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THE WEAK EULER SCHEME FOR STOCHASTIC DIFFERENTIAL DELAY
EQUATIONS

EVELYN BUCKWAR, RACHEL KUSKE, SALAH-ELDIN MOHAMMED, AND TONY SHARDLOW

ABSTRACT. We develop a weak numerical Euler scheme for non-linear stochastic delay differential
equations (SDDEs) driven by multidimensional Brownian motion. The weak Euler scheme has order
of convergence 1, as in the case of stochastic ordinary differential equations (SODEs) (i.e., without
delay). The result holds for SDDEs with multiple finite fixed delays in the drift and diffusion terms.
Although the set-up is non-anticipating, our approach uses the Malliavin calculus and the anticipating
stochastic analysis techniques of Nualart and Pardoux.

1. INTRODUCTION

Stochastic differential delay equations serve as models of noisy physical processes whose time evolution
depends on their past history. In physics, laser dynamics with delayed feedback is often investigated
[?, 7], as well as the dynamics of noisy bi-stable systems with delay [?, ?]. Several authors have
studied stochastic oscillator ensembles with delayed coupling [?, ?]. These can be interpreted as mean-
field models of coupled biological oscillators, such as groups of chorusing crickets, flashing fireflies and
cardiac pacemaker cells. In biophysics, stochastic delay equations are used to model delayed visual
feedback systems [?, ?] or human postural sway [?].

Since the model equations are generally non-linear and do not allow for explicit solutions, there is a
clear need for numerical approximation methods of solution. Until recently, emphasis on the numerical
analysis of stochastic differential delay equations has been on strong convergence of the numerical
schemes. Early investigations in this direction were initiated by Ahmed, Elsanousi and Mohammed
[?] and C. and M. Tudor [Tud.1,Tud.2,Tud.3]. Recently, this topic has gained more attention. See for
example [?, 7, 7,7 7]

Specific approximation methods studied include the Euler-Maruyama scheme and the ©-method, with
order of strong convergence 1/2, and the Milstein-method, with strong order 1.

The main motivation for considering weak approximations is the computation of the expectation of
functionals of solutions of stochastic differential equations. This problem arises, for example, in the fair
pricing of options in mathematical finance. Weak approximations are also used in the computation of
Lyapunov exponents of systems described by stochastic functional differential equations, as has been
suggested by Milstein and Tretyakov in [?]. Lyapunov exponents for stochastic functional differential
equations were studied by Mohammed and Scheutzow [?, ?].

Weak approximations for SODE’s (without memory) are well-developed. To mention only a few refer-
ences we quote Bally and Talay [B.T], Kloeden and Platen [K.P| and Kohatsu-Higa [K-H].

The question of weak convergence of numerical approximation methods for stochastic functional dif-
ferential equations (SFDEs) was recently discussed by E. Buckwar and T. Shardlow in [?]. The result
in [?] establishes weak convergence of order 1 for the Euler scheme applied to semi-linear SFDEs of the
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form:
t

v+ /t/om(u + s) du(s) du +/tf(a:(u)) du + /g(a:(u)) dW(u), t>o,

g

(1.1) a(t) =

o —T

n(t —o), a.e. t€lo—T,0).

In the above SFDE, the memory term is linear, driven by a smooth measure u, and there is no delay
in the diffusion coefficient. The initial condition (v,n) belongs to the Delfour-Mitter Hilbert space
My == R?% x L?([-,0],R%), where 7 is the length of the memory in the SFDE. The coefficients f, g :
R? — R satisfy appropriate regularity and linear growth conditions. The driving noise W(t), t >0,
is one-dimensional standard Brownian motion on a filtered probability space (Q, F, (Ft)e>o0, P). The
approach in [?] is based on embedding the SFDE (??) in an infinite-dimensional non-delay stochastic
evolution equation in the Hilbert space M := R% x L3([-T,0], Rd). The weak numerical approximation
is then performed at the level of the induced stochastic evolution equation in the Hilbert space Ms.

In the present article, we prove weak convergence of order 1 of the Euler scheme for fully non-linear
stochastic delay equations in R?, with multiple discrete (and continuous) delays and multidimensional
Brownian noise. However, and for simplicity of exposition, we will focus on one-dimensional SDDEs
with two delays and driven by a single Wiener process W. The appropriate extensions of our analysis
to higher dimensions are straightforward. They are indicated in Section 4 of this article.

In order to describe the main result of the paper, we introduce some notation which will be used
throughout the article.

Let C([—7,0],R) denote the Banach space of continuous paths 7 : [—-7,0] — R, given the supremum
norm

Inllc == sup |n(s)|.

—7<5<0
The symbol H**>°([—7,0],R) denotes the Banach space of all continuous paths 7 : [-7,0] — R, which
are a.e. differentiable on [—7,0] and such that essup S | (s)| < oo. The space H>([—7,0],R) is

furnished with the H*-norm

[MM1,00 := sup [n(s)| + essup_, < <o|n'(s)].

—7<5<0

The corresponding Banach spaces C([—,0], R?) and H»*([—7,0],R%) of R%valued mappings are
defined analogously.

Consider the one-dimensional SDDE:
t

(12) o(t) = n(0) + /f(x(u - Tl),x(u)) du + /g(x(u — Tg),x(u)) dW(u), o <t <T,

o

n(t — o) c—17<t<o, T:=T1VTo,
where T > 0 is fixed, the initial instant o € [0,T], the coefficients f,g : R? — R satisfy suitable
regularity and linear growth hypotheses, and the initial path n € H*([-7,0], R).

Let w := {—T =ty <topypr < - <t <t = 0 <t <ty <tnyo1 <ty = T} be a
partition of [—7, T], with mesh denoted by |7| := max{(¢t; —t;—1) : —M +1<i < N}. Let o € [0, 7],
and for any u € [0,T], define |u| := t;_; V o whenever u € [t;_1,t;| N [o,T]. For each initial path
n € HY>°([—7,0],R), define its piecewise-linear approzimation n™ € HL-*°([—7,0],R) by

" (s) = (tfi_%)n(m_l) + (%)n(m

for s € [ti—1,ti), —M +1 < i <0, and n™(0) := 7n(0). Define the continuous Fuler approzimations
y:lo—7,T] x Q — R of the solution z : [c —7,T] x Q@ — R of (??) to be solutions of the SDDEs:

00+ [ F(u(lu) — ). u(|u))) du

1.3 t) = f

3 v +[a((lu) = m),y(lu])) AW (W), o <t<T,
n(t — o), c—717<t<o, T:=71VTe.

Denote solutions of (??) and (??) by z(¢;0,7n) and y(t;0,n), c —7 <t <T.



The main objective of this article is to show that, for a sufficiently regular test function ¢ : R — R,
the following estimate holds:

(1.4) |E¢(x(t;0,m)) — E¢(y(t;0,n™)| < K(1+[|nll o) I7]

for all t € [0,T], 0 € [0,T] and all n € H>>([—7,0],R). In (1.4), || - |1,00 is the H1:**-norm of the
initial path 7, ¢ is a positive integer, and K is a positive constant, independent of the partition 7, the
initial instant ¢ and the initial path 7.

To establish the estimate (1.4), we employ an entirely different approach than that in [?], using the
Malliavin calculus and anticipating stochastic analysis techniques developed by Nualart and Pardoux
[?]. More specifically, we are able to handle SDDEs with non-linear drift and diffusion coefficients. We
further allow for multi-dimensional noise and several finite delays in both drift and diffusion terms, as
well as quasitame dependence on the history in all the coefficients (cf. [?]).

As will be apparent in the sequel, the impetus for appealing to anticipating stochastic analysis is
provided by the tame [té formula developed in [?]. Malliavin calculus has recently become an important
tool in the investigation of numerical methods for stochastic differential equations. See for example
Bally and Talay [B.T], Kohatsu-Higa [?, ?] and Fournié, Lasry, Lebuchoux and Lions [?, ?]. Our
approach is however different from these works as indicated at the end of this section.

We now give a brief outline of the proof of the estimate (1.4). We do this in several steps:

Step 1: For simplicity, take 0 = 0,t =t, € 7N [0,7], 1 < n < N. By exploiting the discrete delay
structure of (1.3), it follows that the Euler approximation y(t,;¢;,7) is a (Fréchet) C! tame functional in
n € C([—7,0],R). Using a telescoping argument along the partition points ¢;, Fréchet differentiability
of the Euler approximation y(t,;t;,n) in 7, the Markov property for z; and y; together with the Mean
Value Theorem, we write

E¢(x(tn;0,m))—E¢(y(tn; 0,7))
= ZEA D(¢O y)(tn;tia /\xti + (1 - /\)yti) ’ [mti - yti] dA

where zy, == x4, (- ;ti—1, 7, (+50,m)) and yi, == yr, (-3 ti-1, 26,5 (+50,m))-

Step 2: The main task is to show that each of the terms in the above sum is O((t; — t;_1)?). This is
realized through use of the tame It6 formula. The application of the latter formula to the differences
xt; — Y¢; generates multiple Skorohod integrals of the form

) 0 ti+s u
T / Y (ds) / / S (0) dv dW (),
ti—1—t; ti—1 ti—1

i /:ln Y (ds) /t H / u S (0) dW (v — 72) dW (1),

ti—1

) 0 ti+s u
Jg = / t Y(ds)/t /t Y5(v) dW (v — 1) du.

t;
In the above expressions, Y (ds) is a random discrete measure on [—7, 0] induced by Fréchet derivatives
of the tame functionals C'([—7,0],R) 3 n +— y(tn;ti,n) € R. Thus Y (ds) has Malliavin smooth random
atoms. The processes ¥;,j = 1,2, 3, are Malliavin smooth and possibly anticipate the lagged Brownian
motions W(- —r;),i =1,2.

Step 3: To estimate the expectation of the terms containing Skorohod integrals in Step 2, we use
the definition of the Skorohod integral as the adjoint of the weak differentiation operator, coupled
with estimates on higher-order moments of the Malliavin derivatives of the X;’s, 7 = 1,2,3. These
higher order moment estimates are obtained using the corresponding higher moments of the Euler
approximations y and their linearizations. This is a somewhat delicate computation which turns on
the crucial fact that the Euler approximations y(¢,;t;,n) are tame in 7. It yields

|EJ{| = O((t: —ti-1)?), j=1,2,3.
Summing over i = 1,...,n, we get a positive constant K and a positive integer g such that the estimate
(1.5) Eo(a(t;0,m)) — Eé(y(t;o,n)| < K(1+ nld.0) ||
holds for all t € [0,T], 0 € [0,T] and all n € HY*°([—7,0], R).



Step 4: To complete the proof of the estimate (1.4), we need to replace n in the Euler approximation

y(t;o,n) in (1.5) by its piecewise-linear approximation ™. To do so, we use the triangle inequality
(1.6) [Ep(x(t;0,n)) — E¢(y(t;0,0"))| < [Ed(x(t;0,n)) — E¢(x(t;on™))|
' +|[Ed(x(t;on™)) — Ed(y(t;o,n™))|

together with

(1.7) |Ed(x(t;0,m)) — Ed(x(t;o,n™))| < Klln—n"|c
and the elementary estimate
(1.8) In—n"lle < 2[n|ool7l.

See ([Mo.1], p. 41) for the estimate (1.7). The required estimate (1.4) now follows from (1.5)-(1.8).

The above outline highlights the following unique features of the analysis in this article:

e Although the original SDDE is non-anticipating, the tame It6 formula gives rise to anticipating
terms containing Malliavin derivatives of the solution of the SDDE [?].

e The formulation and the implementation of the weak Euler scheme do not require the use of
(or familiarity with) the Malliavin calculus.

e By contrast with the non-delay case (SODEs), SDDEs do not correspond to diffusions on
FEuclidean space. Thus techniques from deterministic PDEs do not apply.

e The use of anticipating calculus methods seems unavoidable in deriving the appropriate order
of weak convergence (1) for the Euler scheme.

We conclude the introduction by giving an outline of the paper. In Section 7?7 we state the tame It6
formula used in Step 2 above. The main estimate (1.4) is proved in Section ?? in the one-dimensional
case (Theorem 3.1). A multidimensional version of Theorem 3.1 with multiple discrete and quasitame
delays is stated in Section 4 (Theorem 4.1). Section ?? provides numerical examples to illustrate our
results.

2. THE TAME ITO FORMULA

Our proof of weak convergence of the Euler scheme depends crucially on an It6 formula for a certain
class of functionals on C([—7,0],R%) called tame functionals. These tame functionals act on segments
of sample-continuous random processes [—7, 0c] x @ — R? . We will refer to this formula as the tame
Ité formula. Details of the proof of this formula are given in [?]. In the present context, we will only
state the formula in one space dimension (d = 1), although the formula holds true in any Euclidean
space for R%-valued processes driven by multi-dimensional Brownian motion.

First, we need some notation.

Suppose that W (t), t > 0, is one-dimensional standard Brownian motion on a filtered probability space
(Q, F, (Fi)t>0, P). For simplicity of notation, set W (t) := 0 if —7 < ¢ < 0. Denote by D the Malliavin
differentiation operator associated with W.

Throughout the article, we will reserve the notation D for the Malliavin differentiation operator, and
D for the Fréchet differentiation operator.

For any p > 1 and any integer k > 0, let L*? stand for the space Lp([O,TL]D)k’p) where ]D)_k’p is
the closure of all real valued random variables Z having all weak derivatives D7Z € LP(Q, H®") for
1 < j <k, furnished with the norm

k . 1/p
12l 2= (B|ZP) P + (ZEIIW Ilif@f) |
j=1

In the above equation, H denotes the Hilbert space L?([0,T],R). The spaces LEP p > 4, are defined to

loc?
be the set of all processes X such that there is an increasing sequence of F-measurable sets A,,,n > 1,

oo

and processes X,, € L¥P . n > 1, such that X = X,, a.s. on A, for each n > 1, and U A, = Q. By
n=1

virtue of its local nature, the Malliavin differentiation operator D extends unambiguously to the spaces

]Lfo’f ,p > 4. For further properties of weak derivatives and the spaces L¥?, the reader may refer to ([?,

pp. 61, 151, 161] and [Nu.2].



Define the tame projection I1: C([-7,0],R) — R* associated with s1,--- , s € [—7,0] by

for all n € C([—7,0], R%).

Denote by C12(]0,T] x R*,R) the space of all functions ¢ : [0, 7] x R¥ — R which are of class C' in
the time variable [0, 7] and of class C2 in the space variables R".

A functional ¥ : [0,T] x C([—7,0],R) — R is called tame, if there exists a function ¢ € C12([0,T] x
R”* R) and a tame projection II such that

U(t,n) = ¢(t,11(n))
for all t € [0,T] and n € C([—7,0],R).

Consider a pathwise-continuous (not necessarily adapted) R-valued process X : [—7,00) x 2 — R given
by

0(0) + [ u(s) AW (s) + [y v(s) ds, t>0,
(), -7 <t <0,

(2.2) X(t) = {

where 7 belongs to C([—7,0],R) and is of bounded variation, u € L*,p > 4, and v € L;2. The
stochastic integral in (?7?) is understood in the Skorohod sense. Note that the processes v and v may
not be adapted to the Brownian filtration (F3)¢>0. For convenience, whenever t € [—7,0), we set
u(t) := 0, and v(¢t) := n'(t), where n’ is the (classical) derivative of 7. Associate with X its segment

process Xy € C([—1,0],R), t € [0,T], defined by
(2.3) Xi(s) == X(t+s), s€[-7,0], tel0,T].

We are now ready to state the tame Ité formula. It describes how the segment process X; € C([—7,0],R)
transforms under tame functionals ¥ : [0,7] x C([-7,0],R) — R.

Theorem 2.1. Assume that X is a sample-continuous process defined by (??), where n: [-7,0] - R
s of bounded variation, u € Liﬁ, and v € ]Lllfcl. Suppose ¢ € CH2([0,T] x R*.R), and let II be the

tame projection (2.1). Then for all t € [0,T] we have a.s.
o(t, T1(X1)) — ¢(0, TI(Xo))

t a(b
= ; E(S,H(XS)) ds
(2.4) =t og
k + 5
1 8% N
i 5 Z1/0 8331'8333' ( ’H(XS))U(S + Sl) vSixsj X(S) ds
where
Vi o X(s):=Df, X(s+55) + Diy o X(5+ 55)

and

ID:——Q—&X(S + Sj) = Eli%1+ IDS+51‘X(S + 85+ 6), IDs_—Q—SiX(S + Sj) = Eli%1+ IDS+51‘X(S + 55— 6)'
Proof. See Hu, Mohammed and Yan [?], Theorem 2.3. O

Remark 2.2. Note the misprint in formula (2.7) of [?], where the factor Dy, X (s+s;) must be replaced
by V1,5, X (5).

The following corollary is an important special case of Theorem 2.1. In the proof of the weak Euler
scheme (Theorem 3.1), it plays a crucial role in estimating the difference, across partition points,
between the segments of the solution = of our SDDE (1.2) and its Euler approximation y.



Corollary 1. Let 1) : R?> > R be of class C?, and suppose = solves the SDDE

o(t) = {n(o) + [0 f(elu— 7)) du+ ff g(e(u—70),2(w) AW (u), t >0

2.5
(2:5) n(t) —T7<t<0, T:=71VTe,

where the coefficients f,g : R> — R are of class CZ, and n € C([—7,0], R) is of bounded variation.
Suppose § > 0. Then a.s.
dy (w(t — 8), (1))
o

= 9z, @t = 0),2(8) Lo.5) () dn(t = 9)
+ g—j)l(x(t —8),2(t)1[5,00)(t) [f(2(t — 71 — ), 2(t —6)) dt
+g(z(t — 72— 6),2(t — 8)) AW (t — 6)]
(2.6) + g—j;(x(t —=6),z(t)) [f(a(t —71),2(t) dt + g(x(t — 72),2(t)) AW ()]
+ 85125332 (z(t —6),2(t))g(z(t — 72— &), x(t — ) 1}5,00) (t) De—s(t) dt
+ %% (2t = 6), (1)) g (x(t — 72 — 8), 2(t — 6))* 115,000 (¢) dlt
T %% (2t — 6), 2(t)) g (x(t — ), 2(1)) dt,

for allt > 0.
Proof. Suppose t > 6. Apply Theorem ?? with ¢ := ¥(x1,22), X = x, II(n) := (n(—0),n(0)), n €
C([-,0],R), where x solves the SDDE (??). This gives

dy(z(t — 0),z(t)) = g—(x(t —0),z(t)) dz(t — 8) + 8—¢(x(t —0),z(t)) dz(t)

1 0z
1 0%
583318332
1 0%
(z(t —6),2(t)) g(z(t — 72), 2(t)) 2 Dya(t — ) dt

5 83328331 N———
0

(z(t —6),2(t))g(x(t — 6 — 72),a(t — 6))D;"_sa(t — 6) dt

(z(t —6),2(t))g(x(t — 6 — 72),x(t — 6))2Dy—sx(t) dt

16%)
2 023
192

+ 5907 (z(t —6),2(t)) g(x(t — 72), z(t)) D x(t) dt,
3

since D; x(t) = 0.
Now,

+

Dja(t) = g(x(t — Tg),x(t))

and
D sa(t —0) = g(z(t — 6 — m2),2(t — 6)).

Hence

dy(z(t — 0),z(t)) = 8—@[11@(75 —8),2(t)) [f(z(t =71 —6),z(t —§)) dt
+g(z(t — 6 — 12),x(t — 8)) AW (t — 6)]
+ il (z(t —6),2(t)) [f(z(t — 1), z(t)) dt + g(az(t — 72), z(t)) AW (¢)]

8332
882(;/) (m t—9) x(t))g(x(t —6—Ta),z(t — 5))Dt—éx(t) dt
102
+ 5%(3:@ —6),z(t))g(x(t — 6 — 7o), x(t — 5))2 dt
1
+ %%(w 8), (1)) g (w(t — ), (1)’ dt
2



This proves statement (?7?) of the corollary when ¢ > 4.
If 0 <t <9, then x(t — §) = n(t — J) is of bounded variation; so (??) follows directly from the classical
It6 formula. This completes the proof of the corollary. O

Remark 2.3. Note that the second term in the right hand side of (??) contains the (F);>o-adapted
0

factor a—w(m(t — 9),x(t)) which anticipates the lagged Brownian motion W(t — §). Although the
T

process [0,00) 3 t > (z(t — 6),z(t)) € R? is (F)i>o-adapted, it is not a semimartingale with respect

to any natural filtration. Therefore, it is not possible to infer (??) from the classical It6 formula for

semi-martingales.

3. THE WEAK EULER SCHEME

In this section, we will establish weak convergence of order 1 of the Euler scheme for the non-linear
SDDE

(3.1) o(t) = 7(0) +ftf(m(u — Tl),a:(u)) du + fg(x(u - Tg),x(u)) dW (u), t > o,

n(t — o) c—T<t<o, T:=71VTo,

where the initial path n € HL°°([-7,0],R), 0 > 0, and the coefficients f, g : R? — R are of class
C3; viz. f and g have all partial derivatives up to order 3 globally bounded on R%. The space of all
such functions is often denoted by C$(R* R). Similarly CZ(R? R) denotes all functions R* — R
with first and second-order partial derivatives globally bounded. As before, W(t), t > 0, is one-
dimensional standard Brownian motion on a filtered probability space (2, F, (F¢)t>0, P). Set W (t) :=0
if —7<¢t<0.

Recall the partition 7 := {t_p < t_pry1 < - <to1 <tp=0<t; <tg- <tny_1 <ty =T} of
[—7,T], with mesh denoted by |x|, introduced in Section 1. The Euler approximations y := y(-;0,7) :
[c —7,T] x 2 — R of the solution z(-; o,n) of (?7?) satisfy the SDDEs

n(0) + ff(y(LuJ —71),y(lul)) du+ fg(y(LuJ =), y(lul)) AW (u), t>o,

n(t — o), oc—T<t<o, T:=TVT.

(32) ()=

The following is the main result of this article. It establishes weak convergence of order 1 of the Euler
scheme (?7) to the solution of the SDDE (7?).

Theorem 3.1. Let 7 be a partition of [—7,T] with mesh |r|, and ¢ : R — R be of class C3. In the
SDDE (??), assume that the coefficients f,g are C3. Let z(-;0,n) be the unique solution of (77) with
initial path n € HV>([-7,0], R). Let n™ € H“*°([—7,0], R) be the piecewise-linear approzimation of
1 along the partition 7. Denote by y(-;0,1n) the Euler approximation to x(-;0,m) associated with the
partition © and defined by (?7). Then there is a positive constant K and a positive integer q such that

(3-3) |E¢(x(t;0,m)) — E¢(y(t;0,n™)] < K(1+[|nll o) I7]

forallt € [o—7,T), 0 €[0,T], and alln € H“*>([—7,0], R). The constant K may depend on T',q and
the test function ¢, but is independent of w, n,t € [0,T] and o € [0,T).

For simplicity of presentation, we will only discuss the case of single delays 7,72 in the drift and
diffusion coefficients as in (??). It should be noted that the conclusion of Theorem ?? still holds if we
allow for multi-dimensional noise and several delays in the drift and diffusion coefficients of the SDDE.
The extension of Theorem ?7 to this case is given in in Section 7?7 of this article.

The proof of Theorem ?7? requires the following sequence of lemmas. In these lemmas and for the rest
of the section, we will refer to the solutions of (3.1) and (3.2) by z(-;0,7) and y(-; o, 7), respectively.

The first lemma establishes the tame character of the Euler approximation y(¢;0,7n) and its Fréchet
derivative Dy(t; o,n) in the initial path 5. This fact dictates that the telescoping argument in the proof
of Theorem 3.1 is with respect to the Euler approximation y and not the solution z of the SDDE (?77).
This issue is especially important in view of the well-known fact that the solution x(¢;0,n) of (?7?) is
almost surely extremely erratic in the initial path n ([Mo.1], Chapter V, pp. 144-148).



Lemma 3.2. Fiz a partition point t; € 7 for some i € {0,1,---,N}. Then for a.a. w € Q, the
function

t;, T] x C([-7,0,R) — R,
(t,m) = y(t,witi,n)

is a tame function. That is, there exists a deterministic function F : RT x R R"x R' — R which is
piece-wise continuous in the first variable (the time variable) and of class CZ in all other variables (space
variables), and there exist fived numbersty,to, ...ty <t, $1,82,...,8n < t, 1,2, ..., € [—7,0] such
that a.s.

y(t7 t“’l?) = F(ta W(t)v W(tl)a W(t2)7 ey W(tk)a 81,52, ..+, Sh777(/'61)7 77(,“2)7 ceey n(ﬂl))
for alln € C([-7,0], R) and all t € [t;,T). In particular, for a.a. w € Q and each t € [t;, T], the map
C([_T,O uR) >N y(tﬂw7tl7n) €ER

is C1 (in the Fréchet sense), and

!
Dy(t,w;t;,n) (&) = Z &nF(t, W(t,w), W(t1,w),...,W(tg,w), $1,---,Sn,n(11),

m=1

(3.4)
e ()5 ()) ()

for all n € C([-7,0],R) and for every bounded measurable function & : [-7,0] — R. In the above
formula, O, F denotes the partial deriwative of F with respect to the variable n(tim,).

Proof. The second and last assertions of the lemma are direct consequences of the first. So we will only
prove the first assertion. The latter assertion is proved using forward steps along the partition points
{0 = tg,t1,t2,t3, -+ ,tny = T}, and finite induction. More specifically, and with no loss of generality,
suppose ¢ = 0 and let ¢ € [0,T]. Consider the following cases:

0<t<tg:

y(t;0,1) = 1n(0) + f(n(=71),n(0))t + g(1n(=72),n(0)) W (t)
=In (t, W(t)v 77(0)7 77(_7—1)7 77(_7—2)) .
This is clearly a tame function of 7, satisfying the regularity properties stated in the lemma.

t1 <t <ts:

y(t:0,m) = y(t1) + f(y(tr — 1), y(t)) (= t1) + g (y(ts — 72), y(t2)) [W(t) — W(t1)].
This is a tame function of 1 because y(t1;0,7), y(t1 —71;0,7) and y(t; — 72;0,n) are all tame functions
of 1, and the composition of tame functions with real-valued functions is again tame. Indeed, suppose
without loss of generality that 7 < 75 and let ¢t; — 71 < 0. Then

y(t;0,m) = n(0) + f(n(—=71),1(0))t1 + g(n(=72),7(0)) W (t1)
+f(n(tr = 11),1(0) + f (n(=71),7(0))t1 + g(n(=72), n(0)) W (t1)) (t — t1)
+g(n(t1 — 72),7(0) + f (n(=71),n(0)) t1 + g(n(—=72), n(0)) W (t1)) [W (t) — W (t1)]

= B (6, W(t), W(t1),t1,n(0),n(tr — 1), n(ts — 72),9(=71), n(~T72)).

It is easy to see that F5 is tame and fulfills the regularity requirements of the lemma. The other cases
71 <11 <79, and 71 < 71 <1 can be treated similarly.

to <t <t3:

y(t:0,m) = y(t2) + f (y(tz — 1), y(t2)) (t — t2) + g (y(tz — 1), y(t2)) [W(t) — W (t2)]
= F3 (t, W(t), W(tl), W(tz), W(tQ — 7'1), W(tz - 7'2), tl, tQ, 'f](O)7 77(—7'1),

n(=T2),n(t1 — 1), n(t1 — 72)),
with F3 tame in 7, as required.

e <t <tpy1:



By induction, there are fixed numbers si, sa, ..., s < tg, and g1, po, ..., € [—7,0] such that
y(ta 0777) = Fk+1 (tv W(t)a W(Si)a tja 1 S.] < k71 << k: W(t)vn(,um)vl <m< l) :

This is a tame function of 7, continuous in the time variable ¢ and of class C7 in all space variables.

To complete the proof of the lemma, take F'(¢t,-,-,-, ) := Zf:l Lty toe) () Fipa (o050, -), for ¢ € [0,77].
It is easy to check that F' satisfies all the requirements of the lemma. O
Warning:

The lemma is false if the Euler approximation y is replaced by the exact solution x of the SDDE
(??). In fact, for a.a. w € Q, every measurable version z(¢,w;0,7) of the solution to (3.1) is locally
unbounded in 7 ([Mo.1], pp. 144-147). As will be apparent later in the proof of Theorem 3.1, this fact
will force the telescoping argument to be centered about the Euler approximation y rather than the
solution z. On the other hand, the following statement is true: Let ¢ : R — R be C}°, h, g : R’ - R
be Cp°. Then the map

L*(Q,C(|=7,0L, R); Fy) 34 ¥ Eg(a(t;o, ) € R
is globally Lipschitz and (Fréchet) C*!, with Fréchet derivative

DF(¢)(n) = E{D¢(x(t; 0,)) Da(t; 0,4)(n) }

for all ¢,n € L*(Q,C([-,0],R); F5). To see this, note that the Lipschitz and C'! properties of the
map L*(Q, C([-7,0],R); F») 2 ¢ — z(t;0,9) € L*(, R) follow by arguments similar to the proofs of
Theorems 3.1, 3.2 in ([Mo.1], pp. 41-45). Compose the above map with the Cp° function ¢ : R — R
to establish the above assertion. Details are omitted.

The following lemma is key to the proof of Theorem ?7. It involves the application of the tame Ito
formula in Corollary 1, Section 2. See Step 2, Section 1.

Lemma 3.3. Assume that f,g are C?. Fizn € C([-7,0], R), of bounded variation. For each 1 <i <
N, define the process A*: [-7,0] x Q — R by

A= xti(' ;ti—lamti—l(' ;0777)) - yti(' ;ti—lamti_1(' ;0777)) )
viZ.
AZ(S) = x(ti +s3tio1, 2, ( ’ ;0777)) - y(ti + 5 ti—lvxti—1(' ; 0, 77))7 s € [_T7 0]

For brevity of notation, set x(u) := x(u;0,m) and y(u) := y(u;0,n) for u € [-7,T). Then

] (ti+s)Vti—1
A'(s) 2/ [f(x(u — Tl),a:(u)) — f(x(LuJ — Tl),x(LuJ)] du

ti—1

(ti+s)Vti—1
.5) +f [9(o(u = 72). () = glo(u) - m2).x([ul))] AW (w)

ti—1

10 ‘
= ZA?(S), s € [_Tv O]a
j=1



where

(ti+s)Vti—1 u
/t / %(x(”—Tl)ax(v))f(ff(v—271)796(1}—71))1[71,00)(0) dv du
(ti+s)Vti—1 u
[ 2 o =m0 a)gfee - 1m0 — )
X 17, 00y (v) AW (v — 1) du

(ti+s)Vti_1  pu
+/t /L %(x(v —7), x(v))l[o,n)(v) dn(v — 1) du

u

=

B (ti+s)Vti—1  pu 5f
- /t 1 /LUJ %(x(v—ﬁ),x(v))f(x(v—Tl),x(u)) dv du

(ti+s)Vti—1 u o9
+/t /M B (20 =), 2(0)g(2(v = m2),2(v)) AW (0) du

(ti+s)Vti—1 u 2
= ST (oo ), a0))g (o0~ 7 — )0~ 7)) %

X 117, 00) (V) Dy—ry(v) dv du

‘ (ti+8)Vti_1 o2
Ay(s): = % /t /L J 8—;10]; (m(v — Tl),x(v))g(x(v -7 —T),x(v— Tl))zx

X 17, 00y (v) dv du
58‘_2“1 Maa:%

) (tit+s)Vti—1 u
Ag(s) = = /t / @(x(v —12),2(v)) f(z(v =11 — 72),2(v — 72))
X 17,00y (v) d dv dW (u)

(t1+8)\/t1‘71 u 89
+ / / T ( (v —T2), x(v))l[O,TQ)(v) dn(v — 2) dW (u) ,
ti 1 lu] 91

(z(v —71),2(v))g(z(v — 72), x(v))2 dv du

) i;ﬁﬂrs)\/t,,l u
Ai(s) : = /t /L J 8‘9;1 (2(v = 72), 2(0)) g (2(v — 27), (v — 72))
X 1i7y,00)(v) AW (v — 72) dW (u) ,

) (tit+s)Vti—1 u an
Ag(s) 1= /t 1 " 92075 (x(v — Tg),x(v))g(x(v —2m),z(v — 7'2)) X

X 1{ry,00) (V) Dy—ry 2(v) dv dW (u)
) 1 (t +S)Vt 1 U 82
Ay(s):= = / / —g(x(v —T2), a:(v))g(x(v —279),x(v — TQ))QX
2 ti—1 lu] VT a$1
X 17y 00)(v) dv dW (u) ,

(ti+s)Vtic1  pu 92 )
/ti_l /m g_xg (#(v = 72),2(v)) g (2(v = 72), 2(v))” dv AW (u)

N =

Afo(s) - =
forall se[-7,0l and 1 <i < N.
Proof. Fix1 <i¢< N.

Recall that z(u) := x(u;0,n) and y(u) = y(u;0,n), —7 < v < T. Suppose t;—1 < u < t;. Then
\_UJ =t;_1 and \_’U,J — 7 =t;_1—7 <t;_1. Hence
y(lu)stion, e, (50,m) = y(timas tiog, o, (+30,m)) = 4, (050,7)
= (ti—1;0,m) = z([u])

and
y(LUJ —Ti3tic1, e, (-5 0, 77)) (t —Tiitict, e (- ;0,77))

= fti,1(_7_1;0777) = $(|_’U/J - Tl)'



Furthermore, if t;_; < u < t;, then by the Markov property for the solution segment x;, it follows that
w(ustio1, we, (+30,m)) = x(u; 0,1m) = x(u).

In addition, suppose that w — 71 > ¢;_;. Then we may replace © by u — 7 in the above identity to
obtain

w(u—Ti5tio1,xe,_, (+30,m) = 2(u —71150,7) = x(u—71).

On the other hand if u — 7y < ¢;_1, then

w(u—Tisticy, @, (+50,m) =3, (u— 11— ti_1;0,7)
= x(U—ﬁ;Oﬂ?)
=xz(u—m).
Now suppose s € [—7,0] and consider

A(s)=a(ti + s;timt, 2, (30,m)) — y(ti + sitimr, 2, (+50,n))

in the following two cases:
0<t1 <ty +s:

tits ti+s
Ai(s) = /t f(z(u—m71),2(u) du+ /t g(z(u — 72),z(u)) AW (u)
ti+s ti+s
- [ sl =) a(e)) do= [ gl = ) () dW )
ti+s
= /t [f(z(u—m1),2(w) — f(z(lu) —71),z([u]))] du

ti+s
+/ [g(x(u - Tg),x(u)) —g(m(LuJ — T2),$(|_UJ))} dW (u).

ti—1

ti —7 <t;+s<ti_1 <ti:

Al(s) =Tt;_y (ti +s—ti-1;0, 77) - Iti—1(ti +s—ti-1;0, 77) =0.

Putting the above two cases together, gives

] (ti+s)Vti—1
A(s) = / [f(x(u — Tl),a:(u)) - f(x(LuJ — Tl),a:(LuJ)] du

ti—1

(tits)Vti_1
—|—/ [g(x(u — TQ),Z‘(U)) — g(m(LuJ — Tg),m(LuJ))} dW (u),

ti—1

a.s. for all s € [—7,0].



Since f is in CZ, we may now apply the tame It6 formula (??) (with ¢ = f,6 = 1) to obtain:
fla(u—m),2(w) = fla(lu) — ), 2(lu]))
= / g—f (x(v — Tl),x(v))l[ﬁ’oo)(v) [f(x(v —27),z(v — Tl)) do
Lu) 01
—|—g(x(v -1 —T2),x(v — Tl)) dW (v — 7'1)}

v
" ~/|_uJ 8—3{'1 (x(U B Tl)’ x(v)) 1[0,7’1)(“) d'l](v — 7-1)

v f :J 2wt = 1).20) [f(eto ~ 1) 20) d
(3.7) +g(m(v — 7-2),x(y)) dW(v)]

L] 011024 x(U_Tl),ﬁ(’l}))g(x(v_q—l _7_2)7$(v_7—1))><

X 1[71,00)(’0)2)11771‘%(“) dv
1 [ 82

+ 5 ‘/Luj 8—!%(1‘(’0 - 7'1),%(1]))9(%(1} —T1 — 7'2),%(1] — Tl))zl[ﬁ’oo)(v) dv

1 [ 8%f ,
T3 /M 922 (z(v —71),2(v))g(z(v — 72),2(v))" do.

Similarly, from (??) (with ¢ = g, = 72), it follows that
9(z(u—72), 2(w) = g(z(lu] - 72), 2(|u]))

= /L“J g—xgl(x(v —72),2(v)) L ry,00) (V) [f(z(v =71 — 72), 2(v — 7)) dv

+9(2(v = 27), 2(v = 72)) AW (v = 72)] + /L ] aa—a:gl

u

(2(v = 72), 2(0)) Ljo,r,) (v) (v — 72)

“ 0
[ S oo = ).0(0) [ (o = 7)) do+ g (oo = 72, 0(0) AW (0]
(3.8) Lu) 02
"% z(v—12),2(v))g(z(v — 272),z(v — 72))1 (V)Dy—r z(v) dv
Lu] 8.1}18.1?2 2)s 2) 2 [T2,00) v—T1
1 [ o2 2
— / > (x(v T2), m(v))g(m(v —279), z(v — 7'2)) Liry,00) () dv
2 Lu] 8(E1
1o
+ 3 / 8—2(96(1) —72),z(v))g(z(v — Tg),x(v))2 dv.
lu] OT2
Now substitute from (??) and (?7?) into (?7?) to obtain the last assertion (??) of the lemma. O

Lemma 3.4. Suppose f,g € CZ. Then for any p > 1 there is a positive constant K such that

(3.9) sp sup EIDuy(t;Um)IQ”<K<1+E||77||20p+ sup E||Dsn||25)
0<o<T o—7<u,t<T o—17<s<
(3.10)
1/2
s s sup EIDuDy(t;U,n)(§)|2p<K<1+E||77||4cp+ sup Elli’?snllié’>
I€llco<1 0<o<T o—7<u,t<T o—17<s<
£€L>°([-7,0],R)
and
(3.11) sup sup E|Dum<t;a,n>|2p<K(1+E||n||ép+ sup E||Dsn||25)
0<o<T o—7<u,t<T o—17<s<

for alln € L*(Q,C([-7,0], R); F») which are Malliavin smooth and such that —sup E||Dsn||?? <

oc—17<s<o

0o. The constant K is independent of t € [c —1,T|,0 € [0,T] and n, but may depend on p, f,g and T.



Proof. We first establish the estimate (3.9). Let n € L??(Q, C([—,0],
and such that sup E|Ds||?2 < oo. For brevity, denote by y(t ) =

o—17<s<o
solution of (3.2) with initial process n at o.
Take Malliavin derivatives of the equation

0)+ [ f(w(lv) = m).y(lv))) dv

) ) be Malliavin smooth
y(t;o,m), t € [0 — 7,T], the

(3.12) y(t) = + [g((lv] =) y(lv]) dW (), t>o
n(t —o), oc—T<t<o,
to get
Duy(t) = g(y(lu) —7),y(lu))) + g—i(y(m — ) y(10)) Duy () = 71) dv
+ 3852( (lv] = 7),y(lv]) Duy(lv]) dv
+ (rf—jl(y(LUJ _TQ),Z/(L’UJ))DUZ/(LUJ _7—2) dW (v)
(3.13) + ;—Ji(y(LUJ —),y([v]))Duy(lv]) AW (v)

for ¢ > u; and Dyy(t) = Dyn(t — o) for o — 7 < t < u ([B.M]).
The idea is to estimate the function

(3.14) 0(t'):= sup E|[Dy(t)|”, u<t <T,

u<t<t!

for fixed u € [0 — 7, T, using (??) and Gronwall’s lemma.
Since f, g have linear growth, it is easy to see from (??) and Gronwall’s lemma, that

(3.15) sup Ely()|* < K(E|ln|Z +1).

o—7<t<T

Since g has linear growth, then

(3.16) csw Blg(y(lu] =) y(lu)) [ < K (Bl +1).

Fix u > o — 7. Take E| - |? on both sides of (??) (using the fact that f,g have bounded derivatives)
to obtain

t
E|Duy<t>|2PSK(1+E||n||é” s Enmnn?p)w [ EPw(e) - n)r ao

o— T S g

+K/ E|Duy(tvj)|2p dv+K/ E|Duy(LvJ —7'2)|2p dv

+K/ EDyy([v])|* dv.

Hence
swp B0 < K (14 Bl +_sw_ B[Pl )
u<t<t’ oc—7<s<o
t t
—|—K1/ sup E|Dyy(v)|?? dv’ —|—K2/ sup E[Dyuy(v)|*? dv’
u ulv<v/ u ulv<lv
t’ t
+ Kg/ sup E|D,y(v)|*? dv’ + K4/ sup E|Dyy(v)|*? dv' .
u ulvv’ u ulv<v’
Thus

t/
o) < K(l + E||77||20p bup E||D577||2p) + K/ O(v') dv', u<t <T.
By Gronwall’s lemma,

o) < K1+ EZ 4 sw_ BIDal2) explK(W ~w) wsd <T.

o— T S o



This implies the first assertion (?7?) of the lemma.

To prove the second assertion (3 10) of the lemma, first linearize (??) (pathwise) with respect to any

deterministic path n € C’( ) This gives a.s.:
Dy(t;o,m)(§) = £(0) + aa—f( (lv] = 70).y(lv))) Dy(lv] = Ti50,m) () dv
2L (10 = )12 Dol )@ o
340 [ 28 (101 = 72,010 Py(le) = 7:002) ) W)
/ 2 (y(lo) = 7). u(12) Dyl i) (@) AW, 1> 0,
Dy(t;o,n)(§) =&(t — o), o—1<t<o,
for all bounded measurable functions ¢ : [-7,0] — R. Secondly, replace the deterministic path 7

in the above integral equation by a Malliavin smooth random initial process (also denoted by) n €
L (Q, C([—T, 0], R);fg) satisfying the hypotheses of the lemma. Thirdly, take Malliavin derivatives
D, of the resulting equation to get the following integral equation for D, Dy(t; o, n)(£):

D, Dy(t; 0,m)(€) = %(y(LuJ =) y(lul))Dy(lu] = m50,m)(E)
+ 22 (y(1u) = 7)oy (L) Dy( ki) (€
# [ 2Ly (101 = 7). wl10))PuDY(10] iz
2L (101 - )1 PuDy(10): 0,10 (E)
+ [ L) =) s () Pua(e) — i) Dy(le] = i) €) o
o2 ) =) (1) Paa (L) Dy(() — i) €)
e [ P01 =) D) Pl ki) ©)
[ 52 ) =) () Puse) ~ i) Pyl €)@
+ :gixg@m = 72),y(10]))Puy(lv) = 7230,m) Dy([v] = 7230,m) (&) do
* ut aaéq (y(Lo] =72),y([0))) Duy(lv)i0.n) Dy(lv] = 250,m) (€) AW (v)
. ;(‘%(y(m — ), (1)) Dy (L0): 7.m) Dy([v): 0,m) () AW (v)
o[ 2 10120100 uDy (0] 7o) ) W
- . 8%( (lo) — 7). 5([0)))Puy(lv] — m2:0.1) Dy(|v):0.7) () AW (v)

/8 (L) = 72), y([2))PuDy(lo i 0,m) (€) AW ), > u> o,
D.Dy(t;o,n)(&) =0, c—T<t<o,

for all bounded measurable functions £ : [-7,0] — R.



Since f and g have bounded first derivatives, it follows from (??) (with random 7) and Gronwall’s
lemma that there is a positive constant K such that
(3.19) sip  swp BDy(kom @) < K
l€llco<1 o—7<t<T
€€L=S ([~7,01,R)

for every p > 1. By the first assertion of this lemma, we have
6200 s sw  EDw(on <K(1+EE s Blpal)

0<o<T o—71<u,t<T oc—7<s<o
for any p > 1, where K > 0 is independent of 7.
Let t > u > o and assume that n € L*(Q,C([-7,0],R); F,), is Malliavin smooth and satisfies the
hypotheses of the lemma. Take E|-|?” on both sides of (??). Using (??), (??) and the fact that f and
g have bounded derivatives, this yields:

E|D,Dy(t;o,n)(&)]*

1/2
SK1||§||§§+K2<1+EIIWII? sup EIIDSUII4P) - [1€11%E

o— T S o

(3.21) i KB/U E[DuDy([v] = mi30,m)(9)I* dv

1/2
<K4(1+E||n||é” s E||Dsn||4p) e

t
b [ sup DDyt 0O do
u ult'<v
fort > u > o and £ € L>°([—7,0],R). Define
®(t') := sup E[DuDy(t;o,n) (&), ' >u.
u<t<t'
Then (?7) says that

o— T S o

1/2 +/
o(t) < K4(1 + E|n||& + sup EIIDS77||4P> -||§||%.§+K3/ d(v) dv, t > u.
By Gronwall’s lemma, it follows that

1/2
<I><t'><K4(1+E||n||‘é” sup EIIDsnll4p> €12 exp{Ea(t — w)}, ¢ >,

o— T S o

Thus

1/2
swp_ DDyt o) < K14 Bl + swp_ EIDal2) - Jel2
for all Malliavin smooth 1 € L*? (Q, C ([—T, 0], R) ; .7-'0) satisfying the hypotheses of the lemma, and all
& € L*([-7,0],R). This immediately implies the second assertion (3.10) of the lemma.

The last assertion (3.11) of the lemma follows by very similar argument to the proof of (3.9). Details
are left to the reader. This completes the proof of the lemma. O

Lemma 3.5. Suppose f,g € C3. Then for anyp > 1,

sup sup  E|DyDuy(t;o,n)|*
0<o<T o—7<u,w,t<T
(3.22) \
<k (1 BlIE + sw EIDalZ+ s EIDL D)
o—17<s<o O—TS81,5250
and
sup sup sup  E|DyDuDy(t;o,n)(€)[*
I€llco<1 0<o<T o—7<u,w,t<T
(323) §EL°([—7,0],R)
<K<1+EII17II§;” swp_ B[Pl +  sup EIIDlesﬁIIEé’)a
o—17<s<o O—TS81,5250

for all g € Lgp(Q,C'([—T, O],R);]-}) which are Malliavin smooth with the right hand side of (3.23)
finite. The positive constant K is independent of t € [0 — 7,T),0 € [0,T], and 7.



Proof. Assume that the random process 7 satisfies the hypotheses of the lemma. By Proposition 3.3 in
[?], it follows that the left hand side of (??) is finite. To complete the proof of (??), we take Malliavin
derivatives D,, on both sides of the integral equation (?7?). This yields the following integral equation
for DyDyy:

tyo,1n) = ;—i(y(LUJ —72),y([u])) Duwy(lu] — m2i0,m)

+ o= (y(lu] = 72),y(lu])) Duy(lul; o,m)

DyDy

+/ O (y(1o) = 1), w(10))) PuDuy(lv) — m13.0,m) do
+/ L (y(1o) = 1), w(10))) PuDuy(l0); 0,m) dv

+f a%(y(m —1)5([0) Dut (0] — 7130, m) Duy([0) — 7150.m) v

ut igxz (y(Lv) = 7). y([0))) Puwy(lv);0,m) Duy([v] = m;0,m) do
+ ut %(y(m —71),y(lv]))Puwy(lv]; 0,1) Duy(lv]; 0,1) dv
e Y () (e e (O
+/ut %(Q(LUJ —72),y([v))) Puy(Lv] = 723 0,7) Duy(|v] — 7250,7) dv
(3.24) + ut 351253;2 (y(lv] —72),y([v]) Puy(lv];0,1) Duy(lv] — 1250,1) AW (v)
o [ 28010 - ) ol D)D) Punlli.0) W)
o[ 28y (0] ) (01 PPt~ 7o) AW
ut 5x81259x2 (w(lv] = 72),y([v])) Pwy(lv] = 7250,7) Duy([v]; 0,n) AW (v)
o 28y (0] ) (1) PPk ) W), 00

DwDuy(taUaW)207 oc—T<t<o.

Observe that (??) is a linear SDDE in D,D,y. So taking E| - | on both sides of (??), using the
estimates (77), the fact that f, g are C7 and Gronwall’s lemma, a lengthy but straightforward argument
yields (??). Details are left to the reader. Note that the estimate (??) requires that f, g be CZ (rather
than the stronger requirement that f,g € C§ which is needed for (?77)).

The proof of (??) is similar to (but lengthier than) that of (??): Start by taking Malliavin derivatives
D,, on both sides of (??). This yields a linear integral equation for D,, D, Dy. Using the fact that
f.g € C3, the estimates (?7), (??7) and Gronwall’s lemma in the latter integral equation, one obtains
(7). O

Proof of Theorem ??7. Let t € [o,T] and m:= {t_p < t_p1 < - <t1 <to=0<t <ta--- <
tn—1 < ty =T} be a partition of [—7,T]. Without loss of generality assume that c =0 andt =t, € 7
for some 0 < n < N. Suppose n € H->([-7,0],R).



Using the Markov property for the segments x; and y: ([?], [?]), we may rewrite

E¢(x(tn;0m)) — E(y(tn:0,n))
= E¢(y(tn;tn, x1,(-;0,m))) — Ed(y(tn; 0,7))

= Z {E(b(y(tn;tivxti(' ;0777))) - E¢(y(t7l; Li1, Tty ( ’ ;0777)))}

:Z{E(b(y(tn;tivxti(';tiflﬂxtif1('§07n))))
i=1
_E(b( (tnytzayt( 1 1, Tt;_ 1( Oan))))}
_ZE/ D(¢poy)(tnsti Ave, (-5 tim1, xe,_, (+50,7))

+ (1 - A)yti ( lim1, %ty ( 50, 77))) dA
: I:xti ( : ;ti717 xtifl ( y 07 n)) - yti ( : ;ti717 xti71 ( °y 07 n))} .

Our main objective is to show that each of the terms in the above sum is O((t; — t;—1)?). The rest of
the computations in this proof are directed towards this purpose.

In view of Lemma 3.2 and the chain rule for Fréchet derivatives, observe that each expression

{ ((boy)(tnvth/\xt( Lie1, Tt 1( ;Ovn))+(1_/\)yti(';ti—lvxti—1(';oan)))}

corresponds to a purely atomic random measure on [—7,0]. We will denote each such measure simply
by

D(¢oy)i(A,ds)
for each A € [0, 1].
To further simplify the notation, we denote
(3.25) 2y, =2 (ticn, e, (430,m), v =y (st e, (+30,m))
for the rest of this proof.

Using (??) of Lemma (?7?), where we have applied the tame Ité-formula, we obtain

n

(3.26) E¢(x(tn;0,m)) — E¢(y(tn; 0,m) = ZE/ {D (¢oy)i(A,ds)Al(s) dA
=1 j=1
Thus, by Fubini’s theorem, we obtain
(3.27) Eé(2(tn;0,m)) — Ep(y(ta;0,7m)) ZZ / o y)i(A,ds)A%(s) dA
j=11i=1

‘We now show how to estimate each of the 10 terms

n 1 0
; /0 /_T E{D(Qboy)i(/\,ds)Aé-(s)} d\, j7=1,2,...,10,

on the right hand side of (??), for any fixed A € [0, 1].



Let 7 = 10 and fix any A € [0,1]. Then by definition of the Skorohod integral (as adjoint of the
Malliavin derivative), and using Lemma 3.2, we get

Iy = /OT E{D(¢oy)i(X,ds)Ajg(s)}
% /OT E {D(¢ oy)i(A,ds) /ti(ti:rswti_1 (/L:J % (z(v — 72),2(v))
xg(z(v — 1), 2(v))” dv) dW(u)}

l (ti+pm)Vti—1 u 92
Z / E{DU[D(qSoy)i()\,l{ﬂm})} / 8—2($(U—7‘2),$(’l}))

Lu] 8332

[\D|F—‘

xg(z(v —72), x(v))2 dv} du.

In the above formula, 1y, y denotes the indicator function of {f,,} for 1 <m <[, where the p,,’s are
defined in Lemma 3.2.
Since f and g are CZ, then sup E|z(v)|* < oo for all p > 0. Thus
0<v<T
2
< 00.

2

s B[S (ol = ). 0)g (a0 = ). (o)

Recall the notation (3.25). Then by the chain rule for Fréchet derivatives and the product rule for
Malliavin derivatives, we obtain

Dy [D(¢0y)i(M, )]

= Du {D(y (tni ti, Azt + (1= N)ye, ) ) Dy(tns ti, Awe, + ym)}
:Du {D¢( (tn;ti,)\xti yt ))}Dy(tn,tl,)\xt + ]. — tz)
+D¢( (t’rutu)\xt +(1_ )) : u{Dy(t’l’Htﬁ)\xt + 1_ ,)}

By the chain rule for Malliavin derivatives [?],

Dy [D(¢oy)i(A,-)]
= D?¢(y(tnsti, Aze, + (1 = Nyr,)) - Duy(tnits, Aze, + (1= Nye,))
- Dy(tn;ti, Az, + (1= Ny, ) ()
+ Do (y(tn; tis Aze, + (1= Nye,) - Du{ Dy(tn; ti, Aze, + (1 — Nye,) }-

(Note that Dy (tn;ti, Axy, + (1 — A)yy, ) stands for the Fréchet derivative Dy(---) € C([—,0], R)*)

Thus, using the above relation, Lemma 3.2 and its notation, we obtain

0
Ifo = ED(¢°y)i()\ad5)Alio(5)

—T

0
= [ ED¢(y(tn;ti, Az, + (1= Ny,))

-7

Dy(tTu tiv )\xti + (1 - A)ytz) (dS)A?LO(S)

l
= ED¢(y(tn; tiy ATt + (1 - A)ytl) Z 8mF(t7 W(t)v W(tQ)v )

m=1

W(tk)vsla ceeyShy aAm(tl + :um) =+ (1 - A)y(tl + :um)v BRI )Ain(:um)

l
=Y EDG(y(tn; iy M, + (1= Nyt )0 F (W (L), -, Aw(ts + )

+ (1= Ny(ti + pim), - - - )Alio(,um)'

Recall that F' and g, m = 1,2,--- 1, in the above relation are defined as in Lemma 3.2.



By the definition of the Skorohod integral as adjoint of the Malliavin derivative, we may write each
summand in the above relation as

E{D¢(y(tn; ti, Ave, + (1 = Nye, )0 F (£, W (t), ..., Ax(ti + fim)
+ (1= Nyt + pm); - - )Mo () }

_ %E{D¢(y(tn;ti, A, + (1= Ny ) O F (W (@), Az (ti + i)

2
(3.28) + (L= Nyt + pm); - )
(titum)Vti—1 pu 629 )
X /t /L J a—xg(x(v — T2), x(v))g(w(v - Tg),x(v)) dv dW(u)}
= RLm + R27m
where
Rl,m
1 (ti+pm)VEti—1
(3.20) = 3 / E{Du qu(y(tn; ti, Axe, + (1 — /\)yti)amF(t, W), ..., x(t; + pm)
. ti—1
v 9% 2
+ (1= Nyt + pm); ... ) X " W(w(v —72),2(v))g(xz(v — 72),2(v))” dvy du
u 2
and
RQ,m
1 (titpm)Vti_1
(3.30) = 3 / E{D¢(y(tn;ti, Az, + (1 — )\)yti)DuamF(t, W(t), ..., x(t; + tm)
: ti—1
u 829 9
+ (L= Ny(ti + pm); .- ) ¥ /L J 922 (z(v —72),2(v))g(z(v — 72),z(v))” dv s du.
U 2

Using the chain rule for Malliavin derivatives, and Lemma 3.4, we obtain
E‘Dqub(y(tn;m, Az, + (1 — /\)yti)
= E|D?¢(y(tn; tis Ao, + (1= Ny, ) ) Duy(tni ti, Azg, + (1 — Ny, )

< Ky E|Dyy(tn;ts, Ay, + (1 — Nyy,) 2

2p

2p

<K2(1+E||xti|%”+E||yti|2c”++ sup  ElDarn | ++  sup EnDsyMig)

o—17<s<o o—17<s<o

Since x and y both satisfy SDDEs with coefficients having linear growth, then

Bl (-stiov, @, (50,mM)E = Ellze, (-, 0,8 < Ks(1 4 In][eF)
and

2 2 2
Bllye; (- stimasze, (0, < Ka(1+ Bllag,_, (0,0 &) < Ks(L+ [Inlle)-
Similar estimates hold for Dz, and D,y:,. Therefore,
2

(3.31) E[DuDe(y(tns tis Ave, + (1= Nyi,)) | < Ko(1+ 0l &)
for all 0 < i < N. The constants K;, j =1,...,6, are independent of the partition 7.

Now, using the tame representation of Dy in Lemma 3.2, we have

l
E RLm =
m=1 ti—1

(3.32) (1= Nyt + pan); - )€ (pn) dus
[ EX (u)Dy(ty;ti, Axy, + (1 — Ny, ) (€*) du

ti—1

ti

l
EX(u)- Y OmF (L, W(t), -+ At + pn)+

where

u 2
(3.33) X(u):= %DuDaﬁ(y(tn;ti,Axti +(1— A)yti))/ 0%

" 8—333(96(1) — T2), x(v))g(x(v - Tg),x(v))2 dw,



for all u € [0,T], and £* € L*°([—7,0],R) is given by

fu( ) = 1 [ti—1,(tit+s)VEi— 1](“) s € [_T’ O]’ RS [OvT]'
Using (3.19), we get
(3.34) BIDy(tns ti, Awe, + (1= Nye) () < K

where K is a positive constant independent of 7, v and the partition .
2

Using the definition of X (u) in (3.33), relation (3.31), the boundedness of %, and the linear growth

property of g, we obtain
BIX(u)] < K(1+ |nll&)"?

el [

<K(1+ ||n||2c>{E\ /L (Ul =)+ () do

g(z(v — Tg),x(v))Q dv

4}1/2

e L““{EUL:J“ Tl — )+ J2(@)]Y) dv)2}1/2

Tg),x(v))

4}1/2

3952

(3.35)

u 1/2
< K(1L+ [nll3)(u LuJ)3/2{ /L (U Blsto = )l + Ela(0)) dv}

< KL+ [l (L + nll) 2 (u — Lu))?
< K+ [Inllg)(u — [u))?

for all u € [0,T]. In the above inequalities, and throughout this proof, K stands for a generic constant
which may change from line to line, and is independent of n € C([—7, 0], R) and the partition 7.
Combining (3.32), (3.34) and (3.35), gives

S nal< [

m=1 1

t;
< K(1+[n3) / (-t 1) du

ti—1

1/2 1/2
[EIX (W] {E|Dy<tn;ti, Aer, (1 A)yti)@"n?} du

(3.36)

S KA+ [Inld)(t: —tiza)? .

I
Next, we estimate Z Ry, using (?7) and Lemma 3.2. Rewrite the latter sum in the following form:

m=1

l t; l
> Ry = / EY Dy F (W), Ax(ti + pim) + (1= Ny(ti + pim); .. ) %
m=1

i—1 m=1

{1[ti1;(ti+ﬂfm,)\/ti1](u) ) D(b(y(tn;tiv )\xti =+ (1 - A)ytm))x

(3.37) S
_ng—TQ (v x(v — Ty va’U u
/Lqu 8x§( ( ), z(v)) g (2 ),z(v))” d }d
= t.i EDuDy(tn,tl,)\xti—k( )ym)(fu) ( )
where

(3.38) Y (u) := Do (y(tn;ts, Az, + (1 — Nye,)) /Luj g—xg (z(v — 72),2(v)) g(x(v — 72), x(v))2 dv

and, as before,

(339) gu(s) = ]‘[ti—h(ti"rs)\/ti—l](u)’ s € [—7', 0]7
for all v € [0,T].
Since D¢ and Dg are globally bounded, a similar computation to (??) gives

(3.40) ElY () < K@+ [In*)(w— [u))?, wel0,T].



From (?7?), (??), (??) and Lemma ??, we get

l t;
‘ > Rm‘ < / {E[DuDy(tns tss Aee, + (1= Nye,) (€)1 H? - {EY (u) P} du
m=1 i—1

(3.41) < K1+ )20+ Bl [ = () du

ti—1

t;
< K(1+ |nll) / (u—t;y) du

ti—1

< K(L+ [Inlle) i — tim1)*.

In the above inequalities, K is a generic positive constant which may change from line to line and is
independent of 7 and the partition 7. Using (??), (??) and (?7?), it follows that

E{D (poy)i(A,ds)Aiy(s (s)} dx

n

<K@+ [nlIE) Yt = timr)* + K1+ [Inl&) D (¢
i=1 i=1

(3.42)

< K((1+ |Inlle) ||,

Our next task is to develop estimates similar to (??) for the cases 1 < j < 9. As a sample computation,
we will examine in detail the case j = 7. The rest of the computations are left to the reader. They are
similar either to the case j =7 or j = 10.

Consider the case j = T:

I = /OT E{D(¢oy)i(A ds)AL(s)},
where (from the notation in Lemma ?7)
. (tts)VEior pu g
pay MO= [ [ S a@) el —2m) a0 - )
X 17y 00)(v) AW (v — 72) AW (u)
for all s € [—7,0]. For simplicity, denote

g
6951

Then, by the chain rule for Fréchet derivatives and Lemma 3.2, we get

) 0 (ti+s)Vti—1 u
Ik :/7 E{D(¢oy)i(/\,ds)/ / h(v) dW (v — 73) AW (u)}

ti—1 I_U/J

(3.44) h(v) == == (z(v — 72), 2(v)) g (z(v — 272), #(v — 72)) 1[ry 00)(v), v =0.

1
= Z E{D¢(y(tniti; Ave, + (1 = Nye, ) O F (6, W (), ..., Ax(ts + pim)
(3.45) + (1= Ny(ti + im);---)

(ti+pm)Vti—1 u
X / h(v) AW (0 — ) AW ()}

ti—1 Luj

l
= Z (Tl,m + T2,m) )

m=1

where

)

(t +N7n)\/t171
Tym = / E{Du[Dé(y(tn;ti, Axe, + (1 = Nye, )] O F (6, W (L), ..., Ax(t; + pn)
(3.46) fioa

u

+ A =Nyt + pm); - )/L J h(v) dW (v —72)} du



and

(titpm)Vti—1
Tom = / E{D¢(y(tn;ti, Ave, + (1 = Nye, ) Du[0m F (6, W(E), ..., Ax(ti + fim)
(3.47) fioa

u

+ (1 =Nyt + pom); -] /L J h(v) dW (v — Tg)} du.

The above expressions (??) and (?7?) are obtained using the definition of the Skorohod integral (as
adjoint of the Malliavin differentiation operator) together with the product rule for Malliavin derivatives

([7])-

Again, using the definition of the Skorohod integral once more in (??), yields

Ty = /ti / B {Dy[Dud{ Dyt 1, A, + (1 — N, ))}

3.48
(348) O (£, W (8), -, Aty + ) + (1= Ny(ti + pin); - )] ()}
X 1[t1717(ti+ﬂm)\/ti71](u’) dv du
and
ti u
Ty ;:/ / E D, [Do(y(tn: tes Aae, + (1 — N, ) x
(3.49) b1 2 Lu

DO F(t, W (1), ..., Ax(t; + pm) + (1 = Ny(ti + pim); - - .) | () }
X 1[t1717(ti+ﬂm)\/ti71](u’) dv du

Using the product and chain rules for Malliavin derivatives, we may rewrite the expression (??) in the
form:

ti u
Ty = / /L j E {DU [DQ(;S(y(tn; ti, Ave, + (1 — )\)yti)Du(y(tn;ti, Az, + (1 — /\)yti) X

OmF (L, W(t), ..., Ax(t; + pm) + (1= Ny(ti + pm); .- )] h(v) }

X 1[ti—1,(ti+um)\/ti—1](u) dv du
t; u
:/ /L E{[D’¢(y(tnsti, Ao, + (1= Ny, ) Do (y(tas tis Mee, + (1= Nye, )
ti—1 J|u]

Do (y(tns ti, Axe, + (1= Nye, ) O F (6, W(E), ..., Az(ti + fm)
+ (L= Ny(ti + pm); - - -)

+ D2¢(y(tni tis Az, + (1 — Ny, ) DD (y (i tis Aze, + (1 — Nye,)) %
O F (6, W (), ..., A&(ti + pam) + (L = Ny(ti + pim); - - -)

+ DQQS(y(tn; ti, Aoy, + (1 — )\)yti)Du(y(tn;ti, Az, + (1 — /\)yti))x
DyOm F (8, W(t), ..., Ax(ts 4 pm) + (1 = Ny(ts + pim); - )]

X h(V) } L,y (bt yvits o] (@) dv du.
As before, recall the definition of £“(s) in (?7?): That is

gu( ) _1 ti1,(ti+s)Vti— 1]( ) s € [_7—70]7 (S [O,T].

Hence

(3.50) i Tim = i T, + i T?,, + i 17,

Where " " " "

. mi_l TL, = / /L :J E{[D*6(y(tni ti Az, + (1= Ny ) Doy (tns ti, Az, + (1 — Nys,)

X Duy(tn;ti, Az, + (1 — /\)yti)Dy(tn; ti, Ave, + (1 — /\)yti)(ﬁu)]h(v)} dv du,

~

ti u
(3.52) Z Tﬁm = / /L E { [Dz(b(y(tn; ti, Aoy, + (1 — )\)yti))DUDuy(tn;ti, Az, + (1 — )\)yti)
. ti—1 UJ

m=1
X Dy(tn;ti, Mg, + (1= Nye, ) (€)] h(v) } dv du



and

l t; u
Z T13,m = / A | E { [D2¢(y(tn§ti7 )\fti + (1 - A)yti)tDuy(tn;tia )\fti + (1 - )\)yti)
i—1 v |u

(3.53)  “~

X Dy Dy(tn;ti, Ave, + (1 — Ny, ) ()] h(v)} dv du.

Using the fact that ¢ € C3, Lemma ?7, its proof ((??)) and (??), it follows that there exists a positive
generic constant K such that

l
[>Tl
m=1

ti u
< K/ / [E | Doy (tn; ti, Ay, + (1 — Nyy,) 4}1/4
t1 1 I_U/J
% [E [Duy (tni tis Az, + (1= Ny, )]
(3.54) x [E|Dy(tn; ti, Aee, + (1= Ny ) (€[] x [E[p(0)*]Y* dv du

ti u
K1+ [nl4) / dv du

ti—1 I_U/J

ti
< K(1+ nl&) / (u—t; 1) du
ti—1

SEQ+Inlle)(t: —tiza)*.

Similarly, since ¢ € CZ, it follows from (??), (??) and lemmas 3.4, 3.5, that there is a positive generic
constant K such that
1

(3.55) | TP S K@+ )&t — tin)?
m=1
and
l
(3.56) | D TPl < KU+ [Inllé) (= tima)?.
m=1

Using (?7?), (?7), (??) and (?7?), we get

n l n
I3 T S KA+ InlE)D (t: —tioa)?
(3.57) i=1 m=1 i=1
K1+ |nl¢) |-
Next, from (??), the chain and product rules for Malliavin derivatives, it is easy to see that
(3.58) Toyn = Ty + 15,
where
1
Z T21,m / E {Dz(b( (tnvtza )\ft + (]- - A)yt ))Dvy(tn7tza )\:’En (1 - )‘)yh)
(3.59) = I
X Dy Dy (tn; ti, Axe, + (1= Ny, ) (€)h(v) } dv du
and
l t;
- E{Dé(y(tn:ti, \ey, + (1 — A

(3.60) 2 //u 1Dp{ulinste o+ (1= X))

X [DvDuDy(tnvtla )\xti + (1 - ) )(é-u } dv du.

Using (??), (??), lemmas 3.3, 3.4 and the fact that ¢ € CZ, we obtain the following estimates

!
(361) Y T | < KO+ Il @ - 60

m=1



and

l
(3.62) ‘ > 13,
m=1

where K > 0 is a generic constant independent of n and the the partition 7. From (?7?)-(??), it is easy
to see that

< K(L+ [[nlle)(t: — tim1)?,

n

l
S5 T ‘ < K(L+ [nll%) |l

i=1 m=1

(3.63)

Now combine (??), (??) and (??) to get

2%

=1

(3.64) <K@+ [Inlle) |« .

Estimates of the remaining 8 terms
n 1 0
> / / E{D(¢oy)i(\ds)Ai(s)} d\,  j=1,2,3,4,56,8,9,
i=1 Y0 J-7
on the right hand side of (?7?), may be obtained by very similar arguments to those used for developing
(??) and (??7). Note that in the cases j = 3,8, one needs to employ moment estimates for the Malliavin

derivatives D, x(t) given in (3.11) of Lemma 3.4. Thus one obtains a generic constant X > 0 and a
positive integer ¢ such that

n 1 40
> [ [ Bpwe o) dx\ < K(1L+ [nll%) 7]
i=1 -7

for j =2,3,4,5,8,9; and

n 1 0 v
[ [ BD@on(ta9n @) axf < Ko+l ) e

(3.65)

(3.66)

for 7 = 1,6. Note that the last two cases involve estimates on the derivatives of the initial process 7.
As before, the constant K may depend on T, q and the test function ¢, but is independent of 7, n and
the choice of t € [0,T], o € [0,T]. Details of the computations in (??) and (??) are left to the reader.

Putting together the above inequalities, (?7?), (??) and (??), shows that there is a positive constant K
and a positive integer ¢ such that

(3.67) |E¢(z(t;0.n)) — E¢(y(tio,n))| < K(1+ [nll{ ) I7]
for all t € [0 — 7,T], o € [0,T], and all n € H>*°([-7,0], R).
To complete the proof of the weak convergence estimate (3.3), we proceed as follows:

The estimate (3.3) will hold if we can replace 7 in the Euler approximation y(¢;0,n) in (3.67) by its

piecewise-linear approximation ™. To do so, we first appeal to the triangle inequality
(3.68) [E¢(x(t;0,m) — E¢(y(t; 0,0"))| < |E@(z(t;0,m)) — E¢(x(t;0,17))]
' + [E@(x(t;0on™)) — E¢(y(t;on™))|-

Using [Mo.1] (Theorem 3.1, p. 41), we have
(3.69) [Ep(x(t;0,m)) — E¢(z(t;0,n™))| < Klln—n"|c-

From the definition of ™ and the fundamental theorem of calculus, the following two elementary
estimates hold

(3.70) In = n"lle < 2[0l|ooln]

(3.71) 17"
for all n € H*°([-7,0],R).

Now in (3.67), replace n by n™ and use (3.71) to get

(3.72) [E¢(z(t;oon™)) — Ed(y(t;oon™))| < K1+ [Inll{ o) |7]-

The required estimate (3.3) now follows from (3.68), (3.69), (3.70) and (3.72).
The proof of Theorem ?7? is now complete. U

1,00 < 17ll1,00 5



4. EXTENSION TO MULTI-DIMENSIONAL NOISE AND SEVERAL DELAYS

In this section, we present a generalization of Theorem ?7. This generalization covers the case of
R-valued stochastic functional differential equations (SFDEs), driven by multi-dimensional Brownian
motion and having several discrete delays in the drift and diffusion coefficients, as well as (smooth)
quasitame dependence on the history of the solution in all coefficients.

We begin by setting up appropriate notation.

Let W(t) == (Wi(t), Wa(t), - ,Wpn(t)), t > 0, be m-dimensional standard Brownian motion on a
filtered probability space (2, F, (Ft)t>0, P).

Consider a finite number of delays {7} : 1 < i < k1}, {Té’l 01 <j <koyl<Il<m}, with maximum
delay 7 := maX{Tf,Tg’l 11 <i<ki,1<j<keyl<Il<m} We will designate the memory in our
SFDE by a collection of tame projections

n:c:=0(-nRY) -R", 1*':C—R™
kol
I (n) = (n(r1),m(rE), - (™), T () o= (n(rp)om(r3 ), - m(my™™)
for all n € C, and quasitame projections
H; :C — Rdllz, Hg’l . C — R%a

where di = kid,d] = kad,da; = ko,d, ng = ko d are integer multiples of d, for 1 <1 < m. The
quasitame projections are of the form:

0 0 0

() = ( / oL (1(s))ud (5) ds, / o3 (1(s)i(s) ds, - . / ok, (n($))yih, (5) ds)
0 0 0

T2 () = ( / o2 (1(s))u2 (5) ds, / o3 (1(s))(s) ds, - / o2, (1(s)d, ,(5) ds)

for all n € C. The functions o}, 0]2, ul, u? are smooth.

Let

f:RTxR" xRM - RY ¢ :RTxR®' xR%: R4 1<1<m,
be functions of class C'* in the first variable and C} in all space variables.
Consider the SFDE

(A1) () =n(0) + / £, T (), T () du+ / 01, T2 (), T2 () VWi (1),
=1

for 0 <t < T, with initial path
ry =n€ HY®([-7,0],RY).

Associate with any partition m:= {t_py <t_prp1 < <t_1 <tp=0<t1 <tg- - <ty_1<ty=T}
of [—7,T], the Euler approximations y of the solution x of (4.1) which satisfy the following SFDE:

(42) y(t) = 77(0) + /O f(\_uJ ) Hl (y[uJ)a H; (y[uj)) du + Z/O gl(LuJ7H27l(y[uJ)a H37l(yLuj )) dWl (u)7
=1

for o <t < T, with initial path

Yo =n € H([—7,0],R%).
Under sufficient regularity hypotheses on the coefficients of (??), one obtains weak convergence of order
1 of the Euler approximations y to the exact solution .

Theorem 4.1. Let ¢ : R® — R be of class C3. Assume that the coefficients f,g;,1 < 1 < m, in
(??) are C' in the time variable and C} in all space variables. Let x(-;0,m) be the unique solution
of (?7) with initial path n € H“*([—,0], Rd) starting at o € [0,T]. Let n™ be the piecewise-linear
approzimation of n along the partition w. Denote by y(-;0,n) the Euler approximation to x(-;o,n)
defined by (??). Then there is a positive constant K and a positive integer q such that

(4.3) [E¢(z(t0,m)) — E¢(y(t;oon™))| < K(1+ |Inllf ) [

forallt € [o—7,T] and alln € Hl’oo([—T7 0], Rd). The constant K may depend on T,q and the test
function ¢, but is independent of w,n, t € [0 — 7, T| and o € [0,T].



The proof of Theorem ?7? follows along very similar lines to that of Theorem ??. The main difference is
a straightforward application of the classical It6 formula combined with the tame It6 formula in section
2 (cf. Lemma 4.2 below). Details of the proofs of Lemma 4.2 and Theorem 4.1 are left to the reader.

Lemma 4.2. Let i) : R+ xR®> — R be of class C' in the time-variable and C¢ in the three space
variables x1,x2,23. Suppose x solves the SFDE (4.1) (for d = 1) with coefficients satisfying the
hypotheses of Theorem 4.1. Assume that h, pu are smooth functions. Let § > 0. Then

dip(t, z(t = 9) / h(x(t + 5))u(s) ds)
%1?( / h(x(t + 5))u(s) ds) dt
gj}l( / h(x(t + 5))u(s) ds) Ljo,5)(t) dn(t — §)
+ g—;ﬁ( t—0 / h(z(t + 5))p(s) ds) (s 00)(t) X

X [t — 0, T (2 _5), TT: (21 5) dt+Zgl (t — 6,11 (2, _5), 2 (2, _s5)) Wi (t — 0)]

g;/;( /h t 4 8))u(s) ds) x
X [f(t, 1" (), TG () dt+Zgz T2 (@), T2 (20)) AW (2)]

2 0
* 5515962 (2(t —8),2(®), / h(z(t + s))u(s) ds) x

ngl t— 0, I (wy_s), T2 (24—5)) L[5 00) (£) D _s(t) dt

=1
192 -
+§W( / h(z(t + s))u(s) ds) Z 8, 1% (z4s), Hﬁ’l(xt_s))Q
(4.4) X 1(5,00)(t) dt
L% - / h(a(t + ) zm: £ (), T2 (2,))? dt
28 5 q t )

for all t > 0. The symbol D' stands for Malliavin derivative with respect to the Brownian component
Wi, 1 <1l <m.

Appropriate generalizations of Lemma 4.2 hold for higher dimensional versions of the SFDE (4.1)
(d>1).
5. NUMERICAL EXPERIMENTS

We present results of numerical experiments corresponding to an example of (??). Our objective is to
illustrate the weak convergence of the Euler-Maruyama method with respect to decreasing step-size by
computing first moments, that is we compute E¢(x(T")) for ¢(x) = x where x(T) denotes a solution of

(?7).
Example 5.1. Consider the scalar SDDE
t
0)+ [3eta(u—1)—4z(u) +4—3e ' du
0

(5.1) a(t) = +fo.01 w(u—3)+0.1a(u) dW(u), 0<t<2,
0

nt)=1+e 1, -1<t<0,

where W (t) is a one dimensional Wiener process.



Let m(t) := Ex(¢) for t > 0. Then, m(t) satlsﬁes the delay differential equation

(5.2) m'(t) =3e tm(t—1) —4m(t) +4—3e

with initial condition

(5.3) mt)=1+e ' for —1<t<0.

Equation (??) subject to (??) has the solution m(t) = 1 + e, the solution is a continuation of the

initial function.
To illustrate the convergence of the method, we have simulated 150000 sample trajectories with each

of the (equidistant) step-sizes |r| = 273,274,..,277 and computed the error
(5.4) pl™(T) = |E(x(T)) — EB(y(T))|

at the final time 7' = 2. In Figure ??, we have plotted log,(u!™(T)) versus log,(|n|).
2\H 2

7+

log, )
FIGURE 1. log,(ul™(T)) versus log,(|n|) for the solution of (?7).

For illustration purposes we also include some trajectories in the following figure, the thick line corre-
sponds to m(t) =1+ eIt



FIGURE 2. Trajectories of the solution of (?7).
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