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Abstract

Nowadays Hopf algebras is one of the well-known tools
in combinatorics.

To study the combinatorics of convex polytopes we
develop the approach based on the ring & of combi-
natorial convex polytopes and flag-vector transforma-
tion .7 : & — QSym|«a], where QSym is the ring of
quasisymmetric functions. We show that the ring
of polytopes has a natural Hopf comodule structure over
the Rota-Hopf algebra % of posets.

As a corollary we build a ring homomorphism
lo: &P — RZ[a] such that F(lo(P)) = #(P)*, where
F: % — QSym is the Ehrenborg transformation

of posets.

The talk is based on the papers:

[1] V. M. Buchstaber, Ring of Simple Polytopes and Differential
Equations., Proceedings of the Steklov Institute of Mathematics,
v. 263, 2008, 1-25.

[2] V. M. Buchstaber, N. Yu. Erokhovets,
Ring of polytopes, quasisymmetric functions and Fibonacci
numbers., see arXiv: 1002.0810 v1 [math CO] 3 Feb 2010.
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Differential ring of combinatorial polytopes

Definition. Two polytopes P; and P of the same
dimension are said to be combinatorially equivalent

if there is a bijection between their sets of faces
that preserves the inclusion relation.

Definition. A combinatorial polytope is a class

of combinatorial equivalent polytopes.

Denote by 222" the free abelian group generated by all
n-dimensional combinatorial polytopes.

For n > 1 we have the direct sum
33271 _ Z Qan,Q(m—n)
m>n+1

where P ¢ g72n.2(m=n) it it is a polytope with m facets
and rank 22202(m=n) < o5 for any fixed n and m.



Definition. The product of polytopes turns the direct
sum

m—1
P — Z (@271 _ @0+ Z Z L@Qn,Q(m—n)
n=0 m>=2 n=1
into a bigraded commutative associative ring,
the ring of polytopes. The unit is PY a point.

The direct product P{' x Pj" of simple polytopes
P[" and P} is a simple polytope as well.

Thus the ring £2 generated by simple polytopes is
a subring in .

A polytope is indecomposable if it can not be repre-
sented as a product of two other polytopes of positive
dimensions.

Theorem. The ring &2 is a polynomial ring generated
by indecomposable combinatorial polytopes.



Let P" be a polytope. Denote by dP" the disjoint union
of all its facets.

Lemma. There is a linear operator of degree —2

d: P — P,

such that
d(P{'' P}?) = (dP["")Py? + P (dPy)?).

Thus &2 is a differential ring, and < is a differential

subring in .

Examples:
dI" = n(d)[" ! = 2n1" 1,

dA" = (n+ 1A

where A" is the standard rn-simplex and
[" =1 x --- x I is the standard rn-cube.



Face-polynomial (f-polynomial)
Consider the linear map
f: &P — Zla,t],

which sends a polytope P" to the homogeneous
face-polynomial

F(PY) = o +f, 110"t fqat™ T fy

where [, = [ ,—p(P") is the number of its k-dim
faces.

Thus f,_1 1 is the number of facets and [y, is the
number of vertices.

Theorem.
1. The mapping [ is a ring homomorphism.

2. Let P be a polytope. Then
f(dP) = 5 (P)

if and only if P is simple.



Dehn-Sommerville relations

Theorem. For any simple polytope P" we have

[(P") (e, t) = [(P")(—cv, 0 + 1).

Theorem. Letf: A — 7|, t] be a linear map such that
. o~ .
[(dP") = af(P”) and f(P")|;—0 = a".

Then [ (P") = [(P™).



Flag /-vectors

Let P" be an n-dimensional polytope and
w=Aay,...,a,} C{0,1,...,n—1}.
A flag number [, = [q,, ..., a, is the number of increasing

ceey

sequences of faces
F' Cc F2 C ... C F%*, dimF% = q;.

For w = {i} the number fr;y = f; is just the number
of i-dimensional faces.

The collection {/,} of all the flag numbers is called
a flag f -vector of the polytope P".
By the definition fg = 1.

For n > 1 let U" be the set of subsets
wC {0,1,...,n— 2} such that w contains no
two consecutive integers.

The cardinality of W" is equal to the n-th Fibonacci
number ¢, (ch = ¢,_1 +¢,_9, cg =1, ¢; = 1).



Bayer—Billera group of polytopes

For any polytope P there exists a cone CP and

a suspension BP. These two operations are defined on
combinatorial polytopes and can be extended to linear
operators on the ring 4.

It is natural to set B& =1=Cgd.

Definition. For n > 1 let Q)" be the set of n-dimensional
polytopes that arises when we apply to the empty set &
words in B and C that end in C2 and contain no adjacent
B’s.

Each word of length n + 1 from the set ()" either has
the form CQ, Q € Q" 1, or BCQ, Q € Q" 2, so
cardinality of the set 2" satisfies the Fibonacci relation
Q7 = Q"1 + 9% 2|. Since |Q!| = [{C?}| =1, and
Q2| = [{C3, BC?}| = 2, we see that || = ¢, = |T7].



Theorem. (M. Bayer and L. Billera) Let n > 1. Then

1. Forallw C {0, 1,...,n—1} there is a nontrivial linear
relation expressing f,(P) in terms of [ ,(P), &' € W7,
which holds for all n-dimensional polytopes.

2. The flag f-vectors of the c; elements of Q" are
affinely independent.

Thus the flag f-vectors {f /(P")} /cyn Span an

(cn — 1)-dimensional affine hyperplane defined by

the equation [ = 1.

Let us identify the words in Q" with the sets in W"
in such a way that the word

crtl-argcur—ar—1-1g  pcai—1
corresponds to the set {a; — 3,...,a;, — 3}.
Let us set C < B and order the words lexicographically.
Consider a (¢ X cp)-matrix K"

kQ.w =1(Q), Q€ Q" we I

Theorem. det(K") = 1.

10



Faces-operator

Let P" be a polytope. Denote by d,P", k > 0,
the disjoint union of all its (n — k)-dimensional faces.

Lemma. There is a linear operator of degree —2k&
dki 32 — @
such that

dyP'Py? = Py k(df{“)(d,-P;?).

Definition. A faces-operator for ¢t is the linear map

O(t): P — P[] - DE)(PY) = S d, Pk,
k=0

Theorem.
1. ®(¢) is a ring homomorphism.

2. (1)(P") = exp(td)(P") if and only if P" is simple.

3. The composition

o(a.t): 2 2 2111 8 71011,

where £(a)(P™) = o' and &(a)t = ¢, is the face-
polynomial ring homomorphism /.
11



Flag-vector polynomial

Let ®(#,) be the faces-operator for #,, k= 1,...,m.
Set ®(¢1) = ®(¢1) and consider the operators

El\)(fm)i ‘@[tl’”"tm—l] —>:@[f1,...,l‘m], m > 1,

such that (1) (P") = ®(tn)(P") and P(tm)(t;) = t;,
1 <i<m.

Introduce the ring homomorphisms
F(m): P — Pty,...,tn], m > 1,

where .7 (1) = ®(¢;) and recursively . (m), m > 1, is
the composition

| (I)tm
TN iyt 02 Dl bl
We obtain the operator
Fm)y=1+> 3 d¢;m)
q=1 |I|=q
whereJ = (ji,...,jp), ; #0, i=1,...,k, 1 <k <m,

I =i+ +jp d=dj--d, tjztfll---tg‘f
and
(s m) = > tﬁ 1k,

1<l << p<m

12



Algebra of quasisymmetric functions

Definition. A composition J of a number 7 is
an ordered set J = (ji,...,js), /; = 1, such that
n=j +jo+---+7j, Letus denote |/| =n.

The number of compositions of 7 into exactly & parts
is given by the binomial coefficient (Z:D

Definition. A quasisymmetric monomial in m variables for
a composition J = (ji,...,Jjs), B < m, is the polynomial

(tsmy= 3k

1<l << lp<m

Lemma. The polynomial [/ € Zl[t{,...,tm] is a linear
combination of quasisymmetric monomials if and only if
f(ty,...,tm) satisfies the following conditions:

[, 0,83, ..., t,_1,0) = (0,8, 89, ..., t,_1) =
=[(41,0,%9, ..., tp_1)=---=[(,.. ., ty_9,0,L,_1)-

Example. We have the compositions of 3:

(1,1,1), (1,2), (2,1), (3).
The quasisymmetric monomials of degree 3 in Z[t{, t9, t3]:
fitgls; 1115+ 1115 +1ot3; (3o + 123+ 15155 17 +15+13,
and for m = 3 we have the conditions:
[(t,19,0) = f(0, 71, 89) = [(11,0, f9).

13



Let QSym?2"(m) C Zt, ..., tm] be the subgroup
generated by the quasisymmetric monomials C(t’; m)
corresponding to all compositions J = (ji, ..., js) of n,
where k& < m. It is easy to see that for k. < m — 1

C(tj;m)(tl’ JEI ZLI?’L—I’O) — C(tjam — 1)(t1’ JEI tm—l)-
Set QSym*" = lim QSym*"(m).

m

An algebra of quasisymmetric functions QSym is
a graded subring = 3= QSym2” in

n=0
_ 2n _ q;
V=> V"=1lmZ[t,...,tml,
n=0 m

where deg f;, = 2.

Theorem. (M.Hazewinkel, 2001)
The algebra of quasisymmetric functions QSym is a free
commutative algebra of polynomials over the integers.

Since rank QSme” =271 4 > 1, the numbers 3; of
the multiplicative generators of degree 2i of QSym can
be found by a recursive relation:

1 —1¢ >

1
I—Qt_il;ll(l—ti)ﬁi

14



Flag-vector transformation
Set 7 (t) = lim.#(m). Denote by #(a;t) the ring
homomorphism

(o)

279 ¢ Qsym 24 QSym[a] C Za: 1],

where £(«) is the extension of the ring homomorphism

ela): P — Zla] : ()P =d", n>0,
such that 2(a)(t;) = ¢;.

Lemma. Let P" be an n-dim polytope. Then

n
FPY ;) =a"+ > "> | (P
q=1 /=g

is a homogeneous polynomial of degree 2x.

Here [,)(P") for J = (ji, ..., ji) is the w-flag number
of P* with w=w(/) = (i; < --- < i), where

g =n—q, .., =l 1t jpy+2 - lp = lp—] ]2
and g = |/

Definition. The ring homomorphism % («; t) sends
a polytope P to the flag-vector polynomial . (P™)(«; t).
15



Bayer—Billera relations
Theorem. The image of the homomorphism
F(a,): 27" — QSym(m)[al, m > n,

consists of all homogeneous polynomials f(«, ¢y, ..., tm)
of degree n satisfying the equations:

1. [(a,ty, —t, 13, ..., tm) = [(,0,0,13, ..., tm);
f(oz, tl,fQ, —tQ,f4, c. ,fm) = f(oz, fl,0,0, f4...,fm);
f(O[, tl, <. ',tm—Q,tm—l’ _tm—l) — f(a’ tl’ s e 9tm—2’05 O)’

2. f(—()é,fl,...,fm_l,&)Z]C(()é,fl,...,tm_l,O);

These equations are a perfected form of the Bayer-
Billera (generalized Dehn-Sommerville) relations.

16



Corollary. The image of the restriction of .% (a, t)
on ngn consists of all homogeneous polynomials

fla, ty, ... tm) = [1la, t1 + ... + tm)

where [ («, t) is a homogeneous polynomial in two
variables of degree 7 satisfying the equations

[1(—a,a+1t) = fi(a, 1).

This equation is a perfected form of the classical
Dehn-Sommerville relations (see slide 7).

Theorem. The image of the ring homomorphism

F(a,t): P QQ — QSym|[a] ® Q

is a free polynomial algebra with the structure

of the graded Hopf algebra dual to the free associative

Lie-Hopf algebra Q(uy, uo), where degu; = 2i and
Au;j=u; Q1 +1Q@u;, i=1,2.

17



The Rota-Hopf Algebra

Let P be a finite poset with a minimal element 0 and

A

a maximal element 1.

An element y in P covers another element x in P,
if x < y and there is no z in P such that x < z < y.

A poset P is called graded, if there exists
a rank function p : & — Z such that p(0) =0 and
p(y) = p(x) + 1 if y covers x.

Set deg P = p(P) = p(1).

Two finite graded poset are isomorphic if there exists
an order preserving bijection between them.

Denote by & the graded free abelian group with
basis the set of all isomorphism classes of finite graded
posets.

18



The structure of the graded connected Hopf algebra

on %:

The multiplication P - @ is a cartesian product P X @
of posets P and Q:

Let x,u € P and y,v € Q. Then (x,y) < (4, 0)
if and only if x < u and y < v.

The unit element in &% is the poset with one element
0=1.
The comultiplication is
AP)= Y [0zl ® [z 1],
nggi

were [x, y] is the subposet {z € P|lx < z < y}.

The counit ¢ is
1, if0=1;
e(P)=1<" ! ’
0, else

The antipode Y is
X(P) = > ST (= DF[xg, 2] - [y, x0) - [ 1, 5]

k}O{Ck}
where ¢, = (0 =xg < xy <--- < x, = 1)
19



Example. The simplest Boolean algebra B; = {0, 1} is
the face lattice of the point pt

AB)=1®B +B;® I
x(B1) = —B;

There is a natural linear mapping L : & — %
of degree +1 that sends a polytope P to its face lattice

L(P).

The mapping L is injective, but it is not a ring
homomorphism, since it doesn’t preserve a unit:
the unit of & is a point pt and L(pt) = By,

while the unit of Z is a one-element set {0 = 1}.

Remark. The face lattice L(P x Q) of P x @ contains

the empty face &, which can be considered as & X J,
but evidently has no faces of the form F x & or

& x G, where F and G are non-empty faces of P and
Q respectively.

20



Consider the linear operator x: & — 22 such that *(P)
is the polytope P* polar to a polytope P.
There is a natural linear mapping of degree 0

[ =Lxdx: P — % : 1(pt) = {0}, [(P) = L ((dP*)").

e The operation xd* preserves the linear space of all
simplicial polytopes.

e For a simple polytope P" we have
xd x (P") = fo(PM)An—]
and I(P") = foL(A"1) = fo{0, 13" = foB],
where fo(P") is the number of vertices of P”,

and {0, 1}" = BY = By is a Boolean algebra.

For example,
L(A™) = B! and [(A") = (n + 1)BY.

21



Proposition. [/ is a homomorphism of graded rings.

Proof. We have

[(P) =) [v,P],

0
where [v, P| is the interval between the vertex v and
the polytope P in the face lattice L(P).

Then

[(PxQ) = Z[vxw,PxQ] = Z[U,P]x[w,Q] =

UXw UXw

- (Z[U,P]> - <Z[w,Q]> = 1(P) - [(Q)

Here v, w are vertexes of P and @) respectively.

22



Definition. Set A—! = &. Consider the linear span
of all Boolean algebras B, = {f), i}”’ = L(A”_l), n>=0

% =1s(1,B,By,...) C Z.

We have B;B; = B;,j, so it is a subring in Z.

Let us denote x = By. Since Ax =1Qx+x® 1, itis
a Hopf subalgebra isomorphic

to the Hopf algebra Z[x], Ax =1 x+x® 1.

Proposition. The image of

[: 4@3 — L@
is a Z-subalgebra in £ = Z[x] multiplicatively
generated by 2x and x2, that is
((Ps) = Lxy, x9)/(xf — 4xp)

where deg x| = 1, deg xo = 2.

Proof. We have [(Al) = X1, Z(P,%) = mx? = mxo.
Thus x| = [(Al) = 2x and Xg = l(P42 — A?) = x2
On the other hand [(P2"t]) = fO(PQ’Hl)B%nJrl where
fo(P27t1) is even. (]

23



Let us denote p(x, y) = p(y) — p(x) for x < y.
Richard Ehrenborg introduced the F-quasi-symmetric
function of a graded poset P of rank n

F(P) =3 Mip(xg, x1). o1, 59)s oo plotie Xp11) =
= Z fal,...,ak(P)M(al,QQ—al,...,n—ak)

O<a|<--<ap<n
where the first sum ranges over all chains
0=xp<x;<---<xpy;=1fromO0tol,and
lay,...,a, are flag numbers.
This mapping induces a Hopf algebra homomorphism

F:% — QSym[tl, f2, Ce ]
Definition. For a composition w = (ji, ..., j3)

let us define the composition w* = (j, ..., j1)-

The correspondence M, — (My)* = M_+ defines an
involutory ring homomorphism

«: QSyml(ty, o, ... ] — QSyml[z, %o, ... ].

Proposition. For a polytope P"
F(I(P")* =.7(0,t,t,...)(P") i.e. xoFol =.F|,_g.

24



Proposition. We have

]
Lzlo(C—§[1]),

where C is a cone operator and [/] is the operator
of multiplication by the interval /. So the images of the
maps L and [ over Z[%] in dimensions n > 1 coincide.

Remark. The homomorphism [ is not injective: we see
that on the ring of simple polytopes it remembers only
the number of vertices. This Proposition shows that [ is
invective on the image of the operator C — %[I].

Define the operator

C: QSyml[ty,...,tm][a] — QSym[t{, ..., ¢tpe1]la]
such that [, {(CP") = (Cfm)(P"). Then

= (a+1t+ -+ ity )ty . b)) +

+ tm—l—lg(tm—l—l’ [y, tm) + tmg(tm, ST tm—l’o) +
+- - '_I'tig(ti’ Iy, ti_l,O, . ,O)—i—- . -+f1g(t1,0, - ,O)

Corollary.

F(L(P))* = CF(P)|q=0 — 017 (P)|o—0 ,

o0
where o1 = Z ti IM(I).
i=1

25



Set A = (C —o01)|,—0-
The operator A has a very simple form on elementary
monomials

A(aalM(l’L—ak,...,QQ—al)) — M(n—ak ..... ag—al,a1+1)

The relation between the Ehrenborg F-quasi-symmetric
function and the flag .# -polynomial can be illustrated by
two commutative diagrams

2 2. QSymlt, ty,. .. ][a]

(| a=0|

# *°L, QSymlt|, to,...]

2 2. QSym[ty, b, ...][a]

L] A
% *°C QSymlt, te, ... ]

26



Definition. By a Hopf comodule (or Milnor comodule)
over a Hopf algebra X we mean an algebra M with a
unit provided M is a comodule over X with a coaction
b: M — X ® M such that b(uv) = b(u)b(v), i.e. such
that b is a homomorphism of rings.

The ring homomorphism [ can be extended to a right
graded Hopf comodule structure on &

Proposition. The homomorphism A : & — & ® Z#:

AP = > F®I[F,P",
FCpn

defines on & a right graded Hopf comodule structure
over &% such that

(e ®iId)AP =1 ® [(P)

27



Corollary.

e Any ring homomorphism ¢ : &2 — 7 defines a ring
homomorphism & — &%

®id

3”—>33®% 7Q K ~%

e Any homomorphism of abelian groups ¢ : % — Z
defines a linear operator ¥ € £ ()

25 202 % 297~ P

e In particular, if ¢ : # — Z is a multiplicative ho-
momorphism, then W is a ring homomorphism.

28



Example. Let ¢ = £,. Then we obtain the ring homo-
morphism [n : & — Z[a] defined as

la(P") = (éa @ 1d)AP" = 3 o4MF[F P
FCP

e If we set a = 0, then we obtain a usual homomor-
phism /.

e On the ring of simple polytopes &5 we have

la(Pn) _ Z adimF{O’ i}n—dimF _
FCpn

_ Z adimFxn—dimF _ ]cl (Oé,)C)
FCpn

is a homogeneous f-polynomial in two variables.

29



Set F(a) = «. Then we have the ring homomorphism

F: Zla] — QSymlty, 11, ... [l

Proposition. Let P" be an n-dimensional polytope.

Then
F(lo(P")) = F(P")*

Proposition. The following diagram commutes:

N QSym[ty, to, . .. ][]

P
Al |

P2o% L% Qsym[ty, to, ... ][a] ® QSyml[t;, to, .

30
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