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Abstract

We consider a compact, oriented, smooth Riemannian mdiif@lvith or without boundary) and
we suppos& is a torus acting by isometries dh. GivenX in the Lie algebra and corresponding
vector fieldXy on M, one defines Witten’s inhomogeneous operaigy = d + 1x, : Q5 — QF
(even/odd invariant forms oMl). Witten [10] showed that the resulting cohomology classsse
Xu-harmonic representatives (forms in the null spacaygf = (dx,, + 8x,,)?), and the cohomol-
ogy groups are isomorphic to the ordinary de Rham cohomajogyps of the fixed point set. Our
principal purpose is to extend these results to manifoldls moundary. In particular, we define
relative (to the boundary) and absolute versions oifiecohomology and show the classes have
representativéy-harmonic fields with appropriate boundary conditions. ®athis we present
the relevant version of the Hodge-Morrey-Friedrichs degosition theorem for invariant forms
in terms of the operatafy,, and its adjoin®y,,; the proof involves showing that certain bound-
ary value problems are elliptic. We also elucidate the cotioe between thé&y,-cohomology
groups and the relative and absolute equivariant cohorgplolipwing work of Atiyah and Bott
[2]. This connection is then exploited to show that everyniamic field with appropriate bound-
ary conditions orF has a unige extension to ay-harmonic field onM, with corresponding
boundary conditions.

Keywords Hodge theory, manifolds with boundary, equivariant cobtogy, Killing vector fields

1 Introduction

Let M be a compact oriented Riemannian manifold of dimensi@nthout boundary, and for eadh
denote byQk = QK(M) the space of smooth differentikiforms onM. The de Rham cohomology of
M is defined to béd I‘(M) = kerdy/imdg_1, wheredy is the restriction of the exterior differentidlito
QK. Based on the Riemannian structure, there is a natural product on eaci®X defined by

(@.B)= | anGB), (1)
wherex : QX — Q"X is the Hodge star operator [1, 9]. One defiBe€X — Q<1 by
30 = (—1)"* DL (xd) . (1.2)

This is seen to be the formal adjoint dfrelative to the inner product (1.1}da, B) = (a, ). The
Hodge Laplacian is defined ldy= (d +8)? = d+ &d, and a formw is said to beharmonicif Aw= 0.

In the 1930s, Hodge [5] proved the fundamental result thah e@homology class contains a
unique harmonic form. A more precise statement is that,dohk,

QM) = HX @ dQ* 1@ QKL (1.3)



The direct sums are orthogonal with respect to the innerymtod..1), and the direct sum of the first
two subspaces is equal to the subspace of all clededns (that is, kedy).

Furthermore, on a manifold without boundary, any harmooimfw € kerA is both closeddw =
0) and co-closeddw = 0), as

0= (Aw, w) = (ddw, W) + (ddw, W) = (5w, dw) + (dw, dw) = ||5||? + ||dw]|2. (1.4)
For manifolds with boundary this is no longer true, and inagahwe write
H¥ = HK(M) = kerd N ker3.

Thus for manifolds without boundafi (M) = kerA, the space of harmonic forms, and it follows that
the Hodge star operator realizes Poincaré duality at tret & harmonic forms.

An interesting observation which follows from the theoreitodge is the following. If a group
G acts onM then there is an induced action on ezltt”f‘(M), and if this action is trivial (for example,
if G is connected) and the action dhis by isometries, then each harmonic form is invariant under
the action ofG.

Now supposeX is a Killing vector field onM (meaning that the Lie derivative of the metric
vanishes). Witten [10] defines an operator on differentairfs

dsZ:d—FSlK:d—{—lxN”

for Xy = sK wherel is interior multiplication of a form withK (we write Xy as we will think ofX

as an element of a Lie algebra acting nand Xy its associated vector field). This operator is no
longer homogeneous in the degree of the formwif QX(M) thendsw € Q1 @ Qk-1. Note then
thatds : QF — QF, whereQ® is the space of forms of ever-J or odd () degree. Let us write
s = d for the formal adjoint ofis (so given byds = 8+ s(—1)"®*U+1(x1+) on each homogenous
form of degreek). By Cartan's formulad2 = Lk = sCy, (the Lie derivative along). On the
spaceQ)j(EM = Q* nkerLy, of invariant forms,d2 = 0 so one can define two cohomology groups
HZ :=kerdZ/imdg. Witten then defines

(which he denotesbls as it represents a Hamiltonian operator, but for us this @oalise confusion),
and he observes that using standard Hodge theory argurtfeares,is an isomorphism

HE = (kerAs)* ~ HE(M), (1.5)

although no details of the proof are given (nor are they twbed elsewhere in the literature). We call
HZ (M) the Xy- cohomologyof M and denote it by-l)j{M(M). Witten also shows, among other things,
that fors = 0, the dimensions of(Z are respectively equal to the total even and odd Betti nusnifer
the subseN of zeros ofXy;, which in particular implies the finiteness of dify. Atiyah and Bott [2]
relate this result of Witten’s to their localization theorén equivariant cohomology.

The principal purpose of this paper is to extend Witten'sitsso manifolds with boundary. In
order to do this, in Section 2 we outline a proof of Witten'suks using classical Hodge theory
arguments, which in Section 3 we extend to deal with the chg®aifolds with boundary. Finally in
Section 4 we describe Atiyah and Bott’s localization anadd@sclusions in the case of manifolds with
boundary. Section 5 provides a few conclusions.



In the remainder of this introduction we recall the standaxténsion of Hodge theory to mani-
folds with boundary, leading to the Hodge-Morrey-Friedddecompositions. So now we Mtbe a
compact orientable Riemannian manifold with boundaiv}; and leti : M — M be the inclusion. In
this setting, there are two types of de Rham cohomology, likelate cohomologii“(M) and the rel-
ative cohomologH*(M,dM). The first is the cohomology of the de Rham comgl@%(M),d), while
the second is the cohomology of the subcompl@f (M), d), wherew € QF if it satisfiesi*w = 0
(the D is for Dirichlet boundary condition). One also defif@§(M) = {a € QM) | i*(xa) = 0}
(Neumann boundary condition). Hares the pullback by the inclusion map. Clearly, the Hodge star
provides an isomorphism

*: QK ok
Furthermore, becausktandi* commute, it follows thatl preserves Dirichlet boundary conditions
while & preserves Neumann boundary conditions.

As alluded to before, because of boundary terms, the nulespfA no longer coincides with
the closed and co-closed forms. Elements offkare calledharmonic forms while w satisfying
dw = dw = 0 are callecharmonic fieldqfollowing Kodaira); it is clear that every harmonic field is
a harmonic form, but the converse is false. The space of hadkefieldsis denotedH*(M) (so
H*(M) C kerd). In fact, the spacé(*(M) is infinite dimensional and so is much too big to represent
the cohomology, and to recover the Hodge isomorphism onotiagose boundary conditions. One
restricts X(M) into each of two finite dimensional subspaces, narfgyM) and =X (M) with the
obvious meanings (Dirichlet and Neumann harmdafields, respectively). There are therefore two
different candidates for harmonic representatives wherdundary is present.

The Hodge-Morrey decomposition [8] states that

QM) = HX(M) & dQ & 3QK ™.

(We will make a more precise functional analytic statemegloWw.) This decomposition is again
orthogonal with respect to the inner product given aboviedfichs [3] subsequently showed that

H =HS oM  HY=H{oHE

whereHX, are the exact harmonic fields ahtf, the coexact ones. These give the orthogdiadge-
Morrey-Friedrichs[9] decompositions,

QM) = doKt@sokteHE o HE,
= dOK @0kt e HY @ HK,

The two decompositions are related by the Hodge star operite consequence for cohomology is
that each class iIH(M) is represented by a unique harmonic fieldfy(M), and each relative class in
HK(M,aM) is represented by a unique harmonic fieldHfj(M). Again, the Hodge star operator acts
as Poincaré duality (or rather Poincaré-Lefschetz dgadin the harmonic fields, sending Dirichlet
fields to Neumann fields. And again, if a group acts by isoretan(M,0M) in a manner that is
trivial on the cohomology, then the harmonic fields are iiarar

In this paper, we supposgis a compact connected Abelian Lie group (a torus) actingsbgne-
tries onM, with Lie algebrag, and we letX € g. If M has a boundary then tl&action necessarily
restricts to an action on the boundary afg must therefore be tangent to the boundary. We denote
by Qe = Qg(M) the set of invariant forms oNl: w € Qg if g*w = w for all g € G; in particular if
wis invariant thenCx,,w = 0. Note that because the action preserves the metric andiémation it
follows that, for eacly € G, x(g*w) = g* (*w), so ifw € Qg thenxw € Qg.
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Remark on typesetting: Since the letter H plays three rolgkis paper, we use three different
typefaces: a script{ for harmonic fields, a sans-seftif for Sobolev spaces and a normal (italid)
for cohomology. We hope that will prevent any confusion.

Acknowledgment The first named author would like to express his gratitudeh& Ministry of
Higher Education and Scientific Research of Iraq for the fir@rsupport for his PhD studies in
Mathematics at the University of Manchester. This work ¥atim part of the thesis for that PhD.

2 Witten-Hodge theory for manifolds without boundary

In this section we prove some of the results of Witten [10pving details we will need in the next
section for manifolds with boundary. We will use the notatfoom the introduction.

We have an oriented boundaryless compact Riemannian rfchiMfavith an action of a toru&,
and we fix an elemerX € g. The associated vector field dis Xy, and using this one defines Wit-
ten’s inhomogeneous operatdy,, : QjGE — QE, dx,w=dw+1x,w, and the corresponding operator
(cf. eq. (1.2))

6XM _ (_1)n(k+l)+l*dxM* _ 6—|— (_1)n(k+l)+l*lxM*

(which is the adjoint operator ty,, by Proposition 2.2 below). The resultivitten-Hodge-Laplacian
is Ax, : Qg — QF defined byAx, = (dx, + 8xy)? = dxy Oxy + Oxydxy- We write the space Ofy-
harmonic fields

Hyx,, = kerdx,, Nkerdy,,,

which (for manifolds without boundary) satisfiésy,, = kerAy,. The last equality follows for the
same reason as for ordinary Hodge theory, namely the arguméh4), withA replaced by\y,, etc.

We recast Stokes’ theorem and Green’s formula in terms afpleeatorsiy,, anddy,, by defining
fy 0= 0if we QX(M) with k # n. For any formw € Q(M) one hasfy, 1x,w= 0 asix, w has no term
of degreen, and the following version of Stokes’ theorem follows frome tordinary Stokes’ theorem.
For future use, we allom to have a boundary.

Theorem 2.1 (Stokes’ theorem for  dyx,,) Let M be a compact manifold with boundadiy! (possibly
empty) for all differential formso € Q(M) then

/dxMw:/ i*o,
M oM

where i: d0M — M is the inclusion, and where the right-hand-side is takemdozero if M has no
boundary.

Proposition 2.2 (Green’s formula for ~ dy,, and 8y,,) Leta,B € H!Qg be invariant differential forms
on the compact manifold M with boundadi¥l (possibly empty) , then

(Ax,0.B) = (0.3, B)+ [ 1*(@nsB) @D

PrROOF  For technical reasons we writeandf3 as:

a=o"+a", B=P"+p €H'Qg



then

dyy (AA(KB)) = dy, (@t +a ) Ax(BT+B7) +
o Adx, (x(BT+PB7)) —a” Adx, (<(BT+B7))

integrating both sides ovéM, applying Theorem 2.1 and usir@x,, = tdx,+ on Qé(M) and then
by using the linearity and orthogonality 8fc(M) = Q{ (M) @ Qg (M) then we obtain eq. (2.1). O

Returning now to the case of a manifold without boundary, Waio the following.
Theorem 2.3 The Witten-Hodge-Laplaciafix,, is a self-adjoint elliptic operator.

PrRoOOF  The self-adjoint property follows from the same argumexfbathe classical Hodge Lapla-
cian, namely thady,, is the adjoint ofdyx,,. For the ellipticity, we can expanfiy,, from its definition
as,

AXM :A+(—1)n(k+l)+l(d*lxM *+*|XM*d +*|XM*|XM +|XM*|XM*)+|XM6+6IX;\/|- (22)

It follows thatAyx,, andA have the same principal symbol (indefg, — A is a first order differential
operator). Sincé is elliptic, it follows that so too if,, . O

Every elliptic operator is Fredholm, in the following sen§®r each spacQé, let HSQé be the
corresponding Sobolev space (the completioﬁéfunder an appropriate norm). Then for eachR,

Dy, : HQE — HS2Q%

is a Fredholm operator, so has finite dimensional kernel akdroel, and closed range.
The regularity and Fredholm properties of elliptic opersiionply the following.

Corollary 2.4 The set of }4-harmonic (even/odd) formb[f([M is finite dimensional and consists of
smooth C forms.

The following result is the analogue of the Hodge decommstheorem, and is a standard con-
sequence of the fact thak, is self-adjoint.

Theorem 2.5 The following is an orthogonal decompaosition
QF = Hy, B dx, QF @ 8%, Q8.
and in terms of Sobolev spacés € R)
HQG = Hy, ® dx, H1QE @ 8%, H1QE.
The orthogonality is with respect to thé Inner product, given in (1.1).

As consequences for our decomposition above to the invadifferential formsQZ, we have the
following topological properties foXy-cohomology.

Proposition 2.6  Every X%y-cohomology class has a uniqug armonic form representative.



Corollary 2.7 The X4-cohomology groups E“IA(M) for a compact, oriented differentiable Rieman-
nian manifold M with an action of a torus G are all finite dimamsl.

We infer the following form of Poincaré duality but in termaf Xy -cohomology. Here and else-
where we writen — + for the parity (modulo 2) resulting from subtracting an éeeldl number from
n.

Theorem 2.8 (Poincar é duality for HfM) Let M be a compact, oriented smooth Riemannian manifold
of dimension n and with an action of a torus G. The bilinearcfion

(,)iHg, xHE * —R

defined by setting
(1o, (B) = [ anp @3)

M

is well-defined, non-singular pairing and consequentlyegiisomorphisms of;@fﬂri with the dual
space of i . i.e.
Hy ™ 2 (Hy, )"

ProOOF.  Clearly, the bilinear map (2.3) is well-defined and the sorgularity follows from Propo-
sition 2.6 as follows: given a non-zeXy-cohomology classw] € HiM, we must find a non-zero
Xum-cohomology clas$y] € HQJi such that([w], [P]) # 0. According to Proposition 2.6, that is
the harmonic representative of the non zEgp-cohomology clasw], it follows thatw is not iden-
tically zero. Applying the fact thatAyx,, = Ax,,*, it gives thatxw is also harmonic and represents a
Xu-cohomology claséw)] € HQ“f. Thus the pairing (2.3)

(10, [s0) = [ @nseo= [l 0

is non-singular while the isomorphisrh&kf = (HfM)* follow from the finite dimensionality oKy -
cohomology (cf. Corollary 2.4 and Proposition 2.6) and tha-singularity above. O

LetN = N(Xw) be the set of zeros ofy. Witten observed that b is dx,,-closed then its pullback
to N is closed in the usual (de Rham) sense. And exact forms pchl toeexact forms. Consequently,
pullback defines a natural m&p‘}M — H*(N), whereH " (N) is the direct sum of the even cohomology
groups ofN, andHy  of the odd ones.

Theorem 2.9 (Witten [10]) The pullback to N induces an isomorphism between thedhomology
groups I—ﬁw (M) and the cohomology groups HN).

Witten gave a fairly explicit proof of this theorem by extémgl closed forms oM to Xy-closed
forms onM. Atiyah and Bott [2] give a proof using their localizationettrem in equivariant coho-
mology which we discuss, and adapt to the case of manifolthslvaiundary, in Section 4.

Furthermore, the restriction té of anXy,-harmonic form orM is harmonic in the usual sense, so
it follows from the theorem that every harmonic formMrhas a unique extension to &-harmonic
form onM.

Remark 2.10 SupposeX generates the tori3(X), andG is a larger torus containin@(X) and acting
onM by isometries. Then the action Gfpreservexy. It follows thatG acts trivially on the de Rham



cohomology ofN, and hence on th¥y-cohomology ofM, and consequently on the spaceXgf-
harmonic forms. In other wordﬁﬁM - Qé. There is therefore no loss in considering just forms
invariant under the action of the larger torus in thatXyecohomology, or the space #f;-harmonic
forms, is independent of the choice of torus.

Example 2.11 ConsiderM = £ (the unit 2-sphere iiR3), and use cylindrical polar coordinates
[—1,1] and@e [0, 2. Let the groupG = St act onS? by rotations about the-axis, with infinitesimal
generatol/d@. LetX € g, soXy = sd/d¢, for somes € R. Invariant even and odd forms are of the
form

wy = fo(2) + f2(2)dpndze Qf, w_ = f1(2)dz+ g1 (2)dp e Qg.

In order thatw_ is smoothg; must vanish at the poles= +1. The invariant volume form ispA dz,
with total volume 4t, and the metric isls’ = (1 — 22)~1dZ + (1 — 22)d¢?. Consequentlyx(dz) =
—(1-Z)dpandx(dg) = (1—2%)~1dz so

dy, 0y = (15(2) +5B(2)dz. Bx,w, = —(1-2%(f}(2) +so(2) do
One findsw, is Xy-harmonic if and only if
w; = Ae”(1-doAdz) +Be 3 (1+doAdz),

for A,B € R, and one finds that there are no non-zero ¥gdharmonic forms. Furthermore, the
pullback ofw, to N (which here is the two poles at= +-1) isA(€®, e %) + B(e 5, €°) which fors# 0
are linearly independent, as predicted by Theorem 2.9ntitigble that the two fundamental solutions
for w, (those withA =1,B = 0 and vice versa) depend analytically ®n

3 Witten-Hodge theory for manifolds with boundary

In this section we adapt the results and methods of Hodgeti@omanifolds with boundary to study
the Xy-cohomology and the space X§;-harmonic forms and fields for manifolds with boundary. As
for ordinary (singular) cohomology, there are both absohrd relativeXy-cohomology groups. So
from now on our manifold will be with boundary and with torugian which acts by isometry on this
manifold unless otherwise indicated, and as befogM — M denotes the inclusion of the boundary.

3.1 The difficulties if the boundary is present

Firstly, dx,, and dx,, are no longer adjoint because the boundary terms arise wkentagrate by
parts and the\y,, will not be self-adjoint. In addition, the space of all hammfields is infinite
dimensional and there is no reason to expecthieharmonic fieldsHx, (M) to be any different. To
overcome these problems, we follows the method which is tsedlve this problem in classical case,
i.e. withd andd [1, 9], and impose certain boundary conditions on our imrarformsQg(M). Hence
we make the following definitions.

Definition 3.1 (1) We define the following two sets of smooth invariant fomnghe manifoldVl with
boundary and with torus action

QG,D = QgﬂQD = {OOE QG | i"w= O} (31)
QG7|\| = QcNQN = {OOE Qc | I*(*OO) = 0} (3.2)



and the spaced®Qgp andH>Qg n are the corresponding closures with respect to suitablel®ob
norms, fors > % This can be refined to take into account the parity of the §rso definingpaD
etc. Sincew € QX impliesxw € Q"% we write that forw € QF we havexw € QF =.

(2) We define the two subspaces?aof,, (M)

Hy,p(M) = {weHQgp |dx,w=0,38x,w=0} (3.3)
HyyN(M) = {weH Qg |dx,w=0,8x,w=0} (3.4)

which we call Dirichlet and NeumarXy,-harmonic fields, respectively. We will show below that #hes
forms are smooth. Clearly, the Hodge star operatiefines an isomorphisftix, p(M) = Hx,, n(M).
Again, these can be refined to take the parity into accoufihidg Hf{M’D(M) etc.

As for ordinary Hodge theory, on a manifold with boundary t@as to distinguish betweeXy -
harmonicforms(i.e. kerAy,, ) andXy-harmonicfields(i.e. Hx,, (M)) because they are not equal: one
hasHy,, (M) C kerAyx,, but not conversely. The following proposition shows thedibans onw to
be fulfilled in order to ensure € kerAy,, = w € Hx,, (M) whenoM = 0.

Proposition 3.2 If we€ Qg(M) is an Xy-harmonic form (i.eAx,,w = 0) and in addition any one of
the following four pairs of boundary conditions is satisftednw € Hx,, (M).

(1) "w=0,i*(xw) =0; (2) "w=0, i*(dx,w) =0;
(3) i"(*w) =0, i*(xdx,w) =0;  (4) i*(dx,w) =0, i*(xdx,w) = 0.

PROOF ~ Becauseély,w = 0, one hagAx,w,w) = 0. Now applying Proposition 2.2 to this and
using any of these conditions (1)—(4) ensuxeis anXy-harmonic field. O

Remark 3.3 An averaging argument shows th#tQg,p andH!Qg,\ are dense ih2Qg, because the
corresponding statements hold for the spaces of all (natigmt) forms.

3.2 Elliptic boundary value problem

We prove the ellipticity of certain boundary value problerv#) which is given in Theorem 3.4.
This theorem represents the keystone to extending Wittesiglts to manifolds with boundary, via
our extension of the Hodge-Morrey decomposition theorerteims ofdy,, and dx,,. We then to
relate our results to the equivariant cohomology ring. Trofs in this section rely heavily on the
corresponding statements for the usual Lapladiam a manifold with boundary, as described in the
book of Schwarz [9].

We consider th&vp

Ax,0 = n on M
i*w = 0 on oM (3.5
i*(Ox,w) = 0 on OM.

Theorem 3.4
1. TheBvp (3.5) is elliptic in the sense of Lopatinéléapiro, wheré\y,, : Qc(M) — Qg(M).
2. TheBvPp (3.5) is Fredholm of index O.

3. All w € Hyx,, p UHx, N are smooth.



PROOF,
(1) Firstly, as in the proof of Theorem 2.3, we can see ffandAy,, have the same principal symbol.
Similarly, expanding the second boundary condition gives

6XM =5+ (_1)n(k+l)+l*lXM‘k

sody,, andd have the same first-order part. Hence BuUP (3.5) has the same principal symbol as the

following BvP
Ae = & on M
it = 0 on oM (3.6)
i"(d%) = 0 on oM

for €, & € Q(M), because the principal symbol does not change when ternosvef lorder are added
to the operator. However ttevp (3.6) is elliptic in the sense of Lopatinsksiapiro conditions [6, 9],
and thus so is (3.5).

(2) From part (1), since thevp (3.5) is elliptic, by using Theorem 1.6.2 in [9] or Theorem 2@

in [6] we conclude that thevp (3.5) is a Fredholm operator and the regularity theoremsold
addition, we observe that the only differences betweem (3.6) and ousvP (3.5) are all lower order
operators and it is proved in [9] that the indexmofp (3.6) is zero but Theorem 20.1.8 in [6] asserts
generally that if the difference between twgpP’ s are just lower order operators then they must have
the same index. Hence, the index of thep (3.5) must be zero.

(3) Let w € Hxy,p UHxyn. If we Hyx, p then it satisfies th@avp (3.5) withn = 0, so by the
regularity properties of ellipti@vps, the smoothness of follows. If on the other hand € Hx,, n
thenxw € Hx,, p which is therefore smooth and consequenily= + x (xw) is smooth as well. O

We consider the resulting operator obtained by restrigliggto the subspace of smooth invariant
forms satisfying the boundary conditions
Q6(M) = {we Q(M) |i*w=0,i*(dx,w) = 0} (3.7)

Since the trace maip is well-defined orH°Qg for s> 1/2 it follows that it makes sense to con-
siderH2Qg(M), which is a closed subspace l8fQg(M) and hence a Hilbert space. For simplicity,
we rewrite ouBVP (3.5) as follows: consider the restriction/extensior\gj to this space:

A= D g H2Qg(M) — L2Qg(M).

and consider thevp,
Aw=n (3.8)

for w € H2Qg(M) andn € L2Qg(M) instead ofsvp (3.5) which are in fact compatible. In addition,
from Theorem 3.4 we deduce thais an elliptic and Fredholm operator and

index(A) = dim(kerA) — dim(kerA*) =0 (3.9

whereA* is the adjoint operator AA.
From Green'’s formula (Proposition 2.2) we deduce the falhgwproperty.

Lemma 3.5 A is L?-self-adjoint onH?Qg (M), meaning that for altx, € H2Qg(M) we have

(Aa, B) = (a, AB),

where(—,—) is the L2-pairing.



Theorem 3.6 Let M be a compact, oriented smooth Riemannian manifoldneédsion n with bound-
ary and with an action of a torus G, the spakt,, p(M) is finite dimensional and

L?Qg(M) = Hxy,0(M) @ Hxy, p(M)". (3.10)

PROOF  We begin by showing that ké&r= Hx,, p(M). It is clear thatHx,, p(M) C kerA, so we
need only prove that kéfC Hx,, p(M).

Let w € kerA. Thenw satisfies thesvp (3.5). Therefore, by condition (2) of Proposition 3.2, it
follows thatw € Hx,, p(M), as required.

Now, kerA=Hx,, p(M) but dimkerA s finite, it follows that so too is dirfi(x, p(M). This implies
thatHx,, p(M) is a closed subspace of the Hilbert spaé@g(M), hence eg. (3.10) holds. 0

Theorem 3.7
Rang€A) = Hy,, p(M)* (3.11)

where L denotes the orthogonal complement Aflg(M).

PrOOFE  Firstly, we should observe that eq. (3.9) asserts thahkekerA* but Theorem 3.6 shows
that ketA = Hy,, p(M), thus
kerA® = Hy, p(M) (3.12)

Since Rang@) is closed inL2Qg(M) because\ is Fredholm operator, it follows from the closed
range theorem in Hilbert spaces that

RanggA) = (kerA" ) = RangéA)’ = kerA* (3.13)
Hence, we just need to prove that Rér= Hx,, p(M), and to show that we need first to prove
RangéA) C Hy,, p(M)". (3.14)
So, ifa € H2Qg(M) andp € Hx,, p(M) then applying Lemma 3.5 gives
(Aa,B) =0
hence, eq. (3.14) holds. Moreover, equations (3.13) add)and the closedness H,, p(M) imply
Hyy.p(M) C kerA* (3.15)
but eq. (3.12) and eq. (3.15) force Ker= Hx,, p(M). Hence, Rang@) = Hx,, po(M)=. 0
Following [9], we denote th&?-orthogonal complement dfx,, p(M) in the spacéd?Qg p by
Hyoy 0(M)L = H2Qs p NHy, p(M)* (3.16)
(although in [9] it denotesi-forms rather thari?).

Proposition 3.8  For eachn € Hx, p(M)™ there is a unique differential form € Hx,, p(M)< satis-
fying theBvP (3.5).
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PROOF  Letn € Hx, p(M)*. Because of Theorem (3.7) there is a differential foramH?Qg (M)
such thaty satisfies th@vp (3.5). Sincey € H2Qg(M) C L2Qg(M) then there are unique differential
formsa € Hy,, p(M) andw € Hx, po(M)~+ such thaty = o + w because of eq. (3.10).

Sincey satisfies thesvp (3.5) it follows thatw satisfies thesvp (3.5) as well becausa <
Hxu.0 (M) = Ker(Axy | og . )+ Sincew=y—a, it follows thatw € H2Qgp , hencaw € Hy,, p(M)P
and it is unique O

Remark 3.9

(1) wsatisfying thesvp (3.5) in Proposition 3.8 can be recast to the condition
(dxy 0, dxy &) + (Bxy @, Bxy &) = (N,&), VE € H'Qgp (3.17)

(2) Allthe results above can be recovered but in ternfggf (M) because the Hodge star operator
defines an isomorphisit?Qg = L2Qg which restricts tdHx, p(M) = Hx, n(M).

3.3 Decomposition theorems

We adapt the Hodge-Morrey and Freidrichs decompositioisingrfor Hodge theory on manifolds
with boundary, to the present setting witk), anddx,, .

Definition 3.10 Define the following two sets of exact and coexact forms onntfamifold M with
boundary and with an action of the torGs

(M) = {dx,0|aeHQgp} CL2Qg(M), (3.18)
Co(M) = {3x,B|BeH Qen} CL*Qc(M). (3.19)

Clearly, (M) L Cc(M) because of Proposition 2.2. We denotelBfx,, (M) = Hx,, (M) the L?-
closure of the spacky,, (M).

Proposition 3.11 (Algebraic decomposition and L2—closedness)

(@) Eachw € L2Qg(M) can be split uniquely into

W = dyxy, 0o+ Oxy B + Koo
wheredy,, 0 € E(M) , 8x,Bw € Ca(M) andky, € (E(M) & C(M))*:.

(b) The spacesg(M)andCg(M) are closed subspaces of@g(M).

(a) and (b) mean that there is the following orthogonal deposition
L?Qg(M) = E6(M) @ Ca(M) & (E6(M) @ Co(M))* (3.20)

ProOF.  (a) We have shown that

L?QG(M) = Hx,.0(M) & Hyyp(M)* = Hygyn(M) & Hygyn (M)
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Let w € L2Qg(M) then corresponding to these decompositions we can spiitguely into
w=Ap+ (OO—)\D), Ww=AN+ ((A)—)\N)

where (w—Ap) € Hx, p(M)* and (w—An) € Hx, n(M)L. By Proposition 3.8 there are unique
element$p € Hx, p(M)P andby € Hx, n(M)P satisfying thesvr (3.5) withn replaced by w—Ap)
and(w— Ay) respectively.

From Theorem (3.7) we infer th@p and@y are of Sobolev clasd?, so define

O =0x,0p € H'Qgp and B, =dx,0n € H' Qo (3.21)
Now let
The next step is to show that, is orthogonal ta€(M) but form proposition 2.2 we can prove that
Ap,dx, B € Ec(M)*, in addition, (w— Ap) = Ay, 6p then
(Km, dxMc(> = <AxMeD, dxMa> — (dxMéxM6D+6dexM6D, dxMa> =0, deMc( S Eg(M)

Analogously we can show thét,,, 8x,,B) = 0, Vdx,,B € Cc(M). Thereforek,, € (Eg(M) ®Cq(M))*.
(b) Let {dx, 0} }jen be anL?-Cauchy sequence ifi(M) thendx, oj — y € L2Qg(M). Hence we
get from part (a) above that

Y = dxq, Oy + Oxy By + Ky
wheredy,,ay € Ec(M) , 3x, By € Cc(M) andky € (£6(M) & Cs(M))+. Because€s(M) L Cg(M) L
(Ec(M) & Ca(M))*+ and (y — dx, aj,y — dx, o) — O it follows that dx,By = 0 andky = 0, thus
y=dx, 0y € &s(M). Hencelg(M) is closed. The corresponding argument applieSgiv ). O

Now we can present the main theorems for this section.

Theorem 3.12 ( Xy -Hodge-Morrey decomposition theorem) Let M be a compact, oriented smooth
Riemannian manifold of dimension n with boundary and witlaetion of a torus G. Then

L2Qg(M) = E6(M) & Ca(M) ® L?Hx,, (M) (3.22)

PrROOF ~ From Proposition 3.11 we infer eq. (3.20) and then we firgeobe that the spaces
Ec(M), Ca(M) andL?Hy,, (M) are mutually orthogonal with respect to th&inner product which is
an immediate consequence of Green'’s formulae (Propogti®yn and hence

L2Hy,, (M) C (E6(M) & Co(M))*

So we need only to prove the converse and then using eq. (8€2@jll get the decomposition (3.22).
So, letw € (£6(M) @ Ca(M))+, so

(w,dx,0) = (dx,w,0) = 0 VaeHQgp

(W, 8x,B) = (dx,w,B) = 0 VYBecHQgan. (3.23)

From Remark 3.3 we know that! Qs p andH! Qg y are dense ih?Qg(M), hence eq. (3.23) implies
that dx,, w = 0 and &y, w = 0 which shows thato € L?Hy,, (M). HencelL?Hy, (M) = (§c(M) @
Co(M))*. 0
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Theorem 3.13 ( Xy -Friedrichs Decomposition Theorem)  Let M be a compact, oriented smooth Rie-
mannian manifold with boundary of dimension n and with anoacof a torus G. Then the space
Hy,, (M) C H!Qg(M) of Xy- harmonic fields can respectively be decomposed into

Hxy(M) = Hyxy,0(M) ®Hyxy,co(M) (3.24)
Hm(M) = HXM7|\|(|V|) EDHX,W,ex(M) (3.25)
where the right hand sides are coexact and exact harmonindaespectively:
Hxw,coM) = {n € Hx, (M) | n = dx,0} (3.26)
Hxyex(M) = {& € Hx, (M) [ & = dx,0} (3.27)

For L?Hy,, (M) these decompositions are valid accordingly.

PROOF  We prove eq. (3.24); the argument for the dual eq. (3.25nh&agous. Proposition 2.2
shows the orthogonality of the decomposition (3.24), i.e.

<5xMa, )\D> =0 VApe Hm,D(M)- (3.28)
The spacéy,, (M) C L?Qg(M), hence equation (3.10) asserts thaf, (M) can be decomposed into:
Hyoy (M) = Hx, (M) ® Hyxyy. 0 (M) NHy,, (M) (3.29)
)

whereHy,, p(M)+ N Hx, (M) is the orthogonal complement ®fy,, o (M) inside the space(x,,(M).
So, we need only prove that

Hx,co(M) = Hxy 0(M) " N Hxy (M).
But, it is clear thatx, co(M) C Hx,.0(M)* NHx, (M) so, we just need to prove that
Hxu,0 (M) N Hxy (M) € Hyy co(M).

Now, letw € Hx,, (M) N Hx, p(M)* then Proposition 3.8 asserts that there is a unique element
Bp € HxM,D(M)® such thatdp satisfies thesvp (3.5). One can infer from eq. (3.28) that alkso-
6mdxMeD € HXM’D(M)L. Hence,

wW— 6dexM9D = AxMeD — 6dexMeD = dméxMeD
The above equation gives that
|*(co—6dexM6D) =0, dm(&)—émdxMeD) =0, and 6m(0«)—6xMcijeD) =0

which mean thato— 8x,,dx,, 8o € Hxy.p(M) butw—dx,dx,, 6 € Hx, 0 (M)*+. Hencew= dx,,dx, Bp €
Hxy.co(M) as required. Thus, equation (3.24) holds.
For w € L?Hy,, (M) all the arguments up t@— dy,,dx,, 6o apply similarly. O

Combining Theorems 3.12 and 3.13 gives the following.

Corollary 3.14 (The Xm-Hodge-Morrey-Friedrichs decompositions) The space ?Qg(M) can be
decomposed into%-orthogonal direct sums as follows:

L2Qg(M) = &E6(M)@Ca(M) @ Hyy,p(M) @ L*Hx,, co(M) (3.30)
L2Qg(M) = &E6(M)@Ca(M) @ HyyN(M) & L*Hy,, ex(M) (3.31)
Remark 3.15 All the results above can be recovered but in terms-efpaces, for instance,
Hy, o(M) ZHE (M), LPQE(M) = EE(M) @ CE(M) ® Hy, p(M) B L*Hy, o(M)
.. etc.
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3.4 Relative and absoluteXy-cohomology

Usingdy,, anddy, we can form a number df,-graded complexes. Z,-graded complex is a pair of
Abelian group<* with homomorphisms between them:

di

ct c-

d_

satisfyingd, od_ =0=d_od,. The two (co)homology groups of such a complex are defineldn t
obvious way:H* = kerd /imd-.
The complexes we have in mind are,
(Qé,DvdXM) (Qé,waxm)-

The two on the lower line are subcomplexes of the correspondpper ones, and are defined by
Q5p = {weQg|i*w=0}C Qg
Qsy = {weQg|i*xw=0}CQg.

These are subcomplexes becaiiseommutes withdy,,. By analogy with the de Rham groups, we
denote
Hi, (M) = H¥(Qa, dxy),
Hy,(M,0M) = H*(Qgp, dxy)-
Theorem 3.16 ( Xy-Hodge Isomorphism ) Let M be a compact, oriented smooth Riemannian mani-

fold of dimension n with boundary and with an action of a toBud_et X< g. There are the following
isomorphisms of vector spaces:

(@) Hg, (M, M) = M5 (M) = HE(QF,8x,);
(b) Hy, (M) = Hy, (M) = HE(QE . 8x,);

(c) (Xu-Poincate-Lefschetz duality): The Hodge star operatoon Qg(M) induces an isomor-
phism
Hy, (M) =2 HZ *(M, oM).

PROOF  We use the various decomposition theorems to prove (a)t (Bars proved similarly,
and part (c) follows from (a), (b) and the fact that the Hodtge eperator defines an isomorphism
M, p(M) 2 HY K (M),

For the first isomorphism in (a), Theorem 3.12 (¥@-Hodge-Morrey decomposition theorem)
implies a unique splitting of any < QéD into,

Y = dx,, ay + Ox,, By + Ky

wheredy, ay € £& (M), 8, By € Cg (M) andky € L?Hy (M). If dx, y= 0 thendy,, By =0, buti*y=0
impliesi*(ky) = 0 so that, € Hy, o(M). Thus,

y e kerdyy |, <= Y= dx, Oy +Ky.
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This establishes the isomorphiérl;tM (M, 0M) = H§M7D(M).
For the second isomorphism in (a), thg-Hodge-Morrey-Friedrichs decomposition (Corollary
3.14) eq. (3.31) implies as well a unique splitting of gny Qg (M) into,

y: dXMEy+ 6XMr]y+ 6mZy+)\y

wheredx, &y € £ (M), 8x,Ny € C5 (M), 3x, Ly € L7Hy, o(M) andAy € Hy, 5(M).
If dx, Y= 0, thendx, &, = 0, and hence

y € kerdy,, <=y = 0x, (Ny+{y) +Ay.
This establishes the isomorphistt, (M) = Hy (Qg, 8x,)- O

4 Relation with equivariant conomology

When the manifold in question has no boundary, Atiyah and RBdtiscuss the relationship between
equivariant cohomology andy-cohomology by using their localization theorem. In thistam

we will relate our relative and absolu¥,-cohomology with the relative and absolute equivariant
cohomolongé(M,aM) and Hé(M); the arguments are no different to the ones in [2]. First we
recall briefly the basic definitions of equivariant cohonggioand the relevant localization theorem,
and then state the conclusions ¥-cohomology.

If a torusG acts on a manifold! (with or without boundary), the Cartan model for the equitvatr
cohomology is defined as follows. LEXy,..., X/} be a basis of and{us,...,u,} the corresponding
coordinates. The “Cartan complex” consists of poynomiahps fromg to the space of invariant
differential forms, s€5(M) @ RwhereR=R[u, ..., U], with differential

¢
deqg(W) = dw+ 3 Ujlx;0.
=1

The equivariant cohomologii(M) is the cohomology of this complex. The relative equivariant
cohomologyHg(M,0M) (if M has non-empty boundary) is formed by taking the subcompliéix w
forms that vanish on the boundaryo = 0, with the same differential.

The cohomology groups are graded by giving theveight 2 and a&k-form weightk, so the
differential deq is of degree 1. Futhermore, as the cochain groupRaredules, andleq is a homo-
morphism ofR-modules, it follows that the equivariant cohomology isfamodule. The localization
theorem of Atiyah and Bott [2] gives information on the maglgkructure (there it is only stated
for absolute cohomology, but it is equally true in the refatsetting, with the same proof; see also
Appendix C of [4]).

First we define the following subset gf

Z=]J¢

KCG
where the union is over proper isotropy subgroups of th@acinM. If M is compact, theiZ is a
finite union of proper subspaces @f Let F = Fix(G,M) = {x € M | G-x = x} be the set of fixed
points inM. It follows from the local structure of group actions ttkais a submanifold oM, with
boundarydF = F NnoM.

1we use real valued polynomials, though complex valued ormeksyust as well, and all tensor products are thus over
R, unless stated otherwise
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Theorem 4.1 (Atiyah-Bott [2, Theorem 3.5])  The inclusion j F — M induces homomorphisms of
R-modules

H&(M) - Ha(F)
H&(M,aM) 5 HE(F, 0F )
whose kernel and cokernel have support in Z.

In particular, this means that if € 1(Z) (the ideal inR of polynomials vanishing o) then the
localizationd HE(M)¢ andHE(F )y are isomorphidR¢-modules. Notice that the act of localization
destroys the integer grading of the cohomology, but sineeithave weight 2, it preserves the parity
of the grading, so that the separate even and odd parts anéainat:Hg (M) ~ Hg (F)¢. The same
reasoning applies to the cohomology relative to the bowmdarl—lé(M,aM)f ~ Hg(F,aF)f

Since the action oF is trivial, it is immediate from the definition that there is @omorphism of
R-modules,HE(F) ~ H*(F) ® R so that the localization theorem shoysinduces an isomorphism
of Ri-modules,

HE(M); - HE(F) @Ry, (4.1)

It follows thatHZ (M) is a freeR¢ module whenevef € 1(Z). Of course, analogous statements hold
for the relative versions. Since localization does notrdite rank of a module (it just removes torsion
elements), we have that

rankHg (M) =dimH=(F),  rankHg (M,0M) = dimH*(F,dF).

For X € g, defineN(Xu) = {x € M | Xu(x) = 0}, the set of zeros of the vector fielq,. Clearly
N(Xm) D F, andN(Xy) =F ifand only if X ¢ Z.

Theorem 4.2 Let X= Y ;s;X| € g. If the set of zeros of the corresponding vector figldiXequal to
the fixed point set for the G-action (i.e(X\) = F) then

Hy,, (M, 0M) = HZ (M,0M) /myHE (M,0M), (4.2)

and
H, (M) 22 HE (M) /mxHg (M) 4.3)

wheremy = (U3 — s1,...,U — §) is the ideal of polynomials vanishing at X.

PrROOF ~ Our assumptiolN(Xy) = F is equivalent toX € g\ Z. Therefore there is a polynomial
f €1(Z) such thatf (X) # 0. In addition, we can usé and replace the rinR by R¢ and then localize
HE (M) andHZ (M,0M) to makeHZ (M) andHZ (M,dM)¢ which are freeR¢-modules.

We now apply the lemma stated below, in which the left-hade & obtained by putting; = 5
before taking cohomology, so resultsl-il% (M) (or similar for the relative case), while the right-hand
side is the right-hand side of (4.2) and (4.3), so provingttie®rem. O

2The localized ringRs consists of elements &t divided by a power off and if K is anR-module, its localization is
K: := K®rR§; they correspond to restricting to the open set wHeignon-zero. See the notes by Libine [7] for a good
discussion of localization in this context.
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Lemma 4.3 (Atiyah-Bott [2, Lemma 5.6]) Let (C*,d) be a cochain complex of free R-modules and
assume that, for some polynomial f(®&#,d); is a free module over the localized ring RThen, if
se R with f(s) #0,

H*(C¢,ds) = H(C*,d) modms

wherems is the ideal(u; — sp,...,u — S).

Corollary 4.4 With the hypotheses of the theorem, the pullbdcto jthe fixed point set induces iso-
morphisms:

1- Hy, (M) ~ HE(F),
2- Hy, (M,0M) ~ H*(F,0F ).

PROOF  Reduce equation (4.1) modutex and apply Theorem 4.2. O

5 Conclusions

In previous sections, we began with the action of a t@usere we state results for a given Killing
vector fieldK on a compact Riemannian manifald (with or without boundary), more in keeping
with Witten’s original work [10]. Recall that the group IsgM) of isometries oM is a compact Lie
group, and the smallest closed subgr@(K) containingK in its Lie algebra is Abelian, so a torus.
Furthermore, the submanifold = N(K) of zeros ofK coincides with FiXG(K),M)

The equivariant cohomology constructions of Section 4 gé¢he proof of the following result,
which extends the theorem of Witten (our Theorem 2.9) to folts with boundary.

Given aK-harmonic form orM, its pullpack toN is harmonic in the ordinary sense.

Theorem 5.1 Let K be a Killing vector field on the compact Riemannian nwdiM (with or with-
out boundary), and let N= N(K) be the submanifold of zeros of K. Then pullback to N induces
isomorphisms

Hgi(M)=H%(N), and HE(M,oM)=H*(N,dN).

PROOFE  Apply Corollary 4.4 to the equivariant cohnomology for thetian of the torusG(K). O

Furthermore, using the Hodge star operator, the Poinogigechetz duality of Theorem 3.16(c)
corresponds under the isomorphisms in the theorem aboraincaré-Lefschetz duality on the fixed
point space.

Translating this theorem into the language of harmonic iediows

Hicn(M) = H(N) and Hicp(M) = H;5(N)

where; (N) and3 (N) are the ordinary Neumann and Dirichlet harmonic field®\aespectively.
More explicitly, since the isomorphisms are induced by tieusionj : N — M, one has the follow-

ing.

Corollary 5.2 Given any harmonic field on N with either Dirichlet or Neumdomundary conditions,
there is a unique K-harmonic field on M with the correspondigndary conditions.

Note that ifoN = 0 then the boundary condition dis non-existent, and so every harmonic form
(=field) onN can be uniquely extended to each of a Dirichlet and a Neumarmmdnic form orM.
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Euler characteristics As is well known, given a complex dks| (or C[s]) modules whose coho-
mology is finitely generated, the Euler characterstic ofdheplex is independent af This remains
true for aZ,-graded complex, for the same reasons (briefly, the cohaakthe direct sum of a
torsion module and a free module, and the torsion canceleiitiler characterstic).
Consequentlyx(M) = x(N) andx(M,0M) = x(N,0N), and furthermore applying the same ar-
guments to the manifoldM, one has{(d0M) = x(0N) (since FiXG,0M) = dN). This is of course
compatible with the usual relation between Euler charities of manifolds with boundary,

X(M) = X(0M) +X(M,0M) = X(0N) + X (N,0N) = X(N).

These facts about Euler characteristics can of course lénebtin a more elementary manner using
basic algebraic topology and Mayer-Vietoris sequences.
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