,...n, and tetrahedra Ty, k = 1, ..., n;.
The tetrahedra are convex hull of the sets of four distinct vertices, and they intersect at most in
faces (that is the convex hull of the three vertices they share). The union |J, T} is a polyhedron
approximating 2. The nodal basis functions ¢;(x) are the piecewise linear functions such that
¢(x;) =1 and ¢(x;) =0, j # i. We approximate the potential as u(z) = >, uj¢;(x), and assign
a positive definite matrix o to each tetrahedron. In this context the finite element system
matrix K € R™*™ is given by

Kj= Y Véi-0"V;|Ty (4)
k{ai,x;}CTy

where |Tj| is the volume of the tetrahedron and we note that on each tetrahedron V¢; is constant.
For a boundary current density J = cVu - n we define the current vector I € R™ by

I = / Jb; du (5)

oN

and the FE system is
Ku=1 (6)

where u is the vector of u;. One additional condition is required for a unique solution as the
voltage is only determined up to an additive constant, one way to do this is to choose one
(“grounded”) vertex i, and enforce u;, = 0 by deleting the 4, row and column from the system
(6). It is clear from (4) that for a pair of vertices indexed by i,j that are not both in any
tetrahedron, K; ; = 0. For an isotropic conductivity, that is 0% = 4*1 for scalars v* and I the
identity matrix, the system (6) is equivalent to Ohm’s and Kirchoff’s law for a resistor network
with distinct vertices labeled by 7 and 7 connected by a resistor with conductance

Kz‘j =6 Z Y cot ijLij (7)
k{x,x;}CTy

(see Appendix) where Hfj is the angle between the faces of T} where they meet the edge not
containing the vertices indexed by ¢ or j and L;; the length of that edge. Obviously some
restrictions on the angles are necessary to ensure the conductances are nonnegative, if they are
all acute that is certainly sufficient. If we allow negative conductances we can interpret K;; as an
“edge conductance” even for anisotropic conductivity and possible non-acute angles. The total
Ohmic power for the network will still be nonnegative for any solution. The mapping (¢%) — K
is linear, with a domain of dimension 6n; and range of dimension at most n.. In a typical mesh
6ny > ne.



3. Rank analysis of Jacobian

In practical EIT a system of electrodes is used that does not typically cover the whole of 02
which means some conductivity information at the boundary could be inaccessible in between
electrodes. We therefore consider the idealisation that any electrodes can be used. In the finite
element context it means that any current vector I can be specified with zero sum and supported
on boundary vertices, and all measurements of voltage made at boundary vertices. Without loss
of generality we will set a current of —1 at i, and then apply currents of 1 at each other boundary
i vertex in turn. The voltage Vi; = u(x;) is measured at ;. The Jacobian matrix gives the rate

of change of each of these voltages when O'lkm is changed in tetrahedron T}. This is

Vi out oul
aal"“m N 0z Oxpm, du (8)
Tk

where 1’ = Zq ufﬂSq(m) is the finite element approximation to the potential for the current of 1

at vertex z;.
Using Netgen [2] to generate meshes of geometric objects and a modification of code derived by
Abascal [3] from Polydorides’” EIDORS-3D [4] to calculate the Jacobian we studied the singular

values of the anisotropic Jacobian, see table 1.

ng ne | rank(J) ng ne | rank(J)

y o i 0] 82 sl ne | ne | rank(J) |
28 66 66 70 | 142 141 39 1662 162

48 98 98 122 | 246 245 951 | 418 418
168 | 289 289 320 | 504 504 361 | 656 656
20| 582 536 1 590 o89 712 | 1049 1049
384 | 604 604 560 | 879 879
1344 | 1922 | 1922 976 | 1529 | 1529 (c) Cylinder

(a) Cube (b) Sphere

Table 1: Meshes with n; tetrahedra and n. edges against the numerical rank of the Jacobian.

We note in figure 1 that sudden fall in the singular values after n., and the linear fall on a
log scale before that, confirms that the edge conductances can be determined by the transfer
impedance data, with a similar degree of illconditioning as the isotropic inverse problem. We
note that this rank of the Jacobian is less than the 6n; degrees of freedom in the anisotropic
conductivity and as expected we cannot hope to recover these uniquely.

4. Discussion and Conclusion

The relation between finite element meshes and resistor network only applies to linear tetrahedral
elements. It is also not necessarily appropriate to treat the conductivities on elements as each
individually variable. In isotropic EIT it is quite usual to use a coarser mesh for the conductivity
than for the potential. In this case with fewer degrees of freedom for the conductivity, and
perhaps basis functions reflecting a priori information, the loss of information we observed going
from conductivity matrices to edge conductances is not so important. More important perhaps
is the necessity in our numerical representation to reintroduce the non-uniqueness resulting from
the undetermined diffeomorphism. One way to do this is to reconstruct edge conductances on
a mesh, then use a priori information, for example about the orientation of muscle fibres, to
constrain the mapping of the abstract resistor mesh, that has no geometric information, to the
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Figure 1: Singular values of the Jacobian for selected meshes

vertex positions and hence conductivities. That is our intention for future work.
This work is supported by EPSRC grant EP/F033974/1.

References

[1] J. M. Lee and G. Uhlmann, “Determining anisotropic real-analytic conductivities by boundary measurements,”
Comm. Pure Appl. Math., vol. 42, no. 8, pp. 1097-1112, 1989.

[2] J. Schoberl, “Netgen an advancing front 2D/3D-mesh generator based on abstract rules,” Comput. Vis. Sci.,
vol. 1, no. 1, pp. 41 —52, 1997.

[3] J.-F.P.J. Abascal, S. R. Arridge, D. Atkinson, R. Horesh, L. Fabrizi, M. De Lucia, L. Horesh, R. H. Bayford,
and D. S. Holder, “Use of anisotropic modelling in electrical impedance tomography; Description of method
and preliminary assessment of utility in imaging brain function in the adult human head,” Neuroimage,
vol. 43, pp. 258268, Nov 1 2008.

[4] N. Polydorides and W. R. B. Lionheart, “A matlab toolkit for three-dimensional electrical impedance
tomography: a contribution to the electrical impedance and diffuse optical reconstruction software project,”
Meas. Sci. Technol., vol. 13, no. 12, pp. 1871-1883, 2002.

[5] J. R. Lee, “The law of cosines in a tetrahedron,” J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math., vol. 4,
no. 1, pp. 1-6, 1997.

Appendix
The derivation of (7) is fairly elementary apart from one step. Consider one tetrahedron 7" with
vertices x1, ..., £4. The unit normal to plane of vertices 2, 3,4 is

B (1‘2 — .%'3) X (1‘2 — .%'4)
Ni= (w2 — 23) X (z2 — 24)] )

Hence the nodal basis function on this tetrahedron is

(x —x2) - (w2 — x3) X (w2 — 24)
(r1 — x2) - (22 — 23) X (2 — 14))

¢1(x) = (10)

and
4Area(234)Area(134)

7]

Vo1 -Vo|T| =Ny - Ny (11)



Clearly Ny - Ng = cos 612 where 615 is the dihedral angle at the edge 34 and from [5] we see
that

2
|T'| = ——Area(234)Area(134) sin 012
3Lz

where L5 is the length of the opposite edge 34. The result follows.



