
On sheafification of modules

Prest, Mike and Ralph, Alexandra

2010

MIMS EPrint: 2010.22

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


On sheafification of modules

Mike Prest and Alexandra Ralph,
School of Mathematics
Alan Turing Building

University of Manchester
Manchester M13 9PL

UK
first author: mprest@manchester.ac.uk

February 15, 2010

1 Introduction

This material was originally the first part of our preprint [18]. The problem
addressed there is that of determining when the category of OX -modules, where
OX is a ringed space, is locally finitely presented. The main results of that
preprint, with some but not all of the proofs, were reported in [16] and, in
2009, the first author split off the main part of the preprint, retaining the title,
for publication. The results remaining here are either background or, at least
regarding the main aim of [18], are superceded by the results in the version
prepared for publication. Nevertheless, they might be found to be of use so
are preserved as this account of the sheafification localisation of presheaves of
modules over a ringed space.

The problem addressed in [18] is that of determining when the category of
OX -modules, where OX is a ringed space, is locally finitely presented.

In the first section here we give a proof of the, known, result that the cate-
gory, PreMod-OX , of presheaves over a presheaf, OX , of rings is locally finitely
presented, with the presheaves of the form j0OU with U open being a generating
set of finitely presented objects (2.14). Here j0 denotes extension by zero in the
sense of presheaves. We also prove that if, for each open U , the ring OX(U),
of sections over U is right coherent then the category PreMod-OX is locally
coherent (and that, under a flatness hypothesis, the converse is true) (2.18).

In the subsequent section we investigate that torsion theory, localisation
at which is the process of sheafification. In particular we identify a finiteness
condition (originally introduced in [14]) which guarantees preservation of local
finite presentation and use that to derive the following result from the presheaf
case. If X is a noetherian topological space and OX is any sheaf of rings over
X then the category, Mod-OX , of sheaves of modules over OX is locally finitely
presented (3.11) (in [18] we show that it is enough that X have a basis of
compact open sets).
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2 The Category PreMod-OX
For background on sheaves and presheaves see, for instance, [2], [8], [6], [21]

Let OX be a presheaf of rings (all our rings will be associative with an
identity 1 6= 0) and denote by PreMod-OX the category of presheaves over
X which are OX -pre-modules. That is, M ∈ PreMod-OX means that M is
a presheaf of abelian groups such that, for each open set U ⊆ X, M(U) is a
right RU -module, where RU = OX(U) (we use this notation throughout the
paper), and such that, for every inclusion V ⊆ U ⊆ X of open subsets of X, the
restriction map, resMU,V : M(U) −→M(V ), is a homomorphism of RU -modules,
where we regard M(V ) as an RU -module via resOXU,V : RU −→ RV .

Example 2.1. Preshvk/X, the category of presheaves of k-vectorspaces over
X,, where k is a field has this form. Take OX to be the constantly k presheaf:
OX(U) = k, resOXU,V = idk for U ⊆ X open.

Theorem 2.2. ([2, Section I.3]) PreMod-OX is a Grothendieck abelian cate-
gory.

An object C of a category C is finitely presented (fp) if the representable
functor (C,−) : C −→ Ab commutes with direct limits in C. If C is Grothendieck
abelian, then it is sufficient to check that for every directed system ((Dλ)λ, (gλµ :
Dλ −→ Dµ)λ<µ) in C, with limit (D, (gλ∞ : Dλ −→ D)λ), every f ∈ (C,D)
factors through some gλ∞. A category C is finitely accessible if the full subcat-
egory, Cfp, of finitely presented objects is skeletally small and if every object of C
is a direct limit of finitely presented objects; if C also is complete (equivalently,
[1, 2.47], cocomplete) then C is said to be locally finitely presented (lfp).
Abelian categories which are finitely accessible hence, [4, 2.4], Grothendieck and
lfp are in many ways as well-behaved as categories of modules over rings. In
particular, objects of C are determined by their “elements” (morphisms from
finitely presented objects) and these “elements” have finitary character (as op-
posed to what one has for merely presentable categories). Such categories have
a good model theory and they admit a useful embedding into a related functor
category (see e.g., [7], [9], [10], [16]). The category PreMod-OX is locally finitely
presented (see [3, p. 7] for example, but we give a proof), indeed it is a variety
of finitary many-sorted algebras in the sense of [1, Section 3A]; on the other
hand Mod-OX need not be locally finitely presented (see [18]).

Let U ⊆ X be open and let G ∈ PreMod-OU (where by OU we denote the
restriction, OX � U, of the structure presheaf OX to U - this is another notation
that will be used throughout). Define the functor j0G on the category of open

sets of X by j0G(V ) =

{
G(V ) if V ⊆ U
0 otherwise

on objects V , and in the obvious

way on inclusions W ⊆ V .

Proposition 2.3. If G ∈ PreMod-OU , then j0G ∈ PreMod-OX , indeed j0
extends to a functor from PreMod-OU to PreMod-OX which is exact.

Proof. Given f : G −→ H define j0f : j0G −→ j0H by j0f.V =

{
fV if V ⊆ U,
0 otherwise

(we use fV instead of the notationally more consistent fV : GV −→ HV ).
Clearly this does define a functor. For presheaves, exactness is equivalent to
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exactness at each open set. Clearly j0 preserves this and hence is an exact
functor. �

Remark 2.4. If G already is a sheaf then one might also consider the extension
of G by zero, j!G, which is (see [6, p.68, p.111]) the sheafification of j0G, but,
as the next example shows, this may well be different from j0G.

Example 2.5. Let X = {x, y} be a two point set with the discrete topology.
Let U = {x} and define the presheaf G on U by GU = Z. Then j0G.X = 0 but
j!G.X 6= 0 since we have the open cover X = U ∪ (X \ U) and the compatible
sections 1 ∈ j!G.U , 0 ∈ j!G(X\U) and hence a global section a ∈ j!G.X agreeing
with these sections (in particular a 6= 0).

Remark 2.6. (a) F ∈ PreMod-OU implies (j0F )U ' F , indeed the composite
of j0 then restriction to U is the identity on PreMod-OU .
(b) G ∈ PreMod-OX implies j0(GU ) ≤ G.

These observations follow directly from the definitions.

Proposition 2.7. If U ⊆ X is open, F ∈ PreMod-OU , G ∈ PreMod-OX then
there is a natural isomorphism (j0F,G) ' (F,GU ). Indeed j0 : PreMod-OU −→
PreModOX is left adjoint to the restriction functor (−)U : PreMod-OX −→
PreMod-OU . In particular the functor j0 is full.

Proof. Given f : j0F −→ G define f ′ : F −→ GU by, for V ⊆ U , f ′V = fV :
FV = j0F.V −→ GV = GUV. Conversely, given f ′ : F −→ GU , define f :

j0F −→ G by fV =

{
f ′V : FV −→ GV if V ⊆ U
0 : FV (= 0) −→ GV otherwise

. Clearly these processes

are mutually inverse and the isomorphism is natural.
To see that j0 is full, note that (j0F, j0F ′) ' (F, (j0F ′)U ) ' (F, F ′), for

F, F ′ ∈ PreMod-OX , by the remark 2.6. �

Corollary 2.8. For U ⊆ X open, j0PreMod-OU is a localising subcategory of
PreMod-OX .

Proof. By, for instance, [11, 4.6.3] it is enough to check that j0PreMod-OU is a
Serre subcategory and is closed under direct sums in the larger category. These
are trivial to check. �

Since we have a localising subcategory, there is a corresponding quotient
category and localisation functor, which we now identify.

Corollary 2.9. The localisation functor corresponding to the localising subcat-

egory j0(PreMod-OU ) is given by G 7→ qG where qG.V =

{
GV if V 6⊆ U
0 if V ⊆ U

.

Proof. First note that G ∈ PreMod-OX is torsionfree iff for all F ∈ PreMod-OU
we have (j0F,G) = 0, equivalently, (F,GU ) = 0. Taking F = GU we deduce
that GU = 0 if G is torsionfree and, conversely, if GU = 0 then G is torsionfree.

Now suppose that G is torsionfree and G ≤ H with H/G torsion. For all
open V ⊆ X we have the exact sequence 0 −→ GV −→ HV −→ (H/G)V −→ 0.
If V is not contained in U then (H/G)V = 0 and so GV = HV. In the case
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that V ⊆ U we have GV = 0 and hence HV = (H/G)V. Therefore the sequence
of presheaves splits and we obtain H = G ⊕ H ′ where H ′ ' (H/G), indeed
H = G⊕ j0(H/G).

Therefore every torsionfree sheaf is already injective with respect to the
torsion theory and so the quotient category consists of all G ∈ PreMod-OX
with GU = 0 and the localisation functor is as described (since it is just the
functor which sends G to G/GU ). �

The corresponding result for the category, Mod-OX , of sheaves of modules
over a sheaf, OX , of rings holds true with j!Mod-OU in place of j0PreMod-OU .
In that case the localisation functor is just restriction to X \U and the quotient
category is equivalent to Mod-OX\U (cf. [8, p. 107, 6.4]).

Lemma 2.10. Let G ∈ PreMod-OX and let f ∈ (OX , G). Then f is determined
by f(1) ∈ GX, where 1 ∈ OX(X) = RX is the identity element of this ring.

Proof. Let U ⊆ X be open and let 1U = resX,U (1) (= the identity element of
RU ). We have fU resOXX,U = resGX,UfX since f is a morphism.

OX(X)
fX //

res

��

GX

res

��
OX(U)

fU

// GU

So fU1U = resGX,U (f1). If r ∈ OX(U) then, since fU is RU -linear, we have
fUr = (fU1U )r = (resGX,U (f1))r, as claimed. �

Proposition 2.11. Let G ∈ PreMod-OX . Then there is a natural isomorphism
(OX , G) ' GX.

Proof. Lemma 2.10 gives the map “−→ ”. For the inverse map, given a ∈ GX,
define f ∈ (OX , G) as follows. Let U ⊆ X be open. Define fU : OX(U) −→ GU
by: if r ∈ OX(U) set fUr = (resGX,Ua)r. By the proof of 2.10 this gives a
well-defined map and we easily check that the processes are inverse and the
isomorphism is natural. �

Proposition 2.12. OX is a finitely presented element of PreMod-OX .

Proof. Let {Gλ}λ be a directed system in PreMod-OX and let f ∈ (OX , G)
where G = lim−→Gλ. Consider f1 ∈ GX. Since G = lim−→Gλ there is λ and a ∈ Gλ
such that gλ,∞a = f1, where gλ,∞ : Gλ −→ G is the canonical map to the limit.

Define fλ : OX −→ Gλ by fλ1 = a (see 2.11). Then gλ,∞fλ1 = gλ,∞a = f1
so, by 2.11, f = gλ,∞fλ and f factors through some Gλ, as required. �

Essential in the proof above is the fact that in the category of presheaves
direct limits are computed at the level of sections: if G is the presheaf direct
limit of a directed system (Gλ)λ of presheaves then, since this is how we define
the direct limit of functors, for each open set U we have that GU is the direct
limit of the abelian groups GλU . Even if all the Gλ are sheaves this recipe will
yield a presheaf rather than a sheaf in general.
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Proposition 2.13. If U ⊆ X is open then j0OU is a finitely presented object
of PreMod-OX .

Proof. Say G = lim−→Gλ, where the Gλ ∈ PreMod-OX form a directed system
and let f : j0OU −→ G. By 2.7 (j0OU , G) ' (OU , GU ) with f corresponding to,
say, f ′ : OU −→ GU .

Now the functor (−)U commutes with direct limits: if V ⊆ U then GUV =
GV = lim−→(GλV ) (as remarked above) = (lim−→Gλ � U)V . So G � U = lim−→(Gλ �
U). Therefore, by 2.12 applied in PreMod-OU , there is λ and f ′λ : OU −→ (Gλ)U
with f ′ = g′λ,∞f

′
λ (where g′λ,∞ = (gλ,∞)U is the relevant colimit map).

Applying j0 we obtain j0f
′ = j0g

′
λ,∞j0f

′
λ. Composing with the canonical

maps from j0|U to G and from j0Gλ|U to Gλ (and noting that the composition
of the first such map with j0f ′ is just f) we obtain a factorisation of f through
gλ,∞, as required �

Theorem 2.14. (e.g. [3, p.7 Prop. 6]) The j0OU , with U ⊆ X open, form a
generating set of finitely presented objects of PreMod-OX .

Proof. Let F ∈ PreMod-OX and let U ⊆ X be open. Let a ∈ FU. Then there is
f ′ : OU −→ FU with f ′U : OU (U) −→ FU (U) taking 1 to a. Under the adjunction
(OU , FU ) ' (j0OU , F ), f ′ corresponds to f = fU,a, say, and fU1U = a (by, e.g.,
the explicit description of j0).

Then
⊕

U⊆X
⊕

a∈FU fU,a :
⊕

U

⊕
a j0OU −→ F is, by construction, onto at

each open U ⊆ X and hence is an epimorphism, as required. �

Corollary 2.15. For any space X and presheaf OX of rings on X the category
PreMod-OX is a locally finitely presented abelian Grothendieck category.

Note that it is necessary to use all open sets U : a basis of open sets will not
suffice. For consider a presheaf F with FX 6= 0 but FU = 0 for all proper open
subsets U of X. We need OX = j0OX to generate this presheaf.

We may also ask when the category of presheaves has stronger finiteness
properties, such as being locally noetherian or artinian. Here we consider local
coherence, where a locally finitely presented abelian category is locally co-
herent if every finitely generated subobject of each finitely presented object is
finitely presented. We say that a ring R is (right) coherent if the category,
Mod-R, of (right) modules over R is locally coherent.

Let F ∈ PreMod-OX , let U ⊆ X be open and let a ∈ FU . Define the

presheaf 〈a〉 by V 7→

{
resUV (a).RV if V ⊆ U
0 otherwise

. Then 〈a〉 ∈ PreMod-OX and

we have the natural inclusion 〈a〉 ≤ F .
We say that an object F in an abelian category is finitely generated if

F =
∑
λ Fλ implies F =

∑n
1 Fλi for some λ1, . . . , λn. If the category if locally

finitely presented then it is equivalent that F be the image of a finitely presented
object.

Lemma 2.16. The presheaf F ∈ PreMod-OX is finitely generated iff there exist
open subsets U1, . . . , Un of X and sections ai ∈ FUi such that F =

∑n
1 〈ai〉.
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Proof. (⇒) We have, on comparing at each open set U , F =
∑
U⊆X

∑
a∈FU 〈a〉

and so F finitely generated implies that F is a sum of finitely many of these.
(⇐) If F =

∑
λ Fλ (a directed sum) then choose, for each i = 1, . . . , n, some

λi such that ai ∈ FλiUi (since FUi =
∑
λ FλUi this exists). Then 〈ai〉 ≤ Fλi

and so F ≤
∑n

1 Fλi . �

The j0OU form a generating set of finitely presented presheaves so, if F is
finitely presented, then there is an exact sequence

⊕m
j=1 j0OVj −→

⊕n
i=1 j0OUi

f−→
F −→ 0 where the first map is given, in terms of components, as (fij)ij , where
fij : j0OVj −→ j0OUi .

Note that j0OU = 〈1RU 〉 and so fij : j0OVj −→ j0OUi equals 0 if Vj is not
contained in Ui. Let ai = f(1Ui) (writing 1U for 1RU ) - so F =

∑n
1 〈ai〉.

For each j we have f(
∑n

1 fij1Vj ) = 0. Set fij1Vj = sij ∈ RVj so f(sij) ={
0 if Vj 6⊆ Ui
resFUiVj (ai).sij if Vj ⊆ Ui

. Then the relations between the a1, . . . , an are

generated by
∑
Vj⊆Ui resFUiVj (ai).sij = 0, for j = 1, . . . ,m.

From this we get a presentation of each FU (as an RU -module): the gen-
erators of FU are {resFUiU (ai) = aUi say : U ⊆ Ui} and the relations on these
generators are {

∑
i:Vj⊆Ui a

U
i .sij : U ⊆ Vj}.

Lemma 2.17. If U ′ ⊆ U are open subsets of X and if U ′ ⊆ Ui imples U ⊆ Ui
for all i and if U ′ ⊆ Vj implies U ⊆ Vj for all j then FU ′ ' FU ⊗RU RU ′ .

Proof. By assumption FU is generated by the aUi with U ⊆ Ui and with a rela-
tion

∑
Vj⊆Ui a

U
i sij = 0 for each j with U ⊆ Vj . That is, we have a presentation

of FU :⊕
j:U⊆Vj RU −→

⊕
i:U⊆Ui RU −→ FU −→ 0 where the first map is given by

the matrix (tij)ij over RU , where tij = resOXVjU (sij) (= 0 if Vj 6⊆ Ui).
Similarly we have a presentation of FU ′ :⊕

j:U ′⊆Vj RU −→
⊕

i:U ′⊆Ui RU −→ FU ′ −→ 0
where the first map is given by the matrix (t′ij)ij overRU ′ , where t′ij = resOXVjU ′(sij) =
resOXUU ′(tij).

Applying − ⊗RU RU ′ to the first sequence we obtain, by right exactness of
⊗, and since RU ⊗RU RU ′ ' RU ′ , the exact sequence⊕

j RU ′ −→
⊕

iRU ′ −→ FU ⊗RU RU ′ −→ 0
where the ij-component of the first map is tij ⊗RU 1RU′ = resOXUU ′(tij) = t′ij and
hence FU ′ ' FU ⊗RU RU ′ . �

Theorem 2.18. Let OX be a presheaf of rings on the space X. If, for each open
subset U of X, the ring, RU = OX(U), of sections over U is a right coherent
ring then the category, PreMod-OX , of presheaves over OX is locally coherent.

If, for each inclusion V ⊆ U of open sets, the ring RV is a flat left RU -
module (via the corresponding morphism of rings) then the converse also holds.

Proof. Suppose that F , with presentation as above, is a finitely presented presheaf
and suppose that G ≤ F is finitely generated, say g :

⊕p
1 j0OWk

−→ G is
epi. Let bk = g(1Wk

), so G =
∑p

1〈bk〉 (and, since G ≤ F, we have bk =∑
Ui⊇Wk

aWk
i .tik for some tik ∈ RWk

). We claim that, under the coherence
hypothesis, G is finitely presented.
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Let U ⊆ X and consider GU ≤ FU . Since GU is a finitely generated
RU -submodule of the finitely presented RU -module FU and since RU is right
coherent, there is a finite generating set of relations on the generators bUk =
resWkU (bk), where Wk ⊇ U, of GU, say

∑
k b

U
k rhk = 0 for some rhk ∈ RU , where

h = 1, . . . , nU .
If U ′ ⊆ U is such that U ′ ⊆ Ui, Vj ,Wk for any i, j, k implies the same for

U then we observe that the module GU ′ is generated by the bU
′

k = resUU ′(bUk )
and has generating set of relations

∑
k b

U ′

k resOXUU ′rhk = 0 for h = 1, . . . , nU : note
that these follow from the above relations which hold in GU.

So, for each U of the form Ui1 ∩ · · · ∩UiN ∩Vj1 ∩ · · · ∩VjM ∩Wk1 ∩ · · · ∩WkP

take a finite generating set of relations on the bUk (k = k1, . . . , kp).
Then, we claim, the set of all these, as U varies over the finitely many such

sets, gives a presentation of G by generators b1, . . . , bP and these finitely many
relations.

To prove that, we need show only that these give the correct module, GU ,
for each U - but that is by construction and the lemma above.

Suppose now that the category of presheaves is locally coherent and that we
have the flatness hypothesis. To check that RU is right coherent it is enough
to show that every finitely generated submodule of a finitely generated free
module is finitely presented. So let R(I)

U −→ RmU −→ M where M ≤ RnU be
an exact sequence. For any RU -module N we have the OU -module N̄ given by
N̄ .V = N ⊗RU RV with the obvious restriction maps. Since tensor product is
right exact and since, clearly, R̄U = OU we obtain an exact sequence O(I)

U −→
OmU −→ M̄ and then, since j0 is (right) exact (2.3) an exact sequence j0O(I)

U −→
j0OmU −→ j0M̄ −→ 0 (∗) in PreMod-OX . Since each RV is a flat RU -module,
each morphism M⊗RU RV −→ RnU⊗RU RV = RnV is monic and so j0M̄ ≤ j0OnU .
Then, since j0OU is finitely presented, the index set I can, in the sequence (∗),
be taken to be finite and, therefore, taking sections over U (an exact functor
on presheaves), we see that I can be taken to be finite in the original exact
sequence, as required. �

3 Torsion theory on PreMod-OX and localising
presheaves to sheaves

By a torsion theory we will always mean a hereditary torsion theory - hence one
determined by a class of injective objects (see e.g. [11] or [20]).

Proposition 3.1. Let τ be a hereditary torsion theory on PreMod-OX . Then
τ is determined by the collection of Gabriel filters:
Uτ (j0OU ) = {I ≤ j0OU : j0OU/I ∈ T },

where T denotes the class of τ -torsion objects.

Proof. The set of objects j0OU , as U ranges over all open subsets of X, generates
the category and is a set of finitely presented objects. Then it is easy to see
(e.g. see [16, 11.1.11]) that the corresponding Gabriel filters determine τ . �

For the purposes of this paper one may take the next proposition as a defi-
nition of “finite type” (or see [20]).
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Proposition 3.2. A hereditary torsion theory τ on PreMod-OX is of finite type
iff for all open U ⊆ X the filter Uτ (j0OU ) has a cofinal set of finitely generated
presheaves.

Proof. This follows from 2.14 and [12, 3.11]. �

For the remainder of this section let τ be the torsion theory corresponding
to the sheafification functor and let T , F denote the corresponding torsion and
torsionfree classes respectively (this torsion theory is discussed in [11, Section
4.7] for example). Then T is the class of presheaves with sheafification equal to
0. We continue for a little longer to assume that OX is just a presheaf, rather
than a sheaf, of rings.

Lemma 3.3. Let F ∈ PreMod-OX . Then F ∈ T iff for every open U ⊆ X and
for every a ∈ FU there is an open cover {Ui}i of U such that, for all i, we have
resFU,Uia = 0.

Proof. Clearly such a presheaf is torsion (its sheafification must be 0). Con-
versely, if F ∈ T and if U, a are as given, then a must be identified with 0 ∈ FU
by the sheafification process and this can happen only if there is a cover of U
as described. �

Corollary 3.4. Let G ≤ F ∈ PreMod-OX . Then G is τ -dense in F (that is,
F/G is τ -torsion) iff for every open U ⊆ X and for every a ∈ FU there is an
open cover {Ui}i of U such that, for all i we have resFU,Uia ∈ GUi.

Recall that the stalk of a (pre)sheaf F at a point x is Fx = lim−→x∈U FU .

Lemma 3.5. Let F ∈ PreMod-OX . Then F ∈ T iff for every x ∈ X we have
Fx = 0.

Proof. (⇒) F ∈ T implies qF = 0 where q is the sheafification functor (i.e.
the localisation functor associated to τ) and this implies that (qF )x = 0 for all
x ∈ X which, in turn, implies (since stalks are unchanged by sheafification) that
Fx = 0 for all x ∈ X.

(⇐) If every stalk of F is 0 then the same is true for qF and hence qF = 0,
so F ∈ T = ker(q). �

Lemma 3.6. Let F ∈ PreMod-OX . Then F ∈ F iff F is a mono(=separated)
presheaf.

Proof. We have F ∈ F implies F embeds in qF which, clearly, implies that F is
a monopresheaf. On the other hand F /∈ F implies τF 6= 0 but then τF being
not a monopresheaf implies the same for F . �

Proposition 3.7. Let U ⊆ X be open. Then j0OU has a cofinal family of
finitely generated τ -dense subpresheaves iff U is compact.

Proof. (⇐) Suppose that G ≤ F = j0OU is τ -dense. Then there is an open
cover {Ui}i of U, which, by compactness of U , we may take to be a finite cover
U1, . . . , Un, such that for each i, resFU,Ui(1) ∈ G(Ui), where 1 ∈ FU . That is
G � Ui = F � Ui = OUi for each i.
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Let Gi = j0OUi . Note that Gi ≤ G (by the map corresponding to Id ∈
(OUi , G � Ui ' OUi) ' (j0OUi = Gi, G)). So G1 + · · · + Gn ≤ G is a finitely
generated subobject of G and, by construction and 3.4, is τ -dense, as required.

(⇒) If U is not compact then choose an open cover {Ui}i of U which has no
finite subcover and define G ∈ PreMod-OX by GV = FV if V ⊆ Ui for some i,
GV= 0 otherwise. So G ≤ F and G is τ -dense in F since resU,Ui(1) ∈ GUi for
every i.

If there were G′ ≤ G with G′ finitely generated and τ -dense in G then there
would be, in particular, an open cover {Vj}j with resU,Vj (1) ∈ G′Vj for every
j. Suppose, using 2.16, that the al ∈ G′Vl with l = 1, . . . ,m generate G′. Since
G′ ≤ G, if al 6= 0 then Vl ⊆ Uil for some il. But then, if V is an open set
not contained in Ui1 ∪ · · · ∪ Uim , and note that this is a proper subset of U , we
must have G′V = 0 (since G′ =

∑m
1 〈al〉). So, choosing Vj not contained in this

union, we see that resU,Vj (1) (which is non-zero) is not in G′Vj , a contradiction.
�

Corollary 3.8. The localisation “sheafification” is of finite type iff every open
subset of X is compact.

Proof. This is immediate by 3.7 and 3.2. �

A subcategory of an lfp Grothendieck abelian category is definable (in the
sense of [5]) if it is closed under products, direct limits and pure subobjects,
equivalently if it is axiomatisable (in the canonical language of the category)
and is closed under products.

Corollary 3.9. The class of monopresheaves is a definable subcategory of PreMod-OX
iff every open subset of X is compact.

Proof. By [12, 3.3] which says that the torsionfree objects for a hereditary tor-
sion theory form a definable class iff the torsion theory is of finite type. The
proof is just as for the module case ([13, 2.4]), see [16, 11.1.20]. �

Let OX be a sheaf of rings on the space X. We will see that X is sufficiently
nice then we can deduce properties of Mod-OX from its representation as a
localisation of PreMod-OX .

Let τ be a hereditary torsion theory of finite type on a locally finitely pre-
sented Grothendieck abelian category C which has a generating set G of finitely
presented objects. We say that τ is an elementary torsion theory [14] if for
every F ≤ G ∈ G with G/F torsion and F finitely generated, we have that F
is τ -finitely presented, meaning that if G′′ ∈ G and f : G′′ −→ F is an epi-
morphism then ker(f) has a finitely generated τ -dense subobject. Note that
it is enough to show that F contains a finitely presented τ -dense subobject
F ′. For, let G′ be a finitely generated subobject of G′′ with fG′ = F ′. Then
G′ + ker(f) is τ -dense in G′′ and so, since τ is of finite type, it follows that
there is a finitely generated τ -dense subobject of G′′ lying between G′ + ker(f)
and G′. So, without loss of generality, G′ is τ -dense in G′′. Now, since F ′ is
finitely presented, the kernel of f � G′, that is G′ ∩ ker(f), is finitely generated
and, since it is also τ -dense in ker(f) (because G′ is τ -dense in G′′), we have
our required conclusion.
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The term elementary is used because this is exactly the condition one needs
for the localised category Cτ to be definable when regarded as a subcategory of
C ([14, 0.1]).

Proposition 3.10. Let OX be a sheaf of rings on the space X and let τ de-
note the sheafification torsion theory on PreMod-OX . Then τ is an elementary
torsion theory iff τ is of finite type iff every open subset of X is compact.

Proof. It remains to be shown that if every open subset is compact then τ is
elementary. Let F ≤ G = j0OU with G/F torsion and F finitely generated.
As argued above it will be enough to show that F contains a finitely presented
τ -dense subobject. Since F is τ -dense in G there is an open cover (Uλ)λ of U
such that for each λ we have resU,Uλ1 = 1λ is in FUλ. Since U is compact, we
may suppose that the index set is finite and so F ≥ F ′ =

∑n
1 j0〈1Ui〉, say, where

U1, . . . , Un cover U . Then F ′ is τ -dense in G (and hence in F ). But clearly F ′

is finitely presented, the relations between its generators being generated by the
resUi,Ui∩Uj (1Ui) = resUj ,Ui∩Uj (1Uj ) where 1 ≤ i < j ≤ n. �

Note that every open set of the space X is compact iff X is noetherian (i.e.
every descending chain of closed subspaces is finite). Therefore we obtain the
following as a corollary.

Theorem 3.11. Let OX be a sheaf of rings on a noetherian space X. Then
Mod-OX is locally finitely presented.

Proof. If the Grothendieck abelian category C is locally finitely presented and
if τ is an elementary torsion theory on C then, by the proof of [14, 2.1], see [16,
11.1.26], the localisation of C at τ is locally finitely presented. �

It is shown in [18] that this condition is stronger than is necessary for
Mod-OX to be locally finitely presented. Indeed, X being locally noetherian
will suffice.

A a consequence of the theorem one has that if OX is a sheaf of rings on
the noetherian space X then the model theory of sheaves of OX -modules is just
a part of the model theory of presheaves over OX and so, being of essentially
algebraic character, is well-covered by the existing theory of the model theory
of objects of locally finitely presented abelian categories. For modules, this is
surveyed in [15], and there are details in [17], [16].

Corollary 3.12. Let OX be a sheaf of rings on the space X. Then Mod-OX is
a definable subcategory of PreMod-OX iff every open subset of X is compact,
that is, iff X is noetherian.
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