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Abstract We study finite bisimulations of dynamical systems in R” defined by Pfaf-
fian maps. The pure existence of finite bisimulations for a more general class of o-
minimal systems was shown in Brihaye et al. (Lecture Notes in Comput. Sci. 2993,
219-233, 2004), Davoren (Theor. Inf. Appl. 33(4/5), 357-382, 1999), Lafferriere
et al. (Math. Control Signals Syst. 13, 1-21, 2000). In Lecture Notes in Comput.
Sci. 3210, 2004, the authors proved a double exponential upper bound on the size
of a bisimulation in terms of the size of description of the dynamical system. In the
present paper we improve it to a single exponential upper bound, and show that this
bound is tight, by exhibiting a parameterized class of systems on which it is attained.

Keywords Dynamical system - Hybrid system - Bisimulation - Semialgebraic
geometry

1 Introduction

By a Pfaffian dynamical system we mean a map y : G| x (—1,1) — G,, where
Gi1 c R"! and G, c R" are open domains and the graph of y is a semi-Pfaffian
set (see Definition 2.12). Given a finite partition of G (consisting of some “areas of
interest” which the trajectories have to visit or avoid in a particular order), we aim
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to study a combinatorial dynamical system, having a finite number of trajectories,
which is in a natural way isomorphic (“bisimilar”) to y with respect to the partition.

A non-constructive existence proof of finite bisimulations for a more general class
of o-minimal dynamical systems was given in [2, 3, 11]. The next natural question to
investigate is how the sizes of such bisimulations can be bounded. In [8] we gave a
double exponential upper bound on the sizes of bisimulations of Pfaffian dynamical
systems. We used the cylindrical cell decomposition construction which is intrinsi-
cally double exponential. In the present paper we improve that bound to a single
exponential upper bound. Moreover we show that the bound is tight, by exhibiting
a parameterized class of polynomial dynamical systems on which the exponential
bound is attained. The main results of this paper were announced, without proofs, in
[9] which also contains a more detailed motivation from the computer science view-
point, as well as connections with the theory of hybrid systems.

This paper is organized as follows. In Sect. 2 we remind the definitions of transi-
tion systems associated to dynamical systems, their bisimulations, Pfaffian functions,
semi-Pfaffian sets, and Pfaffian dynamical systems. In Sect. 3 we construct the up-
per bound on sizes of finite bisimulations of Pfaffian dynamical systems. In Sect. 4
we describe an example of a parameterized class of Pfaffian systems on which the
exponential bound is attained. We then conclude with future work.

2 Basic Notions and Definitions
2.1 Transition Systems and Dynamical Systems

One of the approaches to the study of a dynamical system uses the partition of the
state space into finitely many equivalence classes, so that equivalent states exhibit
similar properties. This special quotient of the original state space, called bisimula-
tion, is reachability preserving, i.e., checking the reachability on the quotient system
is equivalent to checking it on the original system. In this section we recall (follow-
ing [2]) the notion of bisimulations of transition systems, and basic results concerning
finite bisimulations of o-minimal dynamical systems.

The first group of definitions describe transition systems and bisimulations be-
tween the transition systems.

Definition 2.1 Let Q be an arbitrary set and — be a binary relation on Q. In the
context of dynamical systems theory we call Q the set of states, — the transition,
and T := (Q, —) the transition system.

Definition 2.2 Given two transition systems 771 := (Q1, —1) and T := (Q2, —2)
we define a simulation of T by T, as a binary relation ~ C Q1 x Q> such that:

e Vg1 € Q1392 € Q2 (91 ~ q2);

® Yq1,q1 € O1Vq2 € Q2 ((q1 ~q2 A q1 —>1q7) = 3q5 (4] ~ @5 A g2 =2 95)).

Definition 2.3 A bisimulation between two transition systems T\ := (Q1, —1) and
T> := (Q7, —2) is a simulation ~ C Q1 x Q> of T1 by T3 such that the reciprocal
relation ~—1:= {(g2,q1) € Q2 x O1lq1 ~ g2} is a simulation of T, by T7.
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Definition 2.4 A bisimulation between a transition system 7 and itself is called
bisimulation on T .

Definition 2.5 Let ~ be a bisimulation on 7' = (Q, —) and also an equivalence
relation on Q. Let P be a partition of Q. We say that ~ is a bisimulation with respect
to P if any P € P is a union of some equivalence classes of ~.

Normally, the partition P reflects regions of interest such as invariants and initial
conditions of the dynamical system.

In this paper we are concerned with estimating cardinality of bisimulations in the
sense of Definition 2.5. We now give some definitions concerning dynamical systems.

Definition 2.6 Let G; C R"~! and G, C R" be open domains. A dynamical system
is a map
y:G1 x (—1,1) - Gs.

For a given x € G the set
Ix={ylFre(-1L1D (yx1)=y)}CG
is called the trajectory determined by x, and the graph

Tx={tylyx =y} C(~1,1)x Gy

is called the integral curve determined by x.
A dynamical system is called o-minimal if it is definable in an o-minimal structure
over R.

Definition 2.7 The transition system T\, = (Q, —) associated to the dynamical sys-
tem y is defined as follows:

o Q:=Gy,and
e y1 — y2 foryi, y2 € Q if and only if

IXe G, ne (=L D{(n =) Ay n)=y)A X n)=y2).

We now introduce following [2], a technique of encoding trajectories of dynamical
systems by words. Let P := {Py, ..., Py} be a finite partition of y (G| x (—1, 1))
definable in the o-minimal structure. Fix x € G. Define the set Fx of points and open
intervals 7 in (—1, 1) which are maximal with respect to inclusion for the property

Jie(l,...,s} Viel(yx,t)eP).

Let the cardinality | Fx| =r and y; < --- < y, be the set of representatives of Fx
such that y(x, y;) € Pi_/. Then define the word w := P;, --- P;, in the alphabet P.
Informally, w is the list of names of elements of the partition in the order they are
visited by the trajectory I'x.
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Let y e I'x. Then y € P,-J. for some 1 < j <r, where Pl-j is a letter in w. We
represent the location of y on trajectory I'x by the dotted word

d)::Pi Pl

J

P; .

In the sequel we will always assume that the dynamical system y is injective.
In this case there is a unique dotted word associated to a given 'y € y (G x (=1, 1)).
Introduce sets of words Q2 := {w| x € G}, Q := {@| x € G1}. The following statement
is an easy consequence of o-minimality.

Lemma 2.8 ([2]) The set 2 is finite.
An obvious (purely combinatorial) corollary is that €2 is also finite.

Definition 2.9 The transition system T, is defined as follows:

o Q:= Q, and
e ®] — wy for w1, @ € Q if and only if w; = w, and the dot on w, is on the righter
(or the same) position than the dot on w; .

Theorem 2.10 ([2]) Let an o-minimal dynamical system y be bijective, and the par-
tition P be definable in the o-minimal structure. Then there is a finite bisimulation on
T, with respect to P.

Proof To prove the theorem one first shows that T, is a bisimulation of 7,, and then
considers the following equivalence relation ~ on G7: yj ~ y; iff for respective pre-
images (X, 11), (X2, #2), the locations of y, y» on trajectories I'x, I'x, are described
by the same dotted word . Then ~ is the required bisimulation (see details in [2]). (]

2.2 Pfaffian Functions and Related Sets

In what follows, in order to give a quantitative refinement of Theorem 2.10 we will
restrict our considerations of o-minimal dynamical systems to a particular case, the
class of Pfaffian dynamical systems. This section is a digest of the theory of Pfaffian
functions and sets definable with Pfaffian functions. The detailed exposition can be
found in the survey [5].

Definition 2.11 A Pfaffian chain of order r > 0 and degree o > 1 in an open domain

G C R" is a sequence of real analytic functions fi, ..., f; in G satisfying differential
equations
fj _
—— =&ij (X, fi(%),..., fj(x)) 2.1
ax,‘
forl1 <j<r,1<i<n.Hereg;(x,y1,...,y;)are polynomials in X = (x1, ..., X;),
y1, ...,y of degrees not exceeding «. A function

fX) =P, fi(x),..., fr(X),
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where P (X, y1, ..., Yr) is a polynomial of a degree not exceeding 8 > 1, is called a
Pfaffian function of order r and degree («, B).

In order to illustrate the definition let us consider several examples of Pfaffian
functions.

(a) Pfaffian functions of order O and degree (1, 8) are polynomials of degrees not
exceeding 8.

(b) The exponential function f(x) = e** is a Pfaffian function of order 1 and de-
gree (1,1) in R, due to the equation df (x) = af (x)dx. More generally, for
i=1,2,....r,let Ej(x):=eEi-1™) Ey(x) = ax. Then E,(x) is a Pfaffian func-
tion of order r and degree (r, 1), since dE,(x) =aE(x)--- E,(x)dx.

(c) The function f(x) = 1/x is a Pfaffian function of order 1 and degree (2, 1) in the
domain {x € R| x # 0}, due to the equation df (x) = — 2(x)dx.

(d) The logarithmic function f(x) = In(|x|) is a Pfaffian function of order 2 and
degree (2, 1) in the domain {x € R| x # 0}, due to equations df (x) = g(x)dx
and dg(x) = —g2(x)dx, where g(x) = 1/x.

(e) The polynomial f(x) =x™ can be viewed as a Pfaffian function of order 2 and
degree (2, 1) in the domain {x € R| x # 0} (but not in R), due to the equations
df (x) = mf (x)g(x)dx and dg(x) = —g%(x)dx, where g(x) = 1/x. In some
cases a better way to deal with x™ is to change the variable x = ¢" reducing
this case to (b).

(f) The function f(x) = tan(x) is a Pfaffian function of order 1 and degree (2, 1)
in the domain (;z{x € R| x # /2 + kx}, due to the equation df(x) =
(1 + f2(x))dx.

(g) The function f(x) = arctan(x) is a Pfaffian function in R of order 2 and de-
gree (3, 1), due to equations df (x) = g(x)dx and dg(x) = —2xg%(x)dx, where
g =@+

(h) The function cos(x) is a Pfaffian function of order 2 and degree (2, 1) in the do-
main ()7 {x € R| x # 7 + 2k}, due to equations cos(x) =2 f (x) — 1, df (x) =
—f(x)g(x)dx, and dg(x) = %(l + g2%(x))dx, where f(x) = cos?(x/2) and
g(x) =tan(x/2). Also, since cos(x) is a polynomial of degree m of cos(x/m),
the function cos(x) is Pfaffian of order 2 and degree (2,m) in the domain
Mkezix € R| x # mm + 2kmm}. The same is true, of course, for any shift of
this domain by a multiple of . However, cos(x) is not a Pfaffian function in the
whole real line.

As we can see, apart from polynomials, the class of Pfaffian functions includes real
algebraic functions, exponentials, logarithms, trigonometric functions, their compo-
sitions, and other major transcendental functions in appropriate domains (see [5]).
Now we introduce classes of sets definable with Pfaffian functions. In the case of
polynomials they reduce to semialgebraic sets whose quantitative and algorithmic
theory is treated in [1].

Definition 2.12 A set X C R" is called semi-Pfaffian in an open domain G C R” if

it consists of points in G satisfying a Boolean combination of some atomic equations
and inequalities f =0, g > 0, where f, g are Pfaffian functions having a common

@ Springer



Theory Comput Syst (2008) 43: 498-515 503

Pfaffian chain defined in G. A semi-Pfaffian set X is restricted in G if its topological
closure lies in G.

Definition 2.13 A set X C R” is called sub-Pfaffian in an open domain G C R" if it
is an image of semi-Pfaffian set under a projection into a subspace.

In the sequel we will be dealing with the following subclass of sub-Pfaffian sets.

Definition 2.14 Consider the closed cube [—1, 1]™*" in an open domain G C R"*"
and the projection map 7 : R"™" — R*. A subset Y C [—1, 1]" is called restricted
sub-Pfaffian if ¥ = 7 (X) for a restricted semi-Pfaffian set X C [—1, 1] 1",

Note that a restricted sub-Pfaffian set need not be semi-Pfaffian.

Definition 2.15 Consider a semi-Pfaffian set

X = U {XERS|fl'1=0,...,f,'[[.20,g51>0,...,g”’. >0}CG, (2.2)
1<i<M

where f;;, g;; are Pfaffian functions with a common Pfaffian chain of order r and
degree (o, ), defined in an open domain G. Its format is a tuple (r, N, «, B, ), where
N > Zl<i<M(li + J;). If Y C R”" is a sub-Pfaffian subset such that ¥ = 7 (X) and
s =m + n, then its format is equal to the format of X.

We will refer to the representation of a semi-Pfaffian set in the form (2.2) as to
disjunctive normal form (DNF).

Remark 2.16 In this paper we are concerned with upper and lower bounds on sizes
of bisimulations as functions of the format. In the case of Pfaffian dynamical systems
these sizes and complexities also depend on the domain G. So far our definitions have
imposed no restrictions on the open set G, thus allowing it to be arbitrarily complex
and induce this complexity on the corresponding semi- and sub-Pfaffian sets. To avoid
this we will always assume in the context of Pfaffian dynamical systems that G is
simple, like R”, or (—1, 1)".

Theorem 2.17 ([5, 13]) Consider a semi-Pfaffian set X C G C R", where G is an
open domain, represented in DNF with format (r, N, a, 8,n). Then the sum of the
Betti numbers (in particular, the number of connected components) of X does not
exceed

N"2"0=D/20 B + min{n, r}a)" .

Theorem 2.18 ([6, Sect. 5.2]) Consider a sub-Pfaffian set Y = n(X) as described
in Definition 2.14. Let X be closed and represented in DNF with format (r, N, «, 3,
n + m). Then the kth Betti number by (Y) does not exceed

k((k + 1)N)n+(k+l)m2(k+l)r((k+1)r71)/2 - O0((n+km)B

+ min{kr, n 4 km}a)" D4
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Let d > o + B. Relaxing the bound from Theorem 2.18, we get
bk (Y) < (kN) 0(n+km)20((kr)2) ((n + km)d)O(n+km+kr) .
2.3 Singular Loci of Semi-Pfaffian Sets

Consider a semi-Pfaffian set

X:= |J xeR"| f1=0..... fi,=0.g1>0.....81 >0} CG,
1<isM

where f;;, gi; are Pfaffian functions with a common Pfaffian chain, defined in an open
domain G. Let the format of X be (r, N, o, B, n), where N > >, _; ., (Li + J;).

Assume that X is a p-dimensional topological (not necessarily smooth) manifold.
We say that x is smooth if in the neighbourhood of x the set X is a C'-manifold,
and singular otherwise. Let Sx be a secant cone at a point x € X, i.e., the limit of all
secant straight lines through pairs of points in X converging to x.

Theorem 2.19 A point x € X is singular if and only if the dimension of the affine
hull of Sy is larger than p.

Lemma 2.20 Sy is an affine space of dimension p if and only if X is smooth.

Proof If x is smooth, then Sx coincides with the tangent space to X at x, and therefore
is a p-dimensional affine space.

Suppose now that Sx is an affine space of the dimension p. Let f : X — Sx be the
orthogonal projection. For a neighbourhood Uy of x in X (which is homeomorphic to
an open ball) the restriction f|y, is injective. Indeed, suppose that for any neighbour-
hood Uy there exist X1, X» € Uy such that x; # x> and f(x1) = f(x2). Then, the line
through x1, x; is orthogonal to Sx which contradicts the fact that its limit is contained
in Sy. It follows that f|y, is a homeomorphism of open balls.

Now let Ly be the (n — p)-dimensional affine subspace passing through x and
orthogonal to Sx. Consider the map F = (F1, ..., F,—p) : f(Ux) — Ly for which Uy
is the graph. Then each F; is C'!-differentiable by the definition (all partial derivatives
of F; are 0 at x). Hence Uy is smooth as the graph of a smooth map. Il

Lemma 2.21 For any x € X the secant cone Sx contains a p-dimensional affine
space.

Proof Let Rx be the union of all limits of tangent spaces to smooth points con-
verging to X. Clearly, Ry contains a p-dimensional affine space. On the other hand,

Rx C Sx. O

Proof of Theorem 2.19 By Lemmas 2.20, 2.21, x € X is singular if and only if Sx
contains a p-dimensional affine space but not coincides with it. O
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Theorem 2.22 The set Xing of all singular points of X is sub-Pfaffian, representable
by an existential formula with the format (r, (N°"™ DY**" o, D, O(n?)), where

D =200 (n(a 4 B)) 0.
Proof Define the secant bundle of X as
SX :={(x,v) € X x R"| (x,X,V) € closure(S)},
where

S ={xy,AMy—x) e X x X xR (x#y) A (A €R))}

is the set of all triples (x,y, v) in which v is a vector parallel to the line joining two
distinct points X,y € X. A theorem of Gabrielov ([5, Theorem 5.2]) implies that the
set SX is semi-Pfaffian, and its format can be bounded explicitly via the format of X.
According to Theorem 2.19, a point X € X is singular if and only if the affine hull of
the secant cone

Sxy = {v e R"| (x0, X0, V) € closure(S)},
at xo has the dimension larger than dim(X) = p. Thus,
Xsing ={x€ X| 3(y1, ... ¥p+1) (Y1 €S A -+~
“ A¥Yp+1 € Sy Arank(yr - -yp+1) =p + D}

A straightforward estimate of the format of this formula completes the proof. g

3 The Upper Bound on Sizes of Finite Bisimulation of Pfaffian Dynamical
Systems

Our main results concern upper and lower bounds for finite bisimulations of Pfaffian
dynamical systems with respect to partitions defined by semi-Pfaffian sets.

Definition 3.1 A dynamical system
y:G1 x (—1,1) = Ga,

where G; C R"~! and G, CR” are open and y is a map with a semi-Pfaffian graph,
is called a Pfaffian dynamical system.

Lety : Gy x (—1,1) = Ga, where G; = "' := (=1, 1) and G, = I", be a
homeomorphism, defined by its graph

Ti={x1y)|yx1)=y)

which is a semi-Pfaffian set, and P be a partition of G, into semi-Pfaffian sets.
First we consider an elementary example illustrating techniques which we will use
to show the single exponential upper bounds in the general case.
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3.1 Example
Let G| :=(—1,1), Ga:=(—1, 1)2, and

y:(x, )~ (y1=x,y2=1).

(Note that this dynamical system corresponds to the system of differential equations
y1 =0, y» = 1.) Consider the graph

Ti={(x,1,y1,y)| x —y1 =0, t — y, =0}

of the map y. Note that T is an intersection of 4-cube (-1, 1)4 with a 2-plane, and
therefore is a smooth manifold. In the general case the graph of a dynamical system
may not be smooth and we will need to separate smooth and singular parts of it. For
a fixed x € G the set

Ty = {(t, y1,y2)| x — y1 =0,1 — y, =0}
is the integral curve, and the set

Cy={(Q1, y)| #x—y1=0,t —y2 =0)}

is the trajectory of y. Thus, in our example, the trajectories are open segments of
straight lines parallel to y;-axis.
Introduce the projection

G x (=1,1) x Gy = G4
(x, 1, y1, y2) > x.

Let iy be the restriction of 7 to T. For a fixed x € G the fiber 71% ! (x) coincides
with T,

Let the partition P of G consist of the disc {(y1, »2)| f := y]2 + y% —1/4 <0}
labelled by the letter A and its complement in G, labelled by B. The aim is to deter-
mine the number of different words in the alphabet {A, B} encoding the trajectories.
Clearly, it is sufficient to consider only intersections of the trajectories with open sets
{(y1,y2)| f <0} and {(y1, y2)| f > 0} (in the general case, the transition to open sets
is less trivial and the subject of Subsect. 3.3).

Let S := {(x,t, y1, )| f(y1,y2) = 0}. Observe that SNT is a smooth curve.
Consider the partition Pof T consisting oﬁ{(x, t,yr, 2| f = yl2 + y% —1/4 <0}
labelled by letter A and its complement in I" labelled by B. Clearly, it is sufficient to
find the number of distinct words encoding the intersections of integral curves with
open sets {(x, 7, y1, y2)| f <0} AT and {(x,t,y1, )| f >0} NnT.

Consider the restriction 735 : ' = G of 5 to SNT. Let C be the set of all
critical values of 5. By setting to O the appropriate Jacobian we find that the critical
points of wg are (1/2,0,1/2,0) and (—-1/2,0, —1/2,0), thus C ={1/2, —1/2}.
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Let R := G \ C. This set consists of three connected components:

{xe(—1,D]x<—-1/2},
{xe(-1,D]—-1/2<x <1/2},
{xe(-1,D]1/2 <x}.

The following statement is obvious.

Proposition 3.2 If x, x' belong to the same connected component R' of R, then I
and Ty are labelled by the same word.

In the general case the analogy of Proposition 3.2 requires a careful proof. As
applied to our example, this proof has the following scheme.

(1) The restriction of 7qg to nM(R ) is a trivial covering, i.e., for any x’ € R’ the

pre-image nAA(R ) is homeomorphic to nAA L(x') x R'. In our example, in the
only non-tr1v1a1 caseof R  ={x e (—1,1)| — 1/2 < x < 1/2}, we have:

nAA(R )= (SNT)\{(1/2,0,1/2,0), (—1/2,0,—1/2,0)}
is an oval minus two points, which is homeomorphic to a Cartesian product of a
pair of points JTZAl (x”) by the interval R’. In other words, the connected compo-

nents of TL’AA(R ) are two open arcs of simple curves.

(2) These arcs are naturally ordered separating the difference JTA (R ) \71 (R )

into ordered connected components. In the case of R’ = {x € ( I, — 1 /2 <
x < 1/2} the components are (in order):

(.t y13) €T (=12 <x <1/ A (f > 0) A (2 <O)),
(6,31, ) €T (=1/2<x < 1/2) A(f <O)},
(Gt y1 ) €T (=12 <x <1/ A(f >0 A (2> 0)).

For any x € R’ the integral curve T, intersects these connected components ac-

cording to their order.
(3) Each connected component of JT (R ) \rrM (R") lies either in

{2, y1,y2)| f <0},
or in
{(x, 2, y1, y2)I f >0},

and, therefore can be naturally labelled by A or B respectively. Since the con-
nected components are ordered, the difference nﬁ_ I(R’ )\ nf_gl(R’ ) itself is la-
belled by a word (in the case of R’ = {x € (—1,1)| —1/2 <x < 1/2} by BAB).
It follows that for any x € R’ the integral curve T, is labelled by this word, and
the proposition is proved.
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Proposition 3.2 implies that the number of distinct realizable words does not ex-
ceed the number of all connected components of R. In our example the latter is 3,
which equals to the cardinality of the discrete set C plus 1. The general case uses a
far-reaching extension of such method of counting, Alexander’s duality [12].

The rest of this section is organized as follows. In Subsect. 3.2 we show how to
reduce the problem of estimating the number of words realizable with respect to P
to the similar problem with respect to a family of open subsets of G, such that the
complement to the union of these subsets is a smooth compact hypersurface in G».
This will allow us to describe a finite subdivision of G into open subsets, within each
of which the integral curves are labelled by the same word, in terms of critical points
of the projection of a smooth hypersurface. This is done in Subsect. 3.3. Finally,
in Subsect. 3.4, we show a single exponential upper bound on the number of all
realizable words.

3.2 Sign Sets

Let P be a partition of G, = I" into semi-Pfaffian sets. Each element of the partition
is described by a Boolean combination of Pfaffian equations and inequalities defined
in a domain D containing the closure of I". Let f1, ..., fx be all different functions
involved in these Boolean combinations.

Definition 3.3 For a given finite set { f1, ..., fi} of Pfaffian functions in D define its
sign sets as the non-empty semi-Pfaffian sets of the kind

{XeI”|fi1:O,...,f,-kI =0, fi, 51 >0, fir, >0, fiy iy <0, fiy <O}

where iy, ..., ik, ..., ik, ..., g 1S a permutationof 1, ..., k.

Let Q be the partition of G, into sign sets. Clearly, Q is a subpartition of P, and
it is sufficient to bound from above the number of words with respect to Q.

Choose an arbitrary point in each sign set, and let A be the finite set of all chosen
points. There exists € > 0 such that for every x € A and every i, 1 <i <k, the
inequality f;(x) > 0 implies f;(x) > ¢, and f;(x) < 0 implies f;(x) < —¢. Introduce
the Pfaffian function

hi= [l Gire’Gi=o® [ a+apa—xp.

1<i<k 1<j<n

It is easy to prove (see [4, Proposition 2]), that for two different sign sets o7 and o7,
the singletons {x;} = o1 N A, {X2} = 02 N A lie in different connected components of
{x € I""| h > 0} (by the choice of &, neither x| nor x, belong to {x € I"| h =0}).

Introduce the Pfaffian function f :=h — §, where 0 < § € R. It is easy to prove
that there exists a small enough 8 such that for each § < 8¢:

e the set {x € I""| f =0} is a smooth compact hypersurface;
o for two different sign sets o1 and o7, the singletons {x;1} =01 N A, {xXo} =2 N A
lie in different connected components of {x € I"*| f > 0}.
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This defines an injective map ¢ from Q to the set of all connected components of
{x € I"| f > 0}. For each o € Q label the connected component ¢(c) by the same
letter as o . Introduce a new letter x. Each connected component of {x € I"| f > 0},
which is not in ¢(Q), is labelled by x.

Definition 3.4 Define the labelling of trajectories I'x with respect to {f > 0} as
follows. When @'y passes through ¢(o) for some o € Q, the letter corresponding
to o is added to the word; when I'y passes through the connected component of
{xel"| f >0} ep(Q), the letter x is added to the word.

Lemma 3.5 For every word w, realizable with respect to Q, there is a word w’,
realizable with respect to {x € I""| f > 0}, such that w can be obtained from w' by
deleting all occurrences of the letter .

Proof Consider a finite set G of trajectories which realize all realizable words with
respect to Q. For each trajectory I'y € G and any o € Q choose a point in I'x N o
such that I'y N o # @, and let Ax be the set of all chosen points. Let ey, §x be the
corresponding constants, and introduce & := minr ¢g €x, § := minr ¢ 6. Define the
function f with constants &, §. Now the lemma follows from Definition 3.4. O

Corollary 3.6 The number of words realizable with respect to Q does not exceed the
number of words realizable with respect to {x € I"| f > 0}.

3.3 General Case

Lety : G| x (—1,1) = G5, where G| = I"~! and G, = I", be a homeomorphism,
defined by its graph

F={xtylyx )=y}
which is a semi-Pfaffian set. Note that T is homeomorphic to I".

Assume that T := {(x,t,y) € R2"| F(x,t,y)}, where F(x,t,y) is a Boolean for-
mula in DNF with atomic Pfaffian functions f;, g; defined in a domain containing
the closure of 72", Let V be the singular locus of T', and U :=T \ V. It follows that
dim(V) < n, dim(U) = n, and U is a smooth (C'-) manifold.

For each x € G consider the integral curve

Ty =P yx 0 =y} ={¢t,y)| F(x,1,y))

and the trajectory

Dy :={yl Iy x,0)=y)} ={yl I (Fx,1,y)}

Observe that both Fx and Iy are homeomorphic to the interval (—1, 1), and that /F\x
can be naturally identified with the fiber over x of the projection 7f : I'>G.

Let S :={y € G2| f =0} C G,, where f =h — § is as defined in Subsect. 3.2.
Recall that S is a smooth compact hypersurface in G,. Let the connected components
of G\ S ={y € G| f*> 0} be labelled by different letters of a finite alphabet.
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Then a trajectory 'y, X € G, is labelled by a finite word in this alphabet (assuming
the trajectory is directed). We want to estimate from above the number of distinct
realizable words. Clearly, it is sufficient to consider integral curves f:x and smooth
hypersurfaces

Si= {x,1,y) € Gi x (=1,1) x G2| f(y) =0}

Lemma 3.7 The intersection U NS is smooth and dim(V N TS'\) <n —1 for § small
enough.

Proof Consider the restriction Ay of 4 on U. By Sard’s theorem (in o-minimal ver-
sion [10]), any small enough § > 0 is a regular value of /y. Hence by the implicit
function theorem the intersection U N S, which is the fiber of 4 over §, is smooth. [

It follows that U N S is a smooth submanifold of positive codimension of both
manifolds: U and §. Let L :=7p(V N S). Lemma 3.7 implies that dim(L) <n — 1.

Let K be the set of all x € G such that 7, ! )N S contains a singular point of
Ty ! (x). Then, by the implicit function theorem, K is a subset of all critical values of
the projection 7y : U — G1. It follows by Sard’s theorem that dim(K) <n — 1.

Let 7,5 be the restriction of 7y to U N S. Denote by C the set of all critical values
of ;5. By Sard’s theorem, dim(C) < n — 1. Observe that for any x € C \ K the fiber
nljl (x) is tangent to S at some point (x,¢,y). Let R:= G\ (K UL UC). Then for
any X € R the fiber T !(x) intersects S transversally.

Proposition 3.8 Ifxi, X, belong to the same connected component R’ of R, then FXI
and T'x, are labelled by the same word.

Proof We prove the proposition in four steps.

(1) The restriction of w5 on n;é(R/ ) is proper as well as a submersion, and
therefore, by the inverse function theorem (see, e.g., [7]), is a locally trivial covering.
Thus, for any fixed x’ € R’ the pre-image ﬂ[;é( Wy) of a neighborhood Wy of x'

in R’ is homeomorphic to nl;é(x’ ) x Wy. In particular, all fibers n&é(x) for x €
Wy are homeomorphic. It follows that each connected component of n&é(Wx/) is

diffeomorphic to Wy, and therefore its complement in rrﬁ_ 1(WX/) consists of two
connected components.

(2) We claim that there exists a linear order 1,2,...,i,...,s on the set of all
connected components of n[;é(Wx/) such that component i in that order splits
nf_ l(WX/) \ i into two connected components one of which contains components
1,...,i — 1 and the other contains components i + 1,7 + 2, ..., s. We say that i sep-
arates these two sets of components. We prove the claim by induction on s, the base
case of s = 1 being trivial. Suppose that there is a required linear order 1,2, ...,s — 1
for s — 1 components of nl;i( Wy), where s > 2. Then the sth component, which we
denote by A, either is separated from 1,2,...,5s —2 by s — 1, or is separated from
2,...,58 —1by 1, or lies in a connected component of nf_l (W) \ (Ui + 1) between
the components i and i 4+ 1 for some 1 <i <s — 2. In the first case label component
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A by s, in the second case label A by 1 and add 1 to the label of each the of the
remaining components. In the last case notice that the smooth curve n{,l (x) inter-
sects i, i + 1 and A transversally, and, according to (1), each intersection consists of
a single point. It follows that A separates components i and i + 1. Add 1 to the label
of each the of the components i 4+ 1,...,s — 1 and label A by i + 1. The claim is
proved.

Observe that the linear order on the set of all connected components of J%(er)

induces the linear order on the set of all connected components of 71% 1(er) \
7 s (W),
(3) Each connected component of rrﬁ_ ! (Wx) '\ n;é( Wy) lies in a connected com-

ponent of { f > 0} and therefore is labelled bya letter In view of the linear order, the
set of all connected components of nA ( Wyx) \n ( Wy ) is labelled by a word, say w.

Then for any x1, X, € Wy the 1ntegral curves Fx| = rrﬁ (xl) and FX2 = nf (xz) are
labelled by w.

(4) Since R’ is path-connected, there is a compact connected linear curve L C R’.
As we proved in (1)—(3), for each point X’ € L there is an  open neighborhood Wy of
x’ in R’ such that for any x|, X, € Wy the integral curves I‘xl, sz are labelled by the
same word w. By compactness of L, there is a finite family of open sets Wy N L in
L which is a covering of L. It follows that if now x1, X, € R’, then Fxl and FX2 are
labelled by w. g

3.4 Upper Bound

Proposition 3.8 implies that to bound from above the number of all realizable words
we need to estimate the number of connected components of R =G\ (KULUC).

We first write out an existential formula £(x) for L using Theorem 2.22. Then we
construct an existential formula for K U C. For each x € G \ L introduce the secant
bundle

STx:={(1,y,v) € Tx x R"™| (1,y,1,y, V) € closure(S)},
where
S:={(x,1,y,1,¥, M((t,y) — (', y)) € Tx x Tx x R"*!|
(@, y)# @, y)AReR)})

According to Lemma 2.19, for x € G \ L the singular points of T belonging to S
are defined by the formula

K(x):=321,2; (21 € Sty) ANZ2 € S y) Arank(z,Z2) =2 A f(y) =0).

Hence, K U L = {x| K(x) V L(X)}.
Observe that for x € G1 \ (L U K) a point (¢,y) is a tangent point of I'x to S iff

W eR™(((1y, V) € ST A (v, grad, ) S) = 0) A (1, y) € Tx N 5)).

@ Springer



512 Theory Comput Syst (2008) 43: 498-515

Denoting the latter formula by C, we get
KULUC={xeG|| KX VLX) VCX)}

thus K U L U C is defined by an existential formula.

If functions in formula F (x, t,y) and the function f are Pfaffian, then, according
to Theorem 2.18, the bound on the Betti number b,_{(K U L U C) is expressible
via the format of K(x) v L(x) V C(x). By Alexander’s duality ([6, Lemmas 4, 5] and
[12]), the number of connected components of G \ (K UL U C),

bo(G1\(KULUC)) <b, 1(KULUC). 3.1

Assume that formula F'(x, ¢, y) and the formula defining partition P (as the union
of elements of the partition) both have format (r, N, «, B, 2n). According to The-
orem 2.22, the sub-Pfaffian set K U L U C has the format (r, (N°™ D)*+" «, D,
0 (n?)), where

D =200 (o + B)) O+ (3.2)
Then, by Theorem 2.18,
by 1 (K ULUC) < NOWIQ0G 2 040) g 4 g)) 0t ntr®) (3 3y

which is also the upper bound on |Q|. The cardinality of the set € of all dotted
words does not exceed |€2| multiplied by the upper bound on the length £ of a word
x € G1. The latter equals to the number of the connected components of the intersec-
tion Ty N (T \ 5). By Theorem 2.17,

E E]\]0(7[)2}’2(11(6(_i_IB))O(rH-r)

It follows that |Q2| = |$2|¢ is bounded from above by the right-hand side of (3.3).
We proved the following theorem.

Theorem 3.9 Let T, = (G2, —) be the transition system associated to the dynamical
system y . Then there is a bisimulation on T, with respect to P consisting of at most

NO@HL0@ () (o - gy O (+1)%)
equivalence classes, where D is defined in (3.2).

Relaxing the bound from Theorem 3.9, we get that the number of equivalence
classes in a finite bisimulation does not exceed

NOO (n(e+ ) 00",
Remark 3.10 The best upper bound known until now ([8]) was double exponential:

N(r+n)0(”) (o + ﬂ)(r+n)o("3)_
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4 Lower Bound

We construct a parametric example of a semi-algebraic dynamical system G| X
(—1,1) — G5 together with a semi-algebraic partition of G, such that the format
of both of them is (d, n) (degrees, number of variables) while the number of different
realizable words (size of a bisimulation) is 4.

Let g(y) be a polynomial of degree d such that |g(y)| < 1 for every y € (—1, 1)
and for every c € (—%, %) the polynomial g(y) — ¢ has d simple roots in (—1, 1).

First we illustrate the idea of the example by describing the case n = 2. Let the
dynamical system be given by G := (—1, 1), G := (—1, D2,y (x,1) — (1,X).
The partition P consists of two sets A and B = G, \ A where

A:={(y1, ) g(y1) =0,y + y2 > 0}.

Notice that there are exactly d + 1 distinct words encoding all trajectories of the
defined dynamical system. These words are formed by alternating letters starting and
ending with B, i.e., B, BAB, BABAB,....

For arbitrary n, let G| := (=1, 1), G2 := (—1, 1)". Define a curve

Ar={1s e ynm1) € CLD T 2 =g, ooy yamt = 80n-2))-
Observe that A is connected in (—1, 1)"~!, being the graph of the map

£:(=1,1) = (=1, 1),

i (g0, ..., gg¢--gy)---))),

and smooth.

Consider the polynomial 4 (y,—1) := (yu—1 —b1)(Yn—1 —b2) - - - (¥n—1 — by) Where
all b; € (—%, %) and b; # b; for i # j. Then A N {h = 0} consists of d"~! points.
Define

A:Z {(y1,~~,)’n)| (yl»u'vyn—l) S A’h(yn—1)=O9L >0}3

where L(yy, ..., y,) is a generic linear homogeneous polynomial such that {L = 0}
intersects all d"~! parallel straight lines of

{(}’17«-~7)’n)| (yls "'syn—l) € Avh(yn—l):()}

Notice that the projection of this intersection on the y,-coordinate consists of d"~!
distinct points.

Finally, define the dynamical system y and the partition P as follows. To x € G
and t € (—1, 1) the map y assigns the point (f(), xX) € G,. The partition P consists
of A and B = G, \ A. Clearly, there are exactly d"~! + 1 pairwise distinct words
encoding all trajectories.

We can now modify the example so that G| becomes homeomorphic to 7*~!, and
G, becomes homeomorphic to /I”. Observe that there is a small enough & > 0 such
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that for any sequence 0 < €1, ..., &,—2 < ¢ and any sequence *1, ..., *,—2 € {4+, —},
the algebraic set

A ={1s s yn1) € (L D" Ny =g(y)*161, s Va1 = 8(Vn—2) *n—28n—2)

is a smooth connected curve. These curves are disjoint and their union is

A= () QL) € (LD e < yig — g(i) <eh

1<i<n-2

Let G = (—¢6,8)" 2 x (—1,1), Go=A" x (=1, 1) and y : G| x (=1,1) > G2,
such that

Ck1€15 .+ vy ¥p—28n—2, X, t) > (g(t) *1 &1, ..., 8(g(--g(t) ) *y_2 €4—2,X).

Note that y is a diffeomorphism. It is obvious that the modified y still has at least
d®™ trajectories with pairwise distinct word codes with respect to the partition P.

5 Future Work

In [8] the authors proposed an algorithm (a Blum-Schub-Smale type machine with
an oracle for deciding non-emptiness of semi-Pfaffian sets) for computing a finite
bisimulation. That algorithm is based on the cylindrical cell decomposition technique
and, accordingly, has a double exponential upper complexity bound. It seems feasible
to construct a bisimulation algorithm with single exponential complexity using the
approach employed in the present paper. Once a bisimulation is computed, it can be
used in efficient algorithms for fundamental computational problems such as deciding
reachability or motion planning in definable dynamical systems.
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