Ring of polytopes and the Rota-Hopf algebra

Buchstaber, VIctor

2010

MIMS EPrint: 2010.20

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

```
Reports available from: http://eprints.maths.manchester.ac.uk/
    And by contacting: The MIMS Secretary
    School of Mathematics
The University of Manchester
Manchester, M13 9PL, UK
```


Ring of polytopes and the Rota－Hopf algebra

Victor M．Buchstaber

Steklov Institute，RAS，Moscow
〈buchstab＠mi．ras．ru〉
School of Mathematics，University of Manchester
〈Victor．Buchstaber＠manchester．ac．uk〉

Manchester
08 February 2010

Abstract

Nowadays Hopf algebras is one of the well-known tools in combinatorics.

To study the combinatorics of convex polytopes we develop the approach based on the ring \mathscr{P} of combinatorial convex polytopes and flag-vector transformation $\mathscr{F}: \mathscr{P} \rightarrow \mathrm{QSym}[\alpha]$, where QSym is the ring of quasisymmetric functions. We show that the ring of polytopes has a natural Hopf comodule structure over the Rota-Hopf algebra \mathscr{R} of posets.

As a corollary we build a ring homomorphism $l_{\alpha}: \mathscr{P} \rightarrow \mathscr{R}[\alpha]$ such that $F\left(l_{\alpha}(P)\right)=\mathscr{F}(P)^{*}$, where $F: \mathscr{R} \rightarrow$ QSym is the Ehrenborg transformation of posets.

The talk is based on the papers:
[1] V. M. Buchstaber, Ring of Simple Polytopes and Differential Equations., Proceedings of the Steklov Institute of Mathematics, v. 263, 2008, 1-25.
[2] V. M. Buchstaber, N. Yu. Erokhovets,
Ring of polytopes, quasisymmetric functions and Fibonacci numbers., see arXiv: 1002.0810 v1 [math CO] 3 Feb 2010.

Contents

Differential ring of combinatorial polytopes

Face-polynomial
 Dehn-Sommerville relations

Flag f-vectors

Bayer-Billera group of polytopes

Faces-operator

Flag-vector polynomial

Algebra of quasisymmetric functions

Flag-vector transformation

Bayer-Billera relations

The Rota-Hopf Algebra

Differential ring of combinatorial polytopes

Definition. Two polytopes P_{1} and P_{2} of the same dimension are said to be combinatorially equivalent if there is a bijection between their sets of faces that preserves the inclusion relation.

Definition. A combinatorial polytope is a class of combinatorial equivalent polytopes.

Denote by $\mathscr{P}^{2 n}$ the free abelian group generated by all n-dimensional combinatorial polytopes.

For $n \geqslant 1$ we have the direct sum

$$
\mathscr{P}^{2 n}=\sum_{m \geqslant n+1} \mathscr{P}^{2 n, 2(m-n)},
$$

where $P^{n} \in \mathscr{P}^{2 n, 2(m-n)}$ if it is a polytope with m facets and rank $\mathscr{P}^{2 n, 2(m-n)}<\infty$ for any fixed n and m.

Definition. The product of polytopes turns the direct sum

$$
\mathscr{P}=\sum_{n \geqslant 0} \mathscr{P}^{2 n}=\mathscr{P}^{0}+\sum_{m \geqslant 2} \sum_{n=1}^{m-1} \mathscr{P}^{2 n, 2(m-n)}
$$

into a bigraded commutative associative ring, the ring of polytopes. The unit is P^{0}, a point.

The direct product $P_{1}^{n} \times P_{2}^{m}$ of simple polytopes P_{1}^{n} and P_{2}^{m} is a simple polytope as well.

Thus the ring \mathscr{P}_{S} generated by simple polytopes is a subring in \mathscr{P}.

A polytope is indecomposable if it can not be represented as a product of two other polytopes of positive dimensions.

Theorem. The ring \mathscr{P} is a polynomial ring generated by indecomposable combinatorial polytopes.

Let P^{n} be a polytope. Denote by $d P^{n}$ the disjoint union of all its facets.

Lemma. There is a linear operator of degree -2

$$
d: \mathscr{P} \longrightarrow \mathscr{P},
$$

such that

$$
d\left(P_{1}^{n_{1}} P_{2}^{n_{2}}\right)=\left(d P_{1}^{n_{1}}\right) P_{2}^{n_{2}}+P_{1}^{n_{1}}\left(d P_{2}^{n_{2}}\right)
$$

Thus \mathscr{P} is a differential ring, and \mathscr{P}_{s} is a differential subring in \mathscr{P}.

Examples:

$$
\begin{gathered}
d I^{n}=n(d I) I^{n-1}=2 n I^{n-1}, \\
d \Delta^{n}=(n+1) \Delta^{n-1},
\end{gathered}
$$

where Δ^{n} is the standard n-simplex and $I^{n}=I \times \cdots \times I$ is the standard n-cube.

Face-polynomial (f-polynomial)

Consider the linear map

$$
f: \mathscr{P} \longrightarrow \mathbb{Z}[\alpha, t]
$$

which sends a polytope P^{n} to the homogeneous face-polynomial
$f\left(P^{n}\right)=\alpha^{n}+f_{n-1,1} \alpha^{n-1} t+\cdots+f_{1, n-1} \alpha t^{n-1}+f_{0, n} t^{n}$, where $f_{k, n-k}=f_{k, n-k}\left(P^{n}\right)$ is the number of its k-dim faces.

Thus $f_{n-1,1}$ is the number of facets and $f_{0, n}$ is the number of vertices.

Theorem.

1. The mapping f is a ring homomorphism.
2. Let P be a polytope. Then

$$
f(d P)=\frac{\partial}{\partial t} f(P)
$$

if and only if P is simple.

Dehn-Sommerville relations

Theorem. For any simple polytope P^{n} we have

$$
f\left(P^{n}\right)(\alpha, t)=f\left(P^{n}\right)(-\alpha, \alpha+t) .
$$

Theorem. Let $\widehat{f}: \mathscr{P}_{s} \rightarrow \mathbb{Z}[\alpha, t]$ be a linear map such that

$$
\widehat{f}\left(d P^{n}\right)=\frac{\partial}{\partial t} \widehat{f}\left(P^{n}\right) \text { and }\left.\widehat{f}\left(P^{n}\right)\right|_{t=0}=\alpha^{n}
$$

Then $\widehat{f}\left(P^{n}\right)=f\left(P^{n}\right)$.

Flag f-vectors

Let P^{n} be an n-dimensional polytope and $\omega=\left\{a_{1}, \ldots, a_{k}\right\} \subset\{0,1, \ldots, n-1\}$.
A flag number $f_{\omega}=f a_{1}, \ldots, a_{k}$ is the number of increasing sequences of faces

$$
F^{a_{1}} \subset F^{a_{2}} \subset \cdots \subset F^{a_{k}}, \quad \operatorname{dim} F^{a_{i}}=a_{i}
$$

For $\omega=\{i\}$ the number $f_{\{i\}}=f_{i}$ is just the number of i-dimensional faces.

The collection $\left\{f_{\omega}\right\}$ of all the flag numbers is called a flag f-vector of the polytope P^{n}. By the definition $f \varnothing=1$.

For $n \geqslant 1$ let Ψ^{n} be the set of subsets $\omega \subset\{0,1, \ldots, n-2\}$ such that ω contains no two consecutive integers.

The cardinality of Ψ^{n} is equal to the n-th Fibonacci number $c_{n}\left(c_{n}=c_{n-1}+c_{n-2}, c_{0}=1, c_{1}=1\right)$.

Bayer-Billera group of polytopes

For any polytope P there exists a cone $C P$ and a suspension $B P$. These two operations are defined on combinatorial polytopes and can be extended to linear operators on the ring \mathscr{P}.
It is natural to set $B \varnothing=1=C \varnothing$.

Definition. For $n \geqslant 1$ let Ω^{n} be the set of n-dimensional polytopes that arises when we apply to the empty set \varnothing words in B and C that end in C^{2} and contain no adjacent B 's.

Each word of length $n+1$ from the set Ω^{n} either has the form $C Q, Q \in \Omega^{n-1}$, or $B C Q, Q \in \Omega^{n-2}$, so cardinality of the set Ω^{n} satisfies the Fibonacci relation $\left|\Omega^{n}\right|=\left|\Omega^{n-1}\right|+\left|\Omega^{n-2}\right|$. Since $\left|\Omega^{1}\right|=\left|\left\{C^{2}\right\}\right|=1$, and $\left|\Omega^{2}\right|=\left|\left\{C^{3}, B C^{2}\right\}\right|=2$, we see that $\left|\Omega^{n}\right|=c_{n}=\left|\Psi^{n}\right|$.

Theorem. (M. Bayer and L. Billera) Let $n \geqslant 1$. Then

1. For all $\omega \subseteq\{0,1, \ldots, n-1\}$ there is a nontrivial linear relation expressing $f_{\omega}(P)$ in terms of $f_{\omega^{\prime}}(P), \omega^{\prime} \in \Psi^{n}$, which holds for all n-dimensional polytopes.
2. The flag f-vectors of the c_{n} elements of Ω^{n} are affinely independent.
Thus the flag f-vectors $\left\{f_{\omega^{\prime}}\left(P^{n}\right)\right\}_{\omega^{\prime} \in \Psi^{n}}$ span an ($c_{n}-1$)-dimensional affine hyperplane defined by the equation $f \varnothing=1$.

Let us identify the words in Ω^{n} with the sets in Ψ^{n} in such a way that the word

$$
C^{n+1-a_{k}} B C^{a_{k}-a_{k-1}-1} B \ldots B C^{a_{1}-1}
$$

corresponds to the set $\left\{a_{1}-3, \ldots, a_{k}-3\right\}$.
Let us set $C<B$ and order the words lexicographically. Consider a $\left(c_{n} \times c_{n}\right)$-matrix K^{n}

$$
k_{Q, \omega}=f_{\omega}(Q), \quad Q \in \Omega^{n}, \omega \in \Psi^{n}
$$

Theorem. $\operatorname{det}\left(K^{n}\right)=1$.

Faces-operator

Let P^{n} be a polytope. Denote by $d_{k} P^{n}, k \geqslant 0$, the disjoint union of all its $(n-k)$-dimensional faces.

Lemma. There is a linear operator of degree $-2 k$

$$
d_{k}: \mathscr{P} \longrightarrow \mathscr{P}
$$

such that

$$
d_{k} P_{1}^{n_{1}} P_{2}^{n_{2}}=\sum_{i+j=k}\left(d_{i} P_{1}^{n_{1}}\right)\left(d_{j} P_{2}^{n_{2}}\right)
$$

Definition. A faces-operator for t is the linear map

$$
\Phi(t): \mathscr{P} \longrightarrow \mathscr{P}[t]: \Phi(t)\left(P^{n}\right)=\sum_{k=0}^{\infty} d_{k} P^{n} t^{k}
$$

Theorem.

1. $\Phi(t)$ is a ring homomorphism.
2. $\Phi(t)\left(P^{n}\right)=\exp (t d)\left(P^{n}\right)$ if and only if P^{n} is simple.
3. The composition

$$
\Phi(\alpha, t): \mathscr{P} \xrightarrow{\Phi(t)} \mathscr{P}[t] \xrightarrow{\xi(\alpha)} \mathbb{Z}[\alpha, t],
$$

where $\xi(\alpha)\left(P^{n}\right)=\alpha^{n}$ and $\xi(\alpha) t=t$, is the facepolynomial ring homomorphism f.

Flag-vector polynomial

Let $\Phi\left(t_{k}\right)$ be the faces-operator for $t_{k}, k=1, \ldots, m$. Set $\widehat{\Phi}\left(t_{1}\right)=\Phi\left(t_{1}\right)$ and consider the operators

$$
\widehat{\Phi}\left(t_{m}\right): \mathscr{P}\left[t_{1}, \ldots, t_{m-1}\right] \longrightarrow \mathscr{P}\left[t_{1}, \ldots, t_{m}\right], m>1
$$ such that $\widehat{\Phi}\left(t_{m}\right)\left(P^{n}\right)=\Phi\left(t_{m}\right)\left(P^{n}\right)$ and $\widehat{\Phi}\left(t_{m}\right)\left(t_{i}\right)=t_{i}$, $1 \leqslant i<m$.

Introduce the ring homomorphisms

$$
\mathscr{F}(m): \mathscr{P} \longrightarrow \mathscr{P}\left[t_{1}, \ldots, t_{m}\right], m \geqslant 1
$$

where $\mathscr{F}(1)=\Phi\left(t_{1}\right)$ and recursively $\mathscr{F}(m), m>1$, is the composition

$$
\mathscr{P} \xrightarrow{\mathscr{F}(m-1)} \mathscr{P}\left[t_{1}, \ldots, t_{m-1}\right] \xrightarrow{\widehat{\Phi}\left(t_{m}\right)} \mathscr{P}\left[t_{1}, \ldots, t_{m}\right] .
$$

We obtain the operator

$$
\mathscr{F}(m)=1+\sum_{q \geqslant 1} \sum_{|J|=q} d_{J} \zeta\left(t^{J} ; m\right)
$$

where $J=\left(\dot{j}_{1}, \ldots, j_{k}\right), \dot{j}_{i} \neq 0, i=1, \ldots, k, 1 \leqslant k \leqslant m$,

$$
|J|=j_{1}+\cdots+j_{k}, \quad d_{J}=d_{j_{k}} \cdots d_{j_{1}}, \quad t^{J}=t_{1}^{j_{1}} \cdots t_{k}^{j_{k}}
$$ and

$$
\zeta\left(t^{J} ; m\right)=\sum_{1 \leqslant l_{1}<\cdots<l_{k} \leqslant m} t_{l_{1}}^{j_{1}} \cdots t_{l_{k}}^{j_{k}} .
$$

Algebra of quasisymmetric functions

Definition. A composition J of a number n is an ordered set $J=\left(j_{1}, \ldots, j_{k}\right), j_{i} \geqslant 1$, such that $n=j_{1}+j_{2}+\cdots+j_{k}$. Let us denote $|J|=n$.

The number of compositions of n into exactly k parts is given by the binomial coefficient $\binom{n-1}{k-1}$.
Definition. A quasisymmetric monomial in m variables for a composition $J=\left(j_{1}, \ldots, j_{k}\right), k \leqslant m$, is the polynomial

$$
\zeta\left(t^{J} ; m\right)=\sum_{1 \leqslant l_{1}<\cdots<l_{k} \leqslant m} t_{l_{1}}^{j_{1}} \ldots t_{l_{k}}^{j_{k}}
$$

Lemma. The polynomial $f \in \mathbb{Z}\left[t_{1}, \ldots, t_{m}\right]$ is a linear combination of quasisymmetric monomials if and only if $f\left(t_{1}, \ldots, t_{m}\right)$ satisfies the following conditions:
$f\left(t_{1}, t_{2}, t_{3}, \ldots, t_{m-1}, 0\right)=f\left(0, t_{1}, t_{2}, \ldots, t_{m-1}\right)=$
$=f\left(t_{1}, 0, t_{2}, \ldots, t_{m-1}\right)=\cdots=f\left(t_{1}, \ldots, t_{m-2}, 0, t_{m-1}\right)$.
Example. We have the compositions of 3:
$(1,1,1),(1,2),(2,1)$,
(3).

The quasisymmetric monomials of degree 3 in $\mathbb{Z}\left[t_{1}, t_{2}, t_{3}\right]$: $t_{1} t_{2} t_{3} ; t_{1} t_{2}^{2}+t_{1} t_{3}^{2}+t_{2} t_{3}^{2} ; t_{1}^{2} t_{2}+t_{1}^{2} t_{3}+t_{2}^{2} t_{3} ; t_{1}^{3}+t_{2}^{3}+t_{3}^{3}$, and for $m=3$ we have the conditions:
$f\left(t_{1}, t_{2}, 0\right)=f\left(0, t_{1}, t_{2}\right)=f\left(t_{1}, 0, t_{2}\right)$.

Let $\mathrm{QSym}^{2 n}(m) \subset \mathbb{Z}\left[t_{1}, \ldots, t_{m}\right]$ be the subgroup generated by the quasisymmetric monomials $\zeta\left(t^{J} ; m\right)$ corresponding to all compositions $J=\left(j_{1}, \ldots, j_{k}\right)$ of n, where $k \leqslant m$. It is easy to see that for $k \leqslant m-1$

$$
\begin{aligned}
& \zeta\left(t^{J} ; m\right)\left(t_{1}, \ldots, t_{m-1}, 0\right)=\zeta\left(\boldsymbol{t}^{J} ; m-1\right)\left(t_{1}, \ldots, t_{m-1}\right) \\
& \text { Set QSym } \\
& \stackrel{\lim _{m}}{\stackrel{l}{m}} \operatorname{QSym}^{2 n}(m)
\end{aligned}
$$

An algebra of quasisymmetric functions QSym is a graded subring $=\sum_{n \geqslant 0} \mathrm{QSym}^{2 n}$ in

$$
V=\sum_{n \geqslant 0} V^{2 n}=\underset{m}{\lim _{m}} \mathbb{Z}\left[t_{1}, \ldots, t_{m}\right],
$$

where $\operatorname{deg} t_{k}=2$.
Theorem. (M.Hazewinkel, 2001)
The algebra of quasisymmetric functions QSym is a free commutative algebra of polynomials over the integers.

Since rank QSym ${ }^{2 n}=2^{n-1}, n \geqslant 1$, the numbers β_{i} of the multiplicative generators of degree $2 i$ of QSym can be found by a recursive relation:

$$
\frac{1-t}{1-2 t}=\prod_{i=1}^{\infty} \frac{1}{\left(1-t^{i}\right)^{\beta_{i}}}
$$

Flag-vector transformation

Set $\mathscr{F}(\boldsymbol{t})=\lim \mathscr{F}(m)$. Denote by $\mathscr{F}(\alpha ; \boldsymbol{t})$ the ring homomorphism

$$
\mathscr{P} \xrightarrow{\mathscr{F}(\boldsymbol{t})} \mathscr{P} \otimes \mathrm{QSym} \xrightarrow{\widehat{\varepsilon}(\alpha)} \mathrm{QSym}[\alpha] \subset \mathbb{Z}[\alpha ; \boldsymbol{t}],
$$

where $\widehat{\varepsilon}(\alpha)$ is the extension of the ring homomorphism

$$
\varepsilon(\alpha): \mathscr{P} \longrightarrow \mathbb{Z}[\alpha]: \varepsilon(\alpha)\left(P^{n}\right)=\alpha^{n}, n \geqslant 0,
$$

such that $\widehat{\varepsilon}(\alpha)\left(t_{i}\right)=t_{i}$.

Lemma. Let P^{n} be an n-dim polytope. Then

$$
\mathscr{F}\left(P^{n}\right)(\alpha ; \boldsymbol{t})=\alpha^{n}+\sum_{q=1}^{n} \alpha^{n-q} \sum_{|J|=q} f_{\omega(J)}\left(P^{n}\right) \zeta\left(\boldsymbol{t}^{J}\right)
$$

is a homogeneous polynomial of degree $2 n$. Here $f_{\omega(J)}\left(P^{n}\right)$ for $J=\left(j_{1}, \ldots, j_{k}\right)$ is the ω-flag number of P^{n} with $\omega=\omega(J)=\left(i_{1}<\cdots<i_{k}\right)$, where $i_{1}=n-q, \ldots, i_{l}=i_{l-1}+i_{k-l+2}, \ldots, i_{k}=i_{k-1}+j_{2}$ and $q=|J|$.

Definition. The ring homomorphism $\mathscr{F}(\alpha ; \boldsymbol{t})$ sends a polytope P^{n} to the flag-vector polynomial $\mathscr{F}\left(P^{n}\right)(\alpha ; \boldsymbol{t})$.

Bayer-Billera relations

Theorem. The image of the homomorphism

$$
\mathscr{F}(\alpha, \boldsymbol{t}): \mathscr{P}^{2 n} \longrightarrow \operatorname{QSym}(m)[\alpha], m \geqslant n,
$$

consists of all homogeneous polynomials $f\left(\alpha, t_{1}, \ldots, t_{m}\right)$ of degree n satisfying the equations:

1. $\quad f\left(\alpha, t_{1},-t_{1}, t_{3}, \ldots, t_{m}\right)=f\left(\alpha, 0,0, t_{3}, \ldots, t_{m}\right)$;

$$
f\left(\alpha, t_{1}, t_{2},-t_{2}, t_{4}, \ldots, t_{m}\right)=f\left(\alpha, t_{1}, 0,0, t_{4} \ldots, t_{m}\right)
$$

$f\left(\alpha, t_{1}, \ldots, t_{m-2}, t_{m-1},-t_{m-1}\right)=f\left(\alpha, t_{1}, \ldots, t_{m-2}, 0,0\right) ;$
2.

$$
f\left(-\alpha, t_{1}, \ldots, t_{m-1}, \alpha\right)=f\left(\alpha, t_{1}, \ldots, t_{m-1}, 0\right)
$$

These equations are a perfected form of the BayerBillera (generalized Dehn-Sommerville) relations.

Corollary. The image of the restriction of $\mathscr{F}(\alpha, \boldsymbol{t})$ on $\mathscr{P}_{S}^{2 n}$ consists of all homogeneous polynomials

$$
f\left(\alpha, t_{1}, \ldots, t_{m}\right)=f_{1}\left(\alpha, t_{1}+\ldots+t_{m}\right)
$$

where $f_{1}(\alpha, t)$ is a homogeneous polynomial in two variables of degree n satisfying the equations

$$
f_{1}(-\alpha, \alpha+t)=f_{1}(\alpha, t)
$$

This equation is a perfected form of the classical Dehn-Sommerville relations (see slide 7).

Theorem. The image of the ring homomorphism

$$
\mathscr{F}(\alpha, \boldsymbol{t}): \mathscr{P} \otimes \mathbb{Q} \longrightarrow \operatorname{QSym}[\alpha] \otimes \mathbb{Q}
$$

is a free polynomial algebra with the structure of the graded Hopf algebra dual to the free associative Lie-Hopf algebra $\mathbb{Q}\left\langle u_{1}, u_{2}\right\rangle$, where $\operatorname{deg} u_{i}=2 i$ and

$$
\Delta u_{i}=u_{i} \otimes 1+1 \otimes u_{i}, \quad i=1,2
$$

The Rota-Hopf Algebra

Let P be a finite poset with a minimal element $\hat{0}$ and a maximal element $\hat{1}$.

An element y in P covers another element x in P, if $x<y$ and there is no z in P such that $x<z<y$.

A poset P is called graded, if there exists a rank function $\rho: \mathscr{P} \rightarrow \mathbb{Z}$ such that $\rho(\hat{0})=0$ and $\rho(y)=\rho(x)+1$ if y covers x.

Set $\operatorname{deg} P=\rho(P)=\rho(\hat{1})$.

Two finite graded poset are isomorphic if there exists an order preserving bijection between them.

Denote by \mathscr{R} the graded free abelian group with basis the set of all isomorphism classes of finite graded posets.

The structure of the graded connected Hopf algebra on \mathscr{R} :

The multiplication $P \cdot Q$ is a cartesian product $P \times Q$ of posets P and Q :

Let $x, u \in P$ and $y, v \in Q$. Then $(x, y) \leqslant(u, v)$
if and only if $x \leqslant u$ and $y \leqslant v$.
The unit element in \mathscr{R} is the poset with one element $\hat{0}=\hat{1}$.

The comultiplication is

$$
\Delta(P)=\sum_{\hat{0} \leqslant z \leqslant \hat{1}}[\hat{0}, z] \otimes[z, \hat{1}],
$$

were $[x, y]$ is the subposet $\{z \in P \mid x \leqslant z \leqslant y\}$.
The counit ε is

$$
\varepsilon(P)= \begin{cases}1, & \text { if } \hat{0}=\hat{1} \\ 0, & \text { else }\end{cases}
$$

The antipode χ is

$$
\chi(P)=\sum_{k \geqslant 0} \sum_{\left\{c_{k}\right\}}(-1)^{k}\left[x_{0}, x_{1}\right] \cdot\left[x_{1}, x_{2}\right] \ldots\left[x_{k-1}, x_{k}\right]
$$

where $c_{k}=\left(\hat{0}=x_{0}<x_{1}<\cdots<x_{k}=\hat{1}\right)$

Example. The simplest Boolean algebra $B_{1}=\{\hat{0}, \hat{1}\}$ is the face lattice of the point pt

$$
\begin{gathered}
\Delta\left(B_{1}\right)=1 \otimes B_{1}+B_{1} \otimes 1 \\
\chi\left(B_{1}\right)=-B_{1}
\end{gathered}
$$

There is a natural linear mapping $L: \mathscr{P} \rightarrow \mathscr{R}$ of degree +1 that sends a polytope P to its face lattice $L(P)$.

The mapping L is injective, but it is not a ring homomorphism, since it doesn't preserve a unit: the unit of \mathscr{P} is a point pt and $L(\mathrm{pt})=B_{1}$, while the unit of \mathscr{R} is a one-element set $\{\hat{0}=\hat{1}\}$.

Remark. The face lattice $L(P \times Q)$ of $P \times Q$ contains the empty face \varnothing, which can be considered as $\varnothing \times \varnothing$, but evidently has no faces of the form $F \times \varnothing$ or $\varnothing \times G$, where F and G are non-empty faces of P and Q respectively.

Consider the linear operator $*: \mathscr{P} \rightarrow \mathscr{P}$ such that $*(P)$ is the polytope P^{*} polar to a polytope P.
There is a natural linear mapping of degree 0 $l=L * d *: \mathscr{P} \rightarrow \mathscr{R}: l(\mathrm{pt})=\{\hat{0}\}, l(P)=L\left(\left(d P^{*}\right)^{*}\right)$.

- The operation $* d *$ preserves the linear space of all simplicial polytopes.
- For a simple polytope P^{n} we have
$* d *\left(P^{n}\right)=f_{0}\left(P^{n}\right) \Delta^{n-1}$ and $l\left(P^{n}\right)=f_{0} L\left(\Delta^{n-1}\right)=f_{0}\{\hat{0}, \hat{1}\}^{n}=f_{0} B_{1}^{n}$, where $f_{0}\left(P^{n}\right)$ is the number of vertices of P^{n}, and $\{\hat{0}, \hat{1}\}^{n}=B_{1}^{n}=B_{n}$ is a Boolean algebra.

For example, $L\left(\Delta^{n}\right)=B_{1}^{n+1}$ and $l\left(\Delta^{n}\right)=(n+1) B_{1}^{n}$.

Proposition. l is a homomorphism of graded rings.

Proof. We have

$$
l(P)=\sum_{v}[v, P]
$$

where $[v, P]$ is the interval between the vertex v and the polytope P in the face lattice $L(P)$.

Then

$$
\begin{aligned}
l(P \times Q)= & \sum_{v \times w}[v \times w, P \times Q]=\sum_{v \times w}[v, P] \times[w, Q]= \\
& =\left(\sum_{v}[v, P]\right) \cdot\left(\sum_{w}[w, Q]\right)=l(P) \cdot l(Q)
\end{aligned}
$$

Here v, w are vertexes of P and Q respectively.

Definition. Set $\Delta^{-1}=\varnothing$. Consider the linear span of all Boolean algebras $B_{n}=\{\hat{0}, \hat{1}\}^{n}=L\left(\Delta^{n-1}\right), n \geqslant 0$

$$
\mathscr{B}=\operatorname{Ls}\left(1, B_{1}, B_{2}, \ldots\right) \subset \mathscr{R} .
$$

We have $B_{i} B_{i}=B_{i+j}$, so it is a subring in \mathscr{R}.
Let us denote $x=B_{1}$. Since $\Delta x=1 \otimes x+x \otimes 1$, it is a Hopf subalgebra isomorphic to the Hopf algebra $\mathbb{Z}[x], \Delta x=1 \otimes x+x \otimes 1$.

Proposition. The image of

$$
l: \mathscr{P}_{s} \longrightarrow \mathscr{R}
$$

is a \mathbb{Z}-subalgebra in $\mathscr{B}=\mathbb{Z}[x]$ multiplicatively generated by $2 x$ and x^{2}, that is

$$
l\left(\mathscr{P}_{s}\right)=\mathbb{Z}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2}-4 x_{2}\right)
$$

where $\operatorname{deg} x_{1}=1$, deg $x_{2}=2$.

Proof. We have $l\left(\Delta^{1}\right)=x_{1}, l\left(P_{m}^{2}\right)=m x^{2}=m x_{2}$. Thus $x_{1}=l\left(\Delta^{1}\right)=2 x$ and $x_{2}=l\left(P_{4}^{2}-\Delta^{2}\right)=x^{2}$.
On the other hand $l\left(P^{2 n+1}\right)=f_{0}\left(P^{2 n+1}\right) B_{1}^{2 n+1}$ where $f_{0}\left(P^{2 n+1}\right)$ is even.

Let us denote $\rho(x, y)=\rho(y)-\rho(x)$ for $x \leqslant y$.
Richard Ehrenborg introduced the F-quasi-symmetric function of a graded poset P of rank n

$$
\begin{aligned}
F(P) & =\sum M_{\left(\rho\left(x_{0}, x_{1}\right), \rho\left(x_{1}, x_{2}\right), \ldots, \rho\left(x_{k}, x_{k+1}\right)\right)}= \\
& =\sum_{0<a_{1}<\cdots<a_{k}<n} f a_{1}, \ldots, a_{k}(P) M_{\left(a_{1}, a_{2}-a_{1}, \ldots, n-a_{k}\right)}
\end{aligned}
$$

where the first sum ranges over all chains
$\hat{0}=x_{0}<x_{1}<\cdots<x_{k+1}=\hat{1}$ from $\hat{0}$ to $\hat{1}$, and $f a_{1}, \ldots, a_{k}$ are flag numbers.
This mapping induces a Hopf algebra homomorphism

$$
F: \mathscr{R} \rightarrow \operatorname{QSym}\left[t_{1}, t_{2}, \ldots\right] .
$$

Definition. For a composition $\omega=\left(j_{1}, \ldots, j_{k}\right)$ let us define the composition $\omega^{*}=\left(j_{k}, \ldots, j_{1}\right)$.

The correspondence $M_{\omega} \rightarrow\left(M_{\omega}\right)^{*}=M_{\omega^{*}}$ defines an involutory ring homomorphism

$$
*: \operatorname{QSym}\left[t_{1}, t_{2}, \ldots\right] \rightarrow \operatorname{QSym}\left[t_{1}, t_{2}, \ldots\right]
$$

Proposition. For a polytope P^{n}
$F\left(l\left(P^{n}\right)\right)^{*}=\mathscr{F}\left(0, t_{1}, t_{2}, \ldots\right)\left(P^{n}\right) \quad$ i.e. $\quad * \circ F \circ l=\left.\mathscr{F}\right|_{\alpha=0}$.

Proposition. We have

$$
L=l \circ\left(C-\frac{1}{2}[I]\right),
$$

where C is a cone operator and $[I]$ is the operator of multiplication by the interval I. So the images of the maps L and l over $\mathbb{Z}\left[\frac{1}{2}\right]$ in dimensions $n \geqslant 1$ coincide.

Remark. The homomorphism l is not injective: we see that on the ring of simple polytopes it remembers only the number of vertices. This Proposition shows that l is invective on the image of the operator $C-\frac{1}{2}[I]$.

Define the operator
$C: \operatorname{QSym}\left[t_{1}, \ldots, t_{m}\right][\alpha] \rightarrow \operatorname{QSym}\left[t_{1}, \ldots, t_{m+1}\right][\alpha]$
such that $f_{m+1}\left(C P^{n}\right)=\left(C f_{m}\right)\left(P^{n}\right)$. Then
$(C g)\left(\alpha, t_{1}, \ldots, t_{m+1}\right)=$
$=\left(\alpha+t_{1}+\cdots+t_{m+1}\right)\left(\alpha, t_{1}, \ldots, t_{m+1}\right)+$
$+t_{m+1} g\left(t_{m+1}, t_{1}, \ldots, t_{m}\right)+t_{m} g\left(t_{m}, t_{1}, \ldots, t_{m-1}, 0\right)+$
$+\cdots+t_{i} g\left(t_{i}, t_{1}, \ldots, t_{i-1}, 0, \ldots, 0\right)+\cdots+t_{1} g\left(t_{1}, 0, \ldots, 0\right)$

Corollary.

$$
F(L(P))^{*}=\left.C \mathscr{F}(P)\right|_{\alpha=0}-\left.\sigma_{1} \mathscr{F}(P)\right|_{\alpha=0}
$$

where $\sigma_{1}=\sum_{i=1}^{\infty} t_{i}=M_{(1)}$.

Set $\Lambda=\left.\left(C-\sigma_{1}\right)\right|_{\alpha=0}$.
The operator Λ has a very simple form on elementary monomials

$$
\Lambda\left(\alpha^{a_{1}} M_{\left(n-a_{k}, \ldots, a_{2}-a_{1}\right)}\right)=M_{\left(n-a_{k}, \ldots, a_{2}-a_{1}, a_{1}+1\right)}
$$

The relation between the Ehrenborg F-quasi-symmetric function and the flag \mathscr{F}-polynomial can be illustrated by two commutative diagrams

$$
\begin{array}{ccc}
\mathscr{P} & \xrightarrow{\mathscr{F}} & \operatorname{QSym}\left[t_{1}, t_{2}, \ldots\right][\alpha] \\
l & & \alpha=0 \downarrow \\
\mathscr{R} \xrightarrow{* \circ F} & \operatorname{QSym}\left[t_{1}, t_{2}, \ldots\right] \\
\mathscr{P} & \xrightarrow{\mathscr{F}} & \operatorname{QSym}\left[t_{1}, t_{2}, \ldots\right][\alpha] \\
L \downarrow & & \Lambda \downarrow \\
\mathscr{R} \xrightarrow{* \circ F} & \operatorname{QSym}\left[t_{1}, t_{2}, \ldots\right]
\end{array}
$$

Definition. By a Hopf comodule (or Milnor comodule) over a Hopf algebra X we mean an algebra M with a unit provided M is a comodule over X with a coaction $b: M \rightarrow X \otimes M$ such that $b(u v)=b(u) b(v)$, i.e. such that b is a homomorphism of rings.

The ring homomorphism l can be extended to a right graded Hopf comodule structure on \mathscr{P}

Proposition. The homomorphism $\Delta: \mathscr{P} \rightarrow \mathscr{P} \otimes \mathscr{R}$:

$$
\Delta\left(P^{n}\right)=\sum_{F \subseteq P^{n}} F \otimes\left[F, P^{n}\right]
$$

defines on \mathscr{P} a right graded Hopf comodule structure over \mathscr{R} such that

$$
(\varepsilon \otimes \mathrm{id}) \Delta P=1 \otimes l(P)
$$

Corollary.

- Any ring homomorphism $\varphi: \mathscr{P} \rightarrow \mathbb{Z}$ defines a ring homomorphism $\mathscr{P} \rightarrow \mathscr{R}$

$$
\mathscr{P} \xrightarrow{\Delta} \mathscr{P} \otimes \mathscr{R} \xrightarrow{\varphi \otimes \mathrm{id}} \mathbb{Z} \otimes \mathscr{R} \simeq \mathscr{R}
$$

- Any homomorphism of abelian groups $\psi: \mathscr{R} \rightarrow \mathbb{Z}$ defines a linear operator $\Psi \in \mathscr{L}(\mathscr{P})$

$$
\mathscr{P} \xrightarrow{\Delta} \mathscr{P} \otimes \mathscr{R} \xrightarrow{\mathrm{id} \otimes \psi} \mathscr{P} \otimes \mathbb{Z} \simeq \mathscr{P}
$$

- In particular, if $\psi: \mathscr{R} \rightarrow \mathbb{Z}$ is a multiplicative homomorphism, then Ψ is a ring homomorphism.

Example. Let $\varphi=\xi_{\alpha}$. Then we obtain the ring homomorphism $l_{\alpha}: \mathscr{P} \rightarrow \mathscr{R}[\alpha]$ defined as

$$
l_{\alpha}\left(P^{n}\right)=\left(\xi_{\alpha} \otimes \mathrm{id}\right) \Delta P^{n}=\sum_{F \subseteq P} \alpha^{\operatorname{dim} F}[F, P]
$$

- If we set $\alpha=0$, then we obtain a usual homomorphism l.
- On the ring of simple polytopes \mathscr{P}_{s} we have

$$
\begin{aligned}
& l_{\alpha}\left(P^{n}\right)=\sum_{F \subseteq P^{n}} \alpha^{\operatorname{dim} F}\{\hat{0}, \hat{1}\}^{n-\operatorname{dim} F}= \\
&=\sum_{F \subseteq P^{n}} \alpha^{\operatorname{dim} F} x^{n-\operatorname{dim} F}=f_{1}(\alpha, x)
\end{aligned}
$$

is a homogeneous f-polynomial in two variables.

Set $F(\alpha)=\alpha$. Then we have the ring homomorphism $F: \mathscr{R}[\alpha] \rightarrow \operatorname{QSym}\left[t_{1}, t_{1}, \ldots\right][\alpha]$.

Proposition. Let P^{n} be an n-dimensional polytope. Then

$$
F\left(l_{\alpha}\left(P^{n}\right)\right)=\mathscr{F}\left(P^{n}\right)^{*}
$$

Proposition. The following diagram commutes:
$\mathscr{P} \quad \xrightarrow{\mathscr{F}^{*}}$
$\operatorname{QSym}\left[t_{1}, t_{2}, \ldots\right][\alpha]$
$\Delta \downarrow$
$\Delta \downarrow$
$\mathscr{P} \otimes \mathscr{R} \xrightarrow{\mathscr{F} * \otimes F} \operatorname{QSym}\left[t_{1}, t_{2}, \ldots\right][\alpha] \otimes \operatorname{QSym}\left[t_{1}, t_{2}, \ldots\right]$

