

The University of Manchester

Ring of polytopes and the Rota-Hopf algebra

Buchstaber, VIctor

2010

MIMS EPrint: 2010.20

Manchester Institute for Mathematical Sciences School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK

ISSN 1749-9097

Ring of polytopes and the Rota-Hopf algebra

Victor M. Buchstaber

Steklov Institute, RAS, Moscow

 $\langle \texttt{buchstab@mi.ras.ru} \rangle$

School of Mathematics, University of Manchester (Victor.Buchstaber@manchester.ac.uk)

> Manchester 08 February 2010

Abstract

Nowadays Hopf algebras is one of the well-known tools in combinatorics.

To study the combinatorics of convex polytopes we develop the approach based on the ring \mathscr{P} of combinatorial convex polytopes and flag-vector transformation $\mathscr{F}: \mathscr{P} \to \operatorname{QSym}[\alpha]$, where QSym is the ring of quasisymmetric functions. We show that the ring of polytopes has a natural Hopf comodule structure over the Rota-Hopf algebra \mathscr{R} of posets.

As a corollary we build a ring homomorphism $l_{\alpha}: \mathscr{P} \to \mathscr{R}[\alpha]$ such that $F(l_{\alpha}(P)) = \mathscr{F}(P)^*$, where $F: \mathscr{R} \to \operatorname{QSym}$ is the Ehrenborg transformation of posets.

The talk is based on the papers:

[1] V. M. Buchstaber, *Ring of Simple Polytopes and Differential Equations.*, Proceedings of the Steklov Institute of Mathematics, v. 263, 2008, 1–25.

[2] V. M. Buchstaber, N. Yu. Erokhovets,*Ring of polytopes, quasisymmetric functions and Fibonacci numbers.*, see arXiv: 1002.0810 v1 [math CO] 3 Feb 2010.

Contents

Differential ring of combinatorial polytopes

Face-polynomial

Dehn-Sommerville relations

Flag *f*-vectors

Bayer-Billera group of polytopes

Faces-operator

Flag-vector polynomial

Algebra of quasisymmetric functions

Flag-vector transformation

Bayer-Billera relations

The Rota-Hopf Algebra

Differential ring of combinatorial polytopes

Definition. Two polytopes P_1 and P_2 of the same dimension are said to be <u>combinatorially equivalent</u> if there is a bijection between their sets of faces that preserves the inclusion relation.

Definition. A *combinatorial polytope* is a class of combinatorial equivalent polytopes.

Denote by \mathscr{P}^{2n} the free abelian group generated by all *n*-dimensional combinatorial polytopes.

For $n \ge 1$ we have the direct sum

$$\mathscr{P}^{2n} = \sum_{m \ge n+1} \mathscr{P}^{2n,2(m-n)},$$

where $P^n \in \mathscr{P}^{2n,2(m-n)}$ if it is a polytope with *m* facets and rank $\mathscr{P}^{2n,2(m-n)} < \infty$ for any fixed *n* and *m*. **Definition.** The product of polytopes turns the direct sum

$$\mathscr{P} = \sum_{n \ge 0} \mathscr{P}^{2n} = \mathscr{P}^0 + \sum_{m \ge 2} \sum_{n=1}^{m-1} \mathscr{P}^{2n,2(m-n)}$$

into a bigraded commutative associative ring, the *ring of polytopes*. The unit is P^0 , a point.

The direct product $P_1^n \times P_2^m$ of simple polytopes P_1^n and P_2^m is a simple polytope as well.

Thus the ring \mathcal{P}_s generated by simple polytopes is a subring in \mathcal{P} .

A polytope is *indecomposable* if it can not be represented as a product of two other polytopes of positive dimensions.

Theorem. The ring \mathscr{P} is a polynomial ring generated by indecomposable combinatorial polytopes.

Let P^n be a polytope. Denote by dP^n the <u>disjoint union</u> of all its facets.

Lemma. There is a linear operator of degree -2

$$d:\mathscr{P}\longrightarrow\mathscr{P},$$

such that

$$d(P_1^{n_1}P_2^{n_2}) = (dP_1^{n_1})P_2^{n_2} + P_1^{n_1}(dP_2^{n_2}).$$

Thus \mathscr{P} is a <u>differential ring</u>, and \mathscr{P}_{s} is a <u>differential</u> subring in \mathscr{P} .

Examples:

$$dI^{n} = n(dI)I^{n-1} = 2nI^{n-1}$$
$$d\Delta^{n} = (n+1)\Delta^{n-1},$$

where Δ^n is the standard *n*-simplex and $I^n = I \times \cdots \times I$ is the standard *n*-cube.

,

Face-polynomial (f-polynomial)

Consider the linear map

 $f\colon \mathscr{P}\longrightarrow \mathbb{Z}[\alpha,t],$

which sends a polytope P^n to the homogeneous *face-polynomial*

 $f(P^n) = \alpha^n + f_{n-1,1}\alpha^{n-1}t + \dots + f_{1,n-1}\alpha t^{n-1} + f_{0,n}t^n,$ where $f_{k,n-k} = f_{k,n-k}(P^n)$ is the number of its *k*-dim faces.

Thus $f_{n-1,1}$ is the number of facets and $f_{0,n}$ is the number of vertices.

Theorem.

- 1. The mapping f is a *ring homomorphism*.
- 2. Let P be a polytope. Then

$$f(dP) = \frac{\partial}{\partial t} f(P)$$

if and only if P is *simple*.

Dehn-Sommerville relations

Theorem. For any *simple polytope* P^n we have

$$f(P^n)(\alpha, t) = f(P^n)(-\alpha, \alpha + t).$$

Theorem. Let $\hat{f}: \mathscr{P}_{s} \to \mathbb{Z}[\alpha, t]$ be a *linear* map such that $\hat{f}(dP^{n}) = \frac{\partial}{\partial t}\hat{f}(P^{n})$ and $\hat{f}(P^{n})|_{t=0} = \alpha^{n}$. Then $\hat{f}(P^{n}) = f(P^{n})$.

Flag *f*-vectors

Let P^n be an *n*-dimensional polytope and $\omega = \{a_1, \ldots, a_k\} \subset \{0, 1, \ldots, n-1\}.$ A *flag number* $f_{\omega} = f_{a_1, \ldots, a_k}$ is the number of increasing sequences of faces

$$F^{a_1} \subset F^{a_2} \subset \cdots \subset F^{a_k}, \quad \dim F^{a_i} = a_i.$$

For $\omega = \{i\}$ the number $f_{\{i\}} = f_i$ is just the number of *i*-dimensional faces.

The collection $\{f_{\omega}\}$ of all the flag numbers is called a *flag* f-vector of the polytope P^n . By the definition $f_{\emptyset} = 1$.

For $n \ge 1$ let Ψ^n be the set of subsets $\omega \subset \{0, 1, \dots, n-2\}$ such that ω contains no two consecutive integers.

The cardinality of Ψ^n is equal to the *n*-th Fibonacci number c_n ($c_n = c_{n-1} + c_{n-2}$, $c_0 = 1$, $c_1 = 1$).

Bayer-Billera group of polytopes

For any polytope P there exists a *cone* CP and a *suspension* BP. These two operations are defined on combinatorial polytopes and can be extended to linear operators on the ring \mathscr{P} .

It is natural to set $B\emptyset = 1 = C\emptyset$.

Definition. For $n \ge 1$ let Ω^n be the set of *n*-dimensional polytopes that arises when we apply to the empty set \emptyset words in *B* and *C* that end in C^2 and contain no adjacent *B*'s.

Each word of length n + 1 from the set Ω^n either has the form CQ, $Q \in \Omega^{n-1}$, or BCQ, $Q \in \Omega^{n-2}$, so cardinality of the set Ω^n satisfies the Fibonacci relation $|\Omega^n| = |\Omega^{n-1}| + |\Omega^{n-2}|$. Since $|\Omega^1| = |\{C^2\}| = 1$, and $|\Omega^2| = |\{C^3, BC^2\}| = 2$, we see that $|\Omega^n| = c_n = |\Psi^n|$. **Theorem.** (M. Bayer and L. Billera) Let $n \ge 1$. Then

1. For all $\omega \subseteq \{0, 1, \dots, n-1\}$ there is a nontrivial linear relation expressing $f_{\omega}(P)$ in terms of $f_{\omega'}(P)$, $\omega' \in \Psi^n$, which holds for all *n*-dimensional polytopes.

2. The flag f-vectors of the c_n elements of Ω^n are affinely independent.

Thus the flag *f*-vectors $\{f_{\omega'}(P^n)\}_{\omega' \in \Psi^n}$ span an $(c_n - 1)$ -dimensional affine hyperplane defined by the equation $f_{\emptyset} = 1$.

Let us identify the words in Ω^n with the sets in Ψ^n in such a way that the word

$$C^{n+1-a_k}BC^{a_k-a_{k-1}-1}B\ldots BC^{a_1-1}$$

corresponds to the set $\{a_1 - 3, ..., a_k - 3\}$. Let us set C < B and order the words lexicographically. Consider a $(c_n \times c_n)$ -matrix K^n

$$k_{Q,\omega} = f_{\omega}(Q), \ Q \in \Omega^n, \ \omega \in \Psi^n.$$

Theorem. det $(K^n) = 1$.

10

Faces-operator

Let P^n be a polytope. Denote by $d_k P^n$, $k \ge 0$, the *disjoint union* of all its (n - k)-dimensional faces.

Lemma. There is a linear operator of degree -2k

$$d_k \colon \mathscr{P} \longrightarrow \mathscr{P}$$

such that

$$d_k P_1^{n_1} P_2^{n_2} = \sum_{i+j=k} (d_i P_1^{n_1}) (d_j P_2^{n_2}).$$

Definition. A <u>faces-operator</u> for t is the linear map $\Phi(t): \mathscr{P} \longrightarrow \mathscr{P}[t] : \Phi(t)(P^n) = \sum_{k=0}^{\infty} d_k P^n t^k.$

Theorem.

- 1. $\Phi(t)$ is a ring homomorphism.
- 2. $\Phi(t)(P^n) = \exp(td)(P^n)$ if and only if P^n is simple.
- 3. The composition

$$\Phi(\alpha, t) \colon \mathscr{P} \xrightarrow{\Phi(t)} \mathscr{P}[t] \xrightarrow{\xi(\alpha)} \mathbb{Z}[\alpha, t],$$

where $\xi(\alpha)(P^n) = \alpha^n$ and $\xi(\alpha)t = t$, is the face-polynomial ring homomorphism f.

Flag-vector polynomial

Let $\Phi(t_k)$ be the faces-operator for t_k , k = 1, ..., m. Set $\widehat{\Phi}(t_1) = \Phi(t_1)$ and consider the operators

 $\widehat{\Phi}(t_m): \mathscr{P}[t_1, \ldots, t_{m-1}] \longrightarrow \mathscr{P}[t_1, \ldots, t_m], \ m > 1,$ such that $\widehat{\Phi}(t_m)(P^n) = \Phi(t_m)(P^n)$ and $\widehat{\Phi}(t_m)(t_i) = t_i,$ $1 \leq i < m.$

Introduce the ring homomorphisms

$$\mathscr{F}(m)\colon \mathscr{P}\longrightarrow \mathscr{P}[t_1,\ldots,t_m], \ m \ge 1,$$

where $\mathscr{F}(1) = \Phi(t_1)$ and recursively $\mathscr{F}(m), m > 1$, is the composition

$$\mathscr{P} \xrightarrow{\mathscr{F}} \xrightarrow{(m-1)} \mathscr{P}[t_1, \dots, t_{m-1}] \xrightarrow{\widehat{\Phi}(t_m)} \mathscr{P}[t_1, \dots, t_m]$$

We obtain the operator

$$\mathscr{F}(m) = 1 + \sum_{q \ge 1} \sum_{|J|=q} d_J \zeta(t^J; m)$$

where $J = (j_1, \ldots, j_k), \ j_i \neq 0, \ i = 1, \ldots, k, \ 1 \leq k \leq m,$ $|J| = j_1 + \cdots + j_k, \ d_J = d_{j_k} \cdots d_{j_1}, \ t^J = t_1^{j_1} \cdots t_k^{j_k}$ and

$$\zeta(\mathbf{t}^{J};m) = \sum_{1 \leq l_1 < \cdots < l_k \leq m} t_{l_1}^{j_1} \cdots t_{l_k}^{j_k}.$$

1	2
	2

Algebra of quasisymmetric functions

Definition. A <u>composition</u> J of a number n is an ordered set $\overline{J} = (j_1, \ldots, j_k), j_i \ge 1$, such that $n = j_1 + j_2 + \cdots + j_k$. Let us denote |J| = n.

The number of compositions of *n* into exactly *k* parts is given by the binomial coefficient $\binom{n-1}{k-1}$.

Definition. A *quasisymmetric monomial* in *m* variables for a composition $\overline{J} = (j_1, \dots, j_k), \ k \leq m$, is the polynomial

$$\zeta(\boldsymbol{t}^{J};\boldsymbol{m}) = \sum_{1 \leq l_1 < \cdots < l_k \leq \boldsymbol{m}} t_{l_1}^{j_1} \dots t_{l_k}^{j_k}$$

Lemma. The polynomial $f \in \mathbb{Z}[t_1, \ldots, t_m]$ is a linear combination of quasisymmetric monomials if and only if $f(t_1, \ldots, t_m)$ satisfies the following conditions:

$$f(t_1, t_2, t_3, \dots, t_{m-1}, 0) = f(0, t_1, t_2, \dots, t_{m-1}) =$$

= $f(t_1, 0, t_2, \dots, t_{m-1}) = \dots = f(t_1, \dots, t_{m-2}, 0, t_{m-1}).$

Example. We have the compositions of 3:

(1, 1, 1), (1, 2), (2, 1), (3).

The quasisymmetric monomials of degree 3 in $\mathbb{Z}[t_1, t_2, t_3]$: $t_1t_2t_3$; $t_1t_2^2 + t_1t_3^2 + t_2t_3^2$; $t_1^2t_2 + t_1^2t_3 + t_2^2t_3$; $t_1^3 + t_2^3 + t_3^3$, and for m = 3 we have the conditions: $f(t_1, t_2, 0) = f(0, t_1, t_2) = f(t_1, 0, t_2)$.

13

Let $\operatorname{QSym}^{2n}(m) \subset \mathbb{Z}[t_1, \ldots, t_m]$ be the subgroup generated by the quasisymmetric monomials $\zeta(t^J; m)$ corresponding to all compositions $J = (j_1, \ldots, j_k)$ of n, where $k \leq m$. It is easy to see that for $k \leq m - 1$

$$\zeta(\boldsymbol{t}^{I}; \boldsymbol{m})(t_{1}, \dots, t_{m-1}, 0) = \zeta(\boldsymbol{t}^{I}; \boldsymbol{m} - 1)(t_{1}, \dots, t_{m-1}).$$

Set $\operatorname{QSym}^{2n} = \varprojlim_{\boldsymbol{m}} \operatorname{QSym}^{2n}(\boldsymbol{m}).$

An algebra of quasisymmetric functions QSym is a graded subring $= \sum_{n \ge 0} \text{QSym}^{2n}$ in

$$V = \sum_{n \ge 0} V^{2n} = \varprojlim_m \mathbb{Z}[t_1, \dots, t_m],$$

where deg $t_k = 2$.

Theorem. (M.Hazewinkel, 2001)

The algebra of quasisymmetric functions QSym is a free commutative algebra of polynomials over the integers.

Since rank $QSym^{2n} = 2^{n-1}$, $n \ge 1$, the numbers β_i of the multiplicative generators of degree 2i of QSym can be found by a recursive relation:

$$\frac{1-t}{1-2t} = \prod_{i=1}^{\infty} \frac{1}{(1-t^i)^{\beta_i}}$$

14

Flag-vector transformation

Set $\mathscr{F}(t) = \varprojlim \mathscr{F}(m)$. Denote by $\mathscr{F}(\alpha; t)$ the ring homomorphism

$$\mathscr{P} \xrightarrow{\mathscr{F}(t)} \mathscr{P} \otimes \operatorname{QSym} \xrightarrow{\widehat{\varepsilon}(\alpha)} \operatorname{QSym}[\alpha] \subset \mathbb{Z}[\alpha; t],$$

where $\widehat{\varepsilon}(\alpha)$ is the extension of the ring homomorphism

$$\varepsilon(\alpha) \colon \mathscr{P} \longrightarrow \mathbb{Z}[\alpha] \, : \, \varepsilon(\alpha)(P^n) = \alpha^n, \, n \ge 0,$$

such that $\widehat{\varepsilon}(\alpha)(t_i) = t_i$.

Lemma. Let P^n be an *n*-dim polytope. Then

$$\mathscr{F}(P^n)(\alpha; t) = \alpha^n + \sum_{q=1}^n \alpha^{n-q} \sum_{|J|=q} f_{\omega(J)}(P^n)\zeta(t^J)$$

is a homogeneous polynomial of degree 2n.

Here $f_{\omega(J)}(P^n)$ for $J = (j_1, \ldots, j_k)$ is the ω -flag number of P^n with $\omega = \omega(J) = (i_1 < \cdots < i_k)$, where $i_1 = n - q, \ldots, i_l = i_{l-1} + j_{k-l+2}, \ldots, i_k = i_{k-1} + j_2$ and q = |J|.

Definition. The ring homomorphism $\mathscr{F}(\alpha; t)$ sends a polytope P^n to the flag-vector polynomial $\mathscr{F}(P^n)(\alpha; t)$.

Bayer-Billera relations

Theorem. The image of the homomorphism

$$\mathscr{F}(\alpha, \boldsymbol{t}) \colon \mathscr{P}^{2n} \longrightarrow \operatorname{QSym}(m)[\alpha], \ m \ge n,$$

consists of all homogeneous polynomials $f(\alpha, t_1, \ldots, t_m)$ of degree *n* satisfying the equations:

1.
$$f(\alpha, t_1, -t_1, t_3, \dots, t_m) = f(\alpha, 0, 0, t_3, \dots, t_m);$$

 $f(\alpha, t_1, t_2, -t_2, t_4, \dots, t_m) = f(\alpha, t_1, 0, 0, t_4, \dots, t_m);$

$$f(\alpha, t_1, \ldots, t_{m-2}, t_{m-1}, -t_{m-1}) = f(\alpha, t_1, \ldots, t_{m-2}, 0, 0);$$

2.
$$f(-\alpha, t_1, \ldots, t_{m-1}, \alpha) = f(\alpha, t_1, \ldots, t_{m-1}, 0);$$

These equations are a perfected form of the Bayer-Billera (generalized Dehn-Sommerville) relations. **Corollary.** The image of the restriction of $\mathscr{F}(\alpha, t)$ on \mathscr{P}_{S}^{2n} consists of all homogeneous polynomials

$$f(\alpha, t_1, \ldots, t_m) = f_1(\alpha, t_1 + \ldots + t_m)$$

where $f_1(\alpha, t)$ is a homogeneous polynomial in two variables of degree *n* satisfying the equations

$$f_1(-\alpha, \alpha + t) = f_1(\alpha, t).$$

This equation is a perfected form of the classical Dehn-Sommerville relations (see slide 7).

Theorem. The image of the ring homomorphism

$$\mathscr{F}(\alpha, t) \colon \mathscr{P} \otimes \mathbb{Q} \longrightarrow \operatorname{QSym}[\alpha] \otimes \mathbb{Q}$$

is a free polynomial algebra with the structure of the graded Hopf algebra dual to the free associative Lie-Hopf algebra $\mathbb{Q}\langle u_1, u_2 \rangle$, where deg $u_i = 2i$ and

 $\Delta u_i = u_i \otimes 1 + 1 \otimes u_i, \quad i = 1, 2.$

The Rota-Hopf Algebra

Let *P* be a finite poset with a minimal element $\hat{0}$ and a maximal element $\hat{1}$.

An element y in P covers another element x in P, if x < y and there is no z in P such that x < z < y.

A poset *P* is called *graded*, if there exists a rank function $\rho : \mathscr{P} \to \mathbb{Z}$ such that $\rho(\hat{0}) = 0$ and $\rho(y) = \rho(x) + 1$ if *y* covers *x*.

Set deg $P = \rho(P) = \rho(\hat{1})$.

Two finite graded poset are isomorphic if there exists an order preserving bijection between them.

Denote by \mathscr{R} the graded free abelian group with basis the set of all isomorphism classes of finite graded posets.

The structure of the graded connected Hopf algebra on \mathscr{R} :

The multiplication $P \cdot Q$ is a cartesian product $P \times Q$ of posets P and Q:

Let $x, u \in P$ and $y, v \in Q$. Then $(x, y) \leq (u, v)$ if and only if $x \leq u$ and $y \leq v$.

The unit element in $\mathscr R$ is the poset with one element $\hat{0}=\hat{1}.$

The comultiplication is

$$\Delta(P) = \sum_{\hat{0} \leqslant z \leqslant \hat{1}} [\hat{0}, z] \otimes [z, \hat{1}],$$

were [x, y] is the subposet $\{z \in P | x \leq z \leq y\}$.

The counit ε is

$$arepsilon(P) = egin{cases} 1, & ext{if } \hat{0} = \hat{1}; \ 0, & ext{else} \end{cases}$$

The antipode χ is

$$\chi(P) = \sum_{k \ge 0} \sum_{\{c_k\}} (-1)^k [x_0, x_1] \cdot [x_1, x_2] \dots [x_{k-1}, x_k]$$

where $c_k = (\hat{0} = x_0 < x_1 < \dots < x_k = \hat{1})$

19

Example. The simplest Boolean algebra $B_1 = {\hat{0}, \hat{1}}$ is the face lattice of the point pt

$$\Delta(B_1) = 1 \otimes B_1 + B_1 \otimes 1$$
$$\chi(B_1) = -B_1$$

There is a natural linear mapping $L : \mathscr{P} \to \mathscr{R}$ of degree +1 that sends a polytope P to its face lattice L(P).

The mapping *L* is <u>injective</u>, but it is <u>not</u> a <u>ring</u> <u>homomorphism</u>, since it doesn't preserve a unit: the unit of \mathscr{P} is a point pt and $L(pt) = B_1$, while the unit of \mathscr{R} is a one-element set $\{\hat{0} = \hat{1}\}$.

Remark. The face lattice $L(P \times Q)$ of $P \times Q$ contains the empty face \emptyset , which can be considered as $\emptyset \times \emptyset$, but evidently has no faces of the form $F \times \emptyset$ or $\emptyset \times G$, where F and G are non-empty faces of P and Q respectively. Consider the linear operator $*: \mathscr{P} \to \mathscr{P}$ such that *(P) is the polytope P^* polar to a polytope P. There is a natural linear mapping of degree 0

 $l = L * d * : \mathscr{P} \to \mathscr{R} : l(\mathrm{pt}) = \{\hat{0}\}, \ l(P) = L((dP^*)^*).$

- The operation **d** preserves the linear space of all simplicial polytopes.
- For a simple polytope P^n we have $*d * (P^n) = f_0(P^n)\Delta^{n-1}$ and $l(P^n) = f_0L(\Delta^{n-1}) = f_0\{\hat{0}, \hat{1}\}^n = f_0B_1^n$, where $f_0(P^n)$ is the number of vertices of P^n , and $\{\hat{0}, \hat{1}\}^n = B_1^n = B_n$ is a Boolean algebra. For example, $L(\Delta^n) = B_1^{n+1}$ and $l(\Delta^n) = (n+1)B_1^n$.

Proposition. *l* is a homomorphism of graded rings.

Proof. We have

$$l(P) = \sum_{v} [v, P],$$

where [v, P] is the interval between the vertex v and the polytope P in the face lattice L(P).

Then

$$l(P \times Q) = \sum_{v \times w} [v \times w, P \times Q] = \sum_{v \times w} [v, P] \times [w, Q] =$$
$$= \left(\sum_{v} [v, P]\right) \cdot \left(\sum_{w} [w, Q]\right) = l(P) \cdot l(Q)$$

Here v, w are vertexes of P and Q respectively.

Definition. Set $\Delta^{-1} = \emptyset$. Consider the linear span of all Boolean algebras $B_n = {\hat{0}, \hat{1}}^n = L(\Delta^{n-1}), n \ge 0$

$$\mathscr{B} = \mathrm{Ls}(1, B_1, B_2, \dots) \subset \mathscr{R}.$$

We have $B_i B_i = B_{i+j}$, so it is a subring in \mathscr{R} . Let us denote $x = B_1$. Since $\Delta x = 1 \otimes x + x \otimes 1$, it is a Hopf subalgebra isomorphic to the Hopf algebra $\mathbb{Z}[x]$, $\Delta x = 1 \otimes x + x \otimes 1$.

Proposition. The image of

$$l: \mathscr{P}_S \longrightarrow \mathscr{R}$$

is a \mathbb{Z} -subalgebra in $\mathscr{B} = \mathbb{Z}[x]$ multiplicatively generated by 2x and x^2 , that is

$$l(\mathcal{P}_s) = \mathbb{Z}[x_1, x_2]/(x_1^2 - 4x_2)$$

where $\deg x_1 = 1$, $\deg x_2 = 2$.

<u>*Proof.*</u> We have $l(\Delta^1) = x_1$, $l(P_m^2) = mx^2 = mx_2$. Thus $x_1 = l(\Delta^1) = 2x$ and $x_2 = l(P_4^2 - \Delta^2) = x^2$. On the other hand $l(P^{2n+1}) = f_0(P^{2n+1})B_1^{2n+1}$ where $f_0(P^{2n+1})$ is even. Let us denote $\rho(x, y) = \rho(y) - \rho(x)$ for $x \leq y$. Richard Ehrenborg introduced the *F*-quasi-symmetric function of a graded poset *P* of rank *n*

$$F(P) = \sum M_{(\rho(x_0, x_1), \rho(x_1, x_2), \dots, \rho(x_k, x_{k+1}))} = \sum_{\substack{0 < a_1 < \dots < a_k < n}} f_{a_1, \dots, a_k}(P) M_{(a_1, a_2 - a_1, \dots, n - a_k)}$$

where the first sum ranges over all chains $\hat{0} = x_0 < x_1 < \cdots < x_{k+1} = \hat{1}$ from $\hat{0}$ to $\hat{1}$, and f_{a_1, \ldots, a_k} are flag numbers.

This mapping induces a Hopf algebra homomorphism

 $F: \mathscr{R} \to \operatorname{QSym}[t_1, t_2, \dots].$

Definition. For a composition $\omega = (j_1, \ldots, j_k)$ let us define the composition $\omega^* = (j_k, \ldots, j_1)$.

The correspondence $M_{\omega} \rightarrow (M_{\omega})^* = M_{\omega^*}$ defines an involutory ring homomorphism

*: QSym[
$$t_1, t_2, \dots$$
] \rightarrow QSym[t_1, t_2, \dots].

Proposition. For a polytope P^n

$$F(l(P^n))^* = \mathscr{F}(0, t_1, t_2, \dots)(P^n)$$
 i.e. $*\circ F \circ l = \mathscr{F}|_{\alpha=0}$.

Proposition. We have

$$L = l \circ (C - \frac{1}{2}[I]),$$

where *C* is a cone operator and [I] is the operator of multiplication by the interval *I*. So the images of the maps *L* and *l* over $\mathbb{Z}[\frac{1}{2}]$ in dimensions $n \ge 1$ coincide.

Remark. The homomorphism l is not injective: we see that on the ring of simple polytopes it remembers only the number of vertices. This Proposition shows that l is invective on the image of the operator $C - \frac{1}{2}[I]$.

Define the operator

$$C : QSym[t_1, ..., t_m][\alpha] \to QSym[t_1, ..., t_{m+1}][\alpha]$$

such that $f_{m+1}(CP^n) = (Cf_m)(P^n)$. Then
 $(Cg)(\alpha, t_1, ..., t_{m+1}) =$
 $= (\alpha + t_1 + \dots + t_{m+1})(\alpha, t_1, \dots, t_{m+1}) +$
 $+ t_{m+1}g(t_{m+1}, t_1, \dots, t_m) + t_mg(t_m, t_1, \dots, t_{m-1}, 0) +$
 $+ \dots + t_ig(t_i, t_1, \dots, t_{i-1}, 0, \dots, 0) + \dots + t_1g(t_1, 0, \dots, 0)$

Corollary.

$$F(L(P))^* = C\mathscr{F}(P)|_{\alpha=0} - \sigma_1 \mathscr{F}(P)|_{\alpha=0},$$

where $\sigma_1 = \sum_{i=1}^{\infty} t_i = M_{(1)}.$

25

Set $\Lambda = (C - \sigma_1)|_{\alpha=0}$.

The operator Λ has a very simple form on elementary monomials

$$\Lambda(\alpha^{a_1}M_{(n-a_k,\dots,a_2-a_1)}) = M_{(n-a_k,\dots,a_2-a_1,a_1+1)}$$

The relation between the Ehrenborg F-quasi-symmetric function and the flag \mathscr{F} -polynomial can be illustrated by two commutative diagrams

$$\begin{array}{ccc} \mathscr{P} & \xrightarrow{\mathscr{F}} & \operatorname{QSym}[t_1, t_2, \dots][\alpha] \\ i & & & \\ \downarrow & & & \\ \mathscr{R} & \xrightarrow{* \circ F} & \operatorname{QSym}[t_1, t_2, \dots] \end{array}$$

$$\begin{array}{cccc} \mathscr{P} & \xrightarrow{\mathscr{F}} & \operatorname{QSym}[t_1, t_2, \dots][\alpha] \\ L & & & \Lambda \\ \mathscr{R} & \xrightarrow{* \circ F} & \operatorname{QSym}[t_1, t_2, \dots] \end{array}$$

Definition. By a *Hopf comodule* (or *Milnor comodule*) over a Hopf algebra X we mean an algebra M with a unit provided M is a comodule over X with a coaction $b: M \to X \otimes M$ such that b(uv) = b(u)b(v), i.e. such that b is a homomorphism of rings.

The ring homomorphism l can be extended to a right graded Hopf comodule structure on \mathscr{P}

Proposition. The homomorphism $\Delta : \mathscr{P} \to \mathscr{P} \otimes \mathscr{R}$:

$$\Delta(P^n) = \sum_{F \subseteq P^n} F \otimes [F, P^n],$$

defines on \mathscr{P} a right graded Hopf comodule structure over \mathscr{R} such that

$$(\varepsilon \otimes \mathrm{id})\Delta P = 1 \otimes l(P)$$

Corollary.

• Any ring homomorphism $\varphi : \mathscr{P} \to \mathbb{Z}$ defines a ring homomorphism $\mathscr{P} \to \mathscr{R}$

$$\mathscr{P} \xrightarrow{\Delta} \mathscr{P} \otimes \mathscr{R} \xrightarrow{\varphi \otimes \mathsf{id}} \mathbb{Z} \otimes \mathscr{R} \simeq \mathscr{R}$$

• Any homomorphism of abelian groups $\psi : \mathscr{R} \to \mathbb{Z}$ defines a linear operator $\Psi \in \mathscr{L}(\mathscr{P})$

$$\mathscr{P} \xrightarrow{\Delta} \mathscr{P} \otimes \mathscr{R} \xrightarrow{\mathsf{id} \otimes \psi} \mathscr{P} \otimes \mathbb{Z} \simeq \mathscr{P}$$

• In particular, if $\psi : \mathscr{R} \to \mathbb{Z}$ is a multiplicative homomorphism, then Ψ is a ring homomorphism.

Example. Let $\varphi = \xi_{\alpha}$. Then we obtain the ring homomorphism $l_{\alpha} : \mathscr{P} \to \mathscr{R}[\alpha]$ defined as

$$l_{\alpha}(P^n) = (\xi_{\alpha} \otimes \mathrm{id})\Delta P^n = \sum_{F \subseteq P} \alpha^{\dim F}[F, P]$$

- If we set $\alpha = 0$, then we obtain a usual homomorphism l.
- On the ring of simple polytopes $\mathscr{P}_{\mathcal{S}}$ we have

$$l_{\alpha}(P^{n}) = \sum_{F \subseteq P^{n}} \alpha^{\dim F} \{\hat{0}, \hat{1}\}^{n - \dim F} =$$
$$= \sum_{F \subseteq P^{n}} \alpha^{\dim F} x^{n - \dim F} = f_{1}(\alpha, x)$$

is a homogeneous f-polynomial in two variables.

Set $F(\alpha) = \alpha$. Then we have the ring homomorphism $F: \mathscr{R}[\alpha] \to \operatorname{QSym}[t_1, t_1, \dots][\alpha]$.

Proposition. Let P^n be an *n*-dimensional polytope. Then

$$F(l_{\alpha}(P^n)) = \mathscr{F}(P^n)^*$$

Proposition. The following diagram commutes:

