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1 Introduction

Let G be a locally compact group. Here are some important examples:

• R: the additive group of the real line

• T: the group of complex numbers of modulus 1

• SU(2): the group of 2× 2 unitary matrices with determinant 1
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• SL(2,R): the group of 2× 2 real matrices with determinant 1

• SL(2,C): the group of 2× 2 complex matrices with determinant 1

• GL(2,Qp): the group of invertible 2 × 2 matrices with entries in the
p-adic field Qp

Attached to each locally compact group there is a dual object : the uni-
tary dual Ĝ. This is the set of equivalence classes of irreducible unitary
representations of G. An element of Ĝ will be denoted ω.

So as not to cast our net too wide, we will confine our attention to liminal
groups, see §2. The Plancherel Theorem is an expression of a fundamental
duality between G and Ĝ. This duality is expressed in terms of a chosen Haar
measure on G, and the corresponding dual measure on Ĝ called Plancherel
measure.

Let dg be a chosen left-invariant Haar measure on G, and let φ be a test
function. Let π be chosen in ω and define

φ̂(π) :=

∫
φ(g)π(g)dg (1)

This depends on the choice of π in ω. But the trace is independent of this
choice and so we can define

Θω(φ) := Tr φ̂(π) with π ∈ ω

The Plancherel Theorem is the following statement:

φ(1) =

∫
Θω(φ)dν(ω) (2)

where ν is Plancherel measure on Ĝ and φ is a test-function on G.

The Haar measure dg is not unique: it is determined up to a scalar λ > 0.
If we replace dg by λ · dg then Θω(φ) is replaced by λ · Θω(φ) and then ν
is replaced by λ−1 · ν. If we halve the Haar measure, then we double the
Plancherel measure. Any Plancherel formula is with reference to a specific
choice of Haar measure.

The convolution product of functions f1 and f2 will be denoted f1 ? f2.
A simple substitution φ = f ∗ ? f then yields the formulation∫

|f(g)|2dg =

∫
||f̂(ω)||2HS dν(ω) (3)
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where || · ||HS is the Hilbert-Schmidt norm defined by

||A||2HS := Tr A∗A.

If the group G is commutative, then each irreducible unitary representa-
tion of G is a unitary character, and the unitary dual Ĝ is the set of unitary
characters of G. In particular, let G be the additive group R. In this case,
the unitary dual of R can be identified with R itself. This comes about as
follows. Let y ∈ R and define

χ(x) = e−2πixy (4)

This formula defines a unitary character on R, and every character arises in
this way.

Let f be a function in L1(R). We will obtain the classical Fourier trans-
form of f . Eqn.(1) and Eqn. (4) lead to the definition. The Fourier transform
of f is the function on R given by

f̂(y) =

∫
R
f(x)χ(x)dx =

∫
R
e−2πixyf(x)dx

If f ∈ L1(R) ∩ L2(R) then f̂ is in L2(R) and the following formula of
Plancherel holds:

||f̂ ||2 = ||f ||2. (5)

The map f 7→ f̂ has a unique extension to a continuous, linear map from
L2(R) into L2(R) which is an isometry, i.e. Plancherel’s formula (3) holds for
this extension, see [10, Chapter 5]. Once Lebesgue measure has been chosen
on R, then Plancherel measure is Lebesgue measure on R.

Let T be the circle group. The unitary dual of T can be identified with
the additive group Z via the equation

χ(z) = zn

with z ∈ T, n ∈ Z. In polar coordinates, this equation becomes

χ(eiθ) = einθ
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If we select normalized Haar measure dθ/2π on T then Eqn.(1) becomes

f̂(n) =
1

2π

∫ 2π

0

einθf(θ)dθ (6)

If we now write
an = f̂(n)

then we recover the classical formula for the nth Fourier coefficient, as in [9,
p.41]. Eqn.(3) takes the familiar form of the Parseval identity:

||f ||2 =
∑
n∈Z

|an|2

Plancherel measure on the dual of T is counting measure on Z.
We can see from these classical examples that the Plancherel formula is

a vast generalization, to noncommutative liminal groups, of classical results
in Fourier analysis.

We have chosen to use the framework of C∗-algebras in these lectures.
This allows a uniform approach to the Plancherel theorem for reductive
groups over any local field. With this in view, we begin with a slimline
account of C∗-algebras, largely taken from Dixmier’s classic book on C∗-
algebras [5].

The sections on unitary representations and Plancherel Formula are in-
spired by Wallach’s book on real reductive groups [15].

We should point out that, for reductive p-adic groups, thanks to the
influence of Joseph Bernstein, an algebraic approach is possible, see [14].

We describe explicitly the Plancherel formulas for SL(2,C) and SL(2,R).
The explicit Plancherel formula for p-adic GL(n) is provided in [1].
It would appear that a uniform Plancherel formula, valid for any local

field, has yet to be written. A very special case of such a uniform formula
appears in [11].

We would like to thank Anne-Marie Aubert for her careful reading of the
manuscript, and for some constructive comments.
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2 C∗-algebras

2.1. ∗ algebras. Let A be an algebra over the field C of complex numbers.
An involution in A is a map x 7−→ x∗ of A into itself such that

• (x∗)∗ = x

• (x+ y)∗ = x∗ + y∗

• (λx)∗ = λx∗

• (xy)∗ = y∗x∗

for any x, y ∈ A and λ ∈ C. An algebra over C endowed with an involution is
called a ∗ algebra. The element x∗ is often called the adjoint of A. A subset
of A which is closed under the involution operation is said to be self-adjoint .

2.2. A normed ∗ algebra is a ∗ algebra with norm ‖ · ‖ such that

• ‖x‖ ≥ 0 with ‖x‖ = 0 if and only if x = 0

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖

• ‖λx‖ = |λ| · ‖x‖

• ‖xy‖ ≤ ‖x‖ · ‖y‖

• ‖x∗‖ = ‖x‖

for any x, y ∈ A and λ ∈ C. If, in addition, A is complete, A is called a
Banach ∗ algebra.

2.3 A C∗-algebra is a Banach ∗ algebra such that ‖x‖2 = ‖x∗x‖ for every
x ∈ A. The condition ‖x‖2 = ‖x∗x‖ is called the C∗ condition. A C∗-algebra
with unit is called a unital C∗-algebra.

The C∗ condition hides an absolutely crucial feature by letting one believe
that, as in a Banach algebra, there is freedom in the choice of the norm. In
fact if a unital ∗ algebra is a C∗-algebra it is so for a unique norm, given for
any x by the equality:

‖x‖2 = spectral radius of x∗x

= sup {|λ| : x∗x− λ not invertible}
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2.4. Examples

2.4.1. Let X be a locally compact Hausdorff space. We say that the
complex-valued function f on X vanishes at infinity if the following condition
holds:

Given ε > 0, there exists a compact set K ⊂ X such that

|f(x)| < ε whenever x ∈ X −K.

Let A denote the algebra of all complex-valued continuous functions vanish-
ing at infinity on X. Set

f ∗(x) = f(x), f ∈ A, x ∈ X
‖f‖ = sup {|f(x)| : x ∈ X}

(fg)(x) = f(x)g(x).

Then A is a commutative C∗ algebra denoted C0(X). The C∗ algebra C0(X)
is unital if and only if X is compact.

2.4.2. Let H be a complex Hilbert space and A = L(H) the algebra of
continuous endomorphisms of H. For S, T ∈ A, set

(T ∗ξ|η) = (ξ|Tη), ξ, η ∈ H,
(ST )(ξ) = S(Tξ), ξ ∈ H,
‖T‖ = sup {‖Tξ‖ : ‖ξ‖ ≤ 1} .

Then L(H) is a unital C∗ algebra.

2.4.3. Let K(H) be the algebra of compact operators on H. This is
the closure in L(H) of the finite-rank operators on H. Then K(H) is a
C∗-algebra. This C∗-algebra is unital if and only if H is finite-dimensional.

2.5. Automatic Continuity. Let A be a Banach ∗ algebra, B a C∗ algebra
and π a morphism of A into B; this means that π is a morphism of the
underlying ∗ algebras, without any condition on the norms. Then ‖π(x)‖ ≤
‖x‖ for every x ∈ A. See [5, 1.3.7]. It follows that an isomorphism of C∗-
algebras is automatically isometric.

2.6. Let A and B be C∗-algebras, φ a morphism of A into B. Then the
image φ(A) is a sub-C∗-algebra of B.

2.7. Let A be a ∗ algebra and H a Hilbert space. A representation of
A in H is a morphism of the ∗ algebra A into the ∗ algebra L(H). In other
words, a representation of A in H is a map π of A into L(H) such that
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π(x+ y) = π(x) + π(y)

π(λx) = λπ(x)

π(xy) = π(x)π(y)

π(x∗) = π(x)∗

for x, y ∈ A, λ ∈ C.

2.8. Two representations π and π′ of A in H and H ′ are said to be
equivalent, and we write π ∼= π′, if there is an isomorphism U of the Hilbert
space H onto the Hilbert space H ′ which transforms π(x) into π′(x) for each
x ∈ A. In other words, Uπ(x) = π′(x)U for any x ∈ A. Hence the definition
of a class of representations. The operator U is an intertwining operator for
π and π′.

2.9. Let Γ be a finite group acting as automorphisms of the C∗-algebra
A. Let AΓ be the fixed-point set. Then AΓ is a sub-C∗-algebra of A.

2.10. Irreducible representations. The representation π of the C∗-algebra
A in H is irreducible if H admits no invariant closed subspaces except 0 and
H.

2.11. A C∗-algebra A is liminal if, for every irreducible representation π
of A and each x ∈ A, π(x) is compact.

2.12. The set of equivalence classes of irreducible representations of A is
called the dual of A, denoted Â.

2.13. Primitive ideals. If J is a two-sided ideal in A, then J is primitive
if it is the kernel of an irreducible representation π of A. The set of primitive
ideals in A is denoted Prim(A). If ω ∈ Â, then define k(ω) = Ker π for
π ∈ ω. We then have k : Â −→ Prim(A).

If S is a subset of Prim(A) then we set

I(S) =
⋂
J∈S

J,

S = {J ∈ PrimA : I(S) ⊂ J}

We then have

• ∅ = ∅

• S ⊂ S
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• S = (S)

• S1 ∪ S2 = S1 ∪ S2

This implies that there is a unique topology on Prim(A) whose closed sets
are those S such that S = S. This topology is the hull kernel topology on
Prim(A).

If A is liminal then k : Â → Prim(A) is a bijection. The set Â is now
furnished with the pull-back of the hull kernel topology on Prim(A).

2.14. Let A be a liminal C∗-algebra. Then Â is a locally quasi-compact
space in which the points are closed [5, 3.3.8, 4.4.1].

2.15. Let G be a locally compact, separable, topological group with a
fixed choice of Haar measure dg. The Banach space L1(G) becomes a Banach
∗ algebra when equipped with the convolution product and the involution

f ∗(x) = ∆(x−1)f(x−1)

for x ∈ G and f ∈ L1(G), where ∆ denotes the modular homomorphism of
G. Any unitary representation π of G on a Hilbert space H extends to a ∗
representation of L1(G), still denoted by π, via the formula

π(f) =

∫
f(g)π(g) dg

with f ∈ L1(G). This gives ‖f‖1 ≥ ‖π(f)‖, where ‖ ‖1 denotes the L1-norm
and ‖ ‖ the operator norm for H. We therefore define

‖f‖ = sup{‖π(f)‖ : π ∈ Ĝ}, f ∈ L1(G).

This gives ‖f‖1 ≥ ‖f‖, and we note that L1(G) need not be complete in
this norm. The full C∗-algebra of G, denoted C∗(G), is defined to be the
completion of L1(G) with respect to this norm. (Thus C∗(G) is the enveloping
C∗-algebra of L1(G).)

On the other hand, one has the left regular representation λ of L1(G) on
L2(G):

λ(f)h = f ? h

with f ∈ L1(G), h ∈ L2(G). The reduced C∗-algebra of G, denoted C∗r (G),
is the norm closure of the image λ(L1(G)) in the space of all bounded linear
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operators on L2(G). The left regular representation induces a canonical
surjective ∗ homomorphism [5, 2.15.1]:

λ : C∗(G) −→ C∗r (G)

2.16. The group G is liminal if C∗(G) is liminal. By (2.15.1), the reduced
C∗-algebra C∗r (G) is liminal if C∗(G) is liminal.

Let Ĝ be the set of equivalence classes of irreducible unitary representa-
tions of G (see section 3.1). Then we have the following bijections:

Ĝ ∼= Ĉ∗(G) ∼= Prim(C∗(G)).

The topology on the unitary dual Ĝ is then, by definition, the pull-back of
the hull-kernel topology of PrimC∗(G).

Let σ, τ be irreducible unitary representations of G. For the moment,
let [σ] denote the equivalence class of σ, so that [σ], [τ ] ∈ Ĝ. A base for the
open neighbourhoods of a point [τ ] ∈ Ĝ consists of the sets U(K; ξ1, . . . , ξn),
where K is a compact subset of G and ξ1, . . . , ξn are vectors in the space
H(τ) of the representation τ . By definition, the class [σ] belongs to the set
U(K; ξ1, . . . , ξn) if there exist vectors η1, . . . , ηn in the space H(σ) such that

|〈τ(g)ξi, ξj〉 − 〈σ(g)ηi, ηj〉| < 1

for all g ∈ K, 1 ≤ i, j ≤ n. It is instructive to see what happens when G is

a locally compact abelian group. Then each σ is a unitary character. The
group G is certainly a liminal group. Then Ĝ is the Pontryagin dual of G
and the topology on Ĝ is the topology of uniform convergence on compact
sets.

2.17. There are two lemmas, which are absolutely crucial.

2.17.1 Harish-Chandra Lemma [15, 3.4.10]. Let G be a real reductive
group. Then G is liminal.

2.17.2. Bernstein Lemma [3]. Let G be a reductive p-adic group.
Then G is liminal.

2.18. Topology on the unitary dual Ĝ of a reductive group G. From
2.14–2.17 we infer that
• the unitary dual Ĝ of a reductive group G is a locally quasi-compact

space in which points are closed.
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2.19. Noncommutative topology. The conventional wisdom is that C∗-
algebra theory may be viewed as noncommutative topology. Each property
concerning a locally compact Hausdorff space X can in principle be formu-
lated in terms of the function algebra C0(X) and will then usually make sense
(and hopefully be true) for any noncommutative C∗-algebra. Here is a list
of some of the “dualities”.

topology ←→ algebra
C0(X)←→ C∗-algebra A
proper map ←→ morphism
homeomorphism ←→ automorphism
measure ←→ positive functional
disjoint union ←→ direct sum
compact ←→ unital
σ-compact ←→ σ-unital
open subset ←→ ideal
open dense subset ←→ essential ideal
closed subset ←→ quotient
compactifications ←→ unitizations
connected ←→ projectionless
2nd countable ←→ separable

The idea is that since an algebra isomorphism of C0(X) onto C0(Y ) in-
duces a homeomorphism of X with Y , all topological information about X
is stored algebraically in C0(X). Reference [16, 1.11].

3 Unitary Representations

A homomorphism π of a topological group G into the group of unitary op-
erators on a Hilbert space H ( 6= {0}) is called a unitary representation of
G if π is strongly continuous in the following sense: for any element x ∈ H,
the mapping g 7→ πgx is a continuous mapping from G into H. The Hilbert
space H is called the representation space of π and is denoted by H(π). Two
unitary representations π and π′ are said to be equivalent, denoted by π ∼= π′,
if there exists an isometry T from H(π) onto H(π′) that satisfies the equality
T ◦ πg = π′g ◦ T for every g in G. If the representation space H(π) contains
no closed subspace other than H and {0} that is invariant under every πg,
then the unitary representation π is said to be irreducible.
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Let G be a unimodular locally compact group, let µ be Haar measure on
G. Set

L(y)f(x) = f(y−1x)

R(y)f(x) = f(xy)

with f ∈ L2(G, µ), x, y ∈ G. Then L is a unitary representation of G called
the left regular representation of G, and R is the right regular representation.

These two representations can be combined as follows. Set

U(z, y)f(x) = f(z−1xy)

with x, y, z ∈ G and f ∈ L2(G). Then U is a unitary representation of the
product group G×G. We shall have much more to say about U in §4.

Subrepresentations. Let π be a unitary representation of a topological
group G. A closed subspace E of H(π) is called π-invariant if E is invariant
under every πg, g ∈ G. Let E 6= {0} be a closed invariant subspace of H(π)
and Vg be the restriction of πg on E. Then V is a unitary representation of
G on the representation space E and is called a subrepresentation of π.

Representation of Direct Products. Let G1, G2 be topological groups, G
the direct product of G1 and G2. Let π1 (resp. π2) be an irreducible unitary
representation of G1 (resp. G2) on H1 (resp. H2). The Hilbert space tensor
product is defined as follows. Form the ordinary algebraic tensor product,
denoted here by H1 �H2, and furnish it with the inner product

〈ξ1 ⊗ ξ2, η1 ⊗ η2〉 = 〈ξ1, η1〉〈ξ2, η2〉.

This is of course a cross-norm in the sense that

‖ξ1 ⊗ ξ2‖ = ‖ξ1‖ · ‖ξ2‖.

The completion of H1 � H2 with respect to this norm is the Hilbert space
tensor product H1⊗H2. The tensor product representation π1⊗π2 of G1×G2

on H1 ⊗H2 is then specified as follows:

(π1 ⊗ π2)(g)(ξ1 ⊗ ξ2) = π1(g1)ξ1 ⊗ π2(g2)ξ2

with g = (g1, g2) ∈ G = G1 ×G2.
Direct Sums. If the representation spaceH of a unitary representation π is

the Hilbert space direct sum
⊕

α∈I Hα of mutually orthogonal closed invariant
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subspaces {H(α)}α∈I then π is called the direct sum of the subrepresentations
π(α) induced on H(α) by π, and is denoted by

π =
⊕
α∈I

π(α).

If π is the direct sum of {π(α)}α∈I and every π(α) is irreducible, then π
is said to be decomposed into the direct sum of irreducible representations.
Decomposition into direct sums of irreducible representations is essentially
unique if it exists; that is, if π =

⊕
α∈I π(α) =

⊕
β∈J θ(β) are two decompo-

sitions of π into direct sums of irreducible representations, then there exists
a bijection φ from I onto J such that π(α) is equivalent to θ(φ(α)) for every
α in I.

Square-Integrable Representations. An irreducible unitary representation
π of a unimodular locally compact group G is said to be square integrable
when for some element x 6= 0 in H(π), the function

φ(g) = 〈π(g)x, x〉

belongs to L2(G, dg) where dg is Haar measure on G. If π is square integrable
then φx,y(g) = 〈πgx, y〉 belongs to L2(G, dg) for any x and y in H(π). Let
π and π′ be two square integrable representations of G. Then the following
orthogonality relations hold:∫

(π(g)x, y)(π′(g)u, v) dg =

{
0 if π is not equivalent to π′

d−1
π (x, u)(y, v) if π = π′

When G is compact, every irreducible unitary representation π is square
integrable and finite-dimensional. Moreover the scalar dπ above is the degree
of π if the total measure of G is normalized to 1. In the general case, the
scalar dπ is called the formal degree of π and is determined uniquely by the
given Haar measure dg.

Let y be an element in H(π) with norm 1 and V be the subspace {φx,y :
x ∈ H(π)} of L2(G). Then the linear mapping

T : x 7−→
√
dπφx,y

is an isometry of H(π) onto V . Hence π is equivalent to a subrepresenta-
tion of the right regular representation R of G. Conversely, every irreducible
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subrepresentation of R is square integrable. Thus a square integrable repre-
sentation is an irreducible subrepresentation of R (∼= L). Therefore, in the
irreducible decomposition of R, the square integrable representations appear
as discrete direct summands.

It will often be necessary to have a more general version of this. If (π,H)
is an irreducible unitary representation of G, it is easy to see (Schur’s Lemma)
that the operators π(z), for z in the centre ZG of G, are scalars of absolute
value 1. Hence, if the centre of G is not compact, G can have no square
integrable representations in the sense above. We therefore choose a closed
subgroup Z of ZG such that ZG/Z is compact. (Later, when G is a reductive
group over a local field, it is customary to choose Z to be a maximal split
torus in ZG.) For v ∈ H, the function g 7→ |〈π(g)v, v〉| can be viewed as a
function on G/Z. We say that π is square integrable (mod centre) if this
function satisfies ∫

G/Z

|〈π(g)v, v〉|2 dġ <∞,

where dġ is a Haar measure on G/Z.
We write E2(G) for the set of equivalence classes of square integrable (mod

centre) representations of G. We sometimes refer to these representations as
discrete series.

Direct Integrals. Let (S, µ) be a measure space such that
(a) S = ∪(Si) with Si measurable and µ(Si) <∞;
(b) There is a countable set, M0, of measurable subsets of S such that

if M is the σ-algebra generated by M0 and if A is a measurable subset of S,
then there exists B ∈M such that µ(A−A∩B) = 0 and µ(B−A∩B) = 0.

A family of Hilbert spaces over S is an assignment of a Hilbert space Hs

to each s ∈ S. A section of the family {Hs : s ∈ S} is a correspondence
s 7→ v(s) of v(s) ∈ Hs for each s ∈ S. If there exists a set F of sections of
{Hs} satisfying the following three conditions, then {Hs : s ∈ S} is called a
measurable family of Hilbert spaces. (i) If x, y ∈ F then s 7→ 〈x(s), y(s)〉 is
measurable

(ii) If z is a section of {Hs} and if s 7→ 〈z(s), x(s)〉s is measurable for all
x ∈ F , then z ∈ F .

(iii) There exists a countable subset {xj} of F such that if s ∈ S, then
{xj(s) : j = 1, 2, . . .} is dense in Hs. The main example is given as follows.

Let H be a separable Hilbert space. Take Hs = H for all s ∈ S. Let F be the
space of all functions x from S to H such that s 7→ 〈x(s), v〉 is measurable
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for all v ∈ H. Let {xj} be a countable dense subset of H looked upon as a
subset of F .

Returning to the general case, we have the following observations.
(1) If v, w ∈ F then (s 7→ v(s) + w(s)) ∈ F
(2) If f is a measurable function on S and if v ∈ F then (s 7→ f(s)v(s)) ∈

F .
Indeed, if w ∈ F then 〈f(s)v(s), w(s)〉s = f(s)〈v(s), w(s)〉s. Now use (ii).

Suppose we have a measurable family of Hilbert spaces {Hs} and F as
before. We say that x ∈ F is square-integrable if

‖x‖2 =

∫
S

‖x(s)||2s dµ(s) <∞.

We identify x, y ∈ F if

µ({s ∈ S : ‖x(s)− y(s)‖s > 0}) = 0.

Modulo this identification, we use the notation∫
S

Hs dµ(s)

for the space of all square integrable elements of F . If x, y are square inte-
grable, then we set

〈x, y〉 =

∫
S

〈x(s), y(s)〉 dµ(s).

With this inner product,
∫
S
Hs dµ(s) is a separable Hilbert space [15, 14.8.2].

If Hs = H for all s ∈ S and F is as in the previous section, then we will also
write ∫

S

Hs dµ(s) = L2(S,H;µ).

If H = C then L2(S,C;µ) will be written L2(S;µ).
The space

∫
S
Hs dµ(s) will be called the direct integral of the family {Hs}.

Notice that the definition involves {Hs}, µ and F . If S is a countable set
and if µ is counting measure then

∫
S
Hs dµ(s) is just the Hilbert space direct

sum of the spaces Hs, denoted
⊕

Hs.

Lemma 3.1. [15, 14.8.3]. If S =
⋃
Ui with the Ui measurable and pairwise

disjoint then ∫
S

Hs dµ(s) =
⊕
i

∫
Ui

Hs dµi(s).
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Here, µi = µ |Ui
, Fi = {f |Ui

: f ∈ F} and we also take the restrictions of the
xi.

An assignment s 7→ Bs ∈ End(Hs) is called an operator field. If, for each
v ∈ F , the map (s 7→ Bsv(s)) lies in F , then B is called measurable. We
say that a bounded operator B on F =

∫
S
Hs dµ(s) is decomposable if there

exists a measurable operator field Bs such that if v ∈ F ,

(Bv)(s) = Bsv(s)

for µ almost every s.
Let G be a locally compact, separable, topological group. Let (S, µ) be

a measure space (as above) and let {Hs : s ∈ S} be a measurable family
of Hilbert spaces. Let F =

∫
S
Hs dµ(s). Let πs be a unitary representation

of G on Hs for each s ∈ S, such that for each g ∈ G, s 7→ πs(g) is a mea-
surable operator field. With g ∈ G, let π(g) be the decomposable operator
corresponding to {πs(g)}.

If v, w ∈ F then

〈π(g)v, π(g)w〉 =

∫
S

〈πs(g)v(s), πs(g)w(s)〉 dµ(s)

=

∫
S

〈v(s), w(s)〉 dµ(s)

= 〈v, w〉.

Therefore π(g) is a unitary operator on H.

Lemma 3.2. [15, 14.9.2]. (π,H) defines a (strongly continuous) unitary rep-
resentation of G. We call this representation the direct integral of {(πs, Hs) :
s ∈ S} and denote it by(∫

S

πs dµ(s),

∫
S

Hs dµ(s)

)
.

4 Plancherel Formula

We begin by stating the basic decomposition theorem for liminal groups [15,
14.10.5, 14.13.8].
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Theorem 4.1. Decomposition Theorem for Liminal Groups. Let G be a
separable, locally compact, liminal, topological group. Let (π,H) be a unitary
representation of G. Then there exists a Borel measure σ on Ĝ and a direct
integral of representations (

∫
πω dσ(ω),

∫
Hω dσ(ω)) such that (i) (π,H) is

unitarily equivalent to (
∫
πω dσ(ω),

∫
Hω dσ(ω)).

(ii) There exists a subset N of Ĝ such that σ(N) = 0, and if ω ∈ Ĝ−N
then (πω, Hω) is equivalent to (π̃ω ⊗ I, H̃ω ⊗ Vω), for some Hilbert space Vω
and where (π̃ω, H̃ω) ∈ ω.

(iii) If ω ∈ Ĝ−N , set n(ω) = dimVω. Then n is a σ-measurable function
from Ĝ−N to the extended positive axis [0,∞]. The function n is called the
multiplicity function.

(iv) Suppose that µ is another Borel measure on Ĝ such that (π,H) is
unitarily equivalent with (

∫
πω dµ(ω),

∫
Hω dµ(ω)). Then µ is absolutely con-

tinuous with respect to σ and the multiplicity functions are equal σ-almost
everywhere.

Two measures ν1 and ν2 are equivalent if they have the same null sets.
The support supp(ν) of a measure ν is the complement of the largest open
set on which ν vanishes. Thus supp(ν) is an invariant of the measure class
[ν] of ν. In Theorem 4.1, the pair (π,H) determines a unique measure class
[σ] on Ĝ. The support supp(σ) is an invariant of this class.

In this section G will denote a separable, locally compact, unimodular,
liminal, topological group. Since G is unimodular, L2(G) is a unitary repre-
sentation of G under both the left and right regular representations L and
R. As in §3, we define a unitary representation U of G×G on L2(G) by

U(x, z)f(y) = f(x−1yz),

for x, y, z ∈ G and f ∈ L2(G). The main result in this section will give a
very precise form of the direct integral decomposition of Theorem 4.1 for L
and R.

If ω ∈ Ĝ, then we fix (πω, Hω) ∈ ω. If (π,H) is a unitary representation
of G and if H ′ is the space of continuous linear functionals on H, then we
define a representation on H ′ by π′(g)λ = λ ◦ π(g)−1. If v ∈ H, then we
set λv(w) = 〈w, v〉. Then the map τ from H to H ′ given by τ(v) = λv is a
conjugate linear bijection of H onto H ′. We note that

λv(π(g)−1w) = 〈π(g)−1w, v〉 = 〈w, π(g)v〉 = λπ(g)v(w).
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Thus:
τ ◦ π(g) = π′(g) ◦ τ.

We put a Hilbert space structure on H ′ by 〈λ, µw〉 = λ(w). With this
Hilbert space structure, 〈τv, τw〉 = 〈w, v〉. If ω ∈ Ĝ, then we note that
π′ω is also irreducible. We therefore have an involutive map ω 7→ ω′ of Ĝ
onto Ĝ defined by π′ω ∈ ω′. By Hω ⊗ Hω′ we will mean the tensor product
of the Hilbert spaces Hω and H ′ω, and πω ⊗ πω′ will stand for the unitary
representation πω ⊗ π′ω of G×G on Hω ⊗Hω′ .

Theorem 4.2. Plancherel Theorem for Liminal Groups [15, 14.11.2]. Let G
be a separable, locally compact, unimodular, liminal topological group. There
exists a Borel measure ζ on Ĝ and a direct integral of unitary representa-
tions (

∫
σω dζ(ω),

∫
Wω dζ(ω)) satisfying the following three conditions: (1)

(U,L2(G)) is unitarily equivalent with (
∫
σω dζ(ω),

∫
Wω dζ(ω)).

(2) For ζ-almost every ω ∈ Ĝ, (σω, Hω) is unitarily equivalent with

(πω ⊗ πω′ , Hω ⊗Hω′).

(3) If f ∈ L1(G) ∩ L2(G), then πω(f) is of Hilbert-Schmidt class for
ζ-almost every ω ∈ Ĝ and

〈f, f〉 =

∫
tr(πω(f)∗πω(f)) dζ(ω).

Furthermore (3) uniquely specifies ζ. The measure ζ is called the Plancherel
measure associated with dg.

Note that tr(πω(f)∗πω(f)) depends only on ω and f and not on the choice
of (πω, Hω). The measure ζ depends on the choice of invariant measure on
G.

If we restrict U from G×G to G (first factor) then we obtain the repre-
sentation L. The Plancherel theorem provides a unique decomposition of L
with multiplicity function

n(ω) = dimHω.

Restricting U from G × G to G (second factor) we obtain the representa-
tion R. The Plancherel theorem provides a unique decomposition of R with
multiplicity function

n(ω) = dimHω
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If φ = f ∗ ? f then

πω(φ) = πω(f)∗πω(f), (7)

φ(1) = 〈f, f〉, (8)

so the Plancherel Formula may be written

φ(1) =

∫
trπω(φ) dζ(ω).

If φ is a test-function then the distribution

φ 7−→ trπω(φ)

is the Harish-Chandra character Θω. The Plancherel Formula takes the form

φ(1) =

∫
Θω(φ) dζ(ω).

The reduced dual of G is the support of Plancherel measure ζ. This
reduced dual is a closed subset Ĝr of Ĝ.

As in §2, let λ be the left regular representation of G. Regarded as a
representation of C∗(G), it has a certain kernel N . Then Ĝr is the set of

the σ ∈ Ĉ∗(G) whose kernels contain N . In other words, Ĝr is the dual
of the C∗-algebra C∗(G)/N , itself isomorphic to the C∗-algebra λ(C∗(G)).
This C∗-algebra λ(C∗(G)) is the norm closure in L(L2(G)) of the set of left
convolution operators by the elements of L1(G). That is, let f ∈ L1(G),
h ∈ L2(G), set

λ(f)h = f ? h.

Then
λ(C∗(G)) = λ(L1(G)) ⊂ L(L2(G)).

The C∗-algebra generated by the image of λ is the reduced C∗-algebra
C∗r (G). Its dual is the reduced dual of G.

By Plancherel Formula Level II we shall mean, in addition, an explicit
description of the reduced dual.

By Plancherel Formula Level III we shall mean, in addition, an explicit
formula for Plancherel measure ζ.
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For real reductive groups, Harish-Chandra obtained an explicit formula
for Plancherel measure. This formula may be found in [15, 14.12.4].

Wallach makes the following comment [15, 14.12.5]. Harish-Chandra’s
theorem could be construed as a calculation of the abstract Plancherel mea-
sure. However, the theorem is much more than that since it also contains at
its heart the full analytic (and a substantial part of the algebraic) theory of
tempered representations of real reductive groups.

Let π be a square-integrable representation of G, and let π ∈ ω. Then ω
has positive Plancherel measure equal to the formal degree of π:

ζ({ω}) = dπ.

A unitary representation π is integrable if if admits a matrix coefficient

φ : g 7−→ (π(g)v, v), v 6= 0,

which is integrable, i.e., φ ∈ L1(G).

Let π be an integrable representation and let π ∈ ω. Then ω is an isolated
point in the reduced dual Ĝr, by [5, 18.4.2].

Example. Let π be a supercuspidal representation of a semisimple p-adic
group G, and let π ∈ ω. Then ω is an isolated point in the reduced dual of
G.

5 Real reductive groups

We turn to a definitive statement of the Plancherel formula for real reductive
groups, as in [15, 13.4.1]. Just as in (4.16), we can choose a maximal split
torus A0 in G and define p-pairs as before. Fix a minimal p -pair (P0, A0).
Let C(G) be the Harish-Chandra Schwartz space of G: this consists of the
functions on G whose derivatives are all rapidly decreasing (defined just as
before).

Theorem 5.1. Let f ∈ C(G) be left and right K-finite. Then

f(g) =
∑
(P,A)

CA
∑
ω

d(ω)

∫
a∗

ΘP,ω,iν(R(g)f)µ(ω, iν) dν.
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Explanation of terms. The first summation is over all (P,A) � (P0, A0).
Thus A ⊂ A0 is a split torus containing the maximal central split torus in G.
The parabolic subgroup P has Levi component MP = ZG(A) and we denote
its unipotent radical by NP . The Levi subgroup MP has a canonical subgroup
◦MP defined as the common kernel of the absolute values of all rational
characters of MP . The second summation above is then over ω ∈ E2(◦MP ),
the factor CA is a constant depending only on A, and d(ω) is the formal
degree of ω.

The object a∗ is the linear dual of the Lie algebra of A. An element ν ∈ a∗

determines a one-dimensional representation of A, which we denote exp iν,
and the common kernel of these representations is ◦A = A∩ ◦MP . The Lang-
lands decomposition MP = ◦MPA thus allows us to define a representation
ω ⊗ exp iν of MP . In these terms, µ(ω, iν) is Plancherel density on a∗ and
dν is Lebesgue measure on a∗.

Finally, we view ω ⊗ exp iν as a representation of P via P � MP and
ΘP,ω,iν is the character of

IndGP δ
1
2
P (ω ⊗ exp(iν)⊗ 1),

where δP is the modular function of P .
Setting g = 1 we obtain

f(1) =
∑
P

∑
ω

∫
ΘP,ω,iν(f)µ(ω, iν) dν

for all test functions f .
This is a Plancherel formula Level III. The support of Plancherel measure

is explicitly given, and the Plancherel density is explicitly known [15, 4.12.4].

Now P is cuspidal if and only if ◦MP has a compact Cartan subgroup.
This in turn is true if and only if the discrete series of ◦MP is non-empty.

Let now P be cuspidal, let TP be a compact Cartan subgroup of ◦MP .
The discrete series of ◦MP is parametrized by Harish-Chandra parameters,
i.e., (nonsingular) unitary characters of TP .

Example. Consider the real reductive group GL(n,R). Let M be a stan-
dard Levi factor, i.e., a block-diagonal subgroup of G. Then ◦M is the
block-diagonal subgroup such that each block has determinant ±1.

If n ≥ 3 then SL(n,R) has no compact Cartan subgroup and therefore no
discrete series. Therefore the block-diagonal subgroup M can contain only
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2×2 blocks or 1×1 blocks (otherwise the discrete series of ◦M is empty). Let
Mmax contain the maximal number of 2× 2 blocks. Then the standard Levi
factor M contributes to the Plancherel formula (and hence to the reduced
C∗-algebra of G) if and only if M has a conjugate contained in Mmax.

6 Plancherel formula for SL(2,C)
Let G = SL(2,C). This is a liminal group (see section 2.17). The diagonal
subgroup T is a split torus, and is the Levi factor of the standard Borel
subgroup B of upper triangular matrices in SL(2,C). Let σ ∈ T̂ and let

π(σ) = IndGB(δ
1
2
Bσ).

This is normalized L2-induction. Now T ∼= C× ∼= R×U(1) so that T̂ ∼= R×Z.
The unitary principal series {π(σ) : σ ∈ T̂} is therefore parametrized by
R× Z.

Let f ∈ C∞c (G). The Plancherel formula (for a suitable normalization of
Haar measure) [7, p. 390] says that

(2π)3f(1) =
1

2

∞∑
n=−∞

∫ ∞
−∞

Θσn, iy(f)(n2 + y2) dy,

where σ = (n, y) ∈ Z× R.
This is a Plancherel formula Level III. The support of the Plancherel mea-

sure comprises the unitary principal series {π(σ) : σ ∈ T̂}. The Plancherel
measure is given explicitly. Fix n and consider the set

{(n, y) : y ∈ R} ⊂ Z× R.

On this set the Plancherel measure is

(n2 + y2) dy

where dy is Lebesgue measure on R. So we have

Plancherel density = n2 + y2.
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7 The Plancherel formula for SL(2,R)
Let G = SL(2,R). Here is the Plancherel formula [7, p. 401]:

2πf(1) =
∑
n≥2

(n− 1)Θn(f) +
1

4

∫ ∞
−∞

Θ+, iy(f) tanh
πy

2
dy

+
1

4

∫ ∞
−∞

Θ−, iy(f) coth
πy

2
dy

for all f ∈ C∞c (SL(2,R)) and Haar measure normalized as in [7, 10.7].
The formula displays the contributions from

• the discrete series

• the even principal series

• the odd principal series

8 Reductive groups over Qp

Let F be a finite extension of Qp. Let G be the group of F -points of a
connected reductive algebraic group defined over F . We refer to such groups
G as reductive p-adic groups.

We choose a maximal F -split torus A0 in G and a minimal F -parabolic
subgroup P0 of G with a Levi component which is the G-centraliser of A0. By
a p-pair in G we mean a pair (P,A), where A is an F -split torus in G and P is
a parabolic subgroup of G with a Levi component which is the G-centraliser
of A. Given two p-pairs (Pi, Ai), we write (P1, A1) � (P2, A2) when P1 ⊃ P2

and A1 ⊂ A2. In this ordering, the p-pair (P0, A0) is minimal; a p-pair (P,A)
is called standard (relative to our choice of (P0, A0)) if (P,A) � (P0, A0).

The Schwartz space C(G) of G should, at first reading, be thought of as a
space of “test-functions”. The precise definition is as follows [6, p.93]. Let K
be a good maximal compact open subgroup of G, so that G = P0.K. Let δ
be the modular function of P0, extended to G by the equation δ(kp) = δ(p),
k ∈ K, p ∈ P0. Let dk be normalized Haar measure on K. We put

Ξ(g) =

∫
K

δ(gk)−1/2 dk.
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Embed G in GL(n, F ), for some n. (We recall that the topology on G is
inherited from such an embedding.) Let | · | be an absolute value on M(n, F ),
for example, |(xij)| = max ‖xij‖F , where ‖ ‖F is the absolute value on F . Set
σ(g) = log(max |g|, |g|−1).

The Schwartz space C(G) is then the set of functions f : G → C, bi-
invariant by a compact open subgroup, such that for r > 0, there exists
C > 0 such that

|f(g)| ≤ C(1 + σ(g))−rΞ(g), g ∈ G.

(Functions on G satisfying this condition are said to be rapidly decreasing.)
A distribution on G is tempered if it extends to C(G). If a tempered

distribution is of the form f(g) dg, for some function f : G → C which is
bi-invariant by a compact open subgroup, then there exist r > 0, C > 0 with
|f(g)| ≤ C(1 + σ(g))−rΞ(g). That is, f ∈ C(G).

We now discuss the Plancherel formula for reductive p-adic groups. The
Bernstein Lemma (2.17.2) guarantees the Plancherel formula for such groups.
The statement in Harish-Chandra’s Collected Works [6, p. 367] is at first
sight rather intimidating, and is as follows.

Let S be a set of representatives for conjugacy classes of F -split tori in
G which contain the maximal split torus in the centre of G. We assume that
all elements A ∈ S are “standard”, i.e., A ⊂ A0. For A ∈ S and f ∈ C(G),
define

fA(x) = c−2γ−1[w]−1

∫
E2(M)

µ(ω)d(ω)(Θω, r(x)f) dω, x ∈ G,

where M is the centralizer of A in G and

c = c(G/A), γ = γ(G/A), w = w(G/A).

Observe that M is a Levi subgroup of G and, in particular, is a reductive
p-adic group. There is a unique standard p-pair (P,A) such that M is a Levi
component of the parabolic subgroup P . Thus P = MN , where N is the
unipotent radical of P .

Explanation of terms:

• w(G/A) is the Weyl group NG(A)/ZG(A)

• c(G/A) and γ(G/A) are certain constants
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• [w] is the order of w(G/A)

• E2(M) is the discrete series of M , as in §3

• For ω ∈ E2(M), choose a representative σ ∈ ω and set

π = π(σ) = IndGP δ
1
2
Pσ

Here σ has been extended to a representation of P by means of the isomor-
phism P/N ∼= M . Then π is unitary. Its G-equivalence class is independent
of the choice of σ, and indeed of the parabolic subgroup P with Levi M . Let
CG
M(ω) denote the class of π and Θω the character of CG

M(ω). Then Θω is a
tempered and invariant distribution on G, and (Θω, r(x)f) is its pairing with
r(x)f .

• d(ω) is the formal degree of ω ∈ E2(M)

• r(x) is right translation by x

• µ(ω) dω is Plancherel measure on E2(M)

Theorem 8.1. Harish-Chandra Plancherel Theorem. Let f ∈ C(G). Then

f =
∑
A∈S

fA

is an orthogonal direct sum.

To relate this with our previous description, we set x = 1 and strip away
the constants c, γ, [w] and d(ω), i.e., we temporarily absorb these constants
in the measure µ(ω) dω.

Simplifying notation, we get the pair of statements

fA(1) =
∫
E2(M)

tr(π(σ)f)µ(σ) dσ (9)

f(1) =
∑

A∈S fA(1). (10)

Combining these statements into a single statement, we get the Harish-
Chandra Plancherel Formula

f(1) =
∑
M

∫
E2(M)

tr(π(σ)f)µ(σ) dσ.
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In this finite sum, one Levi subgroup M is chosen in each conjugacy class
in G. The set E2(M) is given the topology of a locally compact Hausdorff

space in which each component is a compact torus: the measure dσ restricts
to normalized Haar measure on each component [6, p. 355]. Therefore µ(σ)
is Plancherel density.

Harish-Chandra’s article in [6, p. 353 –367], published posthumously, is
a sketch-proof.

The Harish-Chandra result is a Plancherel Theorem Level II. The support
of Plancherel measure is ⊔

M

{π(σ) : σ ∈ E2(M)}.

In this finite disjoint union, one Levi factor is chosen in each conjugacy class.
It is not a Plancherel Theorem Level III, i.e., there is no explicit for-

mula for Plancherel density. However, Harish-Chandra does state a product
formula

µ =
∏

µα

where α runs over all reduced roots of (P,A). The Harish-Chandra Product
Formula for Plancherel Measures is discussed in [6, p.92-93]. This product
formula is used in a crucial way in the explicit Plancherel formula for GL(n),
see [1].

9 Plancherel formula for GL(n,Qp)

The Plancherel formula for GL(n) is quite complicated, so we will content
ourselves with a special case. First, we introduce the p-adic gamma function.
Let F be a finite extension of Qp, and let qF denote the cardinality of the
residue field of F . The p-adic gamma function attached to F is the following
meromorphic function of a single complex variable:

Γ1(ζ) =
1− qζF/qF

1− q−ζF
.

For more details on the p-adic gamma function, see [13, p.51]. We will change
the variable via s = qζF and write

ΓF (s) =
1− s/qF
1− s−1

,
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a rational function of s. Let s ∈ iR so that s has modulus 1. Then we have

1/|ΓF (s)|2 =

∣∣∣∣ 1− s
1− q−1

F s

∣∣∣∣2 .
Let T be the standard maximal torus in GL(n) and let T̂ denote the

unitary dual of T . Then T̂ has the structure of a compact torus Tn (the
space of Satake parameters) and the unramified unitary principal series of
GL(n) is parametrized by the quotient Tn/Sn. Let now t = (z1, . . . , zn) ∈ Tn.
Applying the formulas in [1], the Plancherel density µG|T is given by

µG|T = const ·
∏
i<j

∣∣∣∣ 1− zjz−1
i

1− zjz−1
i /q

∣∣∣∣2 (11)

= const ·
∏
0<α

∣∣∣∣ 1− α(t)

1− α(t)/q

∣∣∣∣2 (12)

= const ·
∏
α

1/Γ(α(t)) (13)

where q = qF and α is a root of the Langlands dual group GL(n,C) so that
αij(t) = zi/zj.

For GL(n), one connected component in the tempered dual is the compact
orbifold Tn/Sn, the symmetric product of n circles. On this component we
have the Macdonald formula [11]:

dµ(ωλ) = const. · dλ/
∏
α

Γ(iλ(α∨))

the product over all roots α where α∨ is the coroot. This formula is a very
special case of our formula for GL(n).
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