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Abstract

In this paper we study different approaches to computability over effectively enumerable topological spaces.
We introduce and investigate the notions of computable function, strongly-computable function and weakly-
computable function. Under natural assumptions on effectively enumerable topological spaces the notions
of computability and weakly-computability coincide.
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1 Introduction

In this paper we approach the problem of computability over effectively enumer-
able spaces. Since the class of effectively enumerable topological spaces contains
effective ω-continuous domains, computable metric spaces, and abstract structures
with computably enumerable ∃-theory as proper subclasses, computability over ef-
fectively enumerable spaces is crucial problem to investigate. We introduce and
study different natural approaches to computability based on well-known enumera-
tion operators [16]. These approaches lead to nonequivalent classes of computable
functions over effectively enumerable spaces. The paper is structured as follows.
In Section 2 we recall notion and properties of effectively enumerable spaces [11].
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In Section 3 we propose and study approaches to computability over effectively
enumerable spaces.

2 Basic notions and Definitions

Let (X, τ, ν) be a topological space, where X is a non-empty set, τ∗ ⊆ 2X is a base
of the topology τ and ν : ω → τ∗ is a numbering. Let Dk denote the k-th finite set
with respect to the standard numbering of the finite sets.

Definition 2.1 A topological space (X, τ, ν) is effectively enumerable if the
following conditions hold.

(i) There exists a computable function g : ω × ω × ω → ω such that

νi ∩ νj =
⋃

n∈ω

νg(i, j, n).

(ii) The set {i|νi �= ∅} is computably enumerable.

Definition 2.2 An effectively enumerable topological space (X, τ, ν) is strongly
effectively enumerable if there exists a computable function h : ω×ω → ω such
that

X \ cl(νi) =
⋃

j∈ω

νh(i, j).

Now we show that the topological spaces corresponding to computable metric
spaces likewise corresponding to effective ω-continuous domains are proper natural
subclasses of effectively enumerable topological spaces.

For the definition of computable metric space we refer to [14,23,2].

Theorem 2.3 If M = (M,ν,B, d) is a computable metric space then (M, τd, ν
∗) is

a strongly effectively enumerable topological space.

Proof. Let M = (M, ν,B, d) be a computable metric space, where B ⊆ M is
countable and dense in M , ν : ω → B is a numbering, and d : M × M → R is
a distance function computable on (B, ν). We use a computable representation of
the rational numbers (Q+, μ), the standard pairing function c : ω × ω → ω, and
the inverse function (l, r) : ω → ω × ω. Let τd be topology induced by d, ν∗ be a
numbering of the base of τd such that ν∗(n) = B(νl(n), μr(n)), where B(x, y) is an
open ball with the center x and the radius y.
It is easy to see that

ν∗n ∩ ν∗m = ∪{B(x, q)|x ∈ B, q ∈ Q+, d(νl(n), x) + q < d(νl(n), μr(n)) and
d(νl(m), x) + q < d(νl(m), μr(m))}

is an effectively open set. So,

ν∗n ∩ ν∗m =
⋃

k∈ω

ν∗χ(n, m, k) for a computable function χ.

Since ν∗n �= ∅ ↔ μr(n) > 0, the set {n|ν∗n �= ∅} is effectively open. Finally, since
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M \ cl(ν∗n)M \ B̄(νl(n), μr(n)) =
∪{B(x, q)|x ∈ B, q ∈ Q+, d(νl(n), x) > q + μr(n)}

is an effectively open set, we have

M \ cl(ν∗i) =
⋃

j∈ω

ν∗h(i, j) for a computable function h.

So, (M, τd, ν
∗) is a strongly effectively enumerable topological space. �

The following proposition shows that the condition of computably enumerability
for the set {(i, j) |α(i)α(j)} considered in [23] is too restrictive in the case of metric
spaces.

Proposition 2.4 There exists a computable metric space (M,B, d) such that the
set {(i, j) | ν∗(i) = ν∗(j)} is not c.e.

Proof. In [9,10] it was constructed some computable closed set A ⊂ R that its
interior is not effectively open. We put X = R \A and consider it as a computable
metric space since X is effectively open, B = X ∩ Q. It is easy to see that

x ∈ int(A) ↔ ∃a, b ∈ B∃r1, r2 ∈ Q(BX(a, r1) = BX(b, r2) ∧ |x − a| < r1 ∧
|x − b| > r2).

Hence, if the set {(i, j) | ν∗(i) = ν∗(j)} is c.e. for this space X, int(A) is effectively
open, a contradiction completes the proof. �

Now we compare effectively enumerable topological spaces with ω-continuous
domains (c.f. [18,1,4]). First we recall well-known properties of ω-continuous do-
mains.

Lemma 2.5 For an ω-continuous domain D = (D, {bi}i∈ω,) the following prop-
erties hold.

(i) If a � x then there exists n ∈ ω such that a � bn � x.

(ii) (D, τ, ν) is a T0-space, where τ is generated by the base τ∗ = {Ubn} ∪ {∅}
and the numbering ν : ω → τ∗ is defined as follows: ν0 = ∅, νk = Ubk−1

=
{x|bk−1 � x}, k > 0.

Definition 2.6 An ω-continuous domain D = (D, {bi}i∈ω,) is called weakly
effective if {< n,m > |bn � bm} is computably enumerable.

Theorem 2.7 Every weakly effective ω-continuous domain is an effectively enu-
merable topological space.

Proof. Let D = (D, {bi}i∈ω,) be a weakly effective ω-continuous domain. The
topology τ is generated by the base τ∗ = {Ubn |n ∈ ω}∪{∅}, where Ua = {x|a � x},
and ν : ω → τ∗ is the standard numbering. We show now that

Ubn ∩ Ubm =
⋃

bs�bn,bm

Ubs .
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If x ∈ Ubs for bs � bn, bm then, by definition, x � bs. So, x ∈ Ubn ∩ Ubm . Suppose
x ∈ Ubn ∩ Ubm . By definition, x � bn and x � bm. So, there exist s1 and s2 such
that x � bs1 � bn and x � bs2 � bm.

Since {bi|bi � x} is directed, there exists bs � bn, bm such that x ∈ Ubs . By
weak effectiveness, the set {n|Ubn �= ∅} is computably enumerable. �

The following results show that the effectively enumerable spaces enlarge the ef-
fective ω-continuous domains and the computable metric spaces. We consider struc-
tures with topologies induced by ∃-formulas. Suppose A = 〈A, σ0〉 = 〈A, σP , �=〉 is
an abstract structure, where A contains more than one element, σP is a countable
set of basic predicates.
The topology τA

Σ is formed by the base which is the set of subsets definable by
existential formulas with positive occurrences of predicates from σ0. The following
proposition is straightforward from the definition of effectively enumerable topolog-
ical space.

Theorem 2.8 [11] The topological space
(
X, τA

Σ

)
is effectively enumerable if and

only if Th∃(X) is computable enumerable.

As the example of a structure which is an effectively enumerable space we con-
sider the set of continuous functions C(R). Let us note that C(R) does not belong
to the metric spaces and to the ω-continuous domains as well.

We consider the structure C(R) = (C(R), P1, . . . , P12, �=), where the predicates
P1, . . . , P12 are interpreted for every f, g ∈ C(R) as follows.
The first group formalises relations between infimum and sumpemum of two func-
tions on [0, 1]:

C(R) |= P1(f, g) ↔ sup f |[0,1] < sup g|[0,1];

C(R) |= P2(f, g) ↔ sup f |[0,1] < inf g|[0,1];

C(R) |= P3(f, g) ↔ sup f |[0,1] > inf g|[0,1];

C(R) |= P4(f, g) ↔ inf f |[0,1] > inf g|[0,1].

The second group formalises properties of operations on C(R).

C(R) |= P5(f, g, h) ↔ f(x) + g(x) < h(x); for every x ∈ [0, 1];

C(R) |= P6(f, g, h) ↔ f(x) · g(x) < h(x) for every x ∈ [0, 1];

C(R) |= P7(f, g, h) ↔ f(x) + g(x) > h(x) for every x ∈ [0, 1];

C(R) |= P8(f, g, h) ↔ f(x) · g(x) > h(x) for every x ∈ [0, 1].

The third group formalises relations between functions f and λx.x.

C(R) |= P9(f) ↔ f(x) > x; for every x ∈ [0, 1];

C(R) |= P10(f) ↔ f(x) < x for every x ∈ [0, 1].

The fourth group formalises relations between a function h and the composition of
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functions f and g.

C(R) |= P11(f, g, h) ↔ f(g(x)) < h(x) for every x ∈ [0, 1];

C(R) |= P12(f, g, h) ↔ f(g(x)) > h(x) for every x ∈ [0, 1].

We recall the notion of compact open topology τc−o on C(X, Y ). Let (X, α) and
(Y, β) be topological spaces, K ⊆ X be a compact set, and O ⊆ Y be an open set.
Then subbase of the compact open topology is defined by sets of the type

UK
O = {f ∈ C(X,Y )|f(K) ⊂ O}.

Since, by Weierstrass Theorem [21], Q[x] is dense in C(R), the base τ∗
c−o of the

topology τc−o and its numbering are defined as follows:

(i) The base τ∗
c−o is the finite intersections of the following sets

Ua,b
p,n = {f |p − 1

n
< f |[a,b] < p +

1
n
}, where b ∈ Q, p ∈ Q[x] and deg(p) = n.

(ii) The numbering ν : ω → τ∗ is standard.

Proposition 2.9 On the structure C = (C(R), P1, . . . , P12, �=) the compact open
topology τc−o coincides with τC

Σ.

Proof. ⊆). It is easy to see that, for 1 ≤ i ≤ 12 the sets {f̄ |C(R) |= Pi(f̄)} and
projections of them belong to τc−o. By induction, τ

C(R)
Σ ⊆ τco .

⊇). By definition, it is sufficient to show that the relations f |[a,b] > g|[a,b] and f |[a,b] <

g|[a,b] are ∃–definable. Note that Wa,b = {χ|χ(0) < a and χ(1) > b} ⊆ C[0, 1] is
∃–definable set in the language {Pi, �=}i≤12. Since,

f |[a,b] < g|[a,b] ↔ ∃χ ∈ Wa,b∃h (f ◦ χ < h < g ◦ χ) ,

the relations f |[a,b] > g|[a,b] and f |[a,b] < g|[a,b] are ∃–definable. �

Theorem 2.10 The topological space (C(R), τc−o, ν) is effectively enumerable.

Proof. Existence of a computable function g : ω × ω × ω → ω, such that

νi ∩ νj =
⋃

n∈ω

νg(i, j, n),

follows from the definition of ν. By quantifier elimination on R, the set {i|νi �= ∅}
ic computably enumerable. Indeed, by Weierstrass Theorem [21], existence of g ∈
C(R) such that g ∈ ⋃

i∈I Uai,bi
pi,ni is equivalent to existence of m ∈ ω and polynomial

p ∈ Q[x] of degree m such that p ∈ ⋃
i∈I Uai,bi

pi,ni . By quantifier elimination on R, we
can effectively check this property.d �

We recall the notion of specialisation order on T0-spaces.

Definition 2.11 Let (X, τ) be a T0-space. A binary relation ≤ on X is called
specialisation order if y ≤ x ↔ y ∈ cl({x}).
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Remark 2.12 Let us note that every partial continuous function f on a T0-space
is monotone on domf with respect to the specialisation order.

We recall the notion of core-compact topological space.

Definition 2.13 A topological space (X, τ) is said to be core-compact iff the lattice
O(X) of the open subsets is continuous.

It is well-known that locally compact spaces and continuous domains are core-
compact [8]. Below we slightly modify the definition of strong inclusion. Let ≤ be
the specialisation order. Denote y̌ = {z ∈ X|y ≤ z} =

⋂
k:y∈βk βk.

Definition 2.14 Let (X, τ, ν) be an effectively enumerable core-compact T0-space,
where X is a non-empty set, τ∗ ⊆ 2X is a base of the topology τ and α : ω → τ∗ is
a numbering. Let E ⊆ ω2 be a computably enumerable relation. We say that E is
compact-like strong inclusion (abbreviated as clsi ) if the following conditions hold.

(E 1). If kEm, then
⋂

s∈Dk
αs � αm.

(E 2). αn =
⋃

mE′n αm for every n, m ∈ ω where E′ = {< n, m >∈ ω2|∃k(Dk =
{n} ∧ kEm)}.

(E 3). If
⋂

j∈J αj = x̌ � {y ∈ X|x ≤ y} for x ∈ αm and J ⊆ ω, then kEm for a finite
Dk ⊆ J .

(E 4). If kEn and for all j ∈ Dk ljEj and Ds =
⋃

j∈Dk
Dlj , then sEn.

(E 5). If sEn and sEm, then ∃k (kE′n ∧ kE′m ∧ sEk).

The basic examples are Euclidian spaces (Rn, τ), where the topology τ is formed
by the base which is the set of balls B(p, r) with p ∈ Qn and r ∈ Q+. It is easy
to see that

⋂
s∈Dk

αs � αm if and only if cl(
⋂

αs∈Dk
s) ⊆ αm. Put kEm �

cl(
⋂

s∈Dk
αs) ⊆ αm. By decidability of Th(R), the properties (E1) − (E5) hold.

3 Computability on Effectively Enumerable Topologi-
cal Spaces

Now we introduce notions of computable function over effectively enumerable topo-
logical spaces based on the well-known definition of enumeration operator.

Definition 3.1 [16] A function Γe : P(ω) → P(ω) is called enumeration opera-
tor if

Γe(A) = B ↔ B = {j|∃i c(i, j) ∈ We, Di ⊆ A},
where We is the e-th computably enumerable set, and Di is the i-th finite set.

Definition 3.2 Let X = (X, τ, α) be an effectively enumerable topological space
and Y = (Y, λ, β) be an effectively enumerable T0-space.
A partial function F : X → Y is called computable if there exists an enumeration
operator Γe : P(ω) → P(ω) such that, for every x ∈ X,
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(i) If x ∈ dom(F ) then

Γe({i ∈ ω|x ∈ αi}) = {j ∈ ω|F (x) ∈ βj}.

(ii) If x �∈ dom(F ) then, for all y ∈ Y

⋂

j∈ω

{βj|j ∈ Γe(Ax)} �=
⋂

j∈ω

{βj|j ∈ By},

where Ax = {i ∈ ω|x ∈ αi} and By = {j ∈ ω|y ∈ βj}.
Theorem 3.3 Let X = (X, τ, α) be an effectively enumerable topological space and
Y = (Y, λ, β) be an effectively enumerable T0-space. For a total function F : X → Y

the following are equivalent.

(i) F is computable;

(ii) There exists a computable function h : ω × ω → ω such that F−1(βj) =⋃
i∈ω αh(i, j).

Proof. Let F : X → Y be computable. By definition, we have Γe ({i|x ∈ αi}) =
{j|F (x) ∈ βj}. Since X is effectively enumerable, there exists a computable function
H : ω × ω → ω such that

⋂

i∈Dk

αi =
⋃

s∈ω

αH(k, s).

So,

x ∈ F−1(βj) ↔ F (x) ∈ βj ↔ ∃k (Dk ⊆ {i|x ∈ αi} ∧ c(k, j) ∈ We) ↔∨

c(k,j)∈We

x ∈ αi ↔
∨

c(k,j)∈We

∃sx ∈ αH(k, s) ↔

x ∈
⋃

c(k,j)∈We,s∈ω

αH(k, s) ↔ x ∈
⋃

m∈ω

αh(j,m)

for a computable function h : ω × ω → ω.
Now suppose F−1(βj) =

⋃
i∈ω αh(i, j). Then, there exists e such that, for Ax =

{x|x ∈ αi},
Γe(Ax) = {j|∃s h(j, s) ∈ Ax} = {j|x ∈ F−1(βj)} = {j|F (x) ∈ βj}.

�

Proposition 3.4 Let X = (X, τ, α) be an effectively enumerable topological space
and Y = (Y, λ, β) be an effectively enumerable T0-space.

(i) If F : X → Y is a computable function, then F is continuous at every points
of dom F .

(ii) A total function F : X → Y is computable if and only if F is effectively
continuous.

Proof. The first claim is straightforward form Definition 3.2. The second claim is
based on Theorem 3.3. �
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Definition 3.5 Let X = (X, τ, α) be an effectively enumerable topological space
and Y = (Y, λ, β) be an effectively enumerable T0-space.
A partial function F : X → Y is called strongly computable if there exists an
enumeration operator Γe : P(ω) → P(ω) such that

(i) If x ∈ domF , then Γe(Ax) = BF (x), where Ax = {i ∈ ω|x ∈ αi}, By = {j ∈
ω|y ∈ βj}.

(ii) If x �∈ domF and Γe(Ax) = J , then
⋂{βi|j ∈ J} �⊆ y̌ for every y ∈ Y .

Remark 3.6 Let us note that the notion of strongly computability is invariant
under computably equivalent numberings of topologies bases.

Now we compare our notion of strongly computability with strongly (ρc
X , ρc

Y )-
computability for F : X → Y , where X and Y are computable metric spaces,
and ρc

X , ρc
Y are Cauchy-representations of them. For the definitions of Cauchy-

representation and strongly (ρc
X , ρc

Y )-computability we refer to [23].

Theorem 3.7 Let X = (X, λ,BX , dX) and Y = (Y, β, BY , dY ) be computable met-
ric spaces and (X, τX , α∗), (Y, τY , β∗) be corresponding them effectively enumerable
topological spaces. For every total function F : X → Y , the following are equivalent.

(i) F is strongly (ρc
X , ρc

Y )-computable;

(ii) F is strongly computable as a function from one effectively enumerable topo-
logical space to another (c.f. Definition 3.5).

Proof. It is easy to see that there exists an effective procedure which given a
Cauchy-representation ρc

X(z) produces Az = {i|z ∈ α∗i} as well as there exists
an effective procedure which given Az produces a Cauchy-representation ρc

X(z) for
every z ∈ X. By Definition 3.5 and the definition of (ρc

X , ρc
Y )-computability, both

computabilities coincide, details are routine. �

Theorem 3.8 For total functions the notions of computability and strongly com-
putability coincide.

Remark 3.9 Below in the case of total functions we use notation ”computable”
for both computable and strongly computable functions.

Let (N, τ, ν), be a T0–space, where N is the natural numbers, τ is the discrete
topology and ν is its numbering defined as follows:

ν 0 = ∅; ν n + 1 = {n}.

Proposition 3.10 For (N, τ, ν), the class of partial strongly computable functions
coincides with the partial recursive functions.

Proof. Suppose f : N → N is strongly computable. Since the specialisation order
on N coincides with the equality on N, there exists an enumeration operator Γe :
P(ω) → P(ω) such that
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n + 1 ∈ Γe(D) ↔ ∃x (x + 1 ∈ D ∧ f(x) = n) .

Suppose D is finite. Note that if x �∈ domf , then for all y ∈ Y ,
⋂

j∈ω

{βj|j ∈ Γe(Ax)} �⊆ {y}.

Hence, f(x) = n ↔ ∃D (D is finite ∧ x = 1 ∈ D ∧ n + 1 ∈ Γe(D)), i.e., f is a par-
tial recursive function.
Suppose f is a partial recursive function. Put Γe(A) = {f(x) + 1|x + 1 ∈ A}. It is
easy to see that Γe(A) is a required enumeration operator. �

Theorem 3.11 For partial functions, the strongly computable functions is a proper
subclass of the computable functions.

Proof. Let us consider T0–space (N, τ, ν). It is easy to see that a computable
function is representable as h1\h2 for some partial recursive functions h1, h2 whereas
the strongly computable functions coincide with the partial recursive functions. �

Definition 3.12 Let X = (X, τ, α) be an effectively enumerable topological space
and Y = (Y, λ, β) be an effectively enumerable T0-space.
A partial function F : X → Y is called weakly computable if there exists an
enumeration operator Γe : P(ω) → P(ω) such that, for every x ∈ X,

(i) If x ∈ dom(F ), then

Γe(Ax) = J and
⋂

j∈J

βj = F̌ (x)

(ii) If x �∈ dom(F ), then

Γe(Ax) = J and
⋂

j∈J

βj �= y̌ for any y ∈ Y.

Proposition 3.13 The computable functions is a proper subclass of weakly com-
putable functions.

Let us consider the real numbers with two topologies τR and τA, where τR is the
standard topology and τA is defined as follows. We fix a se t A which is open but
not effectively open. The topology τA is induced by the base

τ∗
A = {(a, b)|a, b ∈ Q} ∪ {(a, b) ∩ A|a, b ∈ Q} ∪ {(−∞,+∞)}.

We take f = id : (R, τR, α) → (R, τA, β), where β is defined as follows.

β(2n) = αn; β(2n + 1) = A ∩ αn.

Since preimage of A is not effectively open, f is not computable whereas f is weakly
computable. Indeed, it is easy to see that Γe(Y ) = 2Y = {2m|m ∈ Y } is a
corresponding enumeration operator.
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Theorem 3.14 Let X = (X, τ, α) be an effectively enumerable topological space
and Y = (Y, λ, β) be an effectively enumerable core-compact T0-space endowed by
some clsi-relation E ⊆ ω2. A partial function F : X → Y is computable if and only
if F is weakly computable.

Proof. If F is computable it is easy to see that the corresponding operator Γe

satisfy the conditions of Definition 3.12.
Let F be a weakly computable function and Γe be a corresponding enumeration
operator. We construct a new enumeration operator Γe′ as follows.

m ∈ Γe′(A) ↔ m ∈ Γe(A) ∨ ∃k∃s[Ds ⊆ A ∧ Dk ⊆ Γe(Ds) ∧ kEm].

By the properties (E1) and (E3) of the clsi-relation E it follows that
⋂

{αj |j ∈ Γe′(A)} =
⋂

{αj |j ∈ Γe(A)}.

Hence,
if x ∈ domF, then αm ∈ F (x) ↔ m ∈ Γe′(Ax),

whereas,
if x �∈ domF, then

⋂
{αj |j ∈ Γe′(Ax)} �= ž for any z ∈ Y.

So, F is computable. �

4 Conclusion and Related work

We investigated computability over effectively enumerable topological spaces which
contain computable metric spaces and effective ω-continuous domains as proper
subclasses. It has been shown that computability over effectively enumerable topo-
logical spaces corresponds to effective continuity. There has been a considerable
interest in computability theory in the question of whether computable maps are
continuous with respect to natural topologies. Myhill and Shepherdson [15] have
shown that every computable operator on the set of partial recursive functions is
effectively continuous and vice versa. Kreisel, Lacombe and Shoenfield [13] have
proven analogous results for the total recursive functions. These results have been
generalised to effectively given Scott domains [6,17,22], recursive metric spaces [14],
separable countable T0-spaces with a witness for noninclusion [20]. It was shown
that in general the correspondence between computability and effective continuity
does not hold [7,13,24]. For historical remarks we refer to [19].

The main advantages of the class of effectively enumerable topological spaces
are the following:

• The class of effectively enumerable topological spaces is not restricted to countable
spaces.

• The class of effectively enumerable topological spaces contains computable metric
spaces, ω-continuous domains.

• Different notions of computability of partial functions is formalised and investi-
gated.
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• For total functions, computability is equivalent to effective continuity.
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