

Noncommutative Fourier Analysis

Plymen, Roger

2010

MIMS EPrint: 2010.25

Manchester Institute for Mathematical Sciences School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK

ISSN 1749-9097

Noncommutative Fourier Analysis

Roger Plymen

February 22, 2010: draft for LMS book v1.0

- 1. Introduction
- 2. C^{\star} -Algebras
- 3. Unitary Representations
- 4. Plancherel Formula for liminal groups
- 5. Real reductive groups
- 6. Plancherel formula for $SL(2, \mathbb{C})$
- 7. Plancherel formula for $SL(2, \mathbb{R})$
- 8. Reductive groups over \mathbb{Q}_p
- 9. Plancherel formula for $GL(n, \mathbb{Q}_p)$
- 10. References

1 Introduction

Let G be a locally compact group. Here are some important examples:

- \mathbb{R} : the additive group of the real line
- \mathbb{T} : the group of complex numbers of modulus 1
- SU(2): the group of 2×2 unitary matrices with determinant 1

- $SL(2,\mathbb{R})$: the group of 2×2 real matrices with determinant 1
- $SL(2, \mathbb{C})$: the group of 2×2 complex matrices with determinant 1
- GL(2, Q_p): the group of invertible 2 × 2 matrices with entries in the p-adic field Q_p

Attached to each locally compact group there is a *dual object*: the *uni*tary dual \hat{G} . This is the set of equivalence classes of irreducible unitary representations of G. An element of \hat{G} will be denoted ω .

So as not to cast our net too wide, we will confine our attention to *liminal* groups, see §2. The Plancherel Theorem is an expression of a fundamental duality between G and \hat{G} . This duality is expressed in terms of a chosen Haar measure on G, and the corresponding dual measure on \hat{G} called Plancherel measure.

Let dg be a chosen left-invariant Haar measure on G, and let ϕ be a test function. Let π be chosen in ω and define

$$\widehat{\phi}(\pi) := \int \phi(g)\pi(g)dg \tag{1}$$

This depends on the choice of π in ω . But the trace is independent of this choice and so we can define

$$\Theta_{\omega}(\phi) := Tr \ \widehat{\phi}(\pi) \qquad \text{with} \quad \pi \in \omega$$

The Plancherel Theorem is the following statement:

$$\phi(1) = \int \Theta_{\omega}(\phi) d\nu(\omega) \tag{2}$$

where ν is Plancherel measure on \widehat{G} and ϕ is a test-function on G.

The Haar measure dg is not unique: it is determined up to a scalar $\lambda > 0$. If we replace dg by $\lambda \cdot dg$ then $\Theta_{\omega}(\phi)$ is replaced by $\lambda \cdot \Theta_{\omega}(\phi)$ and then ν is replaced by $\lambda^{-1} \cdot \nu$. If we halve the Haar measure, then we double the Plancherel measure. Any Plancherel formula is with reference to a specific choice of Haar measure.

The convolution product of functions f_1 and f_2 will be denoted $f_1 \star f_2$. A simple substitution $\phi = f^* \star f$ then yields the formulation

$$\int |f(g)|^2 dg = \int ||\widehat{f}(\omega)||^2_{HS} d\nu(\omega)$$
(3)

where $\|\cdot\|_{HS}$ is the Hilbert-Schmidt norm defined by

$$||A||_{HS}^2 := Tr A^*A$$

If the group G is *commutative*, then each irreducible unitary representation of G is a unitary character, and the unitary dual \widehat{G} is the set of unitary characters of G. In particular, let G be the additive group \mathbb{R} . In this case, the unitary dual of \mathbb{R} can be identified with \mathbb{R} itself. This comes about as follows. Let $y \in \mathbb{R}$ and define

$$\chi(x) = e^{-2\pi i x y} \tag{4}$$

This formula defines a unitary character on \mathbb{R} , and every character arises in this way.

Let f be a function in $L^1(\mathbb{R})$. We will obtain the classical Fourier transform of f. Eqn.(1) and Eqn. (4) lead to the definition. The Fourier transform of f is the function on \mathbb{R} given by

$$\widehat{f}(y) = \int_{\mathbb{R}} f(x)\chi(x)dx = \int_{\mathbb{R}} e^{-2\pi ixy}f(x)dx$$

If $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ then \widehat{f} is in $L^2(\mathbb{R})$ and the following formula of Plancherel holds:

$$||\hat{f}||_2 = ||f||_2.$$
(5)

The map $f \mapsto \widehat{f}$ has a unique extension to a continuous, linear map from $L^2(\mathbb{R})$ into $L^2(\mathbb{R})$ which is an *isometry*, i.e. Plancherel's formula (3) holds for this extension, see [10, Chapter 5]. Once Lebesgue measure has been chosen on \mathbb{R} , then Plancherel measure is Lebesgue measure on \mathbb{R} .

Let \mathbb{T} be the circle group. The unitary dual of \mathbb{T} can be identified with the additive group \mathbb{Z} via the equation

$$\chi(z) = z^n$$

with $z \in \mathbb{T}, n \in \mathbb{Z}$. In polar coordinates, this equation becomes

$$\chi(e^{i\theta}) = e^{in\theta}$$

If we select normalized Haar measure $d\theta/2\pi$ on \mathbb{T} then Eqn.(1) becomes

$$\widehat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} e^{in\theta} f(\theta) d\theta \tag{6}$$

If we now write

$$a_n = \widehat{f(n)}$$

then we recover the classical formula for the *n*th Fourier coefficient, as in [9, p.41]. Eqn.(3) takes the familiar form of the Parseval identity:

$$||f||^2 = \sum_{n \in \mathbb{Z}} |a_n|^2$$

Plancherel measure on the dual of \mathbb{T} is counting measure on \mathbb{Z} .

We can see from these classical examples that the Plancherel formula is a vast generalization, to noncommutative liminal groups, of classical results in Fourier analysis.

We have chosen to use the framework of C^* -algebras in these lectures. This allows a uniform approach to the Plancherel theorem for reductive groups over any local field. With this in view, we begin with a slimline account of C^* -algebras, largely taken from Dixmier's classic book on C^* algebras [5].

The sections on unitary representations and Plancherel Formula are inspired by Wallach's book on real reductive groups [15].

We should point out that, for reductive p-adic groups, thanks to the influence of Joseph Bernstein, an algebraic approach is possible, see [14].

We describe explicitly the Plancherel formulas for $SL(2, \mathbb{C})$ and $SL(2, \mathbb{R})$.

The explicit Plancherel formula for p-adic GL(n) is provided in [1].

It would appear that a uniform Plancherel formula, valid for any local field, has yet to be written. A very special case of such a uniform formula appears in [11].

We would like to thank Anne-Marie Aubert for her careful reading of the manuscript, and for some constructive comments.

2 C^* -algebras

2.1. * algebras. Let A be an algebra over the field \mathbb{C} of complex numbers. An *involution* in A is a map $x \mapsto x^*$ of A into itself such that

- $(x^*)^* = x$
- $(x+y)^* = x^* + y^*$
- $(\lambda x)^* = \overline{\lambda} x^*$
- $(xy)^* = y^*x^*$

for any $x, y \in A$ and $\lambda \in \mathbb{C}$. An algebra over \mathbb{C} endowed with an involution is called a * algebra. The element x^* is often called the *adjoint* of A. A subset of A which is closed under the involution operation is said to be *self-adjoint*.

2.2. A normed * algebra is a * algebra with norm $\|\cdot\|$ such that

- $||x|| \ge 0$ with ||x|| = 0 if and only if x = 0
- $||x+y|| \le ||x|| + ||y||$
- $\|\lambda x\| = |\lambda| \cdot \|x\|$
- $\bullet \|xy\| \le \|x\| \cdot \|y\|$
- $||x^*|| = ||x||$

for any $x, y \in A$ and $\lambda \in \mathbb{C}$. If, in addition, A is complete, A is called a Banach * algebra.

2.3 A C^* -algebra is a Banach * algebra such that $||x||^2 = ||x^*x||$ for every $x \in A$. The condition $||x||^2 = ||x^*x||$ is called the C^* condition. A C^* -algebra with unit is called a unital C^* -algebra.

The C^* condition hides an absolutely crucial feature by letting one believe that, as in a Banach algebra, there is freedom in the choice of the norm. In fact if a unital * algebra is a C^* -algebra it is so for a *unique* norm, given for any x by the equality:

$$||x||^2 = \text{spectral radius of } x^*x$$
$$= \sup \{|\lambda| : x^*x - \lambda \text{ not invertible}\}$$

2.4. Examples

2.4.1. Let X be a locally compact Hausdorff space. We say that the complex-valued function f on X vanishes at infinity if the following condition holds:

Given $\varepsilon > 0$, there exists a compact set $K \subset X$ such that

$$|f(x)| < \varepsilon$$
 whenever $x \in X - K$.

Let A denote the algebra of all complex-valued continuous functions vanishing at infinity on X. Set

$$f^*(x) = \overline{f(x)}, \quad f \in A, \ x \in X$$
$$\|f\| = \sup\{|f(x)| : x \in X\}$$
$$(fg)(x) = f(x)g(x).$$

Then A is a commutative C^* algebra denoted $C_0(X)$. The C^* algebra $C_0(X)$ is unital if and only if X is compact.

2.4.2. Let *H* be a complex Hilbert space and $A = \mathcal{L}(H)$ the algebra of continuous endomorphisms of *H*. For $S, T \in A$, set

$$(T^*\xi|\eta) = (\xi|T\eta), \quad \xi, \eta \in H, (ST)(\xi) = S(T\xi), \quad \xi \in H, \|T\| = \sup \{ \|T\xi\| : \|\xi\| \le 1 \}$$

Then $\mathcal{L}(H)$ is a unital C^* algebra.

2.4.3. Let $\mathfrak{K}(H)$ be the algebra of compact operators on H. This is the closure in $\mathcal{L}(H)$ of the finite-rank operators on H. Then $\mathfrak{K}(H)$ is a C^* -algebra. This C^* -algebra is unital if and only if H is finite-dimensional.

2.5. Automatic Continuity. Let A be a Banach * algebra, B a C^* algebra and π a morphism of A into B; this means that π is a morphism of the underlying * algebras, without any condition on the norms. Then $||\pi(x)|| \leq ||x||$ for every $x \in A$. See [5, 1.3.7]. It follows that an isomorphism of C^* -algebras is automatically isometric.

2.6. Let A and B be C^{*}-algebras, ϕ a morphism of A into B. Then the image $\phi(A)$ is a sub-C^{*}-algebra of B.

2.7. Let A be a * algebra and H a Hilbert space. A representation of A in H is a morphism of the * algebra A into the * algebra $\mathcal{L}(H)$. In other words, a representation of A in H is a map π of A into $\mathcal{L}(H)$ such that

$$\pi(x+y) = \pi(x) + \pi(y)$$

$$\pi(\lambda x) = \lambda \pi(x)$$

$$\pi(xy) = \pi(x)\pi(y)$$

$$\pi(x^*) = \pi(x)^*$$

for $x, y \in A, \lambda \in \mathbb{C}$.

2.8. Two representations π and π' of A in H and H' are said to be *equivalent*, and we write $\pi \cong \pi'$, if there is an isomorphism U of the Hilbert space H onto the Hilbert space H' which transforms $\pi(x)$ into $\pi'(x)$ for each $x \in A$. In other words, $U\pi(x) = \pi'(x)U$ for any $x \in A$. Hence the definition of a class of representations. The operator U is an *intertwining operator* for π and π' .

2.9. Let Γ be a finite group acting as automorphisms of the C^* -algebra A. Let A^{Γ} be the fixed-point set. Then A^{Γ} is a sub- C^* -algebra of A.

2.10. Irreducible representations. The representation π of the C^* -algebra A in H is *irreducible* if H admits no invariant closed subspaces except 0 and H.

2.11. A C*-algebra A is *liminal* if, for every irreducible representation π of A and each $x \in A$, $\pi(x)$ is compact.

2.12. The set of equivalence classes of irreducible representations of A is called the *dual* of A, denoted \hat{A} .

2.13. Primitive ideals. If J is a two-sided ideal in A, then J is primitive if it is the kernel of an irreducible representation π of A. The set of primitive ideals in A is denoted $\operatorname{Prim}(A)$. If $\omega \in \hat{A}$, then define $k(\omega) = \operatorname{Ker} \pi$ for $\pi \in \omega$. We then have $k : \hat{A} \longrightarrow \operatorname{Prim}(A)$.

If S is a subset of Prim(A) then we set

$$\begin{split} I(S) &= \bigcap_{J \in S} J, \\ \overline{S} &= \{J \in \operatorname{Prim} A : I(S) \subset J\} \end{split}$$

We then have

•
$$\overline{\emptyset} = \emptyset$$

• $S \subset \overline{S}$

- $\overline{S} = \overline{(\overline{S})}$
- $\overline{S_1 \cup S_2} = \overline{S}_1 \cup \overline{S}_2$

This implies that there is a unique topology on Prim(A) whose closed sets are those S such that $\overline{S} = S$. This topology is the hull kernel topology on Prim(A).

If A is limited then $k : \hat{A} \to \operatorname{Prim}(A)$ is a bijection. The set \hat{A} is now furnished with the pull-back of the hull kernel topology on $\operatorname{Prim}(A)$.

2.14. Let A be a limital C^* -algebra. Then \hat{A} is a locally quasi-compact space in which the points are closed [5, 3.3.8, 4.4.1].

2.15. Let G be a locally compact, separable, topological group with a fixed choice of Haar measure dg. The Banach space $L^1(G)$ becomes a Banach * algebra when equipped with the convolution product and the involution

$$f^*(x) = \Delta(x^{-1})\overline{f(x^{-1})}$$

for $x \in G$ and $f \in L^1(G)$, where Δ denotes the modular homomorphism of G. Any unitary representation π of G on a Hilbert space H extends to a * representation of $L^1(G)$, still denoted by π , via the formula

$$\pi(f) = \int f(g)\pi(g) \, dg$$

with $f \in L^1(G)$. This gives $||f||_1 \ge ||\pi(f)||$, where $|| ||_1$ denotes the L^1 -norm and || || the operator norm for H. We therefore define

$$||f|| = \sup\{||\pi(f)|| : \pi \in \hat{G}\}, \quad f \in L^1(G).$$

This gives $||f||_1 \ge ||f||$, and we note that $L^1(G)$ need not be complete in this norm. The full C^* -algebra of G, denoted $C^*(G)$, is defined to be the completion of $L^1(G)$ with respect to this norm. (Thus $C^*(G)$ is the enveloping C^* -algebra of $L^1(G)$.)

On the other hand, one has the left regular representation λ of $L^1(G)$ on $L^2(G)$:

$$\lambda(f)h = f \star h$$

with $f \in L^1(G)$, $h \in L^2(G)$. The reduced C^{*}-algebra of G, denoted $C_r^*(G)$, is the norm closure of the image $\lambda(L^1(G))$ in the space of all bounded linear

operators on $L^2(G)$. The left regular representation induces a canonical surjective * homomorphism [5, 2.15.1]:

$$\lambda: C^*(G) \longrightarrow C^*_r(G)$$

2.16. The group G is *liminal* if $C^*(G)$ is liminal. By (2.15.1), the reduced C^* -algebra $C^*_r(G)$ is liminal if $C^*(G)$ is liminal.

Let \hat{G} be the set of equivalence classes of irreducible unitary representations of G (see section 3.1). Then we have the following bijections:

$$\widehat{G} \cong \widehat{C^*(G)} \cong \operatorname{Prim}(C^*(G)).$$

The topology on the unitary dual \widehat{G} is then, by definition, the pull-back of the hull-kernel topology of Prim $C^*(G)$.

Let σ , τ be irreducible unitary representations of G. For the moment, let $[\sigma]$ denote the equivalence class of σ , so that $[\sigma], [\tau] \in \hat{G}$. A base for the open neighbourhoods of a point $[\tau] \in \hat{G}$ consists of the sets $U(K; \xi_1, \ldots, \xi_n)$, where K is a compact subset of G and ξ_1, \ldots, ξ_n are vectors in the space $H(\tau)$ of the representation τ . By definition, the class $[\sigma]$ belongs to the set $U(K; \xi_1, \ldots, \xi_n)$ if there exist vectors η_1, \ldots, η_n in the space $H(\sigma)$ such that

$$|\langle \tau(g)\xi_i,\xi_j\rangle - \langle \sigma(g)\eta_i,\eta_j\rangle| < 1$$

for all $g \in K$, $1 \leq i, j \leq n$. It is instructive to see what happens when G is a locally compact *abelian* group. Then each σ is a unitary character. The group G is certainly a limital group. Then \hat{G} is the Pontryagin dual of G and the topology on \hat{G} is the topology of uniform convergence on compact sets.

2.17. There are two lemmas, which are absolutely crucial.

2.17.1 Harish-Chandra Lemma [15, 3.4.10]. Let G be a real reductive group. Then G is liminal.

2.17.2. Bernstein Lemma [3]. Let G be a reductive p-adic group. Then G is limital.

2.18. Topology on the unitary dual \hat{G} of a reductive group G. From 2.14–2.17 we infer that

• the unitary dual \hat{G} of a reductive group G is a locally quasi-compact space in which points are closed.

2.19. Noncommutative topology. The conventional wisdom is that C^* -algebra theory may be viewed as noncommutative topology. Each property concerning a locally compact Hausdorff space X can in principle be formulated in terms of the function algebra $C_0(X)$ and will then usually make sense (and hopefully be true) for any noncommutative C^* -algebra. Here is a list of some of the "dualities".

topology \longleftrightarrow algebra $C_0(X) \longleftrightarrow C^*$ -algebra Aproper map \longleftrightarrow morphism homeomorphism \longleftrightarrow automorphism measure \longleftrightarrow positive functional disjoint union \longleftrightarrow direct sum compact \longleftrightarrow unital σ -compact \longleftrightarrow σ -unital open subset \longleftrightarrow ideal open dense subset \longleftrightarrow essential ideal closed subset \longleftrightarrow quotient compactifications \longleftrightarrow unitizations connected \longleftrightarrow projectionless 2nd countable \longleftrightarrow separable

The idea is that since an algebra isomorphism of $C_0(X)$ onto $C_0(Y)$ induces a homeomorphism of X with Y, all topological information about X is stored algebraically in $C_0(X)$. Reference [16, 1.11].

3 Unitary Representations

A homomorphism π of a topological group G into the group of unitary operators on a Hilbert space $H \ (\neq \{0\})$ is called a *unitary representation* of G if π is strongly continuous in the following sense: for any element $x \in H$, the mapping $g \mapsto \pi_g x$ is a continuous mapping from G into H. The Hilbert space H is called the representation space of π and is denoted by $H(\pi)$. Two unitary representations π and π' are said to be *equivalent*, denoted by $\pi \cong \pi'$, if there exists an isometry T from $H(\pi)$ onto $H(\pi')$ that satisfies the equality $T \circ \pi_g = \pi'_g \circ T$ for every g in G. If the representation space $H(\pi)$ contains no closed subspace other than H and $\{0\}$ that is invariant under every π_g , then the unitary representation π is said to be *irreducible*. Let G be a unimodular locally compact group, let μ be Haar measure on G. Set

$$L(y)f(x) = f(y^{-1}x)$$

$$R(y)f(x) = f(xy)$$

with $f \in L^2(G, \mu)$, $x, y \in G$. Then L is a unitary representation of G called the left regular representation of G, and R is the right regular representation.

These two representations can be combined as follows. Set

$$U(z,y)f(x) = f(z^{-1}xy)$$

with $x, y, z \in G$ and $f \in L^2(G)$. Then U is a unitary representation of the product group $G \times G$. We shall have much more to say about U in §4.

Subrepresentations. Let π be a unitary representation of a topological group G. A closed subspace E of $H(\pi)$ is called π -invariant if E is invariant under every $\pi_g, g \in G$. Let $E \neq \{0\}$ be a closed invariant subspace of $H(\pi)$ and V_g be the restriction of π_g on E. Then V is a unitary representation of G on the representation space E and is called a subrepresentation of π .

Representation of Direct Products. Let G_1 , G_2 be topological groups, G the direct product of G_1 and G_2 . Let π_1 (resp. π_2) be an irreducible unitary representation of G_1 (resp. G_2) on H_1 (resp. H_2). The Hilbert space tensor product is defined as follows. Form the ordinary algebraic tensor product, denoted here by $H_1 \odot H_2$, and furnish it with the inner product

$$\langle \xi_1 \otimes \xi_2, \eta_1 \otimes \eta_2 \rangle = \langle \xi_1, \eta_1 \rangle \langle \xi_2, \eta_2 \rangle.$$

This is of course a cross-norm in the sense that

$$\|\xi_1 \otimes \xi_2\| = \|\xi_1\| \cdot \|\xi_2\|.$$

The completion of $H_1 \odot H_2$ with respect to this norm is the Hilbert space tensor product $H_1 \otimes H_2$. The tensor product representation $\pi_1 \otimes \pi_2$ of $G_1 \times G_2$ on $H_1 \otimes H_2$ is then specified as follows:

$$(\pi_1 \otimes \pi_2)(g)(\xi_1 \otimes \xi_2) = \pi_1(g_1)\xi_1 \otimes \pi_2(g_2)\xi_2$$

with $g = (g_1, g_2) \in G = G_1 \times G_2$.

Direct Sums. If the representation space H of a unitary representation π is the Hilbert space direct sum $\bigoplus_{\alpha \in I} H_{\alpha}$ of mutually orthogonal closed invariant

subspaces $\{H(\alpha)\}_{\alpha \in I}$ then π is called the *direct sum* of the subrepresentations $\pi(\alpha)$ induced on $H(\alpha)$ by π , and is denoted by

$$\pi = \bigoplus_{\alpha \in I} \pi(\alpha).$$

If π is the direct sum of $\{\pi(\alpha)\}_{\alpha\in I}$ and every $\pi(\alpha)$ is irreducible, then π is said to be *decomposed into the direct sum of irreducible representations*. Decomposition into direct sums of irreducible representations is essentially unique if it exists; that is, if $\pi = \bigoplus_{\alpha \in I} \pi(\alpha) = \bigoplus_{\beta \in J} \theta(\beta)$ are two decompositions of π into direct sums of irreducible representations, then there exists a bijection ϕ from I onto J such that $\pi(\alpha)$ is equivalent to $\theta(\phi(\alpha))$ for every α in I.

Square-Integrable Representations. An irreducible unitary representation π of a unimodular locally compact group G is said to be square integrable when for some element $x \neq 0$ in $H(\pi)$, the function

$$\phi(g) = \langle \pi(g)x, x \rangle$$

belongs to $L^2(G, dg)$ where dg is Haar measure on G. If π is square integrable then $\phi_{x,y}(g) = \langle \pi_g x, y \rangle$ belongs to $L^2(G, dg)$ for any x and y in $H(\pi)$. Let π and π' be two square integrable representations of G. Then the following *orthogonality relations* hold:

$$\int (\pi(g)x, y)\overline{(\pi'(g)u, v)} \, dg = \begin{cases} 0 & \text{if } \pi \text{ is not equivalent to } \pi' \\ d_{\pi}^{-1}(x, u)(y, v) & \text{if } \pi = \pi' \end{cases}$$

When G is compact, every irreducible unitary representation π is square integrable and finite-dimensional. Moreover the scalar d_{π} above is the degree of π if the total measure of G is normalized to 1. In the general case, the scalar d_{π} is called the *formal degree* of π and is determined uniquely by the given Haar measure dg.

Let y be an element in $H(\pi)$ with norm 1 and V be the subspace $\{\phi_{x,y} : x \in H(\pi)\}$ of $L^2(G)$. Then the linear mapping

$$T: x \longmapsto \sqrt{d_\pi \phi_{x,y}}$$

is an isometry of $H(\pi)$ onto V. Hence π is equivalent to a subrepresentation of the right regular representation R of G. Conversely, every irreducible subrepresentation of R is square integrable. Thus a square integrable representation is an irreducible subrepresentation of $R \ (\cong L)$. Therefore, in the irreducible decomposition of R, the square integrable representations appear as discrete direct summands.

It will often be necessary to have a more general version of this. If (π, H) is an irreducible unitary representation of G, it is easy to see (Schur's Lemma) that the operators $\pi(z)$, for z in the centre Z_G of G, are scalars of absolute value 1. Hence, if the centre of G is not compact, G can have no square integrable representations in the sense above. We therefore choose a closed subgroup Z of Z_G such that Z_G/Z is compact. (Later, when G is a reductive group over a local field, it is customary to choose Z to be a maximal split torus in Z_G .) For $v \in H$, the function $g \mapsto |\langle \pi(g)v, v \rangle|$ can be viewed as a function on G/Z. We say that π is square integrable (mod centre) if this function satisfies

$$\int_{G/Z} |\langle \pi(g)v, v \rangle|^2 \, d\dot{g} < \infty,$$

where $d\dot{g}$ is a Haar measure on G/Z.

We write $E_2(G)$ for the set of equivalence classes of square integrable (mod centre) representations of G. We sometimes refer to these representations as discrete series.

Direct Integrals. Let (S, μ) be a measure space such that

(a) $S = \bigcup(S_i)$ with S_i measurable and $\mu(S_i) < \infty$;

(b) There is a countable set, M_0 , of measurable subsets of S such that if M is the σ -algebra generated by M_0 and if A is a measurable subset of S, then there exists $B \in M$ such that $\mu(A - A \cap B) = 0$ and $\mu(B - A \cap B) = 0$.

A family of Hilbert spaces over S is an assignment of a Hilbert space H_s to each $s \in S$. A section of the family $\{H_s : s \in S\}$ is a correspondence $s \mapsto v(s)$ of $v(s) \in H_s$ for each $s \in S$. If there exists a set \mathcal{F} of sections of $\{H_s\}$ satisfying the following three conditions, then $\{H_s : s \in S\}$ is called a measurable family of Hilbert spaces. (i) If $x, y \in \mathcal{F}$ then $s \mapsto \langle x(s), y(s) \rangle$ is measurable

(ii) If z is a section of $\{H_s\}$ and if $s \mapsto \langle z(s), x(s) \rangle_s$ is measurable for all $x \in \mathcal{F}$, then $z \in \mathcal{F}$.

(iii) There exists a countable subset $\{x_j\}$ of \mathcal{F} such that if $s \in S$, then $\{x_j(s) : j = 1, 2, ...\}$ is dense in H_s . The main example is given as follows. Let H be a separable Hilbert space. Take $H_s = H$ for all $s \in S$. Let \mathcal{F} be the space of all functions x from S to H such that $s \mapsto \langle x(s), v \rangle$ is measurable for all $v \in H$. Let $\{x_j\}$ be a countable dense subset of H looked upon as a subset of \mathcal{F} .

Returning to the general case, we have the following observations.

(1) If $v, w \in \mathcal{F}$ then $(s \mapsto v(s) + w(s)) \in \mathcal{F}$

(2) If f is a measurable function on S and if $v \in \mathcal{F}$ then $(s \mapsto f(s)v(s)) \in \mathcal{F}$.

Indeed, if $w \in \mathcal{F}$ then $\langle f(s)v(s), w(s) \rangle_s = f(s) \langle v(s), w(s) \rangle_s$. Now use *(ii)*.

Suppose we have a measurable family of Hilbert spaces $\{H_s\}$ and \mathcal{F} as before. We say that $x \in \mathcal{F}$ is square-integrable if

$$|x||^{2} = \int_{S} ||x(s)||_{s}^{2} d\mu(s) < \infty.$$

We identify $x, y \in \mathcal{F}$ if

$$\mu(\{s \in S : ||x(s) - y(s)||_s > 0\}) = 0.$$

Modulo this identification, we use the notation

$$\int_{S} H_s \, d\mu(s)$$

for the space of all square integrable elements of \mathcal{F} . If x, y are square integrable, then we set

$$\langle x, y \rangle = \int_{S} \langle x(s), y(s) \rangle \, d\mu(s).$$

With this inner product, $\int_S H_s d\mu(s)$ is a separable Hilbert space [15, 14.8.2]. If $H_s = H$ for all $s \in S$ and \mathcal{F} is as in the previous section, then we will also write

$$\int_{S} H_s \, d\mu(s) = L^2(S, H; \mu).$$

If $H = \mathbb{C}$ then $L^2(S, \mathbb{C}; \mu)$ will be written $L^2(S; \mu)$.

The space $\int_S H_s d\mu(s)$ will be called the *direct integral* of the family $\{H_s\}$. Notice that the definition involves $\{H_s\}$, μ and \mathcal{F} . If S is a countable set and if μ is counting measure then $\int_S H_s d\mu(s)$ is just the Hilbert space direct sum of the spaces H_s , denoted $\bigoplus H_s$.

Lemma 3.1. [15, 14.8.3]. If $S = \bigcup U_i$ with the U_i measurable and pairwise disjoint then

$$\int_{S} H_s \, d\mu(s) = \bigoplus_i \int_{U_i} H_s \, d\mu_i(s).$$

Here, $\mu_i = \mu \mid_{U_i}$, $\mathcal{F}_i = \{f \mid_{U_i} : f \in \mathcal{F}\}$ and we also take the restrictions of the x_i .

An assignment $s \mapsto B_s \in \text{End}(H_s)$ is called an *operator field*. If, for each $v \in \mathcal{F}$, the map $(s \mapsto B_s v(s))$ lies in \mathcal{F} , then B is called *measurable*. We say that a bounded operator B on $\mathcal{F} = \int_S H_s d\mu(s)$ is *decomposable* if there exists a measurable operator field B_s such that if $v \in \mathcal{F}$,

$$(Bv)(s) = B_s v(s)$$

for μ almost every s.

Let G be a locally compact, separable, topological group. Let (S, μ) be a measure space (as above) and let $\{H_s : s \in S\}$ be a measurable family of Hilbert spaces. Let $\mathcal{F} = \int_S H_s d\mu(s)$. Let π_s be a unitary representation of G on H_s for each $s \in S$, such that for each $g \in G$, $s \mapsto \pi_s(g)$ is a measurable operator field. With $g \in G$, let $\pi(g)$ be the decomposable operator corresponding to $\{\pi_s(g)\}$.

If $v, w \in \mathcal{F}$ then

$$\begin{aligned} \langle \pi(g)v, \pi(g)w \rangle &= \int_{S} \langle \pi_{s}(g)v(s), \pi_{s}(g)w(s) \rangle \, d\mu(s) \\ &= \int_{S} \langle v(s), w(s) \rangle \, d\mu(s) \\ &= \langle v, w \rangle. \end{aligned}$$

Therefore $\pi(g)$ is a unitary operator on \mathcal{H} .

Lemma 3.2. [15, 14.9.2]. (π, \mathcal{H}) defines a (strongly continuous) unitary representation of G. We call this representation the direct integral of $\{(\pi_s, H_s) : s \in S\}$ and denote it by

$$\left(\int_S \pi_s \, d\mu(s), \int_S H_s \, d\mu(s)\right).$$

4 Plancherel Formula

We begin by stating the basic decomposition theorem for limital groups [15, 14.10.5, 14.13.8].

Theorem 4.1. Decomposition Theorem for Liminal Groups. Let G be a separable, locally compact, liminal, topological group. Let (π, H) be a unitary representation of G. Then there exists a Borel measure σ on \hat{G} and a direct integral of representations $(\int \pi_{\omega} d\sigma(\omega), \int H_{\omega} d\sigma(\omega))$ such that (i) (π, H) is unitarily equivalent to $(\int \pi_{\omega} d\sigma(\omega), \int H_{\omega} d\sigma(\omega))$.

(ii) There exists a subset N of \hat{G} such that $\sigma(N) = 0$, and if $\omega \in \hat{G} - N$ then $(\pi_{\omega}, H_{\omega})$ is equivalent to $(\tilde{\pi}_{\omega} \otimes I, \tilde{H}_{\omega} \otimes V_{\omega})$, for some Hilbert space V_{ω} and where $(\tilde{\pi}_{\omega}, \tilde{H}_{\omega}) \in \omega$.

(iii) If $\omega \in \hat{G} - N$, set $n(\omega) = \dim V_{\omega}$. Then n is a σ -measurable function from $\hat{G} - N$ to the extended positive axis $[0, \infty]$. The function n is called the multiplicity function.

(iv) Suppose that μ is another Borel measure on \hat{G} such that (π, H) is unitarily equivalent with $(\int \pi_{\omega} d\mu(\omega), \int H_{\omega} d\mu(\omega))$. Then μ is absolutely continuous with respect to σ and the multiplicity functions are equal σ -almost everywhere.

Two measures ν_1 and ν_2 are *equivalent* if they have the same null sets. The *support* $\text{supp}(\nu)$ of a measure ν is the complement of the largest open set on which ν vanishes. Thus $\text{supp}(\nu)$ is an invariant of the measure class $[\nu]$ of ν . In Theorem 4.1, the pair (π, H) determines a unique measure class $[\sigma]$ on \hat{G} . The support $\text{supp}(\sigma)$ is an invariant of this class.

In this section G will denote a separable, locally compact, unimodular, liminal, topological group. Since G is unimodular, $L^2(G)$ is a unitary representation of G under both the left and right regular representations L and R. As in §3, we define a unitary representation U of $G \times G$ on $L^2(G)$ by

$$U(x,z)f(y) = f(x^{-1}yz),$$

for $x, y, z \in G$ and $f \in L^2(G)$. The main result in this section will give a very precise form of the direct integral decomposition of Theorem 4.1 for L and R.

If $\omega \in \hat{G}$, then we fix $(\pi_{\omega}, H_{\omega}) \in \omega$. If (π, H) is a unitary representation of G and if H' is the space of continuous linear functionals on H, then we define a representation on H' by $\pi'(g)\lambda = \lambda \circ \pi(g)^{-1}$. If $v \in H$, then we set $\lambda_v(w) = \langle w, v \rangle$. Then the map τ from H to H' given by $\tau(v) = \lambda_v$ is a conjugate linear bijection of H onto H'. We note that

$$\lambda_v(\pi(g)^{-1}w) = \langle \pi(g)^{-1}w, v \rangle = \langle w, \pi(g)v \rangle = \lambda_{\pi(g)v}(w).$$

Thus:

$$\tau \circ \pi(g) = \pi'(g) \circ \tau.$$

We put a Hilbert space structure on H' by $\langle \lambda, \mu_w \rangle = \lambda(w)$. With this Hilbert space structure, $\langle \tau v, \tau w \rangle = \langle w, v \rangle$. If $\omega \in \hat{G}$, then we note that π'_{ω} is also irreducible. We therefore have an involutive map $\omega \mapsto \omega'$ of \hat{G} onto \hat{G} defined by $\pi'_{\omega} \in \omega'$. By $H_{\omega} \otimes H_{\omega'}$ we will mean the tensor product of the Hilbert spaces H_{ω} and H'_{ω} , and $\pi_{\omega} \otimes \pi_{\omega'}$ will stand for the unitary representation $\pi_{\omega} \otimes \pi'_{\omega}$ of $G \times G$ on $H_{\omega} \otimes H_{\omega'}$.

Theorem 4.2. Plancherel Theorem for Liminal Groups [15, 14.11.2]. Let G be a separable, locally compact, unimodular, liminal topological group. There exists a Borel measure ζ on \hat{G} and a direct integral of unitary representations $(\int \sigma_{\omega} d\zeta(\omega), \int W_{\omega} d\zeta(\omega))$ satisfying the following three conditions: (1) $(U, L^2(G))$ is unitarily equivalent with $(\int \sigma_{\omega} d\zeta(\omega), \int W_{\omega} d\zeta(\omega))$.

(2) For ζ -almost every $\omega \in \hat{G}, (\sigma_{\omega}, H_{\omega})$ is unitarily equivalent with

$$(\pi_{\omega}\otimes\pi_{\omega'},H_{\omega}\otimes H_{\omega'}).$$

(3) If $f \in L^1(G) \cap L^2(G)$, then $\pi_{\omega}(f)$ is of Hilbert-Schmidt class for ζ -almost every $\omega \in \hat{G}$ and

$$\langle f, f \rangle = \int \operatorname{tr}(\pi_{\omega}(f)^* \pi_{\omega}(f)) \, d\zeta(\omega).$$

Furthermore (3) uniquely specifies ζ . The measure ζ is called the Plancherel measure associated with dg.

Note that $\operatorname{tr}(\pi_{\omega}(f)^*\pi_{\omega}(f))$ depends only on ω and f and not on the choice of $(\pi_{\omega}, H_{\omega})$. The measure ζ depends on the choice of invariant measure on G.

If we restrict U from $G \times G$ to G (first factor) then we obtain the representation L. The Plancherel theorem provides a unique decomposition of Lwith multiplicity function

$$n(\omega) = \dim H_{\omega}.$$

Restricting U from $G \times G$ to G (second factor) we obtain the representation R. The Plancherel theorem provides a unique decomposition of R with multiplicity function

$$n(\omega) = \dim H_{\omega}$$

If $\phi = f^* \star f$ then

$$\pi_{\omega}(\phi) = \pi_{\omega}(f)^* \pi_{\omega}(f), \tag{7}$$

$$\phi(1) \qquad = \langle f, f \rangle, \tag{8}$$

so the Plancherel Formula may be written

$$\phi(1) = \int \operatorname{tr} \pi_{\omega}(\phi) \, d\zeta(\omega).$$

If ϕ is a test-function then the distribution

$$\phi \mapsto \operatorname{tr} \pi_{\omega}(\phi)$$

is the Harish-Chandra character Θ_{ω} . The Plancherel Formula takes the form

$$\phi(1) = \int \Theta_{\omega}(\phi) \, d\zeta(\omega).$$

The reduced dual of G is the support of Plancherel measure ζ . This reduced dual is a closed subset \hat{G}_r of \hat{G} .

As in §2, let λ be the left regular representation of G. Regarded as a representation of $C^*(G)$, it has a certain kernel N. Then \hat{G}_r is the set of the $\sigma \in \widehat{C^*(G)}$ whose kernels contain N. In other words, \hat{G}_r is the dual of the C^* -algebra $C^*(G)/N$, itself isomorphic to the C^* -algebra $\lambda(C^*(G))$. This C^* -algebra $\lambda(C^*(G))$ is the norm closure in $\mathcal{L}(L^2(G))$ of the set of left convolution operators by the elements of $L^1(G)$. That is, let $f \in L^1(G)$, $h \in L^2(G)$, set

Then

$$\lambda(C^*(G)) = \overline{\lambda(L^1(G))} \subset \mathcal{L}(L^2(G)).$$

 $\lambda(f)h = f \star h.$

The C^* -algebra generated by the image of λ is the reduced C^* -algebra $C^*_r(G)$. Its dual is the *reduced dual* of G.

By *Plancherel Formula Level II* we shall mean, in addition, an explicit description of the reduced dual.

By *Plancherel Formula Level III* we shall mean, in addition, an explicit formula for Plancherel measure ζ .

For real reductive groups, Harish-Chandra obtained an explicit formula for Plancherel measure. This formula may be found in [15, 14.12.4].

Wallach makes the following comment [15, 14.12.5]. Harish-Chandra's theorem could be construed as a calculation of the abstract Plancherel measure. However, the theorem is much more than that since it also contains at its heart the full analytic (and a substantial part of the algebraic) theory of tempered representations of real reductive groups.

Let π be a square-integrable representation of G, and let $\pi \in \omega$. Then ω has positive Plancherel measure equal to the formal degree of π :

$$\zeta(\{\omega\}) = d_{\pi}$$

A unitary representation π is *integrable* if admits a matrix coefficient

$$\phi: g \longmapsto (\pi(g)v, v), \qquad v \neq 0,$$

which is integrable, i.e., $\phi \in L^1(G)$.

Let π be an integrable representation and let $\pi \in \omega$. Then ω is an isolated point in the reduced dual \hat{G}_r , by [5, 18.4.2].

Example. Let π be a supercuspidal representation of a semisimple *p*-adic group G, and let $\pi \in \omega$. Then ω is an isolated point in the reduced dual of G.

5 Real reductive groups

We turn to a definitive statement of the *Plancherel formula for real reductive groups*, as in [15, 13.4.1]. Just as in (4.16), we can choose a maximal split torus A_0 in G and define p-pairs as before. Fix a minimal p-pair (P_0, A_0) . Let $\mathcal{C}(G)$ be the Harish-Chandra Schwartz space of G: this consists of the functions on G whose derivatives are all rapidly decreasing (defined just as before).

Theorem 5.1. Let $f \in \mathcal{C}(G)$ be left and right K-finite. Then

$$f(g) = \sum_{(P,A)} C_A \sum_{\omega} d(\omega) \int_{\mathfrak{a}^*} \Theta_{P,\omega,i\nu}(R(g)f) \mu(\omega,i\nu) \, d\nu.$$

Explanation of terms. The first summation is over all $(P, A) \succ (P_0, A_0)$. Thus $A \subset A_0$ is a split torus containing the maximal central split torus in G. The parabolic subgroup P has Levi component $M_P = Z_G(A)$ and we denote its unipotent radical by N_P . The Levi subgroup M_P has a canonical subgroup ${}^{\circ}M_P$ defined as the common kernel of the absolute values of all rational characters of M_P . The second summation above is then over $\omega \in E_2({}^{\circ}M_P)$, the factor C_A is a constant depending only on A, and $d(\omega)$ is the formal degree of ω .

The object \mathfrak{a}^* is the linear dual of the Lie algebra of A. An element $\nu \in \mathfrak{a}^*$ determines a one-dimensional representation of A, which we denote $\exp i\nu$, and the common kernel of these representations is ${}^\circ A = A \cap {}^\circ M_P$. The Langlands decomposition $M_P = {}^\circ M_P A$ thus allows us to define a representation $\omega \otimes \exp i\nu$ of M_P . In these terms, $\mu(\omega, i\nu)$ is Plancherel density on \mathfrak{a}^* and $d\nu$ is Lebesgue measure on \mathfrak{a}^* .

Finally, we view $\omega \otimes \exp i\nu$ as a representation of P via $P \twoheadrightarrow M_P$ and $\Theta_{P,\omega,i\nu}$ is the character of

$$\operatorname{Ind}_P^G \delta_P^{\frac{1}{2}}(\omega \otimes \exp(i\nu) \otimes 1),$$

where δ_P is the modular function of P.

Setting g = 1 we obtain

$$f(1) = \sum_{P} \sum_{\omega} \int \Theta_{P,\omega,i\nu}(f) \mu(\omega, i\nu) \, d\nu$$

for all test functions f.

This is a Plancherel formula Level III. The support of Plancherel measure is explicitly given, and the Plancherel density is explicitly known [15, 4.12.4].

Now P is cuspidal if and only if ${}^{\circ}M_P$ has a compact Cartan subgroup. This in turn is true if and only if the discrete series of ${}^{\circ}M_P$ is non-empty.

Let now P be cuspidal, let T_P be a compact Cartan subgroup of ${}^{\circ}M_P$. The discrete series of ${}^{\circ}M_P$ is parametrized by Harish-Chandra parameters, i.e., (nonsingular) unitary characters of T_P .

Example. Consider the real reductive group $GL(n, \mathbb{R})$. Let M be a standard Levi factor, i.e., a block-diagonal subgroup of G. Then $^{\circ}M$ is the block-diagonal subgroup such that each block has determinant ± 1 .

If $n \geq 3$ then $SL(n, \mathbb{R})$ has no compact Cartan subgroup and therefore no discrete series. Therefore the block-diagonal subgroup M can contain only

 2×2 blocks or 1×1 blocks (otherwise the discrete series of $^{\circ}M$ is empty). Let M_{max} contain the maximal number of 2×2 blocks. Then the standard Levi factor M contributes to the Plancherel formula (and hence to the reduced C^* -algebra of G) if and only if M has a conjugate contained in M_{max} .

6 Plancherel formula for $SL(2, \mathbb{C})$

Let $G = SL(2, \mathbb{C})$. This is a limital group (see section 2.17). The diagonal subgroup T is a split torus, and is the Levi factor of the standard Borel subgroup B of upper triangular matrices in $SL(2, \mathbb{C})$. Let $\sigma \in \hat{T}$ and let

$$\pi(\sigma) = \operatorname{Ind}_B^G(\delta_B^{\frac{1}{2}}\sigma).$$

This is normalized L^2 -induction. Now $T \cong \mathbb{C}^{\times} \cong \mathbb{R} \times U(1)$ so that $\hat{T} \cong \mathbb{R} \times \mathbb{Z}$. The unitary principal series $\{\pi(\sigma) : \sigma \in \hat{T}\}$ is therefore parametrized by $\mathbb{R} \times \mathbb{Z}$.

Let $f \in C_c^{\infty}(G)$. The Plancherel formula (for a suitable normalization of Haar measure) [7, p. 390] says that

$$(2\pi)^3 f(1) = \frac{1}{2} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} \Theta_{\sigma_n, iy}(f) (n^2 + y^2) \, dy,$$

where $\sigma = (n, y) \in \mathbb{Z} \times \mathbb{R}$.

This is a Plancherel formula Level III. The support of the Plancherel measure comprises the unitary principal series $\{\pi(\sigma) : \sigma \in \hat{T}\}$. The Plancherel measure is given explicitly. Fix *n* and consider the set

$$\{(n,y): y \in \mathbb{R}\} \subset \mathbb{Z} \times \mathbb{R}.$$

On this set the Plancherel measure is

$$(n^2 + y^2) \, dy$$

where dy is Lebesgue measure on \mathbb{R} . So we have

Plancherel density
$$= n^2 + y^2$$
.

7 The Plancherel formula for $SL(2, \mathbb{R})$

Let $G = SL(2, \mathbb{R})$. Here is the Plancherel formula [7, p. 401]:

$$2\pi f(1) = \sum_{n \ge 2} (n-1)\Theta_n(f) + \frac{1}{4} \int_{-\infty}^{\infty} \Theta_{+,iy}(f) \tanh \frac{\pi y}{2} dy$$
$$+ \frac{1}{4} \int_{-\infty}^{\infty} \Theta_{-,iy}(f) \coth \frac{\pi y}{2} dy$$

for all $f \in C_c^{\infty}(\mathrm{SL}(2,\mathbb{R}))$ and Haar measure normalized as in [7, 10.7]. The formula displays the contributions from

- the discrete series
- the even principal series
- the odd principal series

8 Reductive groups over \mathbb{Q}_p

Let F be a finite extension of \mathbb{Q}_p . Let G be the group of F-points of a connected reductive algebraic group defined over F. We refer to such groups G as reductive *p*-adic groups.

We choose a maximal F-split torus A_0 in G and a minimal F-parabolic subgroup P_0 of G with a Levi component which is the G-centraliser of A_0 . By a *p*-pair in G we mean a pair (P, A), where A is an F-split torus in G and P is a parabolic subgroup of G with a Levi component which is the G-centraliser of A. Given two p-pairs (P_i, A_i) , we write $(P_1, A_1) \succ (P_2, A_2)$ when $P_1 \supset P_2$ and $A_1 \subset A_2$. In this ordering, the p-pair (P_0, A_0) is minimal; a p-pair (P, A)is called *standard* (relative to our choice of (P_0, A_0)) if $(P, A) \succ (P_0, A_0)$.

The Schwartz space $\mathcal{C}(G)$ of G should, at first reading, be thought of as a space of "test-functions". The precise definition is as follows [6, p.93]. Let K be a good maximal compact open subgroup of G, so that $G = P_0.K$. Let δ be the modular function of P_0 , extended to G by the equation $\delta(kp) = \delta(p)$, $k \in K, p \in P_0$. Let dk be normalized Haar measure on K. We put

$$\Xi(g) = \int_K \delta(gk)^{-1/2} \, dk.$$

Embed G in GL(n, F), for some n. (We recall that the topology on G is inherited from such an embedding.) Let $|\cdot|$ be an absolute value on $\mathbb{M}(n, F)$, for example, $|(x_{ij})| = \max ||x_{ij}||_F$, where $|| ||_F$ is the absolute value on F. Set $\sigma(g) = \log(\max |g|, |g|^{-1})$.

The Schwartz space $\mathcal{C}(G)$ is then the set of functions $f : G \to \mathbb{C}$, biinvariant by a compact open subgroup, such that for r > 0, there exists C > 0 such that

$$|f(g)| \le C(1 + \sigma(g))^{-r} \Xi(g), \quad g \in G.$$

(Functions on G satisfying this condition are said to be *rapidly decreasing*.)

A distribution on G is *tempered* if it extends to $\mathcal{C}(G)$. If a tempered distribution is of the form f(g) dg, for some function $f : G \to \mathbb{C}$ which is bi-invariant by a compact open subgroup, then there exist r > 0, C > 0 with $|f(g)| \leq C(1 + \sigma(g))^{-r} \Xi(g)$. That is, $f \in \mathcal{C}(G)$.

We now discuss the Plancherel formula for reductive p-adic groups. The Bernstein Lemma (2.17.2) guarantees the Plancherel formula for such groups. The statement in Harish-Chandra's Collected Works [6, p. 367] is at first sight rather intimidating, and is as follows.

Let S be a set of representatives for conjugacy classes of F-split tori in G which contain the maximal split torus in the centre of G. We assume that all elements $A \in S$ are "standard", i.e., $A \subset A_0$. For $A \in S$ and $f \in \mathcal{C}(G)$, define

$$f_A(x) = c^{-2} \gamma^{-1} [w]^{-1} \int_{E_2(M)} \mu(\omega) d(\omega)(\Theta_\omega, r(x)f) \, d\omega, \quad x \in G,$$

where M is the centralizer of A in G and

$$c = c(G/A), \quad \gamma = \gamma(G/A), \quad w = w(G/A).$$

Observe that M is a Levi subgroup of G and, in particular, is a reductive p-adic group. There is a unique standard p-pair (P, A) such that M is a Levi component of the parabolic subgroup P. Thus P = MN, where N is the unipotent radical of P.

Explanation of terms:

- w(G/A) is the Weyl group $N_G(A)/Z_G(A)$
- c(G/A) and $\gamma(G/A)$ are certain constants

- [w] is the order of w(G/A)
- $E_2(M)$ is the discrete series of M, as in §3
- For $\omega \in E_2(M)$, choose a representative $\sigma \in \omega$ and set

$$\pi = \pi(\sigma) = \operatorname{Ind}_P^G \delta_P^{\frac{1}{2}} \sigma$$

Here σ has been extended to a representation of P by means of the isomorphism $P/N \cong M$. Then π is unitary. Its G-equivalence class is independent of the choice of σ , and indeed of the parabolic subgroup P with Levi M. Let $C_M^G(\omega)$ denote the class of π and Θ_{ω} the character of $C_M^G(\omega)$. Then Θ_{ω} is a tempered and invariant distribution on G, and $(\Theta_{\omega}, r(x)f)$ is its pairing with r(x)f.

- $d(\omega)$ is the formal degree of $\omega \in E_2(M)$
- r(x) is right translation by x
- $\mu(\omega) d\omega$ is Plancherel measure on $E_2(M)$

Theorem 8.1. Harish-Chandra Plancherel Theorem. Let $f \in \mathcal{C}(G)$. Then

$$f = \sum_{A \in S} f_A$$

is an orthogonal direct sum.

To relate this with our previous description, we set x = 1 and strip away the constants $c, \gamma, [w]$ and $d(\omega)$, i.e., we temporarily absorb these constants in the measure $\mu(\omega) d\omega$.

Simplifying notation, we get the pair of statements

$$f_A(1) = \int_{E_2(M)} \operatorname{tr}(\pi(\sigma)f)\mu(\sigma) \, d\sigma \tag{9}$$

$$f(1) = \sum_{A \in S} f_A(1).$$
 (10)

Combining these statements into a single statement, we get the Harish-Chandra Plancherel Formula

$$f(1) = \sum_{M} \int_{E_2(M)} \operatorname{tr}(\pi(\sigma)f) \mu(\sigma) \, d\sigma.$$

In this finite sum, one Levi subgroup M is chosen in each conjugacy class in G. The set $E_2(M)$ is given the topology of a locally compact Hausdorff space in which each component is a compact torus: the measure $d\sigma$ restricts to normalized Haar measure on each component [6, p. 355]. Therefore $\mu(\sigma)$ is Plancherel *density*.

Harish-Chandra's article in [6, p. 353–367], published posthumously, is a sketch-proof.

The Harish-Chandra result is a Plancherel Theorem Level II. The support of Plancherel measure is

$$\bigsqcup_{M} \{ \pi(\sigma) : \sigma \in E_2(M) \}.$$

In this finite disjoint union, one Levi factor is chosen in each conjugacy class.

It is not a Plancherel Theorem Level III, i.e., there is no explicit formula for Plancherel density. However, Harish-Chandra does state a product formula

$$\mu = \prod \mu_{\alpha}$$

where α runs over all reduced roots of (P, A). The Harish-Chandra Product Formula for Plancherel Measures is discussed in [6, p.92-93]. This product formula is used in a crucial way in the explicit Plancherel formula for GL(n), see [1].

9 Plancherel formula for $GL(n, \mathbb{Q}_p)$

The Plancherel formula for GL(n) is quite complicated, so we will content ourselves with a special case. First, we introduce the *p*-adic gamma function. Let *F* be a finite extension of \mathbb{Q}_p , and let q_F denote the cardinality of the residue field of *F*. The *p*-adic gamma function attached to *F* is the following meromorphic function of a single complex variable:

$$\Gamma_1(\zeta) = \frac{1 - q_F^{\zeta}/q_F}{1 - q_F^{-\zeta}}.$$

For more details on the *p*-adic gamma function, see [13, p.51]. We will change the variable via $s = q_F^{\zeta}$ and write

$$\Gamma_F(s) = \frac{1 - s/q_F}{1 - s^{-1}},$$

a rational function of s. Let $s \in i\mathbb{R}$ so that s has modulus 1. Then we have

$$1/|\Gamma_F(s)|^2 = \left|\frac{1-s}{1-q_F^{-1}s}\right|^2$$

Let T be the standard maximal torus in GL(n) and let \widehat{T} denote the unitary dual of T. Then \widehat{T} has the structure of a compact torus \mathbb{T}^n (the space of Satake parameters) and the unramified unitary principal series of GL(n) is parametrized by the quotient \mathbb{T}^n/S_n . Let now $t = (z_1, \ldots, z_n) \in \mathbb{T}^n$. Applying the formulas in [1], the Plancherel density $\mu_{G|T}$ is given by

$$\mu_{G|T} = const \cdot \prod_{i < j} \left| \frac{1 - z_j z_i^{-1}}{1 - z_j z_i^{-1} / q} \right|^2$$
(11)

$$= \operatorname{const} \cdot \prod_{0 < \alpha} \left| \frac{1 - \alpha(t)}{1 - \alpha(t)/q} \right|^2 \tag{12}$$

$$= const \cdot \prod_{\alpha} 1/\Gamma(\alpha(t))$$
(13)

where $q = q_F$ and α is a root of the Langlands dual group $\operatorname{GL}(n, \mathbb{C})$ so that $\alpha_{ij}(t) = z_i/z_j$.

For GL(n), one connected component in the tempered dual is the compact orbifold \mathbb{T}^n/S_n , the symmetric product of *n* circles. On this component we have the Macdonald formula [11]:

$$d\mu(\omega_{\lambda}) = const. \cdot d\lambda / \prod_{\alpha} \Gamma(i\lambda(\alpha^{\vee}))$$

the product over all roots α where α^{\vee} is the coroot. This formula is a very special case of our formula for $\operatorname{GL}(n)$.

References

- [1] A.-M. Aubert and R.J. Plymen, J. Number Theory
- [2] P. Baum and A. Connes, Chern character for discrete groups. In: A Fête of Topology, 163-232. Academic Press, New York 1988.
- [3] J. N. Bernstein, All reductive p-adic groups are tame. Functional Anal. Appl.

- [4] P. Cartier, Representations of p-adic groups: a survey. Proc. Symp. Pure Math. 33 part 1 (1979), 111-156.
- [5] J. Dixmier, C^{*}-algebras. North-Holland, Amsterdam 1982.
- [6] Harish-Chandra, Collected Papers, vol 4. Springer-Verlag, Berlin 1984.
- [7] A. A. Kirillov, *Elements of the theory of representations*. Springer-Verlag, Berlin 1976.
- [8] A.A. Kirillov (Ed.), Representation theory and noncommutative harmonic analysis I, EMS 22, 1994.
- [9] Y. Kosmann-Schwarzbach, Groups and symmetries, Universitext, Springer 2010.
- [10] E.H. Lieb, M. Loss, Analysis, AMS, Graduate study in math 14, 1997.
- [11] MacDonald
- [12] R. J. Plymen, Reduced C^* -algebra of the p-adic group GL(n) II. J. Functional Analysis **xx**
- [13] M.H. Taibleson, Fourier Analysis on Local Fields, Math. Notes 15, Princeton University Press, 1975.
- [14] J-L. Waldspurger, JIMJ....
- [15] N. R. Wallach, Real Reductive Groups I and II. Academic Press, New York 1992.
- [16] N.E. Wegge-Olsen, K-Theory and C*-algebras, Oxford Science Publications, 1993.