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Abstract

We consider a compact, oriented, smooth Riemannian manifoldM (with or without boundary) and
we supposeG is a torus acting by isometries onM. GivenX in the Lie algebra and corresponding
vector fieldXM on M, one defines Witten’s inhomogeneous operatordXM = d+ ιXM : Ω±

G → Ω∓
G

(even/odd invariant forms onM). Witten [10] showed that the resulting cohomology classeshave
XM-harmonic representatives (forms in the null space of∆XM = (dXM + δXM)2), and the cohomol-
ogy groups are isomorphic to the ordinary de Rham cohomologygroups of the fixed point set. Our
principal purpose is to extend these results to manifolds with boundary. In particular, we define
relative (to the boundary) and absolute versions of theXM-cohomology and show the classes have
representativeXM-harmonic fields with appropriate boundary conditions. To do this we present
the relevant version of the Hodge-Morrey-Friedrichs decomposition theorem for invariant forms
in terms of the operatordXM and its adjointδXM ; the proof involves showing that certain bound-
ary value problems are elliptic. We also elucidate the connection between theXM-cohomology
groups and the relative and absolute equivariant cohomology, following work of Atiyah and Bott
[2]. This connection is then exploited to show that every harmonic field with appropriate bound-
ary conditions onF has a uniqe extension to anXM-harmonic field onM, with corresponding
boundary conditions.

Keywords: Hodge theory, manifolds with boundary, equivariant cohomology, Killing vector fields

1 Introduction

Let M be a compact oriented Riemannian manifold of dimensionn without boundary, and for eachk
denote byΩk = Ωk(M) the space of smooth differentialk-forms onM. The de Rham cohomology of
M is defined to beHk(M) = kerdk/ imdk−1, wheredk is the restriction of the exterior differentiald to
Ωk. Based on the Riemannian structure, there is a natural innerproduct on eachΩk defined by

〈α, β〉 =

Z

M
α∧ (⋆β), (1.1)

where⋆ : Ωk → Ωn−k is the Hodge star operator [1, 9]. One definesδ : Ωk → Ωk−1 by

δω = (−1)n(k+1)+1(⋆d⋆)ω. (1.2)

This is seen to be the formal adjoint ofd relative to the inner product (1.1):〈dα, β〉 = 〈α, δβ〉. The
Hodge Laplacian is defined by∆ = (d+δ)2 = dδ+δd, and a formω is said to beharmonicif ∆ω = 0.

In the 1930s, Hodge [5] proved the fundamental result that each cohomology class contains a
unique harmonic form. A more precise statement is that, for eachk,

Ωk(M) = Hk⊕dΩk−1⊕δΩk+1. (1.3)
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The direct sums are orthogonal with respect to the inner product (1.1), and the direct sum of the first
two subspaces is equal to the subspace of all closedk-forms (that is, kerdk).

Furthermore, on a manifold without boundary, any harmonic form ω ∈ ker∆ is both closed (dω =
0) and co-closed (δω = 0), as

0 = 〈∆ω, ω〉 = 〈dδω, ω〉+ 〈δdω, ω〉 = 〈δω, δω〉+ 〈dω, dω〉 = ‖δω‖2 +‖dω‖2. (1.4)

For manifolds with boundary this is no longer true, and in general we write

Hk = Hk(M) = kerd∩kerδ.

Thus for manifolds without boundaryH(M) = ker∆, the space of harmonic forms, and it follows that
the Hodge star operator realizes Poincaré duality at the level of harmonic forms.

An interesting observation which follows from the theorem of Hodge is the following. If a group
G acts onM then there is an induced action on eachHk(M), and if this action is trivial (for example,
if G is connected) and the action onM is by isometries, then each harmonic form is invariant under
the action ofG.

Now supposeK is a Killing vector field onM (meaning that the Lie derivative of the metric
vanishes). Witten [10] defines an operator on differential forms

ds := d+sιK = d+ ιXM ,

for XM = sK whereιK is interior multiplication of a form withK (we writeXM as we will think ofX
as an element of a Lie algebra acting onM andXM its associated vector field). This operator is no
longer homogeneous in the degree of the form: ifω ∈ Ωk(M) thendsω ∈ Ωk+1⊕Ωk−1. Note then
that ds : Ω± → Ω∓, whereΩ± is the space of forms of even (+) or odd (−) degree. Let us write
δs = d

∗
s for the formal adjoint ofds (so given byδs = δ+s(−1)n(k+1)+1(⋆ ιK⋆) on each homogenous

form of degreek). By Cartan’s formula,d2
s = LK = sLXM (the Lie derivative alongK). On the

spaceΩ±
XM

= Ω± ∩ kerLXM of invariant forms,d2
s = 0 so one can define two cohomology groups

H±
s := kerd±s / imd

∓
s . Witten then defines

∆s := (ds+ δs)
2 : Ω±

XM
(M) → Ω±

XM
(M),

(which he denotesHs as it represents a Hamiltonian operator, but for us this would cause confusion),
and he observes that using standard Hodge theory arguments,there is an isomorphism

H±
s := (ker∆s)

± ≃ H±
s (M), (1.5)

although no details of the proof are given (nor are they to be found elsewhere in the literature). We call
H±

s (M) theXM- cohomologyof M and denote it byH±
XM

(M). Witten also shows, among other things,
that fors 6= 0, the dimensions ofH±

s are respectively equal to the total even and odd Betti numbers of
the subsetN of zeros ofXM, which in particular implies the finiteness of dimHs. Atiyah and Bott [2]
relate this result of Witten’s to their localization theorem in equivariant cohomology.

The principal purpose of this paper is to extend Witten’s results to manifolds with boundary. In
order to do this, in Section 2 we outline a proof of Witten’s results using classical Hodge theory
arguments, which in Section 3 we extend to deal with the case of manifolds with boundary. Finally in
Section 4 we describe Atiyah and Bott’s localization and itsconclusions in the case of manifolds with
boundary. Section 5 provides a few conclusions.
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In the remainder of this introduction we recall the standardextension of Hodge theory to mani-
folds with boundary, leading to the Hodge-Morrey-Friedrichs decompositions. So now we letM be a
compact orientable Riemannian manifold with boundary∂M, and leti : ∂M →֒ M be the inclusion. In
this setting, there are two types of de Rham cohomology, the absolute cohomologyHk(M) and the rel-
ative cohomologyHk(M,∂M). The first is the cohomology of the de Rham complex(Ωk(M),d), while
the second is the cohomology of the subcomplex(Ωk

D(M),d), whereω ∈ Ωk
D if it satisfiesi∗ω = 0

(the D is for Dirichlet boundary condition). One also definesΩk
N(M) =

{

α ∈ Ωk(M) | i∗(⋆α) = 0
}

(Neumann boundary condition). Herei∗ is the pullback by the inclusion map. Clearly, the Hodge star
provides an isomorphism

⋆ : Ωk
D

∼
−→ Ωn−k

N .

Furthermore, becaused and i∗ commute, it follows thatd preserves Dirichlet boundary conditions
while δ preserves Neumann boundary conditions.

As alluded to before, because of boundary terms, the null space of ∆ no longer coincides with
the closed and co-closed forms. Elements of ker∆ are calledharmonic forms, while ω satisfying
dω = δω = 0 are calledharmonic fields(following Kodaira); it is clear that every harmonic field is
a harmonic form, but the converse is false. The space of harmonic k-fields is denotedHk(M) (so
H∗(M) ⊂ ker∆). In fact, the spaceHk(M) is infinite dimensional and so is much too big to represent
the cohomology, and to recover the Hodge isomorphism one hasto impose boundary conditions. One
restrictsHk(M) into each of two finite dimensional subspaces, namelyHk

D(M) andHk
N(M) with the

obvious meanings (Dirichlet and Neumann harmonick-fields, respectively). There are therefore two
different candidates for harmonic representatives when the boundary is present.

The Hodge-Morrey decomposition [8] states that

Ωk(M) = Hk(M)⊕dΩk−1
D ⊕δΩk+1

N .

(We will make a more precise functional analytic statement below.) This decomposition is again
orthogonal with respect to the inner product given above. Friedrichs [3] subsequently showed that

Hk = Hk
D ⊕Hk

co; Hk = Hk
N ⊕Hk

ex

whereHk
ex are the exact harmonic fields andHk

co the coexact ones. These give the orthogonalHodge-
Morrey-Friedrichs[9] decompositions,

Ωk(M) = dΩk−1
D ⊕δΩk+1

N ⊕Hk
D⊕Hk

co

= dΩk−1
D ⊕δΩk+1

N ⊕Hk
N ⊕Hk

ex.

The two decompositions are related by the Hodge star operator. The consequence for cohomology is
that each class inHk(M) is represented by a unique harmonic field inHk

N(M), and each relative class in
Hk(M,∂M) is represented by a unique harmonic field inHk

D(M). Again, the Hodge star operator acts
as Poincaré duality (or rather Poincaré-Lefschetz duality) on the harmonic fields, sending Dirichlet
fields to Neumann fields. And again, if a group acts by isometries on(M,∂M) in a manner that is
trivial on the cohomology, then the harmonic fields are invariant.

In this paper, we supposeG is a compact connected Abelian Lie group (a torus) acting by isome-
tries onM, with Lie algebrag, and we letX ∈ g. If M has a boundary then theG-action necessarily
restricts to an action on the boundary andXM must therefore be tangent to the boundary. We denote
by ΩG = ΩG(M) the set of invariant forms onM: ω ∈ ΩG if g∗ω = ω for all g ∈ G; in particular if
ω is invariant thenLXM ω = 0. Note that because the action preserves the metric and the orientation it
follows that, for eachg∈ G, ⋆(g∗ω) = g∗(⋆ω), so if ω ∈ ΩG then⋆ω ∈ ΩG.
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Remark on typesetting: Since the letter H plays three roles in this paper, we use three different
typefaces: a scriptH for harmonic fields, a sans-serifH for Sobolev spaces and a normal (italic)H
for cohomology. We hope that will prevent any confusion.

Acknowledgment The first named author would like to express his gratitude to the Ministry of
Higher Education and Scientific Research of Iraq for the financial support for his PhD studies in
Mathematics at the University of Manchester. This work willform part of the thesis for that PhD.

2 Witten-Hodge theory for manifolds without boundary

In this section we prove some of the results of Witten [10], providing details we will need in the next
section for manifolds with boundary. We will use the notation from the introduction.

We have an oriented boundaryless compact Riemannian manifold M with an action of a torusG,
and we fix an elementX ∈ g. The associated vector field onM is XM, and using this one defines Wit-
ten’s inhomogeneous operatordXM : Ω±

G → Ω∓
G, dXM ω = dω + ιXM ω, and the corresponding operator

(cf. eq. (1.2))
δXM = (−1)n(k+1)+1 ⋆dXM⋆ = δ+(−1)n(k+1)+1 ⋆ ιXM⋆

(which is the adjoint operator todXM by Proposition 2.2 below). The resultingWitten-Hodge-Laplacian
is ∆XM : Ω±

G → Ω±
G defined by∆XM = (dXM + δXM)2 = dXM δXM + δXMdXM . We write the space ofXM-

harmonic fields
HXM = kerdXM ∩kerδXM ,

which (for manifolds without boundary) satisfiesHXM = ker∆XM . The last equality follows for the
same reason as for ordinary Hodge theory, namely the argument in (1.4), with∆ replaced by∆XM etc.

We recast Stokes’ theorem and Green’s formula in terms of theoperatorsdXM andδXM by defining
R

M ω = 0 if ω ∈ Ωk(M) with k 6= n. For any formω ∈ Ω(M) one has
R

M ιXM ω = 0 asιXM ω has no term
of degreen, and the following version of Stokes’ theorem follows from the ordinary Stokes’ theorem.
For future use, we allowM to have a boundary.

Theorem 2.1 (Stokes’ theorem for dXM ) Let M be a compact manifold with boundary∂M (possibly
empty) for all differential formsω ∈ Ω(M) then

Z

M
dXM ω =

Z

∂M
i∗ω,

where i: ∂M →֒ M is the inclusion, and where the right-hand-side is taken tobe zero if M has no
boundary.

Proposition 2.2 (Green’s formula for dXM and δXM ) Let α,β ∈ H
1ΩG be invariant differential forms

on the compact manifold M with boundary∂M (possibly empty) , then

〈dXM α,β〉 = 〈α,δXM β〉+
Z

∂M
i∗(α∧⋆β) (2.1)

PROOF: For technical reasons we writeα andβ as:

α = α+ + α−, β = β+ + β− ∈ H
1ΩG
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then

dXM(α∧ (⋆β)) = dXM(α+ + α−)∧⋆(β+ + β−)+

α+ ∧dXM(⋆(β+ + β−))−α−∧dXM(⋆(β+ + β−))

integrating both sides overM, applying Theorem 2.1 and using⋆δXM = ±dXM⋆ on Ω±
G(M) and then

by using the linearity and orthogonality ofΩG(M) = Ω+
G(M)⊕Ω−

G(M) then we obtain eq. (2.1). ❒

Returning now to the case of a manifold without boundary, we obtain the following.

Theorem 2.3 The Witten-Hodge-Laplacian∆XM is a self-adjoint elliptic operator.

PROOF: The self-adjoint property follows from the same argument as for the classical Hodge Lapla-
cian, namely thatδXM is the adjoint ofdXM . For the ellipticity, we can expand∆XM from its definition
as,

∆XM = ∆ +(−1)n(k+1)+1(d⋆ ιXM ⋆+⋆ ιXM ⋆d+⋆ιXM ⋆ ιXM + ιXM ⋆ ιXM⋆)+ ιXM δ+ διXM . (2.2)

It follows that∆XM and∆ have the same principal symbol (indeed∆XM −∆ is a first order differential
operator). Since∆ is elliptic, it follows that so too is∆XM . ❒

Every elliptic operator is Fredholm, in the following sense. For each spaceΩ±
G, let H

sΩ±
G be the

corresponding Sobolev space (the completion ofΩ±
G under an appropriate norm). Then for eachs∈R,

∆XM : H
sΩ±

G → H
s−2Ω±

G

is a Fredholm operator, so has finite dimensional kernel and cokernel, and closed range.
The regularity and Fredholm properties of elliptic operators imply the following.

Corollary 2.4 The set of XM-harmonic (even/odd) formsH±
XM

is finite dimensional and consists of
smooth C∞ forms.

The following result is the analogue of the Hodge decomposition theorem, and is a standard con-
sequence of the fact that∆XM is self-adjoint.

Theorem 2.5 The following is an orthogonal decomposition

Ω±
G = H±

XM
⊕dXM Ω∓

G ⊕δXMΩ∓
G,

and in terms of Sobolev spaces (∀s∈ R)

H
sΩ±

G = H±
XM

⊕dXMH
s+1Ω∓

G ⊕δXMH
s+1Ω∓

G.

The orthogonality is with respect to the L2 inner product, given in (1.1).

As consequences for our decomposition above to the invariant differential formsΩ±
G, we have the

following topological properties forXM-cohomology.

Proposition 2.6 Every XM-cohomology class has a unique XM-harmonic form representative.
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Corollary 2.7 The XM-cohomology groups H±XM
(M) for a compact, oriented differentiable Rieman-

nian manifold M with an action of a torus G are all finite dimensional.

We infer the following form of Poincaré duality but in termsof XM-cohomology. Here and else-
where we writen−± for the parity (modulo 2) resulting from subtracting an even/odd number from
n.

Theorem 2.8 (Poincar é duality for H±
XM

) Let M be a compact, oriented smooth Riemannian manifold
of dimension n and with an action of a torus G. The bilinear function

( , ) : H±
XM

×Hn−±
XM

−→ R

defined by setting

([α], [β]) =
Z

M
α∧β (2.3)

is well-defined, non-singular pairing and consequently gives isomorphisms of Hn−±
XM

with the dual
space of H±XM

. i.e.
Hn−±

XM
∼= (H±

XM
)∗.

PROOF: Clearly, the bilinear map (2.3) is well-defined and the non-singularity follows from Propo-
sition 2.6 as follows: given a non-zeroXM-cohomology class[ω] ∈ H±

XM
, we must find a non-zero

XM-cohomology class[ψ] ∈ Hn−±
XM

such that([ω], [ψ]) 6= 0. According to Proposition 2.6, thatω is
the harmonic representative of the non zeroXM-cohomology class[ω], it follows thatω is not iden-
tically zero. Applying the fact that⋆∆XM = ∆XM⋆, it gives that⋆ω is also harmonic and represents a
XM-cohomology class[⋆ω] ∈ Hn−±

XM
. Thus the pairing (2.3)

([ω], [⋆ω]) =
Z

M
ω∧⋆ω = ‖ω‖2 6= 0

is non-singular while the isomorphismsHn−±
XM

∼= (H±
XM

)∗ follow from the finite dimensionality ofXM-
cohomology (cf. Corollary 2.4 and Proposition 2.6) and the non-singularity above. ❒

Let N = N(XM) be the set of zeros ofXM. Witten observed that ifω is dXM -closed then its pullback
to N is closed in the usual (de Rham) sense. And exact forms pull back to exact forms. Consequently,
pullback defines a natural mapH±

XM
→H±(N), whereH+(N) is the direct sum of the even cohomology

groups ofN, andH−
XM

of the odd ones.

Theorem 2.9 (Witten [10]) The pullback to N induces an isomorphism between the XM-cohomology
groups H±XM

(M) and the cohomology groups H±(N).

Witten gave a fairly explicit proof of this theorem by extending closed forms onN to XM-closed
forms onM. Atiyah and Bott [2] give a proof using their localization theorem in equivariant coho-
mology which we discuss, and adapt to the case of manifolds with boundary, in Section 4.

Furthermore, the restriction toN of anXM-harmonic form onM is harmonic in the usual sense, so
it follows from the theorem that every harmonic form onN has a unique extension to anXM-harmonic
form onM.

Remark 2.10 SupposeX generates the torusG(X), andG is a larger torus containingG(X) and acting
onM by isometries. Then the action ofG preservesXM. It follows thatG acts trivially on the de Rham
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cohomology ofN, and hence on theXM-cohomology ofM, and consequently on the space ofXM-
harmonic forms. In other words,H±

XM
⊂ Ω±

G. There is therefore no loss in considering just forms
invariant under the action of the larger torus in that theXM-cohomology, or the space ofXM-harmonic
forms, is independent of the choice of torus.

Example 2.11 ConsiderM = S2 (the unit 2-sphere inR3), and use cylindrical polar coordinatesz∈
[−1,1] andφ ∈ [0,2π]. Let the groupG = S1 act onS2 by rotations about thez-axis, with infinitesimal
generator∂/∂φ. Let X ∈ g, soXM = s∂/∂φ, for somes∈ R. Invariant even and odd forms are of the
form

ω+ = f0(z)+ f2(z)dφ∧dz∈ Ω+
G, ω− = f1(z)dz+g1(z)dφ ∈ Ω−

G.

In order thatω− is smooth,g1 must vanish at the polesz= ±1. The invariant volume form isdφ∧dz,
with total volume 4π, and the metric isds2 = (1− z2)−1

dz2 + (1− z2)dφ2. Consequently,⋆(dz) =
−(1−z2)dφ and⋆(dφ) = (1−z2)−1

dz, so

dXM ω+ = ( f ′0(z)+s f2(z))dz, δXM ω+ = −(1−z)2( f ′2(z)+s f0(z))dφ.

One findsω+ is XM-harmonic if and only if

ω+ = Aesz(1−dφ∧dz)+Be−sz(1+dφ∧dz),

for A,B ∈ R, and one finds that there are no non-zero oddXM-harmonic forms. Furthermore, the
pullback ofω+ to N (which here is the two poles atz= ±1) isA(es, e−s)+B(e−s, es) which fors 6= 0
are linearly independent, as predicted by Theorem 2.9. It isnotable that the two fundamental solutions
for ω+ (those withA = 1,B = 0 and vice versa) depend analytically ons.

3 Witten-Hodge theory for manifolds with boundary

In this section we adapt the results and methods of Hodge theory for manifolds with boundary to study
theXM-cohomology and the space ofXM-harmonic forms and fields for manifolds with boundary. As
for ordinary (singular) cohomology, there are both absolute and relativeXM-cohomology groups. So
from now on our manifold will be with boundary and with torus action which acts by isometry on this
manifold unless otherwise indicated, and as beforei : ∂M →֒ M denotes the inclusion of the boundary.

3.1 The difficulties if the boundary is present

Firstly, dXM and δXM are no longer adjoint because the boundary terms arise when we integrate by
parts and then∆XM will not be self-adjoint. In addition, the space of all harmonic fields is infinite
dimensional and there is no reason to expect theXM-harmonic fieldsHXM(M) to be any different. To
overcome these problems, we follows the method which is usedto solve this problem in classical case,
i.e. withd andδ [1, 9], and impose certain boundary conditions on our invariant formsΩG(M). Hence
we make the following definitions.

Definition 3.1 (1) We define the following two sets of smooth invariant formson the manifoldM with
boundary and with torus action

ΩG,D = ΩG∩ΩD = {ω ∈ ΩG | i∗ω = 0} (3.1)

ΩG,N = ΩG∩ΩN = {ω ∈ ΩG | i∗(⋆ω) = 0} (3.2)
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and the spacesHsΩG,D andH
sΩG,N are the corresponding closures with respect to suitable Sobolev

norms, fors> 1
2. This can be refined to take into account the parity of the forms, so definingΩ±

G,D

etc. Sinceω ∈ Ωk implies⋆ω ∈ Ωn−k we write that forω ∈ Ω±
G we have⋆ω ∈ Ωn−±

G .
(2) We define the two subspaces ofHXM(M)

HXM,D(M) = {ω ∈ H
1ΩG,D | dXM ω = 0, δXM ω = 0} (3.3)

HXM,N(M) = {ω ∈ H
1ΩG,N | dXM ω = 0, δXM ω = 0} (3.4)

which we call Dirichlet and NeumannXM-harmonic fields, respectively. We will show below that these
forms are smooth. Clearly, the Hodge star operator⋆ defines an isomorphismHXM,D(M)∼=HXM ,N(M).
Again, these can be refined to take the parity into account, defining H±

XM,D(M) etc.

As for ordinary Hodge theory, on a manifold with boundary onehas to distinguish betweenXM-
harmonicforms(i.e. ker∆XM ) andXM-harmonicfields(i.e.HXM(M)) because they are not equal: one
hasHXM(M) ⊆ ker∆XM but not conversely. The following proposition shows the conditions onω to
be fulfilled in order to ensureω ∈ ker∆XM =⇒ ω ∈HXM(M) when∂M 6= /0.

Proposition 3.2 If ω ∈ ΩG(M) is an XM-harmonic form (i.e.∆XM ω = 0) and in addition any one of
the following four pairs of boundary conditions is satisfiedthenω ∈HXM(M).

(1) i∗ω = 0, i∗(⋆ω) = 0; (2) i∗ω = 0, i∗(δXM ω) = 0;

(3) i∗(⋆ω) = 0, i∗(⋆dXM ω) = 0; (4) i∗(δXM ω) = 0, i∗(⋆dXM ω) = 0.

PROOF: Because∆XM ω = 0, one has〈∆XM ω,ω〉 = 0. Now applying Proposition 2.2 to this and
using any of these conditions (1)–(4) ensuresω is anXM-harmonic field. ❒

Remark 3.3 An averaging argument shows thatH
1ΩG,D andH

1ΩG,N are dense inL2ΩG, because the
corresponding statements hold for the spaces of all (not invariant) forms.

3.2 Elliptic boundary value problem

We prove the ellipticity of certain boundary value problem (BVP) which is given in Theorem 3.4.
This theorem represents the keystone to extending Witten’sresults to manifolds with boundary, via
our extension of the Hodge-Morrey decomposition theorem interms ofdXM and δXM . We then to
relate our results to the equivariant cohomology ring. The proofs in this section rely heavily on the
corresponding statements for the usual Laplacian∆ on a manifold with boundary, as described in the
book of Schwarz [9].

We consider theBVP






∆XM ω = η on M
i∗ω = 0 on ∂M

i∗(δXM ω) = 0 on ∂M.
(3.5)

Theorem 3.4

1. TheBVP (3.5) is elliptic in the sense of Lopatinskiı̌-Šapiro, where∆XM : ΩG(M) −→ ΩG(M).

2. TheBVP (3.5) is Fredholm of index 0.

3. All ω ∈HXM ,D ∪HXM,N are smooth.
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PROOF:
(1) Firstly, as in the proof of Theorem 2.3, we can see that∆ and∆XM have the same principal symbol.
Similarly, expanding the second boundary condition gives

δXM = δ+(−1)n(k+1)+1⋆ ιXM⋆

soδXM andδ have the same first-order part. Hence ourBVP (3.5) has the same principal symbol as the
following BVP







∆ε = ξ on M
i∗ε = 0 on ∂M

i∗(δε) = 0 on ∂M
(3.6)

for ε, ξ ∈ Ω(M), because the principal symbol does not change when terms of lower order are added
to the operator. However theBVP (3.6) is elliptic in the sense of Lopatinskǐı-Šapiro conditions [6, 9],
and thus so is (3.5).

(2) From part (1), since theBVP (3.5) is elliptic, by using Theorem 1.6.2 in [9] or Theorem 20.1.2
in [6] we conclude that theBVP (3.5) is a Fredholm operator and the regularity theorem holds. In
addition, we observe that the only differences betweenBVP (3.6) and ourBVP (3.5) are all lower order
operators and it is proved in [9] that the index ofBVP (3.6) is zero but Theorem 20.1.8 in [6] asserts
generally that if the difference between twoBVP’ S are just lower order operators then they must have
the same index. Hence, the index of theBVP (3.5) must be zero.

(3) Let ω ∈ HXM ,D ∪HXM,N. If ω ∈ HXM ,D then it satisfies theBVP (3.5) with η = 0, so by the
regularity properties of ellipticBVPs, the smoothness ofω follows. If on the other handω ∈ HXM,N

then⋆ω ∈HXM,D which is therefore smooth and consequentlyω = ±⋆ (⋆ω) is smooth as well. ❒

We consider the resulting operator obtained by restricting∆XM to the subspace of smooth invariant
forms satisfying the boundary conditions

ΩG(M) = {ω ∈ ΩG(M) | i∗ω = 0, i∗(δXM ω) = 0} (3.7)

Since the trace mapi∗ is well-defined onHsΩG for s> 1/2 it follows that it makes sense to con-
siderH2ΩG(M), which is a closed subspace ofH

2ΩG(M) and hence a Hilbert space. For simplicity,
we rewrite ourBVP (3.5) as follows: consider the restriction/extension of∆XM to this space:

A = ∆XM H
2ΩG(M)

: H
2ΩG(M) −→ L2ΩG(M).

and consider theBVP,
Aω = η (3.8)

for ω ∈ H
2ΩG(M) andη ∈ L2ΩG(M) instead ofBVP (3.5) which are in fact compatible. In addition,

from Theorem 3.4 we deduce thatA is an elliptic and Fredholm operator and

index(A) = dim(kerA)−dim(kerA∗) = 0 (3.9)

whereA∗ is the adjoint operator ofA.
From Green’s formula (Proposition 2.2) we deduce the following property.

Lemma 3.5 A is L2-self-adjoint onH2ΩG(M), meaning that for allα,β ∈ H
2ΩG(M) we have

〈Aα, β〉 = 〈α, Aβ〉 ,

where〈−,−〉 is the L2-pairing.
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Theorem 3.6 Let M be a compact, oriented smooth Riemannian manifold of dimension n with bound-
ary and with an action of a torus G, the spaceHXM,D(M) is finite dimensional and

L2ΩG(M) = HXM,D(M)⊕HXM,D(M)⊥. (3.10)

PROOF: We begin by showing that kerA = HXM ,D(M). It is clear thatHXM,D(M) ⊆ kerA, so we
need only prove that kerA⊆HXM,D(M).

Let ω ∈ kerA. Thenω satisfies theBVP (3.5). Therefore, by condition (2) of Proposition 3.2, it
follows thatω ∈HXM,D(M), as required.

Now, kerA=HXM ,D(M) but dimkerA is finite, it follows that so too is dimHXM,D(M). This implies
thatHXM,D(M) is a closed subspace of the Hilbert spaceL2ΩG(M), hence eq. (3.10) holds. ❒

Theorem 3.7
Range(A) = HXM ,D(M)⊥ (3.11)

where⊥ denotes the orthogonal complement in L2ΩG(M).

PROOF: Firstly, we should observe that eq. (3.9) asserts that kerA∼= kerA∗ but Theorem 3.6 shows
that kerA = HXM,D(M), thus

kerA∗ ∼= HXM ,D(M) (3.12)

Since Range(A) is closed inL2ΩG(M) becauseA is Fredholm operator, it follows from the closed
range theorem in Hilbert spaces that

Range(A) = (kerA∗)⊥ ≡ Range(A)⊥ = kerA∗ (3.13)

Hence, we just need to prove that kerA∗ = HXM,D(M), and to show that we need first to prove

Range(A) ⊆HXM,D(M)⊥. (3.14)

So, if α ∈ H
2ΩG(M) andβ ∈HXM ,D(M) then applying Lemma 3.5 gives

〈Aα, β〉 = 0

hence, eq. (3.14) holds. Moreover, equations (3.13) and (3.14) and the closedness ofHXM,D(M) imply

HXM,D(M) ⊆ kerA∗ (3.15)

but eq. (3.12) and eq. (3.15) force kerA∗ = HXM,D(M). Hence, Range(A) = HXM,D(M)⊥. ❒

Following [9], we denote theL2-orthogonal complement ofHXM,D(M) in the spaceH2ΩG,D by

HXM ,D(M)©⊥ = H
2ΩG,D ∩HXM,D(M)⊥ (3.16)

(although in [9] it denotesH1-forms rather thanH2).

Proposition 3.8 For eachη ∈HXM ,D(M)⊥ there is a unique differential formω ∈HXM,D(M)©⊥ satis-
fying theBVP (3.5).
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PROOF: Let η ∈HXM ,D(M)⊥. Because of Theorem (3.7) there is a differential formγ ∈ H
2ΩG(M)

such thatγ satisfies theBVP (3.5). Sinceγ ∈ H
2ΩG(M) ⊆ L2ΩG(M) then there are unique differential

formsα ∈HXM,D(M) andω ∈HXM,D(M)⊥ such thatγ = α+ ω because of eq. (3.10).
Since γ satisfies theBVP (3.5) it follows thatω satisfies theBVP (3.5) as well becauseα ∈

HXM,D(M) = ker(∆XM H
2ΩG(M)

). Sinceω = γ−α, it follows thatω ∈H
2ΩG,D , henceω ∈HXM ,D(M)©⊥

and it is unique ❒

Remark 3.9

(1) ω satisfying theBVP (3.5) in Proposition 3.8 can be recast to the condition

〈dXM ω, dXM ξ〉+ 〈δXM ω, δXM ξ〉 = 〈η,ξ〉, ∀ξ ∈ H
1ΩG,D (3.17)

(2) All the results above can be recovered but in terms ofHXM ,N(M) because the Hodge star operator
defines an isomorphismL2ΩG

∼= L2ΩG which restricts toHXM ,D(M) ∼= HXM ,N(M).

3.3 Decomposition theorems

We adapt the Hodge-Morrey and Freidrichs decompositions arising for Hodge theory on manifolds
with boundary, to the present setting withdXM andδXM .

Definition 3.10 Define the following two sets of exact and coexact forms on themanifold M with
boundary and with an action of the torusG:

EG(M) = {dXM α | α ∈ H
1ΩG,D} ⊆ L2ΩG(M), (3.18)

CG(M) = {δXM β | β ∈ H
1ΩG,N} ⊆ L2ΩG(M). (3.19)

Clearly,EG(M) ⊥ CG(M) because of Proposition 2.2. We denote byL2HXM(M) = HXM(M) the L2-
closure of the spaceHXM(M).

Proposition 3.11 (Algebraic decomposition and L2-closedness)

(a) Eachω ∈ L2ΩG(M) can be split uniquely into

ω = dXM αω + δXMβω + κω

wheredXM αω ∈ EG(M) , δXM βω ∈ CG(M) andκω ∈ (EG(M)⊕CG(M))⊥.

(b) The spacesEG(M)andCG(M) are closed subspaces of L2ΩG(M).

(a) and (b) mean that there is the following orthogonal decomposition

L2ΩG(M) = EG(M)⊕CG(M)⊕ (EG(M)⊕CG(M))⊥ (3.20)

PROOF: (a) We have shown that

L2ΩG(M) = HXM ,D(M)⊕HXM,D(M)⊥ = HXM,N(M)⊕HXM,N(M)⊥.
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Let ω ∈ L2ΩG(M) then corresponding to these decompositions we can split it uniquely into

ω = λD +(ω−λD), ω = λN +(ω−λN)

where(ω − λD) ∈ HXM,D(M)⊥ and (ω− λN) ∈ HXM,N(M)⊥. By Proposition 3.8 there are unique
elementsθD ∈HXM,D(M)©⊥ andθN ∈HXM,N(M)©⊥ satisfying theBVP (3.5) withη replaced by(ω−λD)
and(ω−λN) respectively.

From Theorem (3.7) we infer thatθD andθN are of Sobolev classH2, so define

αω = δXM θD ∈ H
1ΩG,D and βω = dXM θN ∈ H

1ΩG,N (3.21)

Now let
κω = ω−dXM αω −δXM βω ∈ L2ΩG(M)

The next step is to show thatκω is orthogonal toEG(M) but form proposition 2.2 we can prove that
λD,δXM β ∈ EG(M)⊥, in addition,(ω−λD) = ∆XM θD then

〈κω, dXM α〉 = 〈∆XM θD, dXM α〉 − 〈dXM δXM θD + δXMdXM θD, dXM α〉 = 0, ∀dXM α ∈ EG(M)

Analogously we can show that〈κω, δXM β〉= 0, ∀δXM β ∈ CG(M). Thereforeκω ∈ (EG(M)⊕CG(M))⊥.

(b) Let {dXM α j} j∈N be anL2-Cauchy sequence inEG(M) thendXM α j −→ γ ∈ L2ΩG(M). Hence we
get from part (a) above that

γ = dXM αγ + δXMβγ + κγ

wheredXM αγ ∈ EG(M) , δXM βγ ∈ CG(M) andκγ ∈ (EG(M)⊕CG(M))⊥. BecauseEG(M) ⊥ CG(M) ⊥
(EG(M)⊕CG(M))⊥ and 〈γ − dXM α j ,γ − dXM α j〉 −→ 0 it follows that δXM βγ = 0 andκγ = 0, thus
γ = dXM αγ ∈ EG(M). HenceEG(M) is closed. The corresponding argument applies toCG(M). ❒

Now we can present the main theorems for this section.

Theorem 3.12 ( XM-Hodge-Morrey decomposition theorem) Let M be a compact, oriented smooth
Riemannian manifold of dimension n with boundary and with anaction of a torus G. Then

L2ΩG(M) = EG(M)⊕CG(M)⊕L2HXM(M) (3.22)

PROOF: From Proposition 3.11 we infer eq. (3.20) and then we first observe that the spaces
EG(M), CG(M) andL2HXM(M) are mutually orthogonal with respect to theL2-inner product which is
an immediate consequence of Green’s formulae (Proposition2.2), and hence

L2HXM(M) ⊆ (EG(M)⊕CG(M))⊥

So we need only to prove the converse and then using eq. (3.20)we will get the decomposition (3.22).
So, letω ∈ (EG(M)⊕CG(M))⊥, so

〈ω, dXM α〉 = 〈δXM ω, α〉 = 0 ∀α ∈ H
1ΩG,D

〈ω, δXM β〉 = 〈dXM ω, β〉 = 0 ∀β ∈ H
1ΩG,N.

(3.23)

From Remark 3.3 we know thatH
1ΩG,D andH

1ΩG,N are dense inL2ΩG(M), hence eq. (3.23) implies
that dXM ω = 0 andδXM ω = 0 which shows thatω ∈ L2HXM(M). HenceL2HXM(M) = (EG(M)⊕
CG(M))⊥. ❒
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Theorem 3.13 ( XM-Friedrichs Decomposition Theorem) Let M be a compact, oriented smooth Rie-
mannian manifold with boundary of dimension n and with an action of a torus G. Then the space
HXM(M) ⊆ H

1ΩG(M) of XM- harmonic fields can respectively be decomposed into

HXM(M) = HXM ,D(M)⊕HXM,co(M) (3.24)

HXM(M) = HXM ,N(M)⊕HXM,ex(M) (3.25)

where the right hand sides are coexact and exact harmonic forms respectively:

HXM,co(M) = {η ∈HXM(M) | η = δXM α} (3.26)

HXM,ex(M) = {ξ ∈HXM(M) | ξ = dXM σ} (3.27)

For L2HXM(M) these decompositions are valid accordingly.

PROOF: We prove eq. (3.24); the argument for the dual eq. (3.25) is analogous. Proposition 2.2
shows the orthogonality of the decomposition (3.24), i.e.

〈δXM α, λD〉 = 0 ∀λD ∈HXM,D(M). (3.28)

The spaceHXM(M)⊆ L2ΩG(M), hence equation (3.10) asserts thatHXM(M) can be decomposed into:

HXM(M) = HXM,D(M)⊕HXM,D(M)⊥∩HXM(M) (3.29)

whereHXM,D(M)⊥∩HXM(M) is the orthogonal complement ofHXM,D(M) inside the spaceHXM(M).
So, we need only prove that

HXM,co(M) = HXM ,D(M)⊥∩HXM(M).

But, it is clear thatHXM,co(M) ⊆HXM ,D(M)⊥∩HXM(M) so, we just need to prove that

HXM,D(M)⊥∩HXM(M) ⊆HXM,co(M).

Now, let ω ∈ HXM(M)∩HXM,D(M)⊥ then Proposition 3.8 asserts that there is a unique element
θD ∈ HXM ,D(M)©⊥ such thatθD satisfies theBVP (3.5). One can infer from eq. (3.28) that alsoω−
δXMdXM θD ∈HXM,D(M)⊥. Hence,

ω−δXMdXM θD = ∆XM θD −δXMdXM θD = dXM δXM θD.

The above equation gives that

i∗(ω−δXMdXM θD) = 0, dXM(ω−δXMdXM θD) = 0, and δXM(ω−δXMdXM θD) = 0

which mean thatω−δXMdXM θD ∈HXM,D(M) butω−δXMdXM θD ∈HXM,D(M)⊥. Henceω = δXMdXM θD ∈
HXM,co(M) as required. Thus, equation (3.24) holds.

For ω ∈ L2HXM(M) all the arguments up toω−δXMdXM θD apply similarly. ❒

Combining Theorems 3.12 and 3.13 gives the following.

Corollary 3.14 (The XM-Hodge-Morrey-Friedrichs decompositions) The space L2ΩG(M) can be
decomposed into L2-orthogonal direct sums as follows:

L2ΩG(M) = EG(M)⊕CG(M)⊕HXM,D(M)⊕L2HXM ,co(M) (3.30)

L2ΩG(M) = EG(M)⊕CG(M)⊕HXM,N(M)⊕L2HXM,ex(M) (3.31)

Remark 3.15 All the results above can be recovered but in terms of±-spaces, for instance,

H±
XM ,D(M) ∼= Hn−±

XM,N(M), L2Ω±
G(M) = E±

G (M)⊕C±
G(M)⊕H±

XM,D(M)⊕L2H±
XM ,co(M)

. . . etc.
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3.4 Relative and absoluteXM-cohomology

UsingdXM andδXM we can form a number ofZ2-graded complexes. AZ2-graded complex is a pair of
Abelian groupsC± with homomorphisms between them:

C+ C−
d+

d−

satisfyingd+ ◦d− = 0= d− ◦d+. The two (co)homology groups of such a complex are defined in the
obvious way:H± = kerd±/ imd∓.

The complexes we have in mind are,

(Ω±
G,dXM) (Ω±

G,δXM)

(Ω±
G,D,dXM) (Ω±

G,N,δXM).

The two on the lower line are subcomplexes of the corresponding upper ones, and are defined by

Ω±
G,D = {ω ∈ Ω±

G | i∗ω = 0} ⊆ Ω±
G

Ω±
G,N = {ω ∈ Ω±

G | i∗ ⋆ω = 0} ⊆ Ω±
G.

These are subcomplexes becausei∗ commutes withdXM . By analogy with the de Rham groups, we
denote

H±
XM

(M) := H±(ΩG, dXM),

H±
XM

(M, ∂M) := H±(ΩG,D, dXM).

Theorem 3.16 ( XM-Hodge Isomorphism ) Let M be a compact, oriented smooth Riemannian mani-
fold of dimension n with boundary and with an action of a torusG. Let X∈ g. There are the following
isomorphisms of vector spaces:

(a) H±
XM

(M, ∂M) ∼= H±
XM,D(M) ∼= H±(Ω±

G,δXM);

(b) H±
XM

(M) ∼= H±
XM ,N(M) ∼= H±(Ω±

G,N,δXM);

(c) (XM-Poincaŕe-Lefschetz duality): The Hodge star operator⋆ on ΩG(M) induces an isomor-
phism

H±
XM

(M) ∼= Hn−±
XM

(M, ∂M).

PROOF: We use the various decomposition theorems to prove (a). Part (b) is proved similarly,
and part (c) follows from (a), (b) and the fact that the Hodge star operator defines an isomorphism
H±

XM,D(M) ∼= Hn−±
XM,N(M).

For the first isomorphism in (a), Theorem 3.12 (theXM-Hodge-Morrey decomposition theorem)
implies a unique splitting of anyγ ∈ Ω±

G,D into,

γ = dXM αγ + δXMβγ + κγ

wheredXM αγ ∈ E±
G (M), δXM βγ ∈ C±

G(M) andκγ ∈ L2H±
XM

(M). If dXM γ = 0 thenδXM βγ = 0, buti∗γ = 0
implies i∗(κγ) = 0 so thatκγ ∈H±

XM,D(M). Thus,

γ ∈ kerdXM ΩG,D
⇐⇒ γ = dXM αγ + κγ.
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This establishes the isomorphismH±
XM

(M, ∂M) ∼= H±
XM,D(M).

For the second isomorphism in (a), theXM-Hodge-Morrey-Friedrichs decomposition (Corollary
3.14) eq. (3.31) implies as well a unique splitting of anyγ ∈ Ω±

G(M) into,

γ = dXM ξγ + δXM ηγ + δXM ζγ + λγ

wheredXM ξγ ∈ E±
G (M), δXM ηγ ∈ C±

G(M), δXM ζγ ∈ L2H±
XM,co(M) andλγ ∈H±

XM,D(M).
If δXM γ = 0, thendXM ξγ = 0, and hence

γ ∈ kerδXM ⇐⇒ γ = δXM(ηγ + ζγ)+ λγ.

This establishes the isomorphismH±
XM ,D(M) ∼= H±

XM
(Ω±

G,δXM). ❒

4 Relation with equivariant cohomology

When the manifold in question has no boundary, Atiyah and Bott [2] discuss the relationship between
equivariant cohomology andXM-cohomology by using their localization theorem. In this section
we will relate our relative and absoluteXM-cohomology with the relative and absolute equivariant
cohomologyH±

G (M,∂M) and H±
G (M); the arguments are no different to the ones in [2]. First we

recall briefly the basic definitions of equivariant cohomology, and the relevant localization theorem,
and then state the conclusions forXM-cohomology.

If a torusG acts on a manifoldM (with or without boundary), the Cartan model for the equivariant
cohomology is defined as follows. Let{X1, . . . ,Xℓ} be a basis ofg and{u1, . . . ,uℓ} the corresponding
coordinates. The “Cartan complex” consists of poynomial1 maps fromg to the space of invariant
differential forms, soΩ∗

G(M)⊗RwhereR= R[u1, . . . ,uℓ], with differential

deq(ω) = dω+
ℓ

∑
j=1

u j ιXj ω.

The equivariant cohomologyH∗
G(M) is the cohomology of this complex. The relative equivariant

cohomologyH∗
G(M,∂M) (if M has non-empty boundary) is formed by taking the subcomplex with

forms that vanish on the boundaryi∗ω = 0, with the same differential.
The cohomology groups are graded by giving theui weight 2 and ak-form weight k, so the

differentialdeq is of degree 1. Futhermore, as the cochain groups areR-modules, anddeq is a homo-
morphism ofR-modules, it follows that the equivariant cohomology is anR-module. The localization
theorem of Atiyah and Bott [2] gives information on the module structure (there it is only stated
for absolute cohomology, but it is equally true in the relative setting, with the same proof; see also
Appendix C of [4]).

First we define the following subset ofg,

Z :=
[

K(G

k

where the union is over proper isotropy subgroups of the action onM. If M is compact, thenZ is a
finite union of proper subspaces ofg. Let F = Fix(G,M) = {x ∈ M | G · x = x} be the set of fixed
points inM. It follows from the local structure of group actions thatF is a submanifold ofM, with
boundary∂F = F ∩∂M.

1we use real valued polynomials, though complex valued ones works just as well, and all tensor products are thus over
R, unless stated otherwise
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Theorem 4.1 (Atiyah-Bott [2, Theorem 3.5]) The inclusion j: F →֒ M induces homomorphisms of
R-modules

H∗
G(M)

j∗
−→ H∗

G(F)

H∗
G(M,∂M)

j∗
−→ H∗

G(F,∂F)

whose kernel and cokernel have support in Z.

In particular, this means that iff ∈ I(Z) (the ideal inR of polynomials vanishing onZ) then the
localizations2 H∗

G(M) f andH∗
G(F) f are isomorphicRf -modules. Notice that the act of localization

destroys the integer grading of the cohomology, but since the ui have weight 2, it preserves the parity
of the grading, so that the separate even and odd parts are maintained:H±

G (M) f ≃ H±
G (F) f . The same

reasoning applies to the cohomology relative to the boundary, soH±
G (M,∂M) f ≃ H±

G (F,∂F) f

Since the action onF is trivial, it is immediate from the definition that there is an isomorphism of
R-modules,H∗

G(F) ≃ H∗(F)⊗R so that the localization theorem showsj∗ induces an isomorphism
of Rf -modules,

H±
G (M) f

j∗
−→ H±(F)⊗Rf . (4.1)

It follows thatH±
G (M) f is a freeRf module wheneverf ∈ I(Z). Of course, analogous statements hold

for the relative versions. Since localization does not alter the rank of a module (it just removes torsion
elements), we have that

rankH±
G (M) = dimH±(F), rankH±

G (M,∂M) = dimH±(F,∂F).

For X ∈ g, defineN(XM) = {x∈ M | XM(x) = 0}, the set of zeros of the vector fieldXM. Clearly
N(XM) ⊃ F, andN(XM) = F if and only if X 6∈ Z.

Theorem 4.2 Let X= ∑ j sjXj ∈ g. If the set of zeros of the corresponding vector field XM is equal to
the fixed point set for the G-action (i.e. N(XM) = F) then

H±
XM

(M, ∂M) ∼= H±
G (M,∂M)/mXH±

G (M,∂M), (4.2)

and
H±

XM
(M) ∼= H±

G (M)/mXH±
G (M) (4.3)

wheremX = 〈u1−s1, . . . ,ul −sl 〉 is the ideal of polynomials vanishing at X.

PROOF: Our assumptionN(XM) = F is equivalent toX ∈ g \Z. Therefore there is a polynomial
f ∈ I(Z) such thatf (X) 6= 0. In addition, we can usef and replace the ringRby Rf and then localize
H±

G (M) andH±
G (M,∂M) to makeH±

G (M) f andH±
G (M,∂M) f which are freeRf -modules.

We now apply the lemma stated below, in which the left-hand side is obtained by puttingui = si

before taking cohomology, so results inH±
XM

(M) (or similar for the relative case), while the right-hand
side is the right-hand side of (4.2) and (4.3), so proving thetheorem. ❒

2The localized ringRf consists of elements ofR divided by a power off and if K is anR-module, its localization is
K f := K ⊗RRf ; they correspond to restricting to the open set wheref is non-zero. See the notes by Libine [7] for a good
discussion of localization in this context.
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Lemma 4.3 (Atiyah-Bott [2, Lemma 5.6]) Let (C∗,d) be a cochain complex of free R-modules and
assume that, for some polynomial f , H(C∗,d) f is a free module over the localized ring Rf . Then, if
s∈ R

l with f(s) 6= 0,
H±(C∗

s ,ds) ∼= H±(C∗,d) modms

wherems is the ideal〈u1−s1, . . . ,ul −sl〉.

Corollary 4.4 With the hypotheses of the theorem, the pullback j∗ to the fixed point set induces iso-
morphisms:

1- H±
XM

(M) ≃ H±(F),

2- H±
XM

(M,∂M) ≃ H±(F,∂F).

PROOF: Reduce equation (4.1) modulomX and apply Theorem 4.2. ❒

5 Conclusions

In previous sections, we began with the action of a torusG; here we state results for a given Killing
vector fieldK on a compact Riemannian manifoldM (with or without boundary), more in keeping
with Witten’s original work [10]. Recall that the group Isom(M) of isometries ofM is a compact Lie
group, and the smallest closed subgroupG(K) containingK in its Lie algebra is Abelian, so a torus.
Furthermore, the submanifoldN = N(K) of zeros ofK coincides with Fix(G(K),M)

The equivariant cohomology constructions of Section 4 giveus the proof of the following result,
which extends the theorem of Witten (our Theorem 2.9) to manifolds with boundary.

Given aK-harmonic form onM, its pullpack toN is harmonic in the ordinary sense.

Theorem 5.1 Let K be a Killing vector field on the compact Riemannian manifold M (with or with-
out boundary), and let N= N(K) be the submanifold of zeros of K. Then pullback to N induces
isomorphisms

H±
K (M) ∼= H±(N), and H±

K (M, ∂M) ∼= H±(N, ∂N).

PROOF: Apply Corollary 4.4 to the equivariant cohomology for the action of the torusG(K). ❒

Furthermore, using the Hodge star operator, the Poincaré-Lefschetz duality of Theorem 3.16(c)
corresponds under the isomorphisms in the theorem above, toPoincaré-Lefschetz duality on the fixed
point space.

Translating this theorem into the language of harmonic fields, shows

H±
K,N(M) ∼= H±

N(N) and H±
K,D(M) ∼= H±

D(N)

whereH±
N(N) andH±

D(N) are the ordinary Neumann and Dirichlet harmonic fields onN respectively.
More explicitly, since the isomorphisms are induced by the inclusion j : N →֒ M, one has the follow-
ing.

Corollary 5.2 Given any harmonic field on N with either Dirichlet or Neumannboundary conditions,
there is a unique K-harmonic field on M with the correspondingboundary conditions.

Note that if∂N = /0 then the boundary condition onN is non-existent, and so every harmonic form
(=field) onN can be uniquely extended to each of a Dirichlet and a Neumann harmonic form onM.
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Euler characteristics As is well known, given a complex ofR[s] (or C[s]) modules whose coho-
mology is finitely generated, the Euler characterstic of thecomplex is independent ofs. This remains
true for aZ2-graded complex, for the same reasons (briefly, the cohomology is the direct sum of a
torsion module and a free module, and the torsion cancels in the Euler characterstic).

Consequently,χ(M) = χ(N) andχ(M,∂M) = χ(N,∂N), and furthermore applying the same ar-
guments to the manifold∂M, one hasχ(∂M) = χ(∂N) (since Fix(G,∂M) = ∂N). This is of course
compatible with the usual relation between Euler characteristics of manifolds with boundary,

χ(M) = χ(∂M)+ χ(M,∂M) = χ(∂N)+ χ(N,∂N) = χ(N).

These facts about Euler characteristics can of course be obtained in a more elementary manner using
basic algebraic topology and Mayer-Vietoris sequences.
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