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COMPUTING THE ACTION OF THE MATRIX EXPONENTIAL,

WITH AN APPLICATION TO EXPONENTIAL INTEGRATORS∗

AWAD H. AL-MOHY† AND NICHOLAS J. HIGHAM†

Abstract. A new algorithm is developed for computing etAB, where A is an n × n matrix and
B is n×n0 with n0 ≪ n. The algorithm works for any A, its computational cost is dominated by the
formation of products of A with n × n0 matrices, and the only input parameter is a backward error
tolerance. The algorithm can return a single matrix etAB or a sequence etkAB on an equally spaced
grid of points tk. It uses the scaling part of the scaling and squaring method together with a truncated
Taylor series approximation to the exponential. It determines the amount of scaling and the Taylor
degree using the recent analysis of Al-Mohy and Higham [SIAM J. Matrix Anal. Appl. 31 (2009), pp.
970-989], which provides sharp truncation error bounds expressed in terms of the quantities ‖Ak‖1/k

for a few values of k, where the norms are estimated using a matrix norm estimator. Shifting and
balancing are used as preprocessing steps to reduce the cost of the algorithm. Numerical experiments
show that the algorithm performs in a numerically stable fashion across a wide range of problems,
and analysis of rounding errors and of the conditioning of the problem provides theoretical support.
Experimental comparisons with two Krylov-based MATLAB codes show the new algorithm to be
sometimes much superior in terms of computational cost and accuracy. An important application of
the algorithm is to exponential integrators for ordinary differential equations. It is shown that the
sums of the form

∑p
k=0

ϕk(A)uk that arise in exponential integrators, where the ϕk are related to
the exponential function, can be expressed in terms of a single exponential of a matrix of dimension
n + p built by augmenting A with additional rows and columns, and the algorithm of this paper can
therefore be employed.

Key words. matrix exponential, Taylor series, ODE, exponential integrator, ϕ functions, back-
ward error analysis, condition number, overscaling, Krylov method, MATLAB, expm
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1. Introduction. The most popular method for computing the matrix expo-
nential is the scaling and squaring method. For a matrix A ∈ C

n×n it exploits the
relation eA = (e2−iA)2

i

≈ (rm(2−iA))2
i

, where rm is an [m/m] Padé approximant of
the exponential. The parameters m and i can be determined so that truncation errors
correspond to a backward error no larger than a specified tolerance (for example, the
unit roundoff) [2], [10], [12]. In some applications, notably in the numerical solution
of ordinary differential equations (ODEs) and in the approximation of dynamical sys-
tems [3, Chap. 4], it is not eA that is required but the action of eA on a matrix,
eAB, where B ∈ C

n×n0 with n0 ≪ n, and often n0 = 1, so that B is a vector. The
exponential of a sparse matrix is generally full, so when A is large and sparse it is not
practical to form eA and then multiply it into B. Our first contribution in this work
is to derive a new algorithm for computing eAB without explicitly forming eA. We
adapt the scaling and squaring method by computing eAB ≈ (Tm(s−1A))sB, where
Tm is a truncated Taylor series rather than a rational approximation (thus avoiding
linear system solves) and s multiplications of n×n by n×n0 matrices are carried out
instead of log2 s squarings of n× n matrices. We employ several key ideas:
(1) Careful choice of the parameters m and s, exploiting estimates of ‖Ap‖1/p for

several p, in order to keep the backward error suitably bounded while minimizing
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the computational cost.
(2) Shifting, and optional balancing, to reduce the norm of A.
(3) Premature termination of the truncated Taylor series evaluations.

This basic approach is equivalent to applying a Runge–Kutta or Taylor series method
with fixed stepsize to the underlying ODE y′(t) = Ay(t), y(0) = B, for which y(t) =
etAB, which is the sixth of Moler and Van Loan’s “19 dubious ways” [18, sec. 4],
[27]. However, in (1)–(3) we are fully exploiting the linear nature of the problem in
a way that a general purpose ODE integrator cannot. We also adapt our method to
compute approximations of etkAB, for tk equally spaced on an interval [t0, tq], in such
a way that overscaling is avoided no matter how small the stepsize.

Our second contribution concerns the numerical solution of systems of n nonlinear
ODEs by exponential integrators. These methods integrate the linear part of the
system exactly and approximate the nonlinear part, making use of a set of ϕ functions
closely related to the exponential, evaluated at an n× n matrix. We show that these
methods can be implemented by evaluating a single exponential of an augmented
matrix of order n+p, where p−1 is the degree of the polynomial used to approximate
the nonlinear part of the system, thus avoiding the need to compute any ϕ functions.
In fact, on each integration step the integrator is shown to produce the exact solution
of an augmented linear system of ODEs of dimension n + p. The replacement of ϕ
functions with the exponential is important because algorithms for the ϕ functions
are much less well developed (though see [16], [23], for example) than those for the
exponential itself.

The organization of the paper is as follows. In the next section we derive a theorem
that shows how to rewrite linear combinations of ϕ functions of the form required in
exponential integrators in terms of a single exponential of a slightly larger matrix.
In Section 3 we derive our algorithm for computing eAB and discuss preprocessing
to increase its efficiency. Analysis of the behavior of the algorithm in floating point
arithmetic is given in Section 4, where a condition number for the eAB problem is
derived. We extend the algorithm in Section 5 to compute etAB on an equally spaced
grid of t values, in such a way that the phenomenon of overscaling that has previously
afflicted the scaling and squaring method is avoided. Detailed numerical experiments
are given in Section 6, including comparison with two Krylov-based codes. We finish
with a discussion in Section 7 that weighs the pros and cons of the new method against
Krylov methods.

2. Exponential integrators: avoiding the ϕ functions. Exponential in-
tegrators are a class of time integration methods for solving initial value problems
written in the form

u ′(t) = Au(t) + g(t, u(t)), u(t0) = u0, t ≥ t0,(2.1)

where u(t) ∈ C
n, A ∈ C

n×n, and g is a nonlinear function. Spatial semidiscretization
of partial differential equations (PDEs) leads to systems in this form. The matrix A
usually represents the Jacobian of a certain function or an approximation of it, and
it is usually large and sparse. The solution of (2.1) satisfies the nonlinear integral
equation

u(t) = e(t−t0)Au0 +

∫ t

t0

e(t−τ)Ag(τ, u(τ)) dτ.(2.2)
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By expanding g in a Taylor series about t0, the solution can be written as [17, Lem. 5.1]

u(t) = e(t−t0)Au0 +

∞∑

k=1

ϕk

(
(t− t0)A

)
(t− t0)

k uk,(2.3)

where

uk =
dk−1

dtk−1
g(t, u(t)) |t=t0 , ϕk(z) =

1

(k − 1)!

∫ 1

0

e(1−θ)zθk−1 dθ, k ≥ 1.

By suitably truncating the series in (2.3), we obtain the approximation

u(t) ≈ û(t) = e(t−t0)Au0 +

p∑

k=1

ϕk

(
(t− t0)A

)
(t− t0)

k uk.(2.4)

The functions ϕℓ(z) satisfy the recurrence relation

ϕℓ(z) = zϕℓ+1(z) +
1

ℓ!
, ϕ0(z) = ez,

and have the Taylor expansion

ϕℓ(z) =

∞∑

k=0

zk

(k + ℓ)!
.(2.5)

A wide class of exponential integrator methods is obtained by employing suitable
approximations to the vectors uk in (2.4), and further methods can be obtained by
the use of different approximations to g in (2.2). See Hochbruck and Ostermann [15]
for a survey of the state of the art in exponential integrators.

We will show that the right-hand side of (2.4) can be represented in terms of the
single exponential of an (n + p)× (n + p) matrix, with no need to explicitly evaluate
ϕ functions. The following theorem is our key result. In fact we will only need the
special case of the theorem with ℓ = 0.

Theorem 2.1. Let A ∈ C
n×n, W = [w1, w2, . . . , wp] ∈ C

n×p, τ ∈ C, and

Ã =

[
A W
0 J

]
∈ C

(n+p)×(n+p), J =

[
0 Ip−1

0 0

]
∈ C

p×p.(2.6)

Then for X = ϕℓ(τÃ) with ℓ ≥ 0 we have

X(1 : n, n + j) =

j∑

k=1

τk ϕℓ+k(τA)wj−k+1, j = 1: p.(2.7)

Proof. It is easy to show that, for k ≥ 0,

Ãk =

[
Ak Mk

0 Jk

]
,(2.8)

where Mk = Ak−1W + Mk−1J and M1 = W , M0 = 0. For 1 ≤ j ≤ p we have
WJ(:, j) = wj−1 and JJ(:, j) = J(:, j − 1), where we define both right-hand sides to
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be zero when j = 1. Thus

Mk(:, j) = Ak−1wj + (Ak−2W + Mk−2J)J(:, j)

= Ak−1wj + Ak−2wj−1 + Mk−2J(:, j − 1)

= · · · =

min(k,j)∑

i=1

Ak−iwj−i+1.

We will write Mk(:, j) =
∑j

i=1 Ak−iwj−i+1 on the understanding that when k < j we
set to zero the terms in the summation where i > k (i.e., those terms with a negative

power of A). From (2.5) and (2.8) we see that the (1,2) block of X = ϕℓ(τÃ) is

X(1 : n, n + 1 : n + p) =
∞∑

k=1

τkMk

(k + ℓ)!
.

Therefore, the (n + j)th column of X is given by

X(1 : n, n + j) =

∞∑

k=1

τkMk(:, j)

(k + ℓ)!
=

∞∑

k=1

1

(k + ℓ)!

(
j∑

i=1

τ i(τA)k−iwj−i+1

)

=

j∑

i=1

τ i

(
∞∑

k=1

(τA)k−i

(k + ℓ)!

)
wj−i+1

=

j∑

i=1

τ i

(
∞∑

k=0

(τA)k

(ℓ + k + i)!

)
wj−i+1 =

j∑

i=1

τ iϕℓ+i(τA)wj−i+1.

With τ = 1, j = p, and ℓ = 0, Theorem 2.1 shows that, for arbitrary vectors
wk, the sum of matrix–vector products

∑p
k=1 ϕk(A)wj−k+1 can be obtained from the

last column of the exponential of a matrix of dimension n + p. A special case of the
theorem is worth noting. On taking ℓ = 0 and W = [c 0] ∈ C

n×p, where c ∈ C
n, we

obtain X(1:n, n+ j) = τ jϕj(τA)c, which is a relation useful for Krylov methods that
was derived by Sidje [22, Thm. 1]. This in turn generalizes the expression

exp

([
A c
0 0

])
=

[
eA ϕ1(A)c
0 I

]

obtained by Saad [21, Prop. 1].
We now use the theorem to obtain an expression for (2.4) involving only the

matrix exponential. Let W (:, p − k + 1) = uk, k = 1: p, form the matrix Ã in (2.6),
and set ℓ = 0 and τ = t− t0. Then

X = ϕ0

(
(t− t0)Ã

)
= e(t−t0)Ã =

[
e(t−t0)A X12

0 e(t−t0)J

]
,(2.9)

where the columns of X12 are given by (2.7), and, in particular, the last column of
X12 is

X(1 : n, n + p) =

p∑

k=1

ϕk

(
(t− t0)A

)
(t− t0)

k uk.
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Hence, by (2.4) and (2.9),

û(t) = e(t−t0)Au0 +

p∑

k=1

ϕk

(
(t− t0)A

)
(t− t0)

k uk

= e(t−t0)Au0 + X(1 : n, n + p)

=
[

In 0
]
e(t−t0)Ã

[
u0

ep

]
.(2.10)

Thus we are approximating the nonlinear system (2.1) by a subspace of a slightly
larger linear system

y′(t) = Ãy(t), y(t0) =

[
u0

ep

]
.

To evaluate (2.10) we need to compute the action of the matrix exponential on a
vector. We focus on this problem in the rest of the paper.

An important practical matter concerns the scaling of Ã. If we replace W by ηW

we see from (2.7) that the only effect on X = eÃ is to replace X(1 : n, n+1 : n+p) by
ηX(1 : n, n + 1 : n + p). This linear relationship can also be seen using properties of
the Fréchet derivative [11, Thm. 4.12]. For methods employing a scaling and squaring
strategy a large ‖W‖ can cause overscaling, resulting in numerical instability. To
avoid overscaling a suitable normalization of W is necessary. In the 1-norm we have

‖A‖1 ≤ ‖Ã‖1 ≤ max
(
‖A‖1, η‖W‖1 + 1

)
,

since ‖J‖1 = 1. We choose η = 2−⌈log2(‖W‖1)⌉, which is defined as a power of 2 to
avoid the introduction of rounding errors. The variant of the expression (2.10) that
we should evaluate is

û(t) =
[

In 0
]
exp

(
(t− t0)

[
A ηW
0 J

])[
u0

η−1ep

]
.(2.11)

Experiment 8 in Section 6 illustrates the importance of normalizing W .

3. Computing eAB. Let rm be a rational approximation to the exponential
function, which we assume to be good near the origin, and let A ∈ C

n×n and B ∈
C

n×n0 with n0 ≪ n. Choose an integer s ≥ 1 so that es−1A is well-approximated by
rm(s−1A). Exploiting the relation

eAB = (es−1A)sB = es−1Aes−1A · · · es−1A
︸ ︷︷ ︸

s times

B,(3.1)

the recurrence

Bi+1 = rm(s−1A)Bi, i = 0: s− 1, B0 = B(3.2)

yields the approximation Bs ≈ eAB. Since A is possibly large and sparse and we wish
to assume only the capability to evaluate matrix products with A, we choose for rm

a truncated Taylor series

Tm(s−1A) =

m∑

j=0

(s−1A)j

j!
.(3.3)
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Note that throughout the paper, “matrix product” refers to the product of an n× n
matrix with an n × n0 matrix, and this reduces to a matrix–vector product when
n0 = 1. We will exploit the backward error analysis of Higham [10], [12], as refined
by Al-Mohy and Higham [2], for determining the scaling parameter s for a given m.
Let

Ωm = {X ∈ C
n×n : ρ(e−XTm(X)− I) < 1 },

where ρ is the spectral radius. Then the function

hm+1(X) = log(e−X Tm(X))(3.4)

is defined for X ∈ Ωm, where log denotes the principal logarithm [11, Thm. 1.31],
and it commutes with X. Hence for X ∈ Ωm we have Tm(X) = eX+hm+1(X). Now
choose s so that s−1A ∈ Ωm. Then

Tm(s−1A)s = eA+shm+1(s
−1A) =: eA+∆A,(3.5)

where the matrix ∆A = shm+1(s
−1A) represents the backward error resulting from

the truncation errors in approximating eA by Tm(s−1A)s. Over Ωm, the functions
hm+1 have a power series expansion

hm+1(X) =

∞∑

k=m+1

ck Xk.

We want to ensure that

‖∆A‖

‖A‖
=
‖hm+1(s

−1A)‖

‖s−1A‖
≤ tol,

for any matrix norm and a given tolerance, tol. By [2, Thm. 4.2(a)] we have

‖∆A‖

‖A‖
=
‖hm+1(s

−1A)‖

‖s−1A‖
≤

h̃m+1(s
−1αp(A))

s−1αp(A)
,(3.6)

where h̃m+1(x) =
∑∞

k=m+1 |ck|x
k and

αp(A) = max
(
dp, dp+1

)
, dp = ‖Ap‖1/p,(3.7)

with p arbitrary subject to m + 1 ≥ p(p − 1). The reason for working with αp(A)
instead of ‖A‖ is that αp(A) ≪ ‖A‖ is possible for nonnormal A, so (3.6) is sharper

than the bound h̃m+1(s
−1‖A‖)/(s−1‖A‖). For example, consider

A =

[
1 a
0 −1

]
, |a| ≫ 1, ‖A2k‖1 = 1, ‖A2k+1‖1 = 1 + |a|,(3.8)

for which dj = ‖Aj‖
1/j
1 ≪ ‖A‖1 for j ≥ 2.

Define

θm = max{ θ : h̃m+1(θ)/θ ≤ tol }.(3.9)

Then for any m and p with m + 1 ≥ p(p− 1) we have ‖∆A‖ ≤ tol‖A‖ provided that
s ≥ 1 is chosen so that s−1αp(A) ≤ θm. For each m, the optimal value of the integer
s is given by s = max

(
⌈αp(A)/θm⌉, 1

)
.
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The computational cost of evaluating Bs ≈ eAB by the recurrence (3.2) with
rm = Tm is Cm(A) products of an n× n matrix with an n× n0 matrix, where

Cm(A) := sm = mmax
(
⌈αp(A)/θm⌉, 1

)
(3.10)

and n0 is the number of columns of B. Here, we are assuming that (3.2) is evaluated
by explicit formation of the matrices AkBi [11, Alg. 4.3].

Note that this approach, based on the recurrence (3.2), is related to the scaling and
squaring method for computing eA in that it shares the same form of approximation
and backward error analysis, but it does not exploit repeated squaring in the final
phase. In the case where s = 2k and n0 = 1, (3.2) employs 2km matrix–vector
products whereas the scaling and squaring method uses k matrix–matrix products in
the squaring phase.

The sequence {Cm(A)} is found to be generally decreasing, though it is not nec-
essarily monotonic. Indeed the sequence {αp(A)} has a generally nonincreasing trend
for any A, and with tol in (3.9) corresponding to single or double precision we find
that {m/θm} is strictly decreasing. Thus the larger is m, the less the cost. However,
a large value of m is generally unsuitable in floating point arithmetic because it leads
to the evaluation of Tm(A)B with a large ‖A‖, and as the analysis in the next section
explains, numerical instability may result. Thus we impose a limit mmax on m and
obtain the minimizer m∗ over all p such that p(p−1) ≤ mmax +1. For the moment we
drop the max in (3.10), whose purpose is simply to cater for nilpotent A with Aj = 0
for j ≥ p. Thus we have

Cm(A) = m⌈αp(A)/θm⌉.

Note that d1 ≥ dk in (3.7) for all k ≥ 1 and so α1(A) ≥ α2(A). Hence we do
not need to consider p = 1. Let pmax denote the largest positive integer p such that
p(p− 1) ≤ mmax + 1. Then the optimal cost is

Cm∗
(A) = min

{
m⌈αp(A)/θm⌉ : 2 ≤ p ≤ pmax, p(p− 1)− 1 ≤ m ≤ mmax

}
,(3.11)

where m∗ denotes the smallest value of m at which the minimum is attained. The
optimal scaling parameter is s = Cm∗

(A)/m∗, by (3.10). Our experience indicates
that pmax = 8 and mmax = 55 are appropriate choices. The above error and cost
analysis are valid for any matrix norm, but it is most convenient to use the 1-norm.
As we did in [2], we will use the block 1-norm estimation algorithm of Higham and

Tisseur [14] to approximate the quantities dp = ‖Ap‖
1/p
1 needed to evaluate αp(A).

This algorithm estimates ‖G‖1 via about 2ℓ actions of G and 2ℓ actions of G∗, all on
matrices of ℓ columns, where the positive integer ℓ is a parameter that we set to 2.
Therefore computing αp(A) for p = 2: pmax, and thus dp for p = 2: pmax + 1, costs
approximately

4ℓ

pmax+1∑

p=2

p = 2ℓpmax(pmax + 3)(3.12)

matrix products. If

‖A‖1 ≤ 2ℓ
θmmax

mmax
pmax(pmax + 3)(3.13)

then the cost mmax‖A‖1/θmmax
of evaluating Bs with m determined by using ‖A‖1 in

place of αp(A) in (3.10) is no larger than the cost (3.12) of computing the αp(A), and
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Table 3.1
Selected constants θm for tol = 2−24 (single precision) and tol = 2−53 (double).

m 5 10 15 20 25 30 35 40 45 50 55

single 1.3e-1 1.0e0 2.2e0 3.6e0 4.9e0 6.3e0 7.7e0 9.1e0 1.1e1 1.2e1 1.3e1
double 2.4e-3 1.4e-1 6.4e-1 1.4e0 2.4e0 3.5e0 4.7e0 6.0e0 7.2e0 8.5e0 9.9e0

so we should certainly use ‖A‖1 in place of the αp(A). This observation leads to a
significant reduction in cost for some matrices. See Experiments 1 and 2 in Section 6
for examples where (3.13) is satisfied. Thus m and s are determined as follows.

Code Fragment 3.1 ([m∗, s] = parameters(A)). This code determines m∗ and

s given A, mmax, and pmax.

1 if (3.13) is satisfied
2 m∗ = argmin1≤m≤mmax

m⌈‖A‖1/θm⌉
3 s = ⌈‖A‖1/θm⌉
4 else
5 Let m∗ be the smallest m achieving the minimum in (3.11).
6 s = max

(
Cm∗

(A)/m∗, 1
)

7 end
If we wish to exponentiate the matrix tA for several values of t then, since

αp(tA) = |t|αp(A), we can precompute the matrix S ∈ R
(pmax−1)×mmax given by

spm =

{
αp(A)

θm
, 2 ≤ p ≤ pmax, p(p− 1)− 1 ≤ m ≤ mmax,

0, otherwise
(3.14)

and then for each t obtain Cm∗
(tA) as the smallest nonzero element in the matrix

⌈|t|S⌉diag(1, 2, . . . ,mmax), where m∗ is the column index of the smallest element.
Table 3.1 lists some of the θm values corresponding to us = tol = 2−24 ≈ 6.0 × 10−8

(single precision) and ud = tol = 2−53 ≈ 1.1× 10−16 (double precision). These values
were determined as described in [13, App.].

3.1. Preprocessing and termination criterion. Further reduction of the
scaling parameter s can be achieved by choosing an appropriate point about which to
expand the Taylor series of the exponential function. For any µ ∈ C, both the series∑∞

k=0 Ak/k! and eµ
∑∞

k=0(A−µI)k/k! yield eA, but the convergence of the second can
be faster if µ is selected so that ‖A− µI‖ ≤ ‖A‖. Two different ways to approximate
eA via the matrix A− µI are from the expressions

eµ
[
Tm(s−1(A− µI))

]s
,

[
eµ/sTm(s−1(A− µI))

]s
.

These two expressions are not equivalent numerically. The first is prone to overflow
when A has an eigenvalue with large negative real part [11, sec. 10.7.3], since it
explicitly approximates eA−µI . The second expression avoids this problem and is
therefore preferred.

Since we will base our algorithm on the 1-norm, the most natural choice of µ
is the one that minimizes ‖A − µI‖1, for which an explicit expression is given in

[11, Thm. 4.21]. However, it is the values dp(A) = ‖Ap‖
1/p
1 in (3.7), not ‖A‖1, that

govern the construction of our approximation, and choosing the shift to minimize
‖A− µI‖1 does not necessarily produce the smallest values of dp(A− µI). Indeed we
have found empirically that the shift that minimizes the Frobenius norm ‖A− µI‖F ,
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namely µ = trace(A)/n, leads to smaller values of the dp for the 1-norm. A partial
explanation follows from the observation that if A = QTQ∗ is a Schur decomposition
then (A − µI)p = Q(T − µI)pQ∗. Hence if A − µI has zero trace then T − µI has
diagonal elements with both positive and negative real parts, and this tends to result
in cancellation of any large off-diagonal elements when the matrix is powered, as
illustrated by (3.8).

Importantly, incorporating shifts does not vitiate the backward error analysis
above: if we choose m∗ based on the αp(A − µI) values, the same backward error
bounds can be shown to hold.

Another way to reduce the norm is by balancing. Balancing is a heuristic that
attempts to equalize the norms of the ith row and ith column of A, for each i, by a
diagonal similarity transformation, Ã = D−1AD. The balancing algorithm available
in LAPACK and MATLAB uses the 1-norm and also attempts to permute the matrix
to block upper triangular form, something that is important for the eigenvalue problem
but not relevant to the computation of eAB. With balancing, we compute eAB =

DeÃD−1B. There is no guarantee that ‖Ã‖1 < ‖A‖1, or that the αp(A) values are

reduced; we would certainly not use balancing if ‖Ã‖1 > ‖A‖1. Balancing affects the
backward error analysis: the best backward error bound for A involves an extra factor
κ(D), though in practice this factor is not seen (see Experiment 1 in Section 6). In
the context of the eigenvalue problem it is known that balancing can seriously degrade
accuracy in special cases [26]. We regard balancing as an option to be used with care
and not always to be automatically applied.

The derivation of the θm takes no account of the matrix B, so our choice of m is
likely to be larger than necessary for some B. We know that our procedure returns
eA+∆AB with normwise relative backward error ‖∆A‖/‖A‖ ≤ tol. We now consider
truncating the evaluation of Tm(A)Bi in (3.2), and in so doing allow a normwise
relative forward error of at most tol to be introduced. With A denoting the scaled
and shifted matrix, we will accept Tk(A)Bi for the first k such that

‖Ak−1Bi‖

(k − 1)!
+
‖AkBi‖

k!
≤ tol‖Tk(A)Bi‖.(3.15)

The left-hand side of (3.15) is meant to approximate the norm of the tail of the series,∑m
j=k+1 AjBi/j!. Taking two terms rather than one better captures the behavior of

the tail, as illustrated by (3.8); we have found empirically that two terms gives reliable
performance.

Our algorithm for computing etAB, where the scalar parameter t is now included
for convenience, is summarized as follows. The algorithm is intended for use with
tol = us or tol = ud, for which we know the corresponding θm values (see Table 3.1).
However, it is straightforward to determine (once and for all) the θm corresponding
to any other value of tol.

Algorithm 3.2 (F = F(t, A,B,balance)). Given A ∈ C
n×n, B ∈ C

n×n0 , t ∈ C,

and a tolerance tol, this algorithm produces an approximation F ≈ etAB. The logical

variable balance indicates whether or not to apply balancing.

1 if balance

2 Ã = D−1AD

3 if ‖Ã‖1 < ‖A‖1, A = Ã, B = D−1B, else balance = false, end
4 end
5 µ = trace(A)/n
6 A = A− µI
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7 if t‖A‖1 = 0, m∗ = 0, s = 1, goto 9, end % The case tA = 0.
8 [m∗, s] = parameters(tA) % Code Fragment 3.1
9 F = B, η = etµ/s

10 for i = 1: s
11 c1 = ‖B‖∞
12 for j = 1:m∗

13 B = tAB/(sj), c2 = ‖B‖∞
14 F = F + B
15 if c1 + c2 ≤ tol‖F‖∞, quit, end
16 c1 = c2

17 end
18 F = ηF , B = F
19 end
20 if balance, F = DF , end

The cost of the algorithm is determined by the number of matrix products; these
products occur at line 13 and in the parameters function.

Note that when n0 > 1 we could simply invoke Algorithm 3.2 n0 times to compute
eAbj , j = 1:n0, which may require fewer flops than a single invocation of eAB, since
the termination test at line 15 may be satisfied earlier for some bj than for B as whole.
The advantage of working with B is the ability to invoke level 3 BLAS [6] [7], which
should lead to faster execution.

4. Rounding error analysis and conditioning. To assess the numerical sta-
bility of Algorithm 3.2 in floating point arithmetic we analyze the rounding errors
in forming the product Tm(A)B, where Tm(A) is the truncated Taylor series (3.3).
For simplicity we assume that A does not need scaling (that is, s = 1). We then
determine the conditioning of the problem and see if our forward error bound reflects
the conditioning. We know that Tm(A) = eA+E with ‖E‖ ≤ tol‖A‖. The analysis
includes two parameters: the backward error in the approximation of the exponential,
tol, and the precision of the underlying floating point arithmetic, u. The norm is the
1-norm or the ∞-norm.

Lemma 4.1. Let X = Tm(A)B be formed as in Algorithm 3.2, but for simplicity

ignoring lines 5, 6, and 15, and assume that s = 1 in that algorithm with tolerance tol.
Then the computed X̂ in floating point arithmetic with unit roundoff u ≤ tol satisfies

X̂ = eA+EB+R, where ‖E‖ ≤ tol‖A‖ and ‖R‖ ≤ γ̃mn Tm(‖A‖)‖B‖ ≤ γ̃mn e‖A‖‖B‖.

Proof. Standard error analysis for the evaluation of matrix products [9, sec. 3.5]

shows that ‖X − X̂‖ ≤ γ̃mn Tm(‖A‖)‖B‖. The analysis in Section 3 shows that
X = eA+EB, with ‖E‖ ≤ tol‖A‖. The result follows on using Tm(‖A‖) ≤ e‖A‖.

Lemma 4.1 shows that X̂ satisfies a mixed forward–backward error result where
the normwise relative backward error bound is tol and the forward error bound is a
multiple of ue‖A‖‖B‖. Since ‖A‖ can exceed 1 the forward error bound is potentially
large. To judge whether the forward error bound is acceptable we compare it with a
perturbation analysis for the problem.

We derive a perturbation result for the product X = f(A)B, where f is an
arbitrary matrix function and then specialize it to the exponential. We denote by
Lf (A,∆A) the Fréchet derivative of f at A in the direction ∆A [11, sec. 3.1]. Let
vec denote the operator that stacks the columns of its matrix argument into a long
vector. We will use the fact that vec(Lf (A,∆A)) = Kf (A)vec(∆A), with Kf (A) the
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n2 × n2 Kronecker matrix representation of the Fréchet derivative [11, sec. 3.2]. The
following lemma makes no assumption about ‖A‖.

Lemma 4.2. Let X = f(A)B and X + ∆X = f(A + ∆A)(B + ∆B) both be

defined, where ‖∆A‖F ≤ ǫ‖A‖F and ‖∆B‖F ≤ ǫ‖B‖F . Then, assuming that f is

Fréchet differentiable at A,

‖∆X‖F
‖X‖F

≤ ǫ

(
‖f(A)‖2‖B‖F
‖X‖F

+
‖(BT ⊗ I)Kf (A)‖2‖A‖F

‖X‖F

)
+ o(ǫ),(4.1)

and this bound is attainable to within a factor 2 to first order in ǫ.
Proof. We have

X + ∆X =
(
f(A) + Lf (A,∆A) + o(‖∆A‖F )

)
(B + ∆B).

Applying the vec operator, and using the fact that vec(UV ) = (V T ⊗ I)vec(U), gives

vec(∆X) = vec(f(A)∆B) + (BT ⊗ I)Kf (A)vec(∆A) + o(ǫ).

Taking the 2-norm and exploiting the relation ‖vec(X)‖2 = ‖X‖F we have

‖∆X‖F ≤ ǫ‖f(A)‖2‖B‖F + ǫ‖(BT ⊗ I)Kf (A)‖2‖A‖F + o(ǫ),

which is equivalent to (4.1). Since ∆B and ∆A are arbitrary it is clear that ‖∆X‖F
can attain each of the first two terms in the latter bound with only one of ∆B and
∆A nonzero, and hence the bound is attainable to within a factor 2 to first order.

In view of the lemma we can regard

κf (A,B) :=
‖f(A)‖2‖B‖F
‖X‖F

+
‖(BT ⊗ I)Kf (A)‖2‖A‖F

‖X‖F
(4.2)

as a condition number for the f(A)B problem. We can weaken this expression to

κf (A,B) ≤
‖f(A)‖F ‖B‖F
‖X‖F

(1 + κf (A)),(4.3)

where [11, secs. 3.1, 3.4]

κf (A) :=
‖Lf (A)‖F ‖A‖F
‖f(A)‖F

, ‖Lf (A)‖F := max
Z 6=0

‖Lf (A,Z)‖F
‖Z‖F

= ‖Kf (A)‖2.(4.4)

Applying (4.3) with f the exponential gives

κexp(A,B) ≤
‖eA‖F ‖B‖F
‖X‖F

(1 + κexp(A)).(4.5)

For comparison with Lemma 4.1 we will, for simplicity, replace all norms by the 2-
norm, since constant factors are not important. For the condition number in the
2-norm we have [11, Lem. 10.15]

‖A‖2 ≤ κexp(A) ≤
e‖A‖2‖A‖2
‖eA‖2

,(4.6)
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with equality in the lower bound for normal A [11, Lem. 10.16], [25]. So for normal A,
the normwise relative forward error bound for ‖R‖2/‖X‖2 from Lemma 4.1 exceeds
κexp(A,B)u by about e‖A‖2/(‖eA‖2(1 + ‖A‖2)), which ranges between 1/(1 + ‖A‖2)

and e2‖A‖2/(1 + ‖A‖2). However, if κexp(A) is close to its upper bound in (4.6) then
the forward error bound from Lemma 4.1 is smaller than the bound for κexp(A,B) in
(4.5) by a factor ‖A‖2.

The conclusion from this analysis is that it is desirable to keep ‖A‖ small in order
for Algorithm 3.2 to reflect the conditioning of the problem, but that a large ‖A‖ does
not necessarily imply numerical instability for nonnormal A.

5. Computing etAB over a time interval. In practice, it may be required to
evaluate etAB for several values of t belonging to a time interval [t0, tq]. Suppose that
q equally spaced steps are to be taken. Denote the grid points by tk = t0+kh, k = 0: q,
where h = (tq − t0)/q. If et0AB is available and Algorithm 3.2, applied to e(tq−t0)A,
selects a scaling parameter s equal to q, then the algorithm automatically generates the
required matrices as intermediate quantities, as is clear from (3.1). In general, though,
we need an efficient strategy for computing these matrices. The most obvious way
to evaluate Bk = etkAB, k = 0: q, is directly from the formula, using Algorithm 3.2.
However, since the cost of the algorithm is proportional to αp(tA) = |t|αp(A), it is
more efficient if we reduce each tk by t0 by forming B0 = et0AB and then (recall that
F denotes an invocation of Algorithm 3.2)

Bk = F(kh,A,B0), k = 1: q.(5.1)

A further reduction in cost accrues if we obtain each Bk from the preceding one:

Bk = F(h,A,Bk−1), k = 1: q.(5.2)

In deciding on the best approach we need to consider the effects of rounding
errors. We know that the scaling and squaring method for eA can suffer from over-
scaling, which occurs when the initial scaling A← 2−iA reduces ‖A‖ by more than is
necessary to achieve the required accuracy and the resulting extra squarings degrade
the accuracy due to propagation of rounding errors in the squaring phase [2]. The
same danger applies here, but now overscaling can be caused by a too-small stepsize
h. The danger is illustrated by the example of computing (1 + x/100)100 when x is
so small that ex ≈ 1 + x is a good enough approximation; the former expression is
clearly much more seriously affected by rounding errors. The gist of the matter is that
(5.2) computes B2 = e2hAB0 (for example) as B2 = ehA(ehAB0) yet it might be that
2hA needs no scaling (i.e., Algorithm 3.2 chooses s = 1 when applied to 2hA), so that
B2 and B1 are obtained at exactly the same cost from (5.1) as from (5.2). Although
these two ways of obtaining B2 are equivalent in exact arithmetic, in floating point
arithmetic the formula B2 = ehA(ehAB0) is more likely to suffer from overscaling.

The following algorithm reduces the chance of overscaling with no cost penalty. It
uses the direct formula (5.1) whenever it can do so without increasing the cost (that
is, without scaling), but uses (5.2) when (5.1) requires scaling and (5.2) does not.

Code Fragment 5.1. This algorithm computes Bk = etkAB for k = 0: q, where

tk = t0 + kh and h = (tq − t0)/q, for the case where q > s∗, where s∗ is the value

determined by Algorithm 3.2 applied to (tq − t0)A.

1 s = s∗
2 d = ⌊q/s⌋, j = ⌊q/d⌋, r = q − dj
3 h = (tq − t0)/q
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4 Z = F(t0, A,B) % B0

5 d̃ = d
6 for i = 1: j + 1

7 if i > j, d̃ = r, end

8 for k = 1: d̃
9 Bk+(i−1)d = F(kh,A,Z)

10 end
11 if i ≤ j, Z = Bid, end
12 end
Note that the same parameter s, namely s = 1, is used on each invocation of

Algorithm 3.2 on line 9 of Code Fragment 5.1. Some useful computational savings
are possible in line 9 by saving and re-using matrix products. We have

Tm(kh,A,Z) =

m∑

ℓ=0

(khA)ℓZ

ℓ!
=
[

Z (hA)Z . . . 1
m! (hA)mZ

]
︸ ︷︷ ︸

Km




1
k
...

km


 .(5.3)

When invoked at line 9 of Code Fragment 5.1, Algorithm 3.2 generally increases the
value of m∗ as k increases until m∗ reaches its maximal value (not necessarily mmax)

at k = d̃. It would be enough to form the matrix Km for the maximal value of m and
reuse it for the smaller values of k. However, this would destroy the computational
saving obtained from the stopping test that Algorithm 3.2 uses. Instead, we will build
up the required block columns of Km gradually during the computation by using the
stopping test.

With the aid of Code Fragment 5.1 and Algorithm 3.2, we can write the final
algorithm. We will use the notation X:,j to denote the jth block column of the
n×n0(q+1) matrix X partitioned into n×n0 blocks; if n0 = 1 (so that B is a vector)
then X:,j = X(:, j) in the usual notation.

Algorithm 5.2. Given A ∈ C
n×n, B ∈ C

n×n0 , and a tolerance tol, this algo-

rithm computes a matrix X ∈ C
n×n0(q+1) such that X:,k+1 ≈ etkAB, k = 0: q, where

tk = t0 + kh and h = (tq − t0)/q. The logical variable balance indicates whether or

not to apply balancing.

1 if balance

2 Ã = D−1AD

3 if ‖Ã‖1 < ‖A‖1, A = Ã, B = D−1B, else balance = false, end
4 end
5 µ = trace(A)/n
6 [m∗, s] = parameters((tq − t0)(A− µI))
7 X:,1 = F(t0, A,B, false)
8 if q ≤ s
9 for k = 1: q

10 X:,k+1 = F(h,A,X:,k, false)
11 end
12 if balancing was used, X = DX, end
13 quit
14 end
15 A = A− µI

16 d = ⌊q/s⌋, j = ⌊q/d⌋, r = q − dj, d̃ = d
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17 Compute Cm∗
(dA) from (3.11).

18 Z = X(: , 1)
19 for i = 1: j + 1

20 if i > j, d̃ = r, end
21 K:,1 = Z, m̂ = 0

22 for k = 1: d̃
23 F = Z, c1 = ‖Z‖∞
24 for p = 1:m∗

25 if p > m̂
26 K:,p+1 = hAK:,p/p % Form K:,p+1 if not already formed.
27 end
28 F = F + kpK:,p+1

29 c2 = kp‖K:,p+1‖∞
30 if c1 + c2 ≤ tol‖F‖∞, quit, end
31 c1 = c2

32 end
33 m̂ = max(m̂, p)
34 X:,k+(i−1)d+1 = ekhµF
35 end
36 if i ≤ j, Z = X:,id+1, end
37 end
38 if balance, X = DX, end

6. Numerical experiments. We give a variety of numerical experiments to
illustrate the efficiency and accuracy of our algorithms. All were carried out in MAT-
LAB R2009b on machines with Core i7 or Core 2 Duo E6850 processors, and errors
are computed in the 1-norm, unless stated otherwise.

In some of our experiments we will employ two existing codes from the literature,
both of which use Krylov techniques along with time-stepping to traverse the inter-
val [0, t]. The MATLAB function expv of Sidje [22] evaluates etAb using a Krylov
method with a fixed dimension (default 30) for the Krylov subspace. The MATLAB
function phipm of Niesen [19] uses Krylov techniques to compute a sum of the form∑p

k=0 ϕk(tA)uk. The size of the Krylov subspace is changed dynamically during the
integration, and the code automatically recognizes when A is Hermitian and uses the
Lanczos process instead of the Arnoldi process. We use both functions with their
default parameters, except for the convergence tolerance, which varies in our experi-
ments.

We will not attempt to show the benefits of using the αp(A) in place of ‖A‖1, as
these have already been demonstrated in [2] for the scaling and squaring algorithm.
In all our experiments B is a vector, b.

Experiment 1. The first experiment tests the behavior of Algorithm 3.2 in floating
point arithmetic. We use a combination of all four sets of test matrices described in
[2, sec. 6], giving 155 matrices in total, with dimensions n up to 50. For each matrix
A, and a different randomly generated vector b for each A, we compute x = eAb in
three ways:
• using Algorithm 3.2 with and without balancing, with tol = ud,
• as expm(A)*b, where expm is the MATLAB function for the matrix exponential,

which implements the scaling and squaring algorithm of [10], [12],
• as expm new(A)*b, where expm new implements the improved scaling and squar-

ing algorithm of Al-Mohy and Higham [2].
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Fig. 6.1. Experiment 1: normwise relative errors in eAb computed by Algorithm 3.2 with and
without balancing and by first computing eA by expm or expm new.

Figure 6.1 displays the relative errors ‖eAb − x̂‖2/‖e
Ab‖2, where the “exact” answer

is obtained by computing at 100 digit precision with the Symbolic Math Toolbox.
The matrices are sorted by decreasing value of the condition number κexp(A, b) in
(4.2), and κexp(A, b)ud is shown as a solid line. For n < 50 we compute κexp(A, b)
exactly, using the function expm_cond in the Matrix Function Toolbox [8] to obtain
the Kronecker matrix representation Kexp(A) of the Fréchet derivative, and for larger
matrices we estimate the condition number using an adaptation of the technique of
[1, sec. 7]. Figure 6.2 displays the same data as a performance profile, where for a
given α the corresponding point on each curve indicates the fraction p of problems on
which the method had error at most a factor α times that of the smallest error over
all methods in the experiment.

Figure 6.1 reveals that all the algorithms behave in a generally forward stable
manner. Figure 6.2 shows that Algorithm 3.2 has the best accuracy, beating both
expm and the more accurate expm new. Balancing has little effect on the errors, but
it can greatly reduce the cost: the quantity “s without balancing divided by s with
balancing” had maximum value 1.6×104 and minimum value 0.75, with the two values
of s differing in 11 cases. The test (3.13) was satisfied in about 77% of the cases.

Experiment 2. In this experiment we take for A the matrix gallery(’lesp’,10),
which is a nonsymmetric tridiagonal matrix with real, negative eigenvalues, and bi = i.
We compute etAb by Algorithm 3.2 for 50 equally spaced t ∈ [0, 100], with and without
balancing, for tol = us and tol = ud. The results are shown in Figure 6.3. We see a
linear growth of the cost of the algorithm with t, as expected. The relative errors are
all below the corresponding solid line representing κexp(tA, b)u, which shows that the
algorithm is behaving in a forward stable manner. Balancing has no significant effect
on the error but leads to a useful reduction in cost. In this test the inequality (3.13)
was satisfied in 5% of the cases.

Experiment 3. Now we investigate the effectiveness of Algorithm 5.2 at avoiding
overscaling when dense output is requested over an interval. We take for A the
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Fig. 6.2. Same data as in Figure 6.1 presented as a performance profile.

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

t

Matrix−vector products

 

 

0 10 20 30 40 50 60 70 80 90 100
10

−16

10
−12

10
−8

10
−4

t

Relative error

single

double

single (balance)

double (balance)
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Fig. 6.4. Experiment 3: relative errors (top) for Algorithm 5.2 and for modified version of
the algorithm without the logic to avoid overscaling, and ratio of relative errors “modified/original”
(bottom). The solid line is κexp(tA, b)ud.

matrix gallery(’frank’,3), b has equally spaced elements on [−1, 1], and tol = ud;
balancing leaves this matrix unchanged. We apply Algorithm 5.2 twice with t ∈ [0, 10]
and q = 200, once in its given form and again with the “if” test at line 8 forced to
be satisfied, thus turning off the logic for avoiding overscaling. The relative errors are
shown in Figure 6.4. The improved accuracy provided by our strategy for avoiding
overscaling is clear.

Experiment 4. Our next experiment is a variation of one from Trefethen, Weide-
man, and Schmelzer [24, sec. 3], in which A ∈ R

9801×9801 is a multiple of the standard
finite difference discretization of the 2D Laplacian, namely the block tridiagonal ma-
trix constructed by -2500*gallery(’poisson’,99) in MATLAB. We compute eαtAb
for the b specified in [24] for q = 100 equally spaced values of t on [0, 1], with α = 0.02
(the problem as in [24]) and α = 1. We use four different methods.

1. Algorithm 5.2, with tol = ud. Since A is symmetric, balancing is not needed.
2. MATLAB functions expv and phipm, both called q times with error tolerance ud.

Since both functions use a time-stepping strategy to advance eτAb from τ = 0
to τ = t, our repeated calls to expv and phipm result in wasted computation,
but they are unavoidable because the functions do not offer the option of “dense
output” to return intermediate vectors.

3. The MATLAB code in [24, Fig. 4.4], which uses a best rational L∞ approximation
to the exponential of type (N − 1, N) with N = 14. It is called repeatedly for
each t-value. Unlike the previous two methods, the dominant computational cost
is the solution of linear systems with matrices of the form αI−βA, which is done
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Table 6.1
Experiment 4: speed is time for method divided by time for Algorithm 5.2.

α = 0.02 α = 1
speed cost diff speed cost diff

Algorithm 5.2 1 1119 1 49544
expv 46.6 25575 4.5e-15 66.0 516429 6.2e-14
phipm 10.5 10744 5.5e-15 9.3 150081 6.3e-14

rational 107.8 700 9.1e-14 7.9 700 1.0e-12

Table 6.2
Experiment 5: speed is time for method divided by time for Algorithm 3.2.

Algorithm 3.2 phipm expv

‖A‖1 speed cost error speed cost error speed cost error

orani678 1.0e5 1 5272 7.3e-15 1.0 651 5.7e-14 3.5 9052 9.1e-14
bcspwr10 1.4e2 1 380 7.1e-15 1.1 103 8.5e-15 4.5 341 1.4e-14
gr_30_30 3.2e1 1 80 7.2e-9 3.9 40 2.0e-9 5.9 124 1.1e-7

via the backslash operator.
The results are given in Table 6.1, where “cost” denotes the number of matrix–vector
products for the first three methods and the number of linear system solves for the
rational approximation method, and “diff” is the normwise relative difference between
the matrix of result vectors computed by Algorithm 5.2 and the other methods.

Here, ‖A‖1 = 2× 104, and Algorithm 5.2 takes s = 21 for α = 0.02 and s = 1014
for α = 1. In spite of the fairly heavy scaling, this algorithm is still substantially faster
than expv, phipm, and the rational approximation method. Algorithm 5.2 needed to
use its logic to avoid overscaling for α = 0.02 but not for α = 1.

We used the MATLAB profile function to profile the M-files in this experiment.
We found that Algorithm 5.2 spent 88% of its time doing matrix–vector products. By
contrast, expv and phipm spent 12% and 28% of their time, respectively, on matrix–
vector products and most of the rest within the Arnoldi recurrence or in evaluating
matrix exponentials via expm (1% and 6%, respectively). Note that the vectors in the
Arnoldi and Lanczos recurrences are generally full if b is, so the inner products and
additions in these recurrences can be of similar cost to a matrix–vector product when
A is very sparse, as it is here.

Experiment 5. This experiment uses essentially the same tests as Niesen and
Wright [20, Experiment 1], which in turn are based on those of Sidje [22]. The three
matrices belong to the Harwell-Boeing collection and are obtained from the University
of Florida Sparse Matrix Collection [5]. For the first two matrices we compute eAt.
The matrices and problem details are:
• orani678, n = 2529, t = 100, b = [1, 1, . . . , 1]T ;
• bcspwr10, n = 5300, t = 10, b = [1, 0, . . . , 0, 1]T .

The third matrix is gr_30_30, with n = 900, t = 2, b = [1, 1, . . . , 1]T , and we compute
e−tAetAb. The tolerance is us and for the first two problems we regard the solution
computed with Algorithm 3.2 with tol = ud as the exact solution. Balancing is not
applied because MATLAB does not support balancing of matrices stored with the
sparse attribute; however, balancing is certainly possible for sparse matrices, and
several algorithms are developed by Chen and Demmel [4]. The results are shown in
Table 6.2. All three methods deliver the required accuracy, but Algorithm 3.2 proves
to be the fastest.

Experiment 6. This example reveals the smoothness of the solution computed
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Fig. 6.5. Experiment 6: t versus ‖etAb‖2, with α = 4 (top) and α = 4.1 (bottom).

by Algorithm 5.2. The matrix A is -gallery(’triw’,20,alpha), which is upper
triangular with constant diagonal −1 and all superdiagonal elements equal to −α.
We take bi = cos i and compute the norms ‖etAb‖2 with tol = ud for α = 4 and
α = 4.1 by all the methods discussed above for t = 0: 100. The best rational L∞

approximation is applicable since A has real, negative eigenvalues. Balancing has no
effect on this matrix. Figure 6.5 shows that Algorithm 5.2 is the only method to
produce a smooth curve that tracks the growth and decay of the exponential across
the whole interval, and indeed each computed norm for Algorithm 5.2 has relative
error less than 5 × 10−14. The accuracy of the other methods is affected by the
nonnormality of A, which is responsible for the hump. The rational approximation
method solves linear systems with condition numbers up to order 1012, which causes
its ultimate loss of accuracy. The Krylov methods are so sensitive to rounding errors
that changing α from 4 to 4.1 produces quite different behavior, especially for phipm.
The problem is very ill-conditioned: κexp(A, b) ≥ u−1

d for t >
∼ 53.

Experiment 7. Since our approach is in the spirit of the sixth of Moler and Van
Loan’s “19 dubious ways” [18, sec. 4], it is appropriate to make a comparison with a
direct implementation of their “Method 6: single step ODE methods”. For the Lapla-
cian matrix and vector b from Experiment 4, we compute eαAb, for α = 1 and α = 4,
using Algorithm 3.2 with tol = us, and the ode45 and ode15s functions from MAT-
LAB, with absolute and relative error tolerances (used in a mixed absolute/relative
error criterion) both set to us. The ode45 function uses an explicit Runge–Kutta (4,5)
formula while ode15s uses implicit multistep methods. We called both solvers with
time interval specified as [0 t/2 t] instead of [0 t] in order to stop them returning
output at each internal mesh point, which substantially slows the integration. The
results in Table 6.3 show the superior efficiency of Algorithm 3.2 over ode45. The
ode15s function performs variably, being extremely slow for the orani678 problem,
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Table 6.3
Experiment 7: cost is the number of matrix–vector products, except for ode15s for which it

“number of matrix–vector products/number of LU factorizations/number of linear system solves”.
The subscript on poisson denotes the value of α.

Algorithm 3.2 ode45 ode15s

Time Cost Error Time Cost Error Time Cost Error

orani678 0.41 2642 6.0e-9 3.02 14269 2.7e-8 136 7780/606/7778 1.6e-6
bcspwr10 0.022 228 1.2e-6 0.58 3325 9.5e-7 2.92 1890/76/1888 4.8e-5
poisson1 4.06 29255 2.2e-6 8.31 38401 3.6e-7 2.48 402/33/400 8.3e-6
poisson4 16.7 190582 9.0e-6 35.5 154075 2.2e0 3.24 494/40/492 1.4e-1

but faster than Algorithm 3.2 for the poisson problem with α = 1, in this case
being helped by the fact that A is highly sparse and structured, so that the linear
system solves it requires are relatively inexpensive. However, both ODE solvers fail
to produce the desired accuracy for the poisson problem with α = 4.

Experiment 8. Our final experiment illustrates the application of Theorem 2.1
in order to compute the exponential integrator approximation (2.4) via (2.11). We
take for A ∈ R

400×400 the symmetric matrix -gallery(’poisson’,20) and random
vectors uk, k = 0: p, with elements from the normal (0,1) distribution, where p =
5: 5: 20. The matrix W ∈ R

400×p has columns W (:, p − k + 1) = uk, k = 1: p. For
each p, we compute û(t) at each t = 1: 0.5: 10 by Algorithm 5.2 (with t0 = 1, tq = 10,
and q = 18) and by phipm, which has the ability to compute û(t) via the expression
(2.4). For computing errors, we regard as the “exact” solution the vector obtained by
using expm to compute the exponential on the right-hand side of (2.11). We set the
tolerance to ud for both algorithms. Figure 6.6 plots the results. The total number
of matrix–vector products is 1097 for Algorithm 5.2 and 3749 for phipm.

The relative error produced by Algorithm 5.2 is of order ud for all t and p, whereas
the relative error for phipm deteriorates with increasing t, the more rapidly so for the
larger p, suggesting instability in the recurrences that the code uses. The practical
implication is that p, which is the degree of the polynomial approximation in an ex-
ponential integrator, may be need to be limited for use with phipm but is unrestricted
for our algorithm. The run time for this experiment is 0.093 seconds for Algorithm 5.2
and 0.62 seconds for phipm.

The importance of the normalization by η in (2.11) is seen if we multiply W by
106 and repeat the experiment with the default η and then η = 1. The maximum
relative errors for Algorithm 5.2 in the two cases are 2.3× 10−15 and 3.3× 10−12.

7. Discussion. Our new algorithm, Algorithm 5.2 (and its special case Algo-
rithm 3.2) has a number of attractive features. Suppose, first, that B ∈ R

n is a
vector. The algorithm spends most of its time computing matrix–vector products,
with other computations occupying around 12% or of the time. Thus it fully bene-
fits from problems where matrix–vector products are inexpensive, or their evaluation
is optimized. The algorithm is essentially direct rather than iterative, because the
number of matrix–vector products is known after the initial norm estimation phase

and depends only on the values dk = ‖Ak‖
1/k
1 for a few values of k (sometimes just

k = 1). No convergence test is needed, except the test for early termination built
into the evaluation of the truncated Taylor series. Our experiments demonstrate ex-
cellent numerical stability in floating point arithmetic, and this is supported (but not
entirely explained) by the analysis in Section 4. The numerical reliability of the al-
gorithm is emphasized by the fact that in Experiment 1 it has a better relative error
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Fig. 6.6. Experiment 8: relative errors of computed û(t) in (2.4) from Algorithm 5.2 (◦) and
phipm (∗) over the interval [1, 10] for p = 5: 5: 20.

performance profile than evaluation of eAb using the best current method for eA. A
particular strength of the algorithm is in the evaluation of eAt at multiple points on
the interval of interest, because the scaling used by the algorithm naturally produces
intermediate values, and the design of the algorithm ensures that when extremely
dense output is required overscaling is avoided.

These benefits contrast with Krylov methods, of which we tested two particular
examples. These methods are genuinely iterative, so their cost is difficult to predict
and the choice of convergence test will influence the performance and reliability. They
also typically require the selection or estimation of the size of the Krylov subspace.
Moreover, the cost of the methods is not necessarily dominated by the matrix–vector
products with A; depending on the method and the problem it can be dominated by
the computations in the Arnoldi or Lanczos recurrence, and the cost of evaluating
exponentials of smaller Hessenberg matrices is potentially significant.

For the case where B is a matrix with n0 > 1 columns, Algorithm 5.2 is partic-
ularly advantageous because the logic of the algorithm is unchanged and the compu-
tational effort is now focused on products of n× n and n× n0 matrices. The Krylov
codes expv and phipm must be called repeatedly on each column of B and thus cannot
benefit from the greater efficiency of matrix products. An algorithm for eAB based on
block Krylov subspaces might avoid this drawback, but no such algorithm is currently
available.

The weakness of Algorithm 5.2 is its tendency for the cost to increase with in-
creasing ‖A‖ (though it is the dk that actually determine the cost). This weakness
is to some extent mitigated by preprocessing, but for symmetric A balancing has no
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effect and dk ≈ ‖A‖ (there is equality for the 2-norm, but the algorithm uses the
1-norm). Note also that Algorithm 5.2 requires matrix–vector products with both A
and A∗ for the norm estimation. However, if A is non-Hermitian and known only
implicitly and A∗x cannot be formed, we can revert to the use of ‖A‖1 in place of
the αp(A).

In summary, Algorithm 5.2 emerges as the best method for the eAB problem in
our experiments. It has several features that make it attractive for black box use
in a wide range of applications: its applicability to any A, its predictable cost after
the initial norm estimation phase, its excellent numerical stability, and its ease of
implementation,
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