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Abstract

Nowadays Hopf algebras is one of the well-known tools
in combinatorics.

To study the combinatorics of convex polytopes we
develop the approach based on the ring P of combi-
natorial convex polytopes and flag-vector transforma-
tion F : P → QSym[α], where QSym is the ring of
quasisymmetric functions. We show that the ring
of polytopes has a natural Hopf comodule structure over
the Rota-Hopf algebra R of posets.

As a corollary we build a ring homomorphism
lα : P → R[α] such that F(lα(P)) = F (P)∗, where
F : R → QSym is the Ehrenborg transformation
of posets.

The talk is based on the papers:

[1] V. M. Buchstaber, Ring of Simple Polytopes and Differential

Equations., Proceedings of the Steklov Institute of Mathematics,

v. 263, 2008, 1–25.

[2] V. M. Buchstaber, N. Yu. Erokhovets,

Ring of polytopes, quasisymmetric functions and Fibonacci

numbers., see arXiv: 1002.0810 v1 [math CO] 3 Feb 2010.
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Differential ring of combinatorial polytopes

Definition. Two polytopes P1 and P2 of the same
dimension are said to be combinatorially equivalent
if there is a bijection between their sets of faces
that preserves the inclusion relation.

Definition. A combinatorial polytope is a class
of combinatorial equivalent polytopes.

Denote by P2n the free abelian group generated by all
n-dimensional combinatorial polytopes.

For n > 1 we have the direct sum

P2n =
∑

m>n+1
P2n,2(m−n),

where Pn ∈ P2n,2(m−n) if it is a polytope with m facets
and rank P2n,2(m−n) <∞ for any fixed n and m.
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Definition. The product of polytopes turns the direct
sum

P =
∑

n>0
P2n = P0 +

∑

m>2

m−1∑

n=1
P2n,2(m−n)

into a bigraded commutative associative ring,
the ring of polytopes. The unit is P0, a point.

The direct product Pn1 × Pm2 of simple polytopes
Pn1 and Pm2 is a simple polytope as well.

Thus the ring Ps generated by simple polytopes is
a subring in P.

A polytope is indecomposable if it can not be repre-
sented as a product of two other polytopes of positive
dimensions.

Theorem. The ring P is a polynomial ring generated
by indecomposable combinatorial polytopes.
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Let Pn be a polytope. Denote by dPn the disjoint union
of all its facets.

Lemma. There is a linear operator of degree −2

d : P −→ P ,

such that

d(Pn1
1 Pn2

2 ) = (dPn1
1 )Pn2

2 + Pn1
1 (dPn2

2 ).

Thus P is a differential ring, and Ps is a differential
subring in P.

Examples:

dIn = n(dI )In−1 = 2nIn−1,

d∆n = (n + 1)∆n−1,

where ∆n is the standard n-simplex and
In = I × · · · × I is the standard n-cube.
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Face-polynomial (f-polynomial)

Consider the linear map

f : P −→ Z[α, t],

which sends a polytope Pn to the homogeneous
face-polynomial

f (Pn) = αn+ fn−1,1α
n−1t+ · · ·+ f1,n−1αt

n−1 + f0,nt
n,

where fk,n−k = fk,n−k(Pn) is the number of its k-dim
faces.

Thus fn−1,1 is the number of facets and f0,n is the
number of vertices.

Theorem.
1. The mapping f is a ring homomorphism.
2. Let P be a polytope. Then

f (dP) = ∂
∂tf (P)

if and only if P is simple.
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Dehn–Sommerville relations

Theorem. For any simple polytope Pn we have

f (Pn)(α, t) = f (Pn)(−α,α + t).

Theorem. Let f̂ : Ps → Z[α, t] be a linear map such that

f̂ (dPn) =
∂

∂t
f̂ (Pn) and f̂ (Pn)|t=0 = αn.

Then f̂ (Pn) = f (Pn).
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Flag f -vectors

Let Pn be an n-dimensional polytope and
ω = {a1, . . . , ak} ⊂ {0, 1, . . . , n− 1}.
A flag number fω = fa1, ..., ak is the number of increasing
sequences of faces

Fa1 ⊂ Fa2 ⊂ · · · ⊂ Fak, dim Fai = ai.

For ω = {i} the number f{i} = fi is just the number
of i-dimensional faces.

The collection {fω} of all the flag numbers is called
a flag f -vector of the polytope Pn.
By the definition f∅ = 1.

For n > 1 let Ψn be the set of subsets
ω ⊂ {0, 1, . . . , n− 2} such that ω contains no
two consecutive integers.

The cardinality of Ψn is equal to the n-th Fibonacci
number cn (cn = cn−1 + cn−2, c0 = 1, c1 = 1).
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Bayer–Billera group of polytopes

For any polytope P there exists a cone CP and
a suspension BP. These two operations are defined on
combinatorial polytopes and can be extended to linear
operators on the ring P.
It is natural to set B∅ = 1 = C∅.

Definition. For n > 1 let Ωn be the set of n-dimensional
polytopes that arises when we apply to the empty set ∅
words in B and C that end in C2 and contain no adjacent
B’s.

Each word of length n + 1 from the set Ωn either has
the form CQ, Q ∈ Ωn−1, or BCQ, Q ∈ Ωn−2, so
cardinality of the set Ωn satisfies the Fibonacci relation
|Ωn| = |Ωn−1| + |Ωn−2|. Since |Ω1| = |{C2}| = 1, and
|Ω2| = |{C3,BC2}| = 2, we see that |Ωn| = cn = |Ψn|.
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Theorem. (M. Bayer and L. Billera) Let n > 1. Then

1. For all ω ⊆ {0, 1, . . . , n−1} there is a nontrivial linear
relation expressing fω(P) in terms of fω′(P), ω′ ∈ Ψn,
which holds for all n-dimensional polytopes.

2. The flag f -vectors of the cn elements of Ωn are
affinely independent.
Thus the flag f -vectors {fω′(Pn)}ω′∈Ψn span an
(cn − 1)-dimensional affine hyperplane defined by
the equation f∅ = 1.

Let us identify the words in Ωn with the sets in Ψn

in such a way that the word

Cn+1−akBCak−ak−1−1B . . .BCa1−1

corresponds to the set {a1 − 3, . . . , ak − 3}.
Let us set C < B and order the words lexicographically.
Consider a (cn × cn)-matrix Kn

kQ,ω = fω(Q), Q ∈ Ωn, ω ∈ Ψn.

Theorem. det(Kn) = 1.
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Faces-operator

Let Pn be a polytope. Denote by dkPn, k > 0,
the disjoint union of all its (n− k)-dimensional faces.

Lemma. There is a linear operator of degree −2k

dk : P −→ P

such that
dkP

n1
1 Pn2

2 =
∑

i+j=k
(diP

n1
1 )(djP

n2
2 ).

Definition. A faces-operator for t is the linear map

Φ(t) : P −→ P[t] : Φ(t)(Pn) =
∞∑
k=0

dkPntk.

Theorem.
1. Φ(t) is a ring homomorphism.

2. Φ(t)(Pn) = exp(td)(Pn) if and only if Pn is simple.

3. The composition

Φ(α, t) : P
Φ(t)−→ P[t]

ξ(α)−→ Z[α, t],

where ξ(α)(Pn) = αn and ξ(α)t = t, is the face-
polynomial ring homomorphism f .
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Flag-vector polynomial

Let Φ(tk) be the faces-operator for tk, k = 1, . . . ,m.
Set Φ̂(t1) = Φ(t1) and consider the operators

Φ̂(tm) : P[t1, . . . , tm−1] −→ P[t1, . . . , tm], m > 1,

such that Φ̂(tm)(Pn) = Φ(tm)(Pn) and Φ̂(tm)(ti) = ti,
1 6 i < m.

Introduce the ring homomorphisms

F (m) : P −→ P[t1, . . . , tm], m > 1,

where F (1) = Φ(t1) and recursively F (m), m > 1, is
the composition

P
F (m−1)−→ P[t1, . . . , tm−1]

Φ̂(tm)−→ P[t1, . . . , tm].

We obtain the operator

F (m) = 1 +
∑

q>1

∑

|J |=q
dJ ζ(tJ ;m)

where J = (j1, . . . , jk), ji 6= 0, i = 1, . . . , k, 1 6 k 6 m,

|J | = j1 + · · · + jk, dJ = djk · · · dj1, tJ = tj11 · · · t
jk
k

and

ζ(tJ ;m) =
∑

16l1<···<lk6m
tj1l1 · · · t

jk
lk
.
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Algebra of quasisymmetric functions

Definition. A composition J of a number n is
an ordered set J = (j1, . . . , jk), ji > 1, such that
n = j1 + j2 + · · · + jk. Let us denote |J | = n.

The number of compositions of n into exactly k parts
is given by the binomial coefficient

(
n−1
k−1

)
.

Definition. A quasisymmetric monomial in m variables for
a composition J = (j1, . . . , jk), k 6 m, is the polynomial

ζ(tJ ;m) =
∑

16l1<···<lk6m
tj1l1 . . . t

jk
lk

Lemma. The polynomial f ∈ Z[t1, . . . , tm] is a linear
combination of quasisymmetric monomials if and only if
f (t1, . . . , tm) satisfies the following conditions:

f (t1, t2, t3, . . . , tm−1, 0) = f (0, t1, t2, . . . , tm−1) =

= f (t1, 0, t2, . . . , tm−1) = · · · = f (t1, . . . , tm−2, 0, tm−1).

Example. We have the compositions of 3:

(1, 1, 1), (1, 2), (2, 1), (3).
The quasisymmetric monomials of degree 3 in Z[t1, t2, t3]:
t1t2t3; t1t22 + t1t23 + t2t23 ; t21t2 + t21t3 + t22t3; t31 + t32 + t33,

and for m = 3 we have the conditions:

f (t1, t2, 0) = f (0, t1, t2) = f (t1, 0, t2).
13



Let QSym2n(m) ⊂ Z[t1, . . . , tm] be the subgroup
generated by the quasisymmetric monomials ζ(tJ ;m)
corresponding to all compositions J = (j1, . . . , jk) of n,
where k 6 m. It is easy to see that for k 6 m− 1

ζ(tJ ;m)(t1, . . . , tm−1, 0) = ζ(tJ ;m− 1)(t1, . . . , tm−1).

Set QSym2n = lim←−m
QSym2n(m).

An algebra of quasisymmetric functions QSym is
a graded subring =

∑
n>0

QSym2n in

V =
∑

n>0
V2n = lim←−m

Z[t1, . . . , tm],

where deg tk = 2.

Theorem. (M.Hazewinkel, 2001)
The algebra of quasisymmetric functions QSym is a free
commutative algebra of polynomials over the integers.

Since rank QSym2n = 2n−1, n > 1, the numbers βi of
the multiplicative generators of degree 2i of QSym can
be found by a recursive relation:

1− t
1− 2t

=
∞∏

i=1

1

(1− ti)βi
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Flag-vector transformation

Set F (t) = lim←−F (m). Denote by F (α; t) the ring
homomorphism

P
F (t)−→ P ⊗ QSym

ε̂(α)−→ QSym[α] ⊂ Z[α; t],

where ε̂(α) is the extension of the ring homomorphism

ε(α) : P −→ Z[α] : ε(α)(Pn) = αn, n > 0,

such that ε̂(α)(ti) = ti.

Lemma. Let Pn be an n-dim polytope. Then

F (Pn)(α; t) = αn +
n∑

q=1
αn−q

∑

|J |=q
fω(J)(P

n)ζ(tJ)

is a homogeneous polynomial of degree 2n.

Here fω(J)(P
n) for J = (j1, . . . , jk) is the ω-flag number

of Pn with ω = ω(J) = (i1 < · · · < ik), where

i1 = n− q, . . . , il = il−1 + jk−l+2, . . . , ik = ik−1 + j2
and q = |J |.

Definition. The ring homomorphism F (α; t) sends
a polytope Pn to the flag-vector polynomial F (Pn)(α; t).
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Bayer–Billera relations

Theorem. The image of the homomorphism

F (α, t) : P2n −→ QSym(m)[α], m > n,

consists of all homogeneous polynomials f (α, t1, . . . , tm)
of degree n satisfying the equations:

1. f (α, t1,−t1, t3, . . . , tm) = f (α, 0, 0, t3, . . . , tm);

f (α, t1, t2,−t2, t4, . . . , tm) = f (α, t1, 0, 0, t4 . . . , tm);

. . .

f (α, t1, . . . , tm−2, tm−1,−tm−1) = f (α, t1, . . . , tm−2, 0, 0);

2. f (−α, t1, . . . , tm−1,α) = f (α, t1, . . . , tm−1, 0);

These equations are a perfected form of the Bayer-
Billera (generalized Dehn-Sommerville) relations.
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Corollary. The image of the restriction of F (α, t)
on P2n

S consists of all homogeneous polynomials

f (α, t1, . . . , tm) = f1(α, t1 + . . . + tm)

where f1(α, t) is a homogeneous polynomial in two
variables of degree n satisfying the equations

f1(−α,α + t) = f1(α, t).

This equation is a perfected form of the classical
Dehn-Sommerville relations (see slide 7).

Theorem. The image of the ring homomorphism

F (α, t) : P ⊗Q −→ QSym[α]⊗Q
is a free polynomial algebra with the structure
of the graded Hopf algebra dual to the free associative
Lie-Hopf algebra Q〈u1, u2〉, where deg ui = 2i and

∆ui = ui ⊗ 1 + 1⊗ ui, i = 1, 2.
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The Rota-Hopf Algebra

Let P be a finite poset with a minimal element 0̂ and
a maximal element 1̂.

An element y in P covers another element x in P,
if x < y and there is no z in P such that x < z < y.

A poset P is called graded, if there exists
a rank function ρ : P → Z such that ρ(0̂) = 0 and
ρ(y) = ρ(x) + 1 if y covers x.

Set degP = ρ(P) = ρ(1̂).

Two finite graded poset are isomorphic if there exists
an order preserving bijection between them.

Denote by R the graded free abelian group with
basis the set of all isomorphism classes of finite graded
posets.
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The structure of the graded connected Hopf algebra
on R:

The multiplication P ·Q is a cartesian product P ×Q
of posets P and Q:

Let x, u ∈ P and y, v ∈ Q. Then (x, y) 6 (u, v)
if and only if x 6 u and y 6 v.

The unit element in R is the poset with one element
0̂ = 1̂.

The comultiplication is

∆(P) =
∑

0̂6z61̂

[0̂, z]⊗ [z, 1̂],

were [x, y] is the subposet {z ∈ P|x 6 z 6 y}.
The counit ε is

ε(P) =





1, if 0̂ = 1̂;

0, else

The antipode χ is

χ(P) =
∑

k>0

∑

{ck}
(−1)k[x0, x1] · [x1, x2] . . . [xk−1, xk]

where ck = (0̂ = x0 < x1 < · · · < xk = 1̂)
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Example. The simplest Boolean algebra B1 = {0̂, 1̂} is
the face lattice of the point pt

∆(B1) = 1⊗ B1 + B1 ⊗ 1

χ(B1) = −B1

There is a natural linear mapping L : P → R

of degree +1 that sends a polytope P to its face lattice
L(P).

The mapping L is injective, but it is not a ring
homomorphism, since it doesn’t preserve a unit:
the unit of P is a point pt and L(pt) = B1,
while the unit of R is a one-element set {0̂ = 1̂}.

Remark. The face lattice L(P ×Q) of P ×Q contains
the empty face ∅, which can be considered as ∅×∅,
but evidently has no faces of the form F ×∅ or
∅ × G, where F and G are non-empty faces of P and
Q respectively.
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Consider the linear operator ∗ : P → P such that ∗(P)
is the polytope P∗ polar to a polytope P.
There is a natural linear mapping of degree 0

l = L∗d∗ : P → R : l(pt) = {0̂}, l(P) = L
(
(dP∗)∗

)
.

• The operation ∗d∗ preserves the linear space of all
simplicial polytopes.

• For a simple polytope Pn we have

∗d ∗ (Pn) = f0(Pn)∆n−1

and l(Pn) = f0L(∆n−1) = f0{0̂, 1̂}n = f0Bn1 ,

where f0(Pn) is the number of vertices of Pn,
and {0̂, 1̂}n = Bn1 = Bn is a Boolean algebra.

For example,
L(∆n) = Bn+1

1 and l(∆n) = (n + 1)Bn1 .
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Proposition. l is a homomorphism of graded rings.

Proof. We have

l(P) =
∑

v
[v,P],

where [v,P] is the interval between the vertex v and
the polytope P in the face lattice L(P).

Then

l(P×Q) =
∑

v×w
[v×w,P×Q] =

∑

v×w
[v,P]× [w,Q] =

=

(∑

v
[v,P]

)
·
(∑

w
[w,Q]

)
= l(P) · l(Q)

Here v,w are vertexes of P and Q respectively.
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Definition. Set ∆−1 = ∅. Consider the linear span
of all Boolean algebras Bn = {0̂, 1̂}n = L(∆n−1), n > 0

B = Ls(1,B1,B2, . . . ) ⊂ R.

We have BiBi = Bi+j, so it is a subring in R.
Let us denote x = B1. Since ∆x = 1⊗ x + x ⊗ 1, it is
a Hopf subalgebra isomorphic
to the Hopf algebra Z[x], ∆x = 1⊗ x + x ⊗ 1.

Proposition. The image of

l : Ps −→ R

is a Z-subalgebra in B = Z[x] multiplicatively
generated by 2x and x2, that is

l(Ps) = Z[x1, x2]/(x
2
1 − 4x2)

where deg x1 = 1, deg x2 = 2.

Proof. We have l(∆1) = x1, l(P2
m) = mx2 = mx2.

Thus x1 = l(∆1) = 2x and x2 = l(P2
4 −∆2) = x2.

On the other hand l(P2n+1) = f0(P2n+1)B2n+1
1 where

f0(P2n+1) is even.
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Let us denote ρ(x, y) = ρ(y)− ρ(x) for x 6 y.
Richard Ehrenborg introduced the F-quasi-symmetric
function of a graded poset P of rank n

F(P) =
∑

M(ρ(x0, x1), ρ(x1, x2), ..., ρ(xk, xk+1)) =

=
∑

0<a1<···<ak<n
fa1, ..., ak(P)M(a1, a2−a1, ..., n−ak)

where the first sum ranges over all chains
0̂ = x0 < x1 < · · · < xk+1 = 1̂ from 0̂ to 1̂, and
fa1, ..., ak are flag numbers.
This mapping induces a Hopf algebra homomorphism

F : R → QSym[t1, t2, . . . ].

Definition. For a composition ω = (j1, . . . , jk)
let us define the composition ω∗ = (jk, . . . , j1).

The correspondence Mω → (Mω)∗ = Mω∗ defines an
involutory ring homomorphism

∗ : QSym[t1, t2, . . . ] → QSym[t1, t2, . . . ].

Proposition. For a polytope Pn

F(l(Pn))∗ = F (0, t1, t2, . . . )(P
n) i.e. ∗◦F◦l = F |α=0 .
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Proposition. We have

L = l ◦ (C − 1

2
[I ]),

where C is a cone operator and [I ] is the operator
of multiplication by the interval I . So the images of the
maps L and l over Z[12] in dimensions n > 1 coincide.

Remark. The homomorphism l is not injective: we see
that on the ring of simple polytopes it remembers only
the number of vertices. This Proposition shows that l is
invective on the image of the operator C − 1

2[I ].

Define the operator
C : QSym[t1, . . . , tm][α] → QSym[t1, . . . , tm+1][α]
such that fm+1(CPn) = (Cfm)(Pn). Then
(Cg)(α, t1, . . . , tm+1) =
= (α + t1 + · · · + tm+1)(α, t1, . . . , tm+1) +
+ tm+1g(tm+1, t1, . . . , tm) + tmg(tm, t1, . . . , tm−1, 0) +
+· · ·+tig(ti, t1, . . . , ti−1, 0, . . . , 0)+· · ·+t1g(t1, 0, . . . , 0)

Corollary.

F(L(P))∗ = CF (P)|α=0 − σ1F (P)|α=0 ,

where σ1 =
∞∑
i=1

ti = M(1).
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Set Λ = (C − σ1)|α=0 .
The operator Λ has a very simple form on elementary
monomials

Λ(αa1M(n−ak, ..., a2−a1)) = M(n−ak,..., a2−a1, a1+1)

The relation between the Ehrenborg F-quasi-symmetric
function and the flag F -polynomial can be illustrated by
two commutative diagrams

P
F−→ QSym[t1, t2, . . . ][α]

l
y α=0

y

R
∗◦F−−→ QSym[t1, t2, . . . ]

P
F−→ QSym[t1, t2, . . . ][α]

L
y Λ

y

R
∗◦F−−→ QSym[t1, t2, . . . ]

26



Definition. By a Hopf comodule (or Milnor comodule)
over a Hopf algebra X we mean an algebra M with a
unit provided M is a comodule over X with a coaction
b : M → X ⊗M such that b(uv) = b(u)b(v), i.e. such
that b is a homomorphism of rings.

The ring homomorphism l can be extended to a right
graded Hopf comodule structure on P

Proposition. The homomorphism ∆ : P → P ⊗R:

∆(Pn) =
∑

F⊆Pn
F ⊗ [F ,Pn],

defines on P a right graded Hopf comodule structure
over R such that

(ε⊗ id)∆P = 1⊗ l(P)
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Corollary.

• Any ring homomorphism ϕ : P → Z defines a ring
homomorphism P → R

P
∆−→ P ⊗R

ϕ⊗id−−−→ Z⊗R ' R

• Any homomorphism of abelian groups ψ : R → Z
defines a linear operator Ψ ∈ L (P)

P
∆−→ P ⊗R

id⊗ψ−−−→ P ⊗ Z ' P

• In particular, if ψ : R → Z is a multiplicative ho-
momorphism, then Ψ is a ring homomorphism.
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Example. Let ϕ = ξα. Then we obtain the ring homo-
morphism lα : P → R[α] defined as

lα(Pn) = (ξα ⊗ id)∆Pn =
∑

F⊆P
αdim F[F ,P]

• If we set α = 0, then we obtain a usual homomor-
phism l.

• On the ring of simple polytopes Ps we have

lα(Pn) =
∑

F⊆Pn
αdim F{0̂, 1̂}n−dim F =

=
∑

F⊆Pn
αdim Fxn−dim F = f1(α, x)

is a homogeneous f -polynomial in two variables.
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Set F(α) = α. Then we have the ring homomorphism
F : R[α] → QSym[t1, t1, . . . ][α].

Proposition. Let Pn be an n-dimensional polytope.
Then

F(lα(Pn)) = F (Pn)∗

Proposition. The following diagram commutes:

P
F ∗−−→ QSym[t1, t2, . . . ][α]

∆
y ∆

y

P ⊗R
F ∗⊗F−−−−→ QSym[t1, t2, . . . ][α]⊗ QSym[t1, t2, . . . ]
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