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Abstract

A monic quadratic Hermitian matrix polynomial L(λ) can be factorized into a product
of two linear matrix polynomials, say L(λ) = (Iλ−S)(Iλ−A). For the inverse problem
of finding a quadratic matrix polynomial with prescribed spectral data (eigenvalues and
eigenvectors) it is natural to prescribe a right solvent A and then determine compatible
left solvents S. This problem is explored in the present paper. The splitting of the
spectrum between real eigenvalues and nonreal conjugate pairs plays an important role.
Special attention is paid to the case of real-symmetric quadratic polynomials.
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1. Introduction

In mechanics, Hermitian quadratic matrix polynomials of the form

L(λ) := Mλ2 + Dλ + K, M > 0, D∗ = D, K∗ = K, (1)

frequently arise and we refer to (1) as a system. Here M > 0 means Hermitian positive
definite. Because the coefficient matrices are Hermitian, the spectrum of L(λ) is sym-
metric about the real axis in the complex plane. For simplicity, it will be assumed here
that the system is reduced to the monic case, M = In, which is always possible since
M > 0. We recall that if detL(λ0) = 0 and L(λ0)x = 0 for some nonzero x then λ0 and
x are known as an eigenvalue and (right) eigenvector of L(λ), respectively.

The general factorization theorem [3, Thm. 11.2] says that there is a factorization

L(λ) = λ2In + λD + K = (λIn − S)(λIn − A). (2)
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The monic pencils (λIn − S) and (λIn −A) are called left and right linear divisors of L,
respectively. Straightforward calculations show that S and A satisfy

S2 + SD + K = 0, A2 + DA + K = 0.

We refer to S and A as left and right solvents of L(λ), respectively.
In applications it is often the case that only a few of the 2n eigenvalues of L(λ) can

be predicted with any confidence. Also, they are sometimes the eigenvalues closest to
the origin (associated with the fundamental modes). In the present context these may be
assigned as eigenvalues of A and the eigenvalues of S adjusted to be more distant from
the origin (possibly associated with “high frequency noise”).

It is our objective to take advantage of the factorization (2) in the design of techniques
for solving the inverse problem: find a system with prescribed eigenvalues and eigenvec-
tors. The strategy is first to assign the matrix A of (2) (and hence n eigenvalues and
(possibly generalised) right eigenvectors) and then to determine a class of matrices S for
which (2) holds for Hermitian D and K. Solutions S will then determine the remaining
n eigenvalues directly—and the complementary right eigenvectors (indirectly).

The nature of these problems depends on the distribution of the eigenvalues to be
admitted. In particular, a problem may be “mixed” in the sense that there are both
real and nonreal eigenvalues, or there may be no real eigenvalues (as in the case of
elliptic problems considered in [7]), or all the eigenvalues may be real (as in the case of
quasihyperbolic and hyperbolic systems considered in [1], [4] and [5], for example). We
will use the theory of Hermitian matrix polynomials as developed in [3]. In particular,
the notion of the sign characteristics of simple real eigenvalues will play an important
role. We refer the reader to [8] for a careful discussion of canonical structures and the
theory behind them.

2. Left solvents from right

It follows from the factorization (2) that, given a right solvent A ∈ F
n×n, where F

denotes the field R or C, we are to find matrices S ∈ F
n×n such that A + S = −D and

SA = K are Hermitian (symmetric when F = R). Thus

A + S = A∗ + S∗, SA = A∗S∗. (3)

This problem has the obvious solution S = A∗, which ensures that the real eigenvalues of
L(λ) are just those of A (if any). We draw attention to the fact that, although λ may be,
by hypothesis, a simple real eigenvalue of A, it is necessarily a defective real eigenvalue
of multiplicity two of L(λ) = (Iλ−A∗)(Iλ−A) [3, Thm. 12.8]. For this reason, we focus
on solutions (admitting real eigenvalues) other than S = A∗.

In contrast, Lancaster and Maroulas [6] have considered (3) under the assumption
that A is nonsingular with all eigenvalues in the upper half plane. In this case the last
equation in (3) is equivalent to S = A∗H for some Hermitian H and the first equation
in (3) becomes A∗H −HA = A∗ −A. The strategy there is to solve this equation for H
in terms of A and then obtain S from S = A∗H.

The line of attack here is different and requires no assumptions on A. We make the
decomposition

S = S1 + S2, S1 = S∗

1 , S2 = −S∗

2 ,
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that is, S1 = 1
2 (S + S∗) and S2 = 1

2 (S − S∗). Then the first of equations (3) simply says
that S2 is determined by A. Indeed,

S2 = −1

2
(A − A∗). (4)

Now the second equation, SA = A∗S∗, is equivalent to (S1 + S2)A = A∗(S1 + S2)
∗ =

A∗(S1 − S2) and hence, S1A − A∗S1 = −(S2A + A∗S2) which, on using (4), becomes

S1A − A∗S1 =
1

2
(A2 − (A∗)2). (5)

Theorem 1 Given a matrix A ∈ F
n×n, a matrix S ∈ F

n×n is such that both S + A and

SA are Hermitian if and only if

S = S1 −
1

2
(A − A∗),

where S1 ∈ F
n×n is a Hermitian solution of (5).

Proof. The statement is already proved in one direction. For the converse, we have

S + A = S1 −
1

2
(A − A∗) + A = S1 +

1

2
(A + A∗),

and since S∗

1 = S1, we see that S + A is Hermitian. Then

SA =
(

S1 −
1

2
(A − A∗)

)

A = S1A − 1

2
A2 +

1

2
A∗A.

But (5) gives S1A = A∗S1 + 1
2 (A2 − (A∗)2) so that

SA = A∗S1 −
1

2
(A∗)2 +

1

2
A∗A,

= A∗

(

S1 +
1

2
(A − A∗)

)

,

= A∗

(

S1 −
1

2
(A − A∗)

)
∗

, since S∗

1 = S1,

= A∗S∗, by definition of S.

The existence of a Hermitian solution of (5) is not in question because, clearly, there
is always a solution S1 = 1

2 (A+A∗). Also, it is well-known that equation (5) has a unique

solution S1 if and only if A and A∗, have no eigenvalues in common. In particular, this
happens when the right solvent A has all of its eigenvalues in the open upper half of the
complex plane. The resulting matrix polynomial L(λ) = Iλ2 − λ(A + A∗) + A∗A has no
real eigenvalues: it is elliptic since L(λ) > 0 for all real λ.

Thus, in order to generate a polynomial with mixed real and nonreal spectrum it
is necessary to consider the solutions of a singular Lyapunov equation. The following
simple example indicates some of the issues to be resolved in our analysis.
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Example 1 Consider a right solvent determined by the real matrix A =
[

0
−1

1
0

]
. In this

way, we specify a pair of nonreal eigenvalues ±i, where i =
√
−1. Easy calculations show

that the general solution of (5) has the form

S1 =

[
ξ1 ξ2

ξ2 −ξ1

]

, ξ1, ξ2 ∈ R.

We obtain a family of left solvents

S = S1 + S2 =

[
ξ1 −1 + ξ2

1 + ξ2 −ξ1

]

, ξ1, ξ2 ∈ R

whose eigenvalues satisfy λ2 = ξ2
1 + ξ2

2 − 1, and are real or complex depending on the
choice of the two real parameters ξ1, ξ2. Furthermore, since A and S are both real, so
are the coefficients of L(λ) = (λI − S)(λI − A) = λ2I + λD + K,

D =

[
−ξ1 −ξ2

−ξ2 ξ1

]

, K =

[
1 − ξ2 ξ1

ξ1 1 + ξ2

]

ξ1, ξ2 ∈ R.

3. Hermitian systems

Let A = XJX−1 be the Jordan canonical decomposition of A ∈ C
n×n and consider

the set
C(J) := {B ∈ C

n×n : BJ = (BJ)∗, B∗ = B}. (6)

Lemma 2 If A ∈ C
n×n has Jordan canonical decomposition A = XJX−1 then Z is

a Hermitian solution of the homogeneous equation ZA − A∗Z = 0 if and only if Z =
X−∗BX−1 for some B ∈ C(J).

Proof. If B ∈ C(J) and Z = X−∗BX−1 then

ZA = (X−∗BX−1)(XJX−1) = X−∗(BJ)X−1 (7)

= X−∗(J∗B)X−1 = (X−∗J∗X∗)(X−∗BX−1) = A∗Z. (8)

Conversely, if ZA = A∗Z for some Hermitian Z then we have Z(XJX−1) = (X−∗J∗X∗)Z
whence (X∗ZX)J = J∗(X∗ZX) and X∗ZX ∈ C(J).

Theorem 3 Given a matrix A ∈ C
n×n with Jordan canonical decomposition A =

XJX−1, all matrices S for which L(λ) = (λI − S)(λI − A) is Hermitian have the

form

S = A∗ + X−∗BX−1, (9)

for some B ∈ C(J).

Proof. There is a particular solution S1 = 1
2 (A + A∗) of (5) so, using Lemma 2, the

general solution to (5) has the form

1

2
(A + A∗) + X−∗BX−1, B ∈ C(J).
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Then, by Theorem 1, the class of all matrices for which S +A and SA are Hermitian has
the form

1

2
(A + A∗) + X−∗BX−1 − 1

2
(A − A∗) = A∗ + X−∗BX−1,

as required.

If one has the freedom to assign eigenvalues to a system it is most likely that they
will be chosen to be distinct. So we now assume that A = XJX−1 ∈ C

n×n has distinct
eigenvalues and write

J = diag
(
λ1, λ2, . . . , λ2s
︸ ︷︷ ︸

conj.pairs

, λ2s+1, . . . , λ2s+r
︸ ︷︷ ︸

nonreal

, λ2s+r+1, . . . , λ2s+r+t
︸ ︷︷ ︸

real

)
, (10)

where the 2s + r nonreal eigenvalues consists of s complex conjugate pairs (λ2j−1, λ2j)
with λ2j = λ2j−1, j = 1: s and r nonreal eigenvalues satisfying λ2s+j 6= λ2s+k, j, k = 1: r.
Under these hypotheses it is easily seen that C(J) in (6) is a (2s+t)-dimensional manifold:

C(J) =

{

diag

([
0 γ1

γ1 0

]

, . . . ,

[
0 γs

γs 0

]

, 0, . . . , 0, δ1, . . . δt

)

∈ C
n×n :

γj = αj + iβj , αj , βj , δk ∈ R, (βj 6= 0), j = 1: s, k = 1: t

}

. (11)

In particular, we see from Theorem 3 that, when A has no real eigenvalues (t = 0) and
no complex conjugate pairs (s = 0), then the trivial solution S = A∗ is unique.

If J has the form (10), then B is tridiagonal (as in (11)) and we interpret Theorem
3 in the following way: Since X−1A = JX−1, the determination of coefficients D and K
is reduced essentially to the calculation of the left eigenvectors (rows of X−1) associated
with the eigenvalues of A. Indeed, in the Jordan canonical decomposition of A, the rows
of

X−1 =






y∗

1
...

y∗

n




 (12)

define a complete set of left eigenvectors of A and we can rewrite S in (9) as

S = A∗ +
s∑

j=1

(

(αj + iβj)Yj + (αj − iβj)Y
∗

j

)

+
t∑

j=1

δjY2s+r+j , (13)

with rank-one matrices

Yj =

{
y2j−1y

∗

2j , j = 1: s,
yjy

∗

j , j = 2s + r + 1:n.
(14)

With these constructions, Theorem 3 leads to the next result.

Corollary 4 Let A = XJX−1 ∈ C
n×n with distinct eigenvalues and J be as in (10). If

Y is defined from X−1 as in (12) and (14), then the coefficients of a Hermitian system
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L(λ) = λ2I + λD + K having A as right solvent can be written in the form

−D = A + A∗ +
s∑

j=1

(

(αj + iβj)Yj + (αj − iβj)Y
∗

j

)

+
t∑

j=1

δjY2s+r+j ,

K = A∗A +

s∑

j=1

(

λ2j(αj + iβj)Yj + λ2j(αj − iβj)Y
∗

j

)

+

t∑

j=1

λ2s+r+jδjY2s+r+j ,

where the 2s + t scalars αj, βj, j = 1: s, and δk, k = 1: t are arbitrary real parameters.

The next corollary indicates how the spectrum of the left divisor is determined by
the right divisor and the choice of B ∈ C(J).

Corollary 5 With the hypotheses of Theorem 3, the spectrum of the left solvent, S, is

that of

J∗ + B(X∗X)−1, B ∈ C(J).

Proof. Since A∗ = X−∗J∗X∗, it follows from (9) and the fact that B∗ = B that

S = X−∗(J∗ + BX−1X−∗)X∗ = X−∗(J∗ + B(X∗X)−1)X∗,

which is a similarity—so the statement follows.

Example 2 Consider the right solvent with “mixed” spectrum:

A =





2 2 + i −1 − 2i
0 1 0
0 0 i



 .

It is easily seen that we may take

y∗

1 = [ 0 0 1 ] , y∗

2 = [ 1 2 + i −i ] , y∗

3 = [ 0 −1 0 ]

as left eigenvectors corresponding to the eigenvalues i, 2, 1, respectively. With our con-
ventions, left solvents will have the form S = A∗ +

∑3
j=2 δjyjy

∗

j . Taking δ2 = δ3 = 1
leads to

S =





3 2 + i −i
4 − 2i 7 −1 − 2i
−1 + 3i −1 + 2i 1 − i





and then we obtain the Hermitian matrices

D = −(S + A) =





−5 −4 − 2i 1 + 3i
−8 1 + 2i

−1



 , K = SA =





6 8 + 4i −2 − 6i
17 −6 − 7i

8



 .

Finally, σ(L) = σ(A) ∪ σ(S) ≈ {i, 2, 1} ∪ {−i, 1.3647, 9.6533}.

6



4. Real symmetric systems

The given matrix A is now to be a real right divisor and we seek real left divisors S
(so that coefficients D and K will be real). We can follow the earlier line of argument
and obtain an analogue of Theorem 3.

Theorem 6 Given a matrix A ∈ R
n×n with real Jordan canonical decomposition A =

XRJRX−1
R , all real matrices S for which A + S and AS are real and symmetric have the

form

S = AT + X−T
R BRX−1

R , (15)

for some BR ∈ CR(JR), where

CR(JR) := {BR ∈ R
n×n : BRJR = (BRJR)T , BT

R = BR}.

Explicit formulae for the real symmetric system coefficients generated in this way are

D = −(S + A) = −(A + AT ) − X−T
R BRX−1

R ,

K = SA = AT A + X−T
R (BRJR)X−1

R .

Now assume that all eigenvalues of A are simple. Thus, A = XRJRX−1
R with

JR = diag
([

σ1 ω1

−ω1 σ1

]

, . . .
[

σs ωs

−ωs σs

]

, λ2s+1, . . . , λ2s+t

)

∈ R
n×n, (16)

where (λ2k−1, λ2k) with λ2k−1 = σk + iωk and λ2k = λ2k−1, k = 1: s are the complex
conjugate pairs of eigenvalues. Then it is easy to show that

CR(JR) =
{

diag
([

α1 β1

β1 −α1

]

, . . .
[

αs βs

βs −αs

]

, δ1, . . . , δt

)

∈ R
n×n :

αj , βj , δk ∈ R, j = 1: s, k = 1: t
}

. (17)

Example 3 Assigning

JR = diag
([

−1 1
−1 −1

]

,−2,−3
)

, XR =






1 1 1 1
0 1 1 1
0 0 2 1
0 0 1 1






determines the right divisor

A = XRJRX−1
R =






−2 2 1 −4
−1 0 1 −3
0 0 −1 −2
0 0 1 −4






with eigenvalues −1 ± i, −2 − 3. If we assign

BR = diag
( [

−2 0
0 2

]

,−4,−4
)

,
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we obtain a matching left divisor

S =






−4 1 0 0
−4 0 0 −2
1 1 −9 13
−4 −5 10 −22






with eigenvalues −28.90, 1.54, −4.84, −2.80 to two decimal places. The real symmetric
system coefficients obtained are

D =






6 −3 −1 4
0 −1 5

10 −11
26




 , K =






7 −8 −3 13
8 2 −8

24 −41
99




 .

Notice that, although a stable right solvent, A, is assigned (i.e. with eigenvalues in
the open left-half plane), the choice of BR produces an unstable eigenvalue in S (and
hence in L(λ)). As Corollary 5 shows, one way to ensure that all the eigenvalues of L are
in the left half plane (i.e. the system is stable) would be to first choose A to be stable,
and then confine BR ∈ CR(JR) to matrices for which X−T BRX−1 is sufficiently small.

To illustrate, replacing BR in this example by the smaller matrix BR/4, results in
a left divisor with the stable eigenvalues, −9.34, −0.43, −1.83, −2.39 to two decimal
places.

5. Sign characteristics

The sign characteristic is an intrinsic property for Hermitian matrix polynomials
with real eigenvalues, and plays an essential role in the development of canonical forms
and in perturbation theory applied to real eigenvalues. It consists of a vector with
components +1 or −1, one component for each elementary divisor corresponding to a
real eigenvalue. For a simple real eigenvalue µ of L(λ) = λ2I + λD + K with eigenvector
x the corresponding sign in the sign characteristics is just

sign
(
x∗L(1)(µ)x

)
= sign

(
2µ(x∗x) + x∗Dx

)
. (18)

The simple eigenvalue µ is said to be of positive type (or negative type) if the sign in (18)
is positive (or negative) and this is well defined in the sense that x∗L(1)(µ)x 6= 0 for a
simple eigenvalue [2, Thm. 3.2].

Note the fact that, if (λk, xk) is an eigenpair of A then we have an eigenvalue and
right eigenvector of three different matrix functions of interest to us, namely,

λI − A, L(λ) = (λI − S)(λI − A), L0(λ) := (λI − A∗)(λI − A). (19)

We note again that, although λk is, by hypothesis, a simple real eigenvalue of A, it is a
defective real eigenvalue of multiplicity two of L0(λ) [3, Thm. 12.8]. In this case we have

x∗

kL
(1)
0 (λk)xk = 2λk(x∗

kxk) − x∗

k(A + A∗)xk = 0. (20)

8



Now suppose that A has distinct eigenvalues with Jordan canonical decomposition
A = XJX−1 and J as in (10). Let a left solvent S be constructed as in Theorem 3.
Then, for the resulting L(λ) we have

L(1)(λ) = 2Iλ − (A + S) = 2Iλ − (A + A∗) − X−∗BX−1, (21)

for some B ∈ C(J). Using this in (20) we find that for a simple real eigenvalue λk with
eigenvector xk,

x∗

kL(1)(λk)xk = −x∗

k(X−∗BX−1)xk = −e∗kBek = −δk, (22)

(ek is a unit coordinate vector). Comparing with (18), we see that the free parame-
ters δ1, . . . , δt in the definition of B ∈ C(J) (see (11)) determine the types of the real
eigenvalues of L associated with A.

Theorem 7 Let A ∈ C
n×n have distinct eigenvalues, Jordan canonical decomposition

A = XJX−1 and J as in (10). Write S = A∗ + X−∗BX−1 for some B ∈ C(J) as in

(11). Then the jth real eigenvalue of A (namely λ2s+r+j, 1 ≤ j ≤ t) is an eigenvalue of

L(λ) = (λI − S)(λI − A) of positive type if δj < 0 and negative type if δj > 0.

An obvious analogue of Theorem 7 holds when A ∈ R
n×n.

It follows from Theorem 7 that if δj < 0 (or δj > 0) for all j = 1: t then all the
real eigenvalues of the right divisor λI −A are of positive type (or negative type). Then
there must be exactly t real eigenvalues of the left divisor λI − S, and they must be
a complementary set in the sense that they are all of negative type (or positive type,
respectively). In particular, if s = 0 in (11), (i.e. A has no complex conjugate eigenvalue
pairs) and all the δj are negative then S has exactly t real eigenvalues of negative type.
The following example is instructive.

Example 4 Let a right divisor Iλ − A be defined by

A =





1 −1 0
2 3 2
1 1 2



 .

The eigenvalues of A are 1, 2, 3 (so that s = 0, t = 3 in (11) and (13)) with left eigenvectors

y∗

1 = [ 0 1/2 −1 ] , y∗

2 = [ 1 0 1 ] , y∗

3 = [ 1 1/2 1 ] ,

respectively. Hence, in equation (14) we have

Y1 =





0 0 0
0 1/4 −1/2
0 −1/2 1



 , Y2 =





1 0 1
0 0 0
1 0 1



 , Y3 =





1 1/2 1
1/2 1/4 1/2
1 1/2 1



 .

(a) If we choose δ1 = δ2 = δ3 = 1 in (13), then

S =





1 2 1
−1 3 1
0 2 2



 +

3∑

j=1

δjYj =





3 5/2 3
−1/2 7/2 1

2 2 5



 .
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In this way we generate a system L(λ) for which the eigenvalues of A have negative
type and the eigenvalues of S have positive type. Note that the eigenvalues of
S, which are 1.78, 2.69, 7.02 to two decimal places, interlace those of A. The
quadratic L is quasihyperbolic [1, Sec. 4.2].

(b) If we let δ1 = δ2 = δ3 = 10, then

S =





21 7 11
4 8 1
20 2 32





with truncated eigenvalues 42.83, 12.91, 5.25, all having positive type. This choice
of parameters determines a hyperbolic system since all eigenvalues are real and,
with the eigenvalues in increasing order, L(λ) has 3 consecutive eigenvalues of one
type followed by 3 consecutive eigenvalues of the other type with a gap between
the 3rd and 4th eigenvalues [1].

(c) If we let δ1 = δ2 = 1, δ3 = −1, then

S =





1 3/2 1
−3/2 3 0

0 1 3





with a real eigenvalue and a conjugate pair—the spectrum is “mixed”.

6. Conclusions

The well-known result asserting that a selfadjoint quadratic matrix polynomial can
be factorized as a product of linear polynomials has been used to investigate the inverse
(quadratic) eigenvalue problem. We have shown that, when a linear right divisor is
specified, there is a class of compatible left divisors. Special attention is given to the ways
in which conjugate pairs of eigenvalues and the two distinctive types of real eigenvalues
are distributed between the left and right divisors, and also to the determination of stable

systems in the sense that all eigenvalues have negative real parts.

References

[1] M. Al-Ammari and F. Tisseur. Hermitian matrix polynomials with real eigenvalues of definite type.
Part I: Classification. MIMS EPrint 2010.9, Manchester Institute for Mathematical Sciences, The
University of Manchester, UK, Jan. 2010. 24 pp.

[2] A. L. Andrew, K. E. Chu, and P. Lancaster. Derivatives of eigenvalues and eigenvectors of matrix
functions. SIAM J. Matrix Anal. Appl., 14(4):903–926, 1993.

[3] I. Gohberg, P. Lancaster, and L. Rodman. Matrix Polynomials. Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA, USA, 2009. ISBN 0-898716-81-8. xxiv+409 pp. Unabridged
republication of book first published by Academic Press in 1982.

[4] C.-H. Guo, N. J. Higham, and F. Tisseur. Detecting and solving hyperbolic quadratic eigenvalue
problems. SIAM J. Matrix Anal. Appl., 30(4):1593–1613, 2009.

[5] C.-H. Guo and P. Lancaster. Algorithms for hyperbolic quadratic eigenvalue problems. Math. Comp.,
74(252):1777–1791, 2005.

[6] P. Lancaster and J. Maroulas. Inverse eigenvalue problems for damped vibrating systems. J. Math.

Anal. and Appl., 123:238–261, 1987.
[7] P. Lancaster and U. Prells. Inverse problems for damped vibrating systems. Journal of Sound and

Vibration, 283:891–914, 2005.
[8] P. Lancaster and I. Zaballa. Canonical forms for selfadjoint matrix polynomials, 2010. Submitted.

10


