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Σ-DEFINABILITY OF COUNTABLE STRUCTURES

OVER REAL NUMBERS, COMPLEX NUMBERS,

AND QUATERNIONS

A. S. Morozov1∗ and M. V. Korovina2∗ UDC 510.67+510.5
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We study Σ-definability of countable models over hereditarily finite (HF-) superstructures over
the field R of reals, the field C of complex numbers, and over the skew field H of quaternions.
In particular, it is shown that each at most countable structure of a finite signature, which is
Σ-definable over HF(R) with at most countable equivalence classes and without parameters, has
a computable isomorphic copy. Moreover, if we lift the requirement on the cardinalities of the
classes in a definition then such a model can have an arbitrary hyperarithmetical complexity,
but it will be hyperarithmetical in any case. Also it is proved that any countable structure Σ-
definable over HF(C), possibly with parameters, has a computable isomorphic copy and that
being Σ-definable over HF(H) is equivalent to being Σ-definable over HF(R).

1. PRELIMINARY INFORMATION

We will be working with finite predicate signatures only. This restriction, yet, will not inhibit us to
speak about operations and constants. Thus, for instance, an operation F can be viewed as its graph,
i.e., the predicate PF = {〈x̄, f(x̄)〉 | x̄ ∈ dom (F )}, and we may think of a signature constant as a unary
predicate true on just that constant. This conception agrees with the idea of constants treated as functions
with zero number of elements.

Here we use the basic definitions and notions from the theory of admissible sets (see [1, 2]) and com-
putable model theory (theory of constructive models); see, e.g., [3]. We consider the field R of reals in
the predicate signature σ = 〈+, ·, <, 0, 1〉, the field C of complex numbers, and also the skew field H of
quaternions in the predicate signature σ1 = 〈+, ·, 0, 1〉, where constants likewise are viewed as predicates, in
accordance with the convention made above. Sometimes, it might be convenient to work with signatures in
which +, ·, 0, and 1 are operations. These cases will be specially announced. A corresponding operational
version of the signature σ is denoted by σf . In passing to operational signatures and back, note, the class
of Σ-definable relations is kept fixed (see [2]).

For intervals, common designations are used: [a, b) = {x ∈ R | a � x < b}, (a, b) = {x ∈ R | a < x < b},
etc. The relation {ā | M |= ϕ(ā, p̄)} is also denoted by ϕ(x̄, p̄)M[x̄].
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The following definition is due to Ershov (see [1, 4]).

Definition 1.1. A model M = 〈M,Pn0
0 , . . . ,Pnk

k 〉 of a finite signature is said to be Σ-definable over an
admissible set A if there exist a finite tuple of parameters p̄ ∈ A and Σ-formulas

W (x, z̄),
E+(x, y, z̄), E−(x, y, z̄),
P+

i (x1, . . . , xni , z̄), P−
i (x1, . . . , xni , z̄), i = 1, . . . , k,

such that:
(1) for all i = 1, . . . , k,

P+
i (x̄, p̄)A[x̄] ∩ P−

i (x̄, p̄)A[x̄] = ∅,

P+
i (x̄, p̄)A[x̄] ∪ P−

i (x̄, p̄)A[x̄] =
(
W (x, p̄)A[x]

)ni ;

(2) E+(x, y, p̄)A[x, y] is a congruence relation on

〈W (x, p̄)A[x]; P+
1 (x̄, p̄)A[x̄], . . . , P+

k (x̄, p̄)A[x̄]〉,

and

E+(x, y, p̄)A[x, y] ∩ E−(x, y, p̄)A[x, y] = ∅,

E+(x, y, p̄)A[x, y] ∪ E−(x, y, p̄)A[x, y] =
(
W (x, p̄)A[x]

)2
;

(3) 〈W (x, p̄)A[x]; P+
1 (x̄, p̄)A[x̄], . . . , P+

k (x̄, p̄)A[x̄]〉/E+(x,y,p̄)A[x,y]
∼= M.

In this case we say that the above formulas W (x, p̄), E+(x, y, p̄), E−(x, y, p̄), P+
i (x̄, p̄), and P−

i (x̄, p̄),
i = 1, . . . , k, define the model M with parameters p̄.

If a tuple of parameters in our definition is empty then we speak of Σ-definability without parameters.
We also say that a model M is definable over A with an equivalence having some particular property (e.g, an
equivalence all of whose classes are at most countable) if there exists a Σ-definition of M over A in which
the equivalence E+(x, y, p̄)A[x, y] has this property.

If we allow the formulas W , E+, E−, P+
i , and P−

i in the definition to be arbitrary first-order formulas
then we obtain a definition of elementary definability (with or without parameters, respectively, with an
equivalence having some property, etc.).

Definition 1.2. Suppose that A is a submodel of B. We call it a 1-submodel (and denote this fact by
A �1 B) if, for any ∃-formulas ϕ(x1, . . . , xn) and any a1, . . . , an ∈ A,

B |= ϕ(a1, . . . , an) ⇒ A |= ϕ(a1, . . . , an).

Obviously, B � A implies A �1 B.
The next definition is also due to Ershov.

Definition 1.3. Let A and B be admissible sets and B be an end extension of A. We say that A

is a Σ-substructure of B (and denote this fact by A �Σ B) if, for all Σ-formulas ϕ(x1, . . . , xn) and all
a1, . . . , an ∈ A,

B |= ϕ(a1, . . . , an) ⇒ A |= ϕ(a1, . . . , an).

THEOREM 1.4. Let A � B. Then the following equivalence holds:

A �1 B⇔ HF(A) �Σ HF(B).
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Proof. We prove a less trivial part, namely, the statement (⇒). A proof for the other part is obvious
and so left to the reader. Suppose HF(B) |= ∃z̄ψ(z̄, ā), where ψ is a ∆0-formula and ā ∈ HF(A). Fix a
tuple b̄ so that HF(B) |= ψ(b̄, ā). Let c be the transitive closure of a set {ā, b̄}. Treating c as a structure for
our language of KPU, we see that c |= ψ(b̄, ā) because c is an initial substructure of HF(B). This structure
c is finite and contains a finite family of pairwise distinct urelements p1, . . . , pk, q1, . . . , ql, and we assume
that q̄ = q1, . . . , ql form a support of the parameters ā and p̄ = p1, . . . , pk are the remaining urelements. It
is clear that q1, . . . , ql ∈ A.

Let B∗ be a restriction of the model B to the set {p1, . . . , pk, q1, . . . , ql}. Denote the diagram of
B∗ by D(B∗); it is obviously finite. We have B |= ∃ū (

∧
D(B∗))p̄

ū. By the hypothesis, this implies
A |= ∃ū (

∧
D(B∗))p̄

ū. Fix some witnesses ū0 in A for the existential quantifier. Then a mapping, which is
the identity on qi and takes p̄’s termwise to ū0, is an isomorphism from B∗ to a finite submodel A∗ � A;
the mapping also preserves q1, . . . , qk. We can extend this isomorphism to an isomorphism onto some
initial substructure c′ in HF(A) which preserves the parameters ā. This implies c′ |= ∃ȳψ(ȳ, ā), whence
A |= ∃ȳψ(ȳ, ā), as required. The theorem is completed.

In what follows, we need the concept of a set-theoretic term, or s-term, introduced by Ershov (see, e.g.,
[1, 4]). We define it by induction as follows:

(1) ∅ is an s-term;
(2) each variable xi, i < ω, is an s-term;
(3) if t0, . . . , tl are s-terms then {t0, . . . , tl} is an s-term;
(4) there are no other s-terms.
It is easy to see that s-terms express exactly those sets that can be represented as finite expressions

built up from ∅ and variables x0, x1, . . . using finitely many curly brackets {, } and a comma; for example:
{x0, {x1, ∅}}. These terms will be used to represent hereditarily finite sets via their urelements.

Denote by sp (a) the support of a (see [2]), i.e., the set of all urelements involved in the construction of
a. Thus, for instance, if m is an urelement then sp ({{m}, m, ∅}) = {m}.

2. SOME GENERAL PROPERTIES OF Σ-DEFINABILITY

Here we give some general results used in the paper.
The following statement is rather obvious and we so omit its proof.

PROPOSITION 2.1. If a structure B is computable with an oracle H ⊆ ω, and a model A is
Σ-definable over HF(B), then A has an H-computable isomorphic copy.

The theorem below is well known.

THEOREM 2.2. There exists a uniform effective procedure which, given any Σ-formula ϕ(x1, . . . , xn)
and any s-terms τ1(ȳ), . . . , τn(ȳ), outputs a computable family of ∃-formulas (ψi(ȳ))i<ω of the language of
M such that, for any model M and any tuple p̄ of its elements of appropriate length,

HF(M) |= ϕ(τ1(p̄), . . . , τn(p̄)) ⇔M |=
∨

i<ω

ψi(p̄).

Proof. We give a sketchproof. It is well known that ϕ(x1, . . . , xn) is equivalent to some Σ1-formula
∃zφ(z, x1, . . . , xn), where φ is a ∆0-formula [2]. It is clear that the formula ∃zφ(z, x1, . . . , xn) is itself
equivalent to an infinite disjunction of formulas ∃ū φ(θ(ū), x1, . . . , xn) taken over all s-terms θ. It remains to
realize that any ∆0-formula of the form φ(θ(ū), τ1(p̄), . . . , τn(p̄)) can be effectively reduced to an equivalent
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quantifier-free first-order formula. For this, we need only use induction on the complexity of formulas and
s-terms occurring in the formulas. The theorem is completed.

THEOREM 2.3. If an ∃-theory for a model M is computably enumerable then an ∃-theory of any
model which is Σ-definable without parameters over HF(M) is computably enumerable as well.

Proof. Let ϕ be an arbitrary ∃-formula. First, we reduce it to an equivalent ∃-formula all of whose
atomic subformulas have one of the following forms:

P (x1, . . . , xn), ¬P (x1, . . . , xn),

x = c, ¬(x = c), x = y, ¬(x = y),

F (x1, . . . , xn) = y, ¬(F (x1, . . . , xn) = y),

where x1, . . . , xn, y, z are arbitrary variables and c are constants.
Now, if in the resulting formula we replace all occurrences of the given atomic subformulas with Σ-

subformulas (for positive occurrences) or their negations (for negative occurrences) that represent corre-
sponding operations and predicates, we will obtain a Σ-formula ϕ′ over HF(M) whose truth in HF(M) is
equivalent to being true for ϕ. It remains to apply Theorem 2.2.

The next theorem, together with Proposition 2.1, will be our basic tool in estimating the complexity
of a Σ-definable model. Actually, the theorem says that under some extra conditions, a Σ-definition of a
model over one admissible set can be replaced with a Σ-definition over another admissible set, which is
generally simpler than the former.

THEOREM 2.4. Let A and B be admissible sets and A �Σ B. Assume that a model M is Σ-definable
over B with parameters from A, and that each equivalence class in this representation contains at least one
element of A. Then the same formulas with the same parameters define the same model M over A.

Proof. Suppose that Σ-formulas such as

W (x, z̄), E+(x, y, z̄), E−(x, y, z̄),

P+
i (x1, . . . , xni , z̄), P−

i (x1, . . . , xni , z̄), i = 1, . . . , k,

define over B a model M = 〈M,Pn0
0 , . . . ,Pnk

k 〉 with parameters p̄ from A. The hypotheses of the theorem
readily imply that W (x, p̄)A[x] = W (x, p̄)B[x] ∩ A, and the mapping

a/E+(x,y,p̄)B[x,y] �→
(
a/E+(x,y,p̄)B[x,y]

)
∩W (x, p̄)A[x], a ∈ W (x, p̄)A[x],

is an isomorphism of the models

〈
W (x, p̄)B[x]; P+

1 (x̄, p̄)B[x̄], . . . , P+
k (x̄, p̄)B[x̄]

〉
/E+(x,y,p̄)B[x,y],

〈
W (x, p̄)A[x]; P+

1 (x̄, p̄)A[x̄], . . . , P+
k (x̄, p̄)A[x̄]

〉
/E+(x,y,p̄)A[x,y].

The first of these models is isomorphic to M. The theorem is completed.

COROLLARY 2.5. Assume M �1 N and the basic set of M is a subset of ω. Suppose also that
the model A is Σ-definable over HF(N) with parameters from HF(M) and that each equivalence class in
this representation contains at least one element of HF(M). Then A is isomorphic to a model which is
computable in the diagram of M. In particular, if M has an isomorphic computable copy then A has
a computable presentation. The same conclusion holds for the case of definability with parameters from
HF(M).
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Proof. Theorem 1.4 implies that HF(M) �Σ HF(N). By Theorem 2.4, A is Σ-definable over HF(M).
By Proposition 2.1, A has a computable presentation in the diagram of M. The theorem is completed.

3. Σ-DEFINABILITY OVER R

3.1. Definability with parameters. The Σ-definability with parameters for countable structures
over HF(R) looks trivial, since each diagram of a countable model may be coded by some real number and
the expressive power of Σ-formulas is quite enough to restore this model given that number. Namely, we
have

THEOREM 3.1. Each countable model M of a finite language is Σ-definable over HF(R) with a trivial
equivalence and a single parameter.

Proof. Without loss of generality, we may assume that the basic set of M coincides with ω. It will be
convenient to work with binary decompositions of reals. To make such decompositions unique, we exclude
from our consideration the decompositions ending in 111 . . . (since 1 = 0,11111 . . . for instance).

LEMMA 3.2. A function f(r, n), which outputs the nth element an ∈ {0, 1} in the binary decompo-
sition r = a,a0a1 . . . an . . . given any r ∈ R and any n ∈ ω, is Σ-definable over HF(R) without parameters.

Proof. We give an idea behind the proof. It is easy to see that the following two functions are Σ-
definable without parameters: the function sg : R → R, which determines whether our real r is zero,
positive, or negative, i.e.,

sg (r) =

{
0 if r � 0,

1 otherwise,

and the function N : ω → R, which establishes a correspondence between the natural numbers in ω and
the same natural numbers, but now treated as elements of R.

We define a function I : R → ω which, given an r ∈ R, computes a natural number m ∈ ω such that
r = ±m, a0a1 . . ., and

I (r) = m
df⇔

(
N(m) � r(−1)1+sg (r) < N(m + 1)

)
.

Now the function f(n, r) can be defined by recursion using the following property:

f(n, r) = k
df⇔ (k ∈ {0, 1})∧

[

N(I (r)) +
∑

i<n

N(f(i, r))
N(2i+1)

+
N(k)

N(2n+1)

� r(−1)1+sg (r) < N(I (r)) +
∑

i<n

N(f(i, r))
N(2i+1)

+
N(k + 1)
N(2n+1)

]

.

The lemma is proved.
There exists a real r for which the characteristic function of the diagram of a model M coincides with

f(r, 2n) (multiplication by 2 is added to avoid problems with sets whose characteristic function tends to 1).
Thus, all basic predicates of M are definable by Σ-formulas with parameter r, which yields Σ-definability
of M over HF(M). The theorem is completed.

3.2. Definability without parameters and without restrictions on the equivalence. Inasmuch
as a theory for R is decidable, Theorem 2.3 implies that an ∃-theory for any model Σ-definable over HF(R)
is computably enumerable. On the other hand, the next theorem shows that such structures can be rather
complicated.

THEOREM 3.3. For each δ < ωCK
1 , there exists a countable model M such that:
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(1) M is Σ-definable over HF(R) without parameters;
(2) for each H ⊆ ω such that M is isomorphic to an H-computable model, 0(δ) �T H .
Proof. Recall that any nonempty set T ⊆ ω<ω is called a tree if it is closed under initial segments, i.e.,

for arbitrary α and β such that α is an initial segment of β and β ∈ T , it is true that α ∈ T . It follows
from the definition that the empty sequence ∅ always belongs to T .

Fix a one-to-one Gödel numbering of the set ωω, i.e., some one-to-one onto mapping

m ∈ ω �→ γm ∈ ω<ω

such that given a number m we can effectively restore the sequence γm. If we identify the elements of ωω

with their Gödel numbers we can speak about computably enumerable trees, recursive subsets of ωω, etc.
A known linear Kleene–Brouwer ordering <KB on a set ωω ∪ ω<ω is defined as follows (see [5]):
α <KB β iff either β is an initial segment of α, or β is not an initial segment of α while α is lexico-

graphically less than β.
It is well known (and can be easily checked) that a tree T has an infinite branch iff T is not well ordered

by <KB (see [5]). If T is computably enumerable then <KB is a computable ordering on T .
We will need one more fact from computability theory.

PROPOSITION 3.4 [5]. For each δ < ωCK
1 , there exists a computable tree with a single infinite

branch; the Turing degree of this branch equals 0(δ).
Fix a computably enumerable tree T such as in Proposition 3.4 and denote its single infinite branch

by ξ. Without loss of generality, we may assume that the only infinite branch of T is neither leftmost nor
rightmost in this tree. Fix a computable enumeration of T and denote the set of elements enumerated by
the end of step t by Tt. The enumeration process can be thought of as organized so that each Ti is a tree,
T0 = {∅}, and |Tt+1 \ Tt| = 1 for any t ∈ ω. Thus, we obtain a sequence of finite trees Tt, t ∈ ω, such that

{∅} = T0 ⊆ T1 ⊆ . . . ⊆ Tk ⊆ . . . ⊆
⋃

t∈ω

Tt = T.

Now, fix some one-to-one computable function h so that T = {γh(i) | i < ω}. A computable sequence
(aγ,i)γ∈T,i∈ω of rational numbers is defined by steps as follows.

Step 0. Let a∅,0 = 0.
Step t+1. This step consists of two substeps:
Substep A (further growing sprouts). For each α ∈ T t, we search for a maximal m so that aα,m is

already defined, and then act in accordance with which one of the cases below is realized.
Case 1. There exists β ∈ T t such that no member that is strictly between aα,m and aβ,0 in our sequence

is defined at that moment; in this case we let aα,m+1 = 1
2 (aα,m + aβ,0).

Case 2. An element aα,m is maximal among all members in our sequence defined at this moment; in
that event we set aα,m+1 = aα,m + 1.

Substep B (sowing new sprouts). Let β be the unique element in T t+1 \ T t. Define aβ,0 as follows: if
there exist α0, α1 ∈ T t for which α0 <KB β <KB α1, and under <KB, there are no elements lying between
α0 and α1 in T t, then we find a maximal m such that aα0,m is defined, and put aβ,0 = 1

2 (aα0,m + aα1,0);
if there are no such β0 and β1, then either there is a <KB-smallest α ∈ T t with β <KB α, or there is a
<KB-greatest α ∈ T t with α <KB β. In the former case we let aβ,0 = aα,0 − 1. In the latter case we find a
maximal m ∈ ω for which aα,m is defined, and put aβ,0 = aα,m + 1. Pass to the next step.

The construction is completed.

198



It follows immediately from the construction that

aα,i < aβ,j ⇔ (α <KB β) ∨ (α = β ∧ i < j),

i.e., elements aα,i, α ∈ T , i < ω, are ordered as ω × LKB, where LKB is a linear Kleene–Brouwer ordering
on T . This means that the ordering on such elements is isomorphic to a sum L0 + L1, where

L0 = {aα,i | α <KB ξ, i < ω},
L1 = {aα,i | ξ < α, i < ω}.

The order L0 is well founded, but L1 is not, although each x ∈ L1 defines a well-ordered set {y ∈ L1 | x < y}.
By construction, for any α ∈ T and any i < ω, there are no β ∈ T and j < ω such that aα,i < aβ,j < aα,i+1.

Put
Si =

⋃

a,b∈Li

[a, b), i = 0, 1.

Clearly, S0 ∩ S1 = ∅ and each element of S0 is smaller than each one of S1.

LEMMA 3.5. For any x ∈ S0 ∪ S1, there exist α ∈ T and i < ω such that x ∈ [aα,i, aα,i+1).
Proof. The argument for S0 being similar, we only give a proof for S1. Assume that some x0 ∈ S1 does

not have the required property.
First, we prove that the Kleene–Brouwer ordering has a smallest α0 ∈ T with the property x0 < aα0,0.

Inasmuch as x0 ∈ S1, the conditions aβ0,i0 , aβ1,i1 ∈ L1 and aβ0,i0 � x0 < aβ1,i1 hold for appropriate
β0, β1 ∈ T and i0, i1 < ω. The elements of L1 that are greater than aβ0,i0 are well ordered. Therefore, L1

contains a smallest element aα0,i with the property x0 < aα0,i. By assumption, x0 is not contained in any
interval of the form [aα0,i, aα0,i+1). Hence x0 < aα0,0.

Fix a step t0 after which aα0,0 and some element aβ,j ∈ L1 with aβ,j < x0 have already entered our
construction. At succeeding steps, by assumption, no new element can be added between x0 and aα0,0. For
each step t > t0, let bt be the leftmost neighbor of x0 among the elements of L1 defined by the end of this
step. By construction, it follows easily by induction that |aα0,0 − bt+1| � 1

2 |aα0,0 − bt| for all t > t0. Thus,
the sequence (|aα0,0 − bt|)t<ω,t>t0

tends to zero and is bounded by a positive number aα0,0 − x0, which is
a contradiction. The lemma is proved.

LEMMA 3.6. Between sets S0 and S1 is exactly one real r0 /∈ S0 ∪ S1.
Proof. Indeed, at each finite step, we have finite families {�0

0 < . . . �0
m} ⊆ L0 and {�1

0 < . . . �1
n} ⊆ L0

consisting of elements of the form aα,i constructed by the end of that step; moreover, �0
0 < . . . �0

m < �1
0 <

. . . �1
n. Our construction guarantees that the distance between the last element �0

m in L0 and the first
element �1

0 in L1 becomes at least two times shorter at each step. Therefore, there is at most one such r0.
And this r0 exists since L0 has no maximal element and L1 has no minimal one. The lemma is proved.

The argument above implies that the set S = S0 ∪ S1 ∪ {r0} is an interval of the form [a, b) or (−∞, b),
where a ∈ Q and a, b ∈ Q ∪ {∞}; hence this set is ∆-definable over HF(R).

Now we define M. The basic set M of this model is the quotient of the disjoint sum of S and ω modulo
an equivalence η, which informally can be defined as an equivalence whose classes are exactly the sets
[aα,i, aα,i+1), {r0}, and {m}, m < ω. We show that this equivalence and its complement are Σ-definable
without parameters in HF(R). In fact,

x η y ⇔ [x, y ∈ S ∧ ((x = y) ∨ ∃α ∈ T ∃t ∈ ω (x, y ∈ [aα,t, aα,t+1)))]

∨ [x, y ∈ ω ∧ (x = y)] .
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On the other hand,

¬(x η y)⇔ ¬(x ∈ S ↔ y ∈ S)
∨ [x, y ∈ S ∧ ∃α ∈ T ∃t ∈ ω (x ∈ [aα,t, aα,t+1)↔ y /∈ [an,t, an,t+1))]
∨ [(x, y ∈ ω) ∧ (x 
= y)].

Clearly, the expressions in the right parts of the definitions above are equivalent to Σ-formulas.
Now we give a list of basic predicates for our model together with their definitions.
N1, a unary predicate distinguishing ω;
�2, x � y

df⇔ ¬N(x) ∧ ¬N(y) ∧ (x is to the left of y);
R2, a binary predicate defined thus:

R(m, y)⇔ ¬N(y) ∧ y = [aγh(m),0, aγh(m),1);

s2, a binary predicate distinguishing the usual successor function on N ;
c, a constant whose value is 0 ∈ ω.
It is not hard to verify that the so defined model M = 〈N, �, R, s, c〉 is countable and is Σ-definable

over HF(R).
Assume that H ⊆ ω and our model is isomorphic to some H-computable model M∗. We show that,

given an arbitrary α ∈ T , we can effectively (from H) determine whether α < ξ. First, we search for m ∈ ω

such that α = γh(m). Next, we search for y∗ for which M∗ |= R(sm(c), y∗); this y∗ is an isomorphic image
for [aγh(m),0 , aγh(m),1 ) = [aα,0, aα,1). Denote by p the isomorphic image of {r0} ∈ M in M∗. Obviously, the
condition y∗ � p is then equivalent to α < ξ. Note also that the negation of α < ξ is equivalent to ξ < α.

Without loss of generality, we may assume that for each initial segment of β in the branch ξ, there exists
an extension α which is lexicographically less than ξ. Note that an arbitrary β is an initial segment of ξ iff
there exist α0 and α1 such that β is in their common initial segment and α0 <KB ξ <KB α1. This gives us
an H-computable procedure for enumerating all initial segments of ξ, and hence the H-computability of ξ.
Hence 0(δ) � H . The theorem is completed.

Remarks. (1) The model constructed in the proof of Theorem 3.3 has a 0(δ)-computable isomorphic
copy. Indeed, without the element r0/η, this model is computable. To add r0/η, all that we need is to
know how to answer the questions “α <KB ξ?” and “ξ <KB α?” To do this, it suffices to have an oracle
ξ whose Turing degree equals 0(δ). Thus, for an arbitrary oracle H , M is H-computable iff 0(δ) � H .

(2) Theorem 3.3 supplies us with an example of a structure M and its element a = r0/η such that M

is Σ-definable without parameters over HF(R) while the same model with a distinguished element a is no
longer so definable. Otherwise, by Theorem 2.3, an ∃-theory for 〈M, a〉 would be computable, which is
impossible for δ > 0. In fact, it is easy to see that

γh(n) <KB ξ ⇔ ∃x0 . . . xn, y

[

x0 = c ∧
∧

i<n

s(xi, xi+1) ∧R(xn, y) ∧ y � a

]

;

ξ <KB γh(n) ⇔ ∃x0 . . . xn, y

[

x0 = c ∧
∧

i<n

s(xi, xi+1) ∧R(xn, y) ∧ a � y

]

.

Our proof shows how the computable enumerability of the ∃-theory for 〈M, a〉 can be used to derive the
computable enumerability of ξ, which is untrue even for δ > 0.

For our further reasoning, we will need the following:
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PROPOSITION 3.7. Every quantifier-free formula ϕ(x, ā) of a signature σf with parameters ā ∈ R

defines a union of a finite number of open intervals and a finite set of elements algebraic over ā. In particular,
if the set defined by this formula is nonempty then it contains at least one element algebraic over ā.

Proof. We reduce the formula ϕ(x, ā) to a disjunctive normal form. Each subformula like λ(x) or
¬λ(x), where λ(x) is atomic, defines either a finite set of elements algebraic over ā or a union of a finite
family of intervals. By this token, each disjunctive member of this form defines a union of a finite number
of intervals and a finite set of elements algebraic over ā. This implies that the entire formula, too, defines a
union of a finite number of intervals and a finite set of elements algebraic over ā. The proposition is proved.

We have shown that the countable models that are Σ-definable over HF(R) can have an arbitrary
hyperarithmetical complexity. It appears that hyperarithmetics is an upper bound for this complexity,
which is shown by the following:

THEOREM 3.8. Assume that a countable model M is Σ-definable over HF(R) without parameters.
Then M has a hyperarithmetical isomorphic copy.

Proof. First, we need some injective coding of reals by means of functions in ωω. We consider usual
decimal decompositions of reals, excluding the decompositions ending in 999 . . . . A real number r having
a decimal decomposition r = ±a, a0a1a2 . . . is coded by a function f ∈ ωω such that f(0) codes a sign of r,
f(0) = sg (r), f(1) = a, f(2) = a0, f(3) = a1, f(4) = a2, . . . . It is easy to see that this coding is injective
and that the set of all possible codes for reals forms an arithmetical subset in ωω. If f is a code for r then
fn denotes the rational number

fn = (−1)f(0)

[

f(1) +
∑

i<n

f(i)
10i+1

]

,

which is the nth decimal approximation for r. Clearly, fn is a computable function of f and n, and
lim

n→∞
fn = r.

A real is said to be hyperarithmetical if its coding function is hyperarithmetical. An element a =
τ(p̄) ∈ HF(R), where p̄ are urelements and τ is an s-term, is said to be hyperarithmetical if all elements
of p̄ are hyperarithmetical. We fix some Σ-definition of M and use the perfect set theorem to prove that
each equivalence class of this definition contains a hyperarithmetical element, and moreover, the choice of
hyperarithmetical representatives of the classes can be bounded by some A ∈ HYP(ω). Thereafter, it will
remain to show that each subset A ∈ HYP(ω) consisting of reals is extendable to some hyperarithmetical
subfield R

′ �1 R.
For formulas that Σ-define the model M, we adopt the same notation as was used in Definition 1.1.

An arbitrary triple 〈q̄, ᾱ, θ(x̄, ȳ)〉, consisting of a tuple of rational numbers q̄ = q1, . . . , qn, a tuple of reals
ᾱ = α1, . . . , αm, and some s-term θ(x1, . . . , xn, y1, . . . , ym), with fixed linear order on the variables, is said
to be correct provided that the following two conditions hold:

(1) θ(q̄, ᾱ) ∈ W (x)HF(R)[x];
(2) all projections of the set

{
β̄ | E(θ(q̄, ᾱ), θ(q̄, β̄))

}
onto the coordinate axis contain no nontrivial open

intervals.

LEMMA 3.9. For each equivalence class S of E and each s-term θ, if S contains at least one element
of the form θ(γ̄), then there exist a linear ordering of its variables x1, . . . , xn, a number k � n, and tuples
q̄ = q1, . . . , qk and ᾱ = αk+1, . . . , αn such that:

(1) 〈q̄, ᾱ, θ(x̄)〉 is a correct triple;
(2) θ(q̄, ᾱ) ∈ S.
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Proof. We fix some θ(γ̄) ∈ S and an initial ordering of the s-term θ on x1, . . . , xn. Assume that there
is a number i ∈ {1, . . . , n} such that the ith projection of the set

{ȳ ∈ R
n | HF(R) |= E(θ(ȳ), θ(γ̄))}

contains a nontrivial open interval. Then we choose a minimal i with this property and pick up some
rational number q1 in this interval.

Consider a set such as
{〈y1, . . . , yi−1, q1, yi+1, , . . . , yn〉 ∈ R

n |

HF(R) |= E(θ(y1, . . . , yi−1, q1, yi+1, . . . , yn), θ(γ̄))},

choose a minimal j so that the jth projection of this set contains a nontrivial open interval, and pick up
some q2 in that interval. Then we consider a set such as

{〈y1, . . . , yi−1, q1, yi+1, . . . , yj−1, q2, yj+1, . . . , yn〉 ∈ R
n |

HF(R) |= E(θ(y1, . . . , yi−1, q1, yi+1, . . . , yj−1, q2, yj+1yn), θ(γ̄))},

etc., until possible. Once this process has been terminated, we change the order of variables so that the
variables with the numbers i, j, . . . that we have selected precede all the remaining ones. As a result, we
obtain a new ordering of variables x′

1, . . . , x
′
n and a tuple q̄ = q1, q2, . . . of rational numbers. Let ᾱ be an

arbitrary tuple of reals such that if elements of a tuple q̄ˆᾱ are substituted in θ for x′
1, . . . , x

′
n, respectively,

then we arrive at an element in the class S.
Obviously, the so obtained triple 〈q̄, ᾱ, θ(x′

1, . . . , x
′
n)〉 is correct. The lemma is proved.

LEMMA 3.10. For each correct tuple 〈q̄, ᾱ, θ(x̄)〉, the set

{
β̄ | HF(R) |= E(θ(q̄, β̄), θ(q̄, ᾱ))

}
(1)

is at most countable.
Proof. Each projection of this set onto any one of its coordinates does not contain nontrivial open

intervals. On the other hand, the ith projection is defined on HF(R) by the following condition for x:

∃x1 . . . xi−1xi+1 . . . xn ∈ R E(θ(q̄, x1, . . . , xi−1, x, xi+1, . . . , xn), θ(q̄, ᾱ)).

By Theorem 2.2, this condition can be rewritten thus:

∃x1 . . . xi−1xi+1 . . . xn

∨

i<ω

ψi(x1, , . . . , xi−1, x, xi+1, . . . , xn, q̄, ᾱ)

for an appropriate computable sequence of ∃-formulas (ψi)i<ω , which is equivalent to the condition
∨

i<ω

∃x1, . . . , xi−1xi+1, . . . , xnψi(x1, . . . , xi−1, x, xi+1, . . . , xn, q̄, ᾱ).

Using quantifier elimination in R, we may replace all members in this infinite disjunction with equivalent
quantifier-free formulas of a signature σf ; thereafter, we see that our condition is equivalent to

∨

i<ω

ζi(x, q̄, ᾱ),

where all ζi are quantifier-free formulas of the signature σf .
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By Proposition 3.7, the infinite disjunction defines a union of an at most countable family of one-
element sets and an at most countable family of open intervals. By the condition of being correct, there
are no nonempty open intervals in this union. Hence we are left with just one version—where the infinite
disjunction defines an at most countable set. Further, each point β̄ in set (1) is completely defined by
its projections, and for each projection, there are only countably many possibilities. This means that the
number of elements in (1) is at most countable.

LEMMA 3.11. For any q̄ and any θ(x̄), each equivalence class of E contains an at most countable
number of elements β̄ for which 〈q̄, β̄, θ(x̄)〉 is correct.

Fix a tuple ᾱ such that 〈q̄, ᾱ, θ(x̄)〉 is a correct triple (if it exists). For each such tuple β̄, the hypothesis
implies, in particular, that HF(R) |= E(θ(q̄, ᾱ), θ(q̄, β̄)). The lemma now follows from Lemma 3.10.

Lemma 3.11 and the fact that the number of classes in E(x, y)HF(R)[x, y] is countable readily yield the
following:

LEMMA 3.12. There exists an at most countable number of correct triples.
It remains to define a coding for some set of triples containing a set of correct triples, write down a

definition for the code of a correct triple, and apply the perfect set theorem. Clearly, any triple 〈q̄, ᾱ, θ(x̄)〉
prone to be correct should satisfy some conditions on the lengths of tuples: namely, lh (q̄)+lh (ᾱ) = lh (x̄).
The proof of Lemma 3.10 implies that effective quantifier elimination can be applied to real-closed fields
to prove that, given any j = 1, . . . , lh (x̄) − lh (q̄) and any (not necessarily correct) triple satisfying this
condition, we can effectively construct a sequence of quantifier-free formulas ζ

j,q̄,θ(x̄)
i (x, ȳ, z̄) of the signature

σf , so that the jth projection of the set

{
β̄ | E(θ(q̄, ᾱ), θ(q̄, β̄))

}

is defined by the infinite formula ∨

i<ω

ζ
j,q̄,θ(x̄)
i (x, q̄, ᾱ);

moreover, the corresponding algorithm does not depend on ᾱ. Thus, 〈q̄, ᾱ, θ(x̄)〉 is correct iff the following
condition is satisfied:

W (θ(q̄, ᾱ)) ∧
lh (x̄)−lh (q̄)∧

j=1

[

∀q1, q2 ∈ Q∃r ∈ R

(

q1 < q2 → q1 < r < q2 ∧ ¬
∨

i<ω

ζ
j,q̄,θ(x̄)
i (r, q̄, ᾱ)

)]

. (2)

Having an appropriate coding for triples 〈q̄, ᾱ, θ(x̄)〉 by means of functions, we can (uniformly in q̄ and
θ(x̄)) effectively reduce the last-mentioned condition to a Σ1

1-form, which does not depend on ᾱ. Here is
an example of such a coding. A triple 〈q̄, ᾱ, θ(x̄)〉 can be coded, for instance, by a function h : ω → ω

whose values are arranged as follows: h(0) = lh (x̄) and h(1) = lh (q̄); h(2), . . . , h(2 + lh (q̄) − 1) are
equal to respective codes of the rationals q1, . . . qlh (q̄); the next value is the code of a term θ, followed
by the code of a tuple of variables x̄, followed by a sequence of codes for signs of the reals α1, . . . , αlh (α),
followed by the parts of α1, . . . , αlh (α) before decimal commas, followed by a0

1, . . . , a
0
lh (α), a1

1, . . . , a
1
lh (α), . . .,

where a0
i α

1
i a

2
i . . . is the mantissa of αi. Replace, then, W (θ(q̄, ᾱ)) by an appropriate infinite computable

disjunction, which may be found uniformly in θ. We need to know how given a code of a triple we can
reduce (2) to a Σ1

1-form.
First, we show how to represent the second infinite disjunction in (2) as an arithmetical predicate for the

code of a triple h, the code of a number r, and other natural parameters. The first disjunction is transformed
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in a similar way, and then standard methods (see [5]) will apply to reduce the entire expression to a Σ1
1-form.

We may assume that each quantifier-free formula ζ
j,q̄,θ(x̄)
i (r, q̄, ᾱ) is a conjunction of conditions like

F (r, ᾱ, q̄) = 0, G(r, ᾱ, q̄) 
= 0, H(r, ᾱ, q̄) > 0, (3)

where F , G, H , q̄, ᾱ are found (uniformly) effectively from h and other parameters, which are natural
numbers. The equality F (r, ᾱ, q̄) = 0 can be written in the form

∀e∃n∀m > n

(

|F (rm, ᾱm, q̄)| < 1
e + 1

)

,

where rm and ᾱm are mth decimal approximations for r and ᾱ, respectively. The inequality H(r, ᾱ, q̄) > 0
can be written in the form

∃k∃n∀m > n

(

H(rm, ᾱm, q̄) >
1

k + 1

)

.

From this, we see that the conjunction of conditions (3) may be rewritten with a quantifier prefix of
bounded length, with all quantifiers running over ω. Further steps in the derivation of a Σ1

1-form are rather
obvious.

Now we recall the perfect set theorem (here, we combine [2, Thm. IV.4.4 and Cor. IV.4.7]).

THEOREM 3.13. Let M be a countable structure of a finite signature and P be a Σ1
1-predicate on

it. If P contains less than 2ω elements then there exists P ′ ∈ HYP(M) such that P ⊆ P ′.
From this theorem we conclude that all codes of correct triples are hyperarithmetical, and moreover, are

contained in some set of HYP(ω). This implies that each equivalence class of our representation contains
some element θ(β̄), with all β̄ bounded by some fixed element of HYP(ω).

It remains to realize that for each S ∈ HYP(ω) consisting of codes of reals, there exists a hyperarith-
metical subfield R

′ ⊆ R such that R
′ �1 R.

LEMMA 3.14. The relation <, addition, multiplication, the operation of taking the opposite real, as
well the partial inversion operation on hyperarithmetical real numbers identified with their codes defined
above, are Σ-definable without parameters over HYP(ω).

Proof. In fact, Σ-definitions of the above operations can be easily derived from the following relations:

r < p ⇔ (r 
= p) ∧ ∀n ∈ ω(rn � pn);

r + p = q ⇔ ∀k ∈ ω∃n0 ∈ ω∀n > n0((k + 1) · |rn + pn − qn| < 1);

r · p = q ⇔ ∀k ∈ ω∃n0 ∈ ω∀n > n0((k + 1) · |rn · pn − qn| < 1);

r =
1
p
⇔ p 
= 0 ∧ (p× r = 1).

Further, if we consider these relations as formulas with functional parameters we see that the reals in
HYP(ω) are closed under all of the operations mentioned. Indeed, let p + q = r and p, q ∈ HYP(ω). Using
the above formulas, we obtain

r(m) = n ⇔ ∃f (p + q = f ∧ f(m) = n)⇔ ∀f (p + q = f → f(m) = n) .

Hence r is hyperarithmetical w.r.t. p and q. By [6, Cor. XXXI], r is hyperarithmetical. The other
operations can be treated similarly. The lemma is proved.

Using Σ-collection, we see that the subfield R0 generated by S also belongs to HYP(ω); so it has a
hyperarithmetical isomorphic copy. Due to elimination of quantifiers in R in the signature σf , we may
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assume that each formula ϕ(x, ȳ) is quantifier free. This means that if R |= ∃xϕ(x, ā) then there exists x0

which is algebraic over ā and is such that R |= ϕ(x0, ā). Thus, if R
′ � R is a real-closed field then R

′ � R.
It is well known that each effective computable ordered field has a computable real-closed extension (see
[3, Thm. 2.3.6]). If we apply a relativized version of this result to R0 we obtain a subfield R

′ � R which
is isomorphic to some hyperarithmetical structure and satisfies the extra condition that each equivalence
class in this representation contains at least one element of HF(R′) (since we have started from the set S).
The theorem then follows immediately from Corollary 2.5.

In fact we have thus proved the following result.

THEOREM 3.15 (a version of the basis theorem). Suppose that E is an equivalence relation that is
Σ-definable over HF(R) without parameters and whose number of equivalence classes is less than 2ω. Then
there exists a set S ∈ HYP(ω) such that each equivalence class of E contains at least one element a with
the property that sp (a) ⊆ S. In particular, the number of equivalence classes of E is at most countable.

For other basis theorems, we refer the reader to [5, 7]. Note that Theorem 3.3 implies that the hy-
perarithmetical bound in Theorem 3.15 cannot be improved up to some prefixed hyperarithmetical level.
Indeed, the construction plugged in the proof readily implies that the infinite branch ξ Turing reduces to r0.

3.3. Definability without parameters, with at most countable equivalence classes. In what
follows, we denote the field of algebraic reals by Ralg.

PROPOSITION 3.16. Let an at most countable set S be Σ-definable over HF(R) without parameters.
Then S ⊆ HF(Ralg).

Proof. Assume that S is definable by some Σ-formula ϕ(x). Take an arbitrary element θ(p̄) ∈ S, where
p̄ are urelements and θ(ȳ) is an s-term, with ȳ = y1, . . . , yn. By Theorem 2.2, ϕ(θ(ȳ)) is equivalent to an
infinite enumerable disjunction

∨

i<ω

ψi(ȳ) in which all ψi are quantifier-free formulas of the signature σf .

Projections of this set onto the coordinate planes are defined by infinite formulas of the form

∃y1 . . . yj−1yj . . . yn

∨

i<ω

ψi(ȳ), j = 1, . . . , n,

which in turn are equivalent to appropriate formulas
∨

i<ω

∃y1 . . . yj−1yj . . . ynψi(ȳ) of the signature σf .

We reduce all formulas in this disjunction to equivalent quantifier-free ones. The outcome is a disjunction
of quantifier-free formulas of the signature σf , each of which defines an at most countable set. Reducing
each of these to a disjunctive normal form, we arrive at a disjunction of formulas of the form

f1(x) = g1(x) ∧ . . . ∧ fk(x) = gk(x)

∧f ′
1(x) 
= g′1(x) ∧ . . . ∧ f ′

l (x) 
= g′l(x)

∧f ′′
1 (x) > g′′1 (x) ∧ . . . ∧ f ′′

m(x) > g′′m(x),

where all fi, gi, f ′
i , g′i, f ′′

i , g′′i are polynomials over Q. We may therefore assume that all formulas ψi are
of just this kind. Each such formula defines an at most countable set. The form of this formula shows that
it defines a finite set of algebraic reals in that event. In particular, this means that all elements of p̄ are
algebraic, and so θ(p̄) ∈ HF(Ralg). The theorem is completed.

This statement, together with Theorem 1.4, Corollary 2.5, the existence of a computable isomorphic
copy for Ralg, and the property Ralg � R, implies the following:

THEOREM 3.17. Let M be an at most countable structure of a finite signature. Then the statements
below are equivalent:
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(1) M is Σ-definable without parameters over HF(R) so that all equivalence classes in this presentation
are at most countable;

(2) M has an isomorphic computable copy.

THEOREM 3.18. Suppose that a (not necessarily countable) model M is Σ-definable over HF(R)
without parameters. Then there exists a computable model M∗ such that M∗ �1 M.

Proof. We claim that the desired model is one that is definable by the same formulas over HF(Ralg).
We identify M with its isomorphic presentation in the form

〈W (x)HF(R)[x]; P+
1 (x̄)HF(R)[x̄], . . . , P+

k (x̄)HF(R)[x̄]〉/E+(x,y)HF(R)[x,y],

such as in the basic definition. By the property Ralg � R and Theorem 1.4, we see that the same formulas
define some computable model M∗ over HF(Ralg).

Our present goal is to show that M∗ �1 M. Let

M |= ∃x1, . . . , xnϕ
(
x1, . . . , xn, θ1(p̄)/E+(x,y)HF(R)[x,y], . . . , θk(p̄)/E+(x,y)HF(R)[x,y]

)
,

where θ1(p̄), . . . , θn(p̄) ∈ W (x)HF(Ralg)[x] and ϕ is a quantifier-free formula. Replace in ϕ all positive
occurrences of subformulas Pi(x̄) with corresponding formulas P+

i (x̄), and all negative occurrences with
P−

i (x̄); replace all positive occurrences of equalities A = B with E+(A, B), and all negative occurrences
with E−(A, B). The result is a Σ-formula

ϕ∗ (x1, . . . , xn, y1, . . . , yk)

satisfying the conditions

HF(R) |= ∃x1, . . . , xn

(
n∧

i=1

W (x1) ∧ ϕ∗ (x1, . . . , xn, θ1(p̄), . . . , θk(p̄))

)

.

Inasmuch as the last expression is a Σ-expression, the fact that Ralg � R, along with Theorem 1.4,
implies

HF(Ralg) |= ∃x1, . . . , xn

(
n∧

i=1

W (x1) ∧ ϕ∗ (x1, . . . , xn, θ1(p̄), . . . , θk(p̄))

)

,

which in turn entails

M
∗ |= ∃x1, . . . , xnϕ

(
x1, . . . , xn, θ1(p̄)/

E+(x,y)HF(Ralg)[x,y]
, . . . , θk(p̄)/

E+(x,y)HF(Ralg)[x,y]

)
.

It remains to note that the mapping

θ(p̄)/
E+(x,y)HF(Ralg)[x,y]

�→ θ(p̄)/E+(x,y)HF(R)[x,y]

is an isomorphic embedding. That the basic set of M∗ is nonempty follows from HF(R) |= ∃xW (x), which
yields HF(Ralg) |= ∃xW (x) in view of HF(Ralg) �Σ HF(R). The theorem is completed.

COROLLARY 3.19. Assume that a model M is Σ-definable over HF(R) without parameters and
that one of the following conditions is satisfied:

(1) M is generated by its signature constants;
(2) M has no proper submodels;
(3) each 1-submodel of M is isomorphic to M.

Then M is isomorphic to a computable model.
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4. Σ-DEFINABILITY OVER HF(C)

THEOREM 4.1. For an arbitrary countable model M, the following conditions are equivalent:
(1) M is Σ-definable over HF(C);
(2) M is isomorphic to a computable model.
Proof. We prove the less obvious part of the theorem. Assume that a countable model M is Σ-definable

over HF(C). Fix an arbitrary transcendency basis X of C over Q, i.e., C = Q(X), where denotes an
algebraic closure. Let X0 be any countable subset of X .

LEMMA 4.2. HF(Q(X0)) � HF(C).
Proof. It suffices to show that if ϕ(x, ȳ) is an arbitrary formula and HF(C) |= ∃xϕ(x, p̄), where

p̄ ∈ HF(Q(X0)), then HF(C) |= ϕ(x, p̄) for an appropriate x ∈ HF(Q(X0)). Fix some x0 ∈ HF(C) so that
HF(C) |= ϕ(x0, p̄). Let A be a finite subset of X0 for which sp (p̄) ⊆ Q(A). Let B be a finite subset of X

such that sp (x0) ⊆ Q(B). Take any permutation θ of X which is the identity on the elements of A satisfying
the condition θ(B \ A) ⊆ X0. The permutation θ can be extended to an automorphism of C that fixes all
elements of sp (p̄); this automorphism, in turn, is extendable to some automorphism θ∗ of the structure
HF(C) with the property that θ∗(p̄) = p̄. We have HF(C) |= ϕ(θ∗(x0), p̄) and θ∗(x0) ∈ HF(Q(X0)), which
proves the lemma.

We come back to the proof of the theorem. Since M is countable, we can take a countable subset X0 ⊆ X

so that each equivalence class of the Σ-definition of M contains a representative a such that sp (a) ⊆ X0 and
the supports of all the parameters used are contained in X0. The theorem then follows from Lemma 4.2,
Theorem 1.4, Corollary 2.5, and the existence of a computable copy for Q(X0).

Similarly to the above, we can show that an arbitrary countable model M is elementary definable over
HF(C) iff it has an arithmetical copy. This implies that the field R of reals is not definable over HF(C), even
with parameters. Indeed, if R were definable over HF(C), possibly with parameters, then this presentation
could be transformed into a presentation of some nonarithmetical model, such as in the proof of Theorem 3.3,
with the same parameters. We have arrived at a contradiction with the remark made above.

5. Σ-DEFINABILITY OVER HF(H)

Here we prove that the property of being Σ-definable over HF(H) is equivalent to being Σ-definable
over HF(R). Roughly speaking, an arbitrary model has a Σ-presentation over HF(R) with some family of
the two basic properties considered in the paper (the property that classes of a presentation are at most
countable and the existence or nonexistence of parameters) iff it has a presentation with the same properties
over HF(R). More exactly, we have

THEOREM 5.1. (1) Any countable model is Σ-definable over HF(H) with a trivial equivalence and
a single parameter.

(2) Any countable model is Σ-definable over HF(H) with an equivalence whose classes are all at most
countable and without parameters iff it has a computable presentation.

(3) Any countable model is Σ-definable over HF(H) without parameters iff it is Σ-definable over HF(R)
without parameters.

Proof. The theorem derives from the following two remarks.
First, the structure H is obviously Σ-definable over HF(R) without parameters and with trivial equiv-

alence. Therefore, we can transform each Σ-presentation of an arbitrary model M over HF(H) into its
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Σ-presentation over HF(R) while preserving the cardinalities of the corresponding classes in the presenta-
tion; moreover, if the initial presentation had no parameters then the resulting presentation would have
none either. This immediately implies (⇒) in item (3). Using Theorem 3.17, we derive (2).

Second, R is distinguished in H by some ∃- and ∀-formulas simultaneously, and the ordering < is clearly
∆-definable over R. Indeed, consider arbitrary elements a, b, c ∈ H satisfying the same relations as the basis
imaginary units i, j, k, and namely, the quantifier-free formula

η(x, y, x)
df
= (x 
= y 
= z 
= x) ∧ (x2 = y2 = z2 = −1)

∧(xy = z) ∧ (yz = x) ∧ (zx = y)

∧(yx = −z) ∧ (zy = −x) ∧ (xz = −y).

We verify that 1, a, b, and c are linearly independent over R in that event. Suppose αa + βb + γc + δ = 0,
α, β, γ, δ ∈ R. Multiplying this equality by a from the left and from the right and adding the results, we
obtain −2α + 2δa = 0. If δ 
= 0 then we derive −1 = a2 =

(
α
δ

)2
> 0, which is a contradictory statement.

Thus, δ = α = 0. Doing the same with b and c, we see that all the remaining coefficients are equal to zero.
This means that each x in H is uniquely representable as x = αa+βb+ γc+ δ. Furthermore, xa+ ax =

−2α + 2aδ. Similarly, xb + bx = −2β + 2bδ. Now, if xa + ax = yb + by for some y = α′a + β′b + γ′c + δ′

then −2α + 2aδ = −2β′ + 2bδ′. Since 1, a, b, and c are linearly independent, we obtain δ = δ′ = 0, i.e.,
xa + ax ∈ R. On the other hand, it is obvious that each real number is representable as xa + ax = yb + by

for appropriate x, y ∈ H. Thus,

t ∈ R ⇔ ∃u∃v∃w∃x∃y (η(u, v, w) ∧ ((t = xu + ux) ∧ (t = yv + vy))) .

We verify that
t /∈ R ⇔ ∃u∃v∃w (η(u, v, w) ∧ (ut 
= tu ∨ vt 
= tv ∨wt 
= tw)) .

First, we consider (⇒). Take standard imaginary units i, j, k ∈ H to be u, v, w. Assume that t =
α + i · β + j · γ + k · δ, α, β, γ, δ ∈ R. The condition t /∈ R implies that at least one of the elements β, γ, or
δ differs from 0. To be specific, let β 
= 0. Then tj − jt = kβ − iδ 
= 0.

Next, we handle the reverse implication (⇐). Fix the required elements u, v, and w. Similarly to the
above, we can prove that these elements together with 1 form a basis H over R. Assume for definiteness
that ut 
= tu. Then the condition that t ∈ R fails, since all elements of R commute with all elements of H.

The last remark easily implies that each model that is Σ-presentable with parameters over HF(R) is
definable over HF(H) with the same parameters and the same equivalence, proving (1).

We argue for (⇐) in (3). Suppose that some structure M is definable over HF(R). Replacing in the
formulas of this definition all occurrences of U(x) with a ∆-formula defining R in H and relativizing all
unbounded existential quantifiers and formulas to the ∆-set {x | sp (x) ⊆ R} = HF(R), we arrive at a
Σ-presentation of M without parameters, now over HF(H). The theorem is completed.

The results given in Sec. 4 were obtained jointly by both authors. All other results are due to A. S. Mo-
rozov.
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