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Base change and K-theory for GL(n,R)

Sergio Mendes and Roger Plymen

Abstract

We investigate base change C/R at the level of K-theory for the
general linear group GL(n,R). In the course of this study, we compute
in detail the C*-algebra K-theory of this disconnected group. We in-
vestigate the interaction of base change with the Baum-Connes corre-
spondence for GL(n,R) and GL(n,C). This article is the archimedean
companion of our previous article [9)].

Mathematics Subject Classification(2000). 22D25, 22D10, 461.80.
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1 Introduction

In the general theory of automorphic forms, an important role is played by
base change. Base change has a global aspect and a local aspect [1]. In this
article, we focus on the archimedean case of base change for the general linear
group GL(n,R), and we investigate base change for this group at the level
of K-theory.

For GL(n,R) and GL(n,C) we have the Langlands classification and the
associated L-parameters [7]. We recall that the domain of an L-parameter
of GL(n, F') over an archimedean field F' is the Weil group Wg. The Weil
groups are given by

We =C*

and
Wr =C* xZ/2Z

where the generator of Z /27 sends a complex number z to its conjugate Z.
Base change is defined by restriction of L-parameter from Wg to We.

An L-parameter ¢ is tempered if (W) is bounded. Base change therefore
determines a map of tempered duals.

In this article, we investigate the interaction of base change with the
Baum-Connes correspondence for GL(n,R) and GL(n, C).
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Let F' denote R or C and let G = G(F) = GL(n, F). Let C(G) de-
note the reduced C*-algebra of G. The Baum-Connes correspondence is a
canonical isomorphism [8][5]

pr - KE(EG(F)) — K.CHG(F))

where EG(F) is a universal example for the action of G(F).

The noncommutative space C!(G(F)) is strongly Morita equivalent to
the commutative C*-algebra Cy (AL (F)) where Af (F) denotes the tempered
dual of G(F), see [10, section 1.2][11]. As a consequence of this, we have

K.CI(G(F)) = KA (F).
This leads to the following formulation of the Baum-Connes correspondence:
KZW(EG(F)) = K" AL(F).
Base change C/R determines a map
beyn : AL(R) — AL(C).
This leads to the following diagram

KSO(BG(C) S K*AL(C))

l J5

KY®(EGR)) — K'AL(R).
R
where the left-hand vertical map is the unique map which makes the diagram
commutative.

In section 2 we describe the tempered dual AL (F) as a locally compact
Hausdorff space.

In section 3 we recall base change for archimedean fields.

In section 4 we compute the K-theory for the reduced C*-algebra of
GL(n,R). We show that the K-theory depends on essentially one parameter
q given by the maximum number of 2’s in the partitions of n into 1's and
2's. There are precisely | 5] + 1 such partitions. If n is even then ¢ = n/2
(Theorem 4.7) and if n is odd then ¢ = (n — 1)/2 (Theorem 4.8). The real
reductive Lie group GL(n,R) is, of course, not connected. If n is even our
formulas show that we always have non-trivial K° and K*!.

In section 5 we recall the K-theory for the reduced C*-algebra of the
complex reductive group GL(n, C), see [11].
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In section 6 we compute the base change map BC : A'(R) — A.L(C)
and prove that BC' is a continuous proper map. At level of K-theory, base
change is the zero map for n > 1 (Theorem 6.2).

In section 7, where we study the case n = 1, base change for K creates
a map

R(T) — R(Z/2Z)

where R(T) is the representation ring of the circle group T and R(Z/27Z)
is the representation ring of the group Z/27Z. This map sends the trivial
character of T to 1 @ e, where ¢ is the nontrivial character of Z/27Z, and
sends all the other characters of T to zero.

This map has an interpretation in terms of K-cycles. The K-cycle

(CO(R)7 L2 (R>7 Zd/d%)

is equivariant with respect to C* and R*, and therefore determines a class
Jec € KE(EC*) and a class @dr € KF (ER*). On the left-hand-side of
the Baum-Connes correspondence, base change in dimension 1 admits the
following description:

Jo — (P, P&)

This extends the results of [9] to archimedean fields.

We thank Paul Baum for a valuable exchange of emails. Sergio Mendes

is supported by Fundagao para a Ciéncia e Tecnologia, Terceiro Quadro Co-
munitario de Apoio, SFRH/BD/10161/2002.

2 On the tempered dual of GL(n)

Let FF =R. In order to compute the K-theory of the reduced C*-algebra of
GL(n, F) we need to parametrize the tempered dual A’ (F) of GL(n, F).

Let M be a standard Levi subgroup of GL(n, F'), i.e. a block-diagonal
subgroup. Let °M be the subgroup of M Such/t@t the determinant of each
block-diagonal is +1. Denote by X (M) = M /M the group of unramified
characters of M, consisting of those characters which are trivial on °M.

Let W(M) = N(M)/M denote the Weyl group of M. W (M) acts on the
discrete series Ey(°M) of °M by permutations.

Now, choose one element o € Ey(°M) for each W (M )-orbit. The isotropy
subgroup of W (M) is defined to be

Wo(M)={weW(M):w.o=o0c}.
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Form the disjoint union

|| x@n)/wo(m) = | X (M)W, (M). (1)

(M,0) 0€FE>(OM)

The disjoint union has the structure of a locally compact, Hausdorff space
and is called the Harish-Chandra parameter space. The parametrization of
the tempered dual A (R) is due to Harish-Chandra, see [6].

Proposition 2.1 (Harish-Chandra). [6] There ezists a bijection

Uoas.oy X(M)/Wo (M) — A (R)
X’ = dgrm),mn (X ® 1),

where X% (x) := x(x)o(x) for all z € M.

In view of the above bijection, we will denote the Harish-Chandra param-
eter space by A’ (R).

We will see now the particular features of the archimedean case, starting
with GL(n,R). Since the discrete series of GL(n,R) is empty for n > 3, we
only need to consider partitions of n into 1’s and 2’s. This allows us to to
decompose n as n = 2q +r, where ¢ is the number of 2’s and r is the number
of 1’s in the partition. To this decomposition we associate the partition

n=(2.,21,.,1),

which corresponds to the Levi subgroup

M = GL(2,R) x ... x GL(2,R) x GL(1,R) x ... x GL(1,R).

v~ v~
q s

Varying ¢ and r we determine a representative in each equivalence class
of Levi subgroups. The subgroup M of M is given by

OM = SL*(2,R) x ... x SL*(2,R) x SL*(1,R) x ... x SL*(1,R),
q T

where

SL*(m,R) = {g € GL(m,R) : |det(g)| = 1}

is the unimodular subgroup of GL(m,R). In particular, SL*(1,R) = {+1} &
7,)27.



The representations in the discrete series of GL(2,R), denoted D, for
¢ e N (£ >1) are induced from SL(2,R) [7, p.399]:

Dy = indsr+(2,r),SL(2,R) (Dét)»

where D;t acts in the space
(7 :# = clf analytic | = [ [ 1) )dody < oc).

Here, 'H denotes the Poincaré upper half plane. The action of g = ( CCL Z )

is given by
DEGF()) = (b + d) I f (=)

More generally, an element o from the discrete series Ey(°M) is given by
o=igun(D;, ® .. @D @ ®..0 7 @ 1), (2)

where DZ (¢; > 1) are the discrete series representations of SL*(2,R) and 7;
is a representation of SL*(1,R) & Z/27Z, i.e. id = (x + z) or sgn = (x
1)

Finally we will compute the unramified characters X (M), where M is the
Levi subgroup associated to the partition n = 2q + r.

Let z € GL(2,R). Any character of GL(2,R) is given by

X(det(x)) = (sgn(det(x)))|det(x)|"
(¢ =0,1,t € R) and it is unramified provided that
x(det(g)) = x(£1) = (£1)° = 1, for all g € SL*(2,R).
This implies € = 0 and any unramified character of GL(2,R) has the form
x(x) = |det(z)|*, for some t € R. (3)
Similarly, any unramified character of GL(1,R) = R* has the form
£(x) = |x|", for some t € R. (4)
Given a block diagonal matrix diag(gs, ..., gg, w1, ...,w,) € M, where g; €
GL(2,R) and w; € GL(1,R), we conclude from (3) and (4) that any unram-
ified character y € X (M) is given by
x(diag(gu, ..., gg, W, -, wr)) =
= |det(g1)|"™* x ... x |det(gy)|™ X Jwi|att x ... X Jw, [Tt

for some (ti,...,tq4,) € R, We can denote such element x € X (M) by
X(t1,.tqsr)- We have the following result.
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Proposition 2.2. Let M be a Levi subgroup of GL(n,R), associated to the
partition n = 2q + r. Then, there is a bijection

X(M) — RI™ | X(t1ostger) P (E1y ooy Tar)-

Let us consider now GL(n,C). The tempered dual of GL(n,C) comprises
the unitary principal series in accordance with Harish-Chandra [10, p. 277].
The corresponding Levi subgroup is a maximal torus 7' = (C*)". It follows
that 7" = T" the compact n-torus.

The principal series representations are given by

T = igru(0 @ 1), (5)

where 0=01 ® ... ® 0,, and 0(z) = (é)eﬂ'|z|”j (¢; € Z and t; € R).
An unramified character is given by

21
X = 21 |™ X ... X 2|t

Zn

and we can represent X as X(,..+,)- Lherefore, we have the following result.

77777

Proposition 2.3. Denote by T the standard mazimal torus in GL(n,C).
There is a bijection

X(T) =R, Xty ta) — (1, s )

3 Base change for archimedean fields
The Weil group attached to a local field F' will be denoted Wy as in [13]. We
may state the base change problem for archimedean fields in the following

way. Consider the archimedean base change C/R. We have W C Wy and
there is a natural map

Reswi : Go(R) — G, (C) (6)

called restriction. By the local Langlands correspondence for archimedean
fields [3, Theorem 3.1, p.236][7], there is a base change map

BC: A,(R) — A,(C) (7)
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such that the following diagram commutes

An(R) =77 A, (C)

S
(

gn (R) ﬁ gn

Arthur and Clozel’s book [1] gives a full treatment of base change for
GL(n). The case of archimedean base change can be captured in an elegant
formula [1, p. 71]. We briefly review these results.

Given a partition n = 2g+r let x; (i = 1,...,q) be a ramified character of
C* and let & (j = 1,...,7) be a ramified character of R*. Since the y;’s are
ramified, x;(z) # x7(2) = x:(Z). By Langlands classification [7], each y; de-
fines a discrete series representation m(x;) of GL(2,R), with w(x;) = 7(x7).
Denote by 7(x1, .-, Xg: &1, -, &) the generalized principal series representa-

tion of GL(n,R)

(X150 Xgp €15 - &) = lanmp),Mn(T(X1) ® ... T(Xg) ®& ®...Q& ®1). (8)

The base change map for the general principal series representation is given
by induction from the Borel subgroup B(C) [1, p. 71]:

BO(W) = H(le o X 517 sy gr) = iGL(n,(C),B((C) (Xh thfv <o X Xga 510N7 Y fTON),
(9)
where N = N¢/g : C* — R* is the norm map defined by z — 2Z.
We illustrate the base change map with two simple examples.

Example 3.1. Forn =1, base change is simply composition with the norm
map

BC': AL(R) — AL(C) , BC(x) = xo N.

Example 3.2. For n = 2, there are two different kinds of representations,
one for each partition of 2. According to (8), w(x) corresponds to the partition
2 =240 and (&, &) corresponds to the partition 2 =1+ 1. Then the base
change map s given, respectively, by

BC(m(x)) = icric).B0) (X X7),

and

BC(n(&,&)) = iqreoe),e) (&1 o N, & o N).



4 K-theory for GL(n,R)

Using the Harish-Chandra parametrization of the tempered dual of GL(n)
(recall that the Harish-Chandra parameter space is a locally compact, Haus-
dorff topological space) we can compute the K-theory of the reduced C*-
algebra C*GL(n,R).

We have

Ki(CrGL(n,R)) = K7 (U ,0) X (M)/Wo (M)
B 1) K (X (M) /W,y (M) (10)
= @MU K (R W, (M),

where ny; = g 4+ r if M is a representative of the equivalence class of Levi
subgroup associated to the partition n = 2g+r. Hence the K-theory depends
on n and on each Levi subgroup.

To compute (10) we have to consider the following orbit spaces:

(i) R™, in which case W,(M) is the trivial subgroup of the Weil group
W(M);

(ii) R™/S,, where W, (M) = W (M) (this is one of the possibilities for the
partition of n into 1’s);

(ili) R™/(Spy X ... X Sp,), where W, (M) = S, X ... xS, C W(M) (see the
examples below).

Definition 4.1. An orbit space as indicated in (ii) and (iit) is called a closed
cone.

The K-theory for R™ may be summarized as follows

Z,n = j(mod2)
0, otherwise.

K/(R") = {
The next results show that the K-theory of a closed cone vanishes.
Lemma 4.2. K/(R"/S,)=0,7 =0,1.

Proof. We need the following definition. A point (ay,...,a,) € R" is called
normalized if a; < a;j;1, for j = 1,2,...,n — 1. Therefore, in each orbit there
is exactly one normalized point and R"/S, is homeomorphic to the subset
of R™ consisting of all normalized points of R". We denote the set of all
normalized points of R™ by N(R").



In the case of n = 2, let (ay,as) be a normalized point of R?. Then, there
is a unique t € [1, +oo[ such that ay = ta; and the map
R x [1, +oo[— N(R?), (a,t) — (a,ta)
is a homeomorphism.
If n > 2 then the map
NR™ 1) x [1, +oo[— N(R™), (a1, ..., an_1,t) > (a1, ..., an_1, tay)

is a homeomorphism. Since [1,+o0o[ kills both the K-theory groups K° and
K1, the result follows by applying Kiinneth formula. ]

The symmetric group S5, acts on R” by permuting the components. This
induces an action of any subgroup S, x ... x S,, of S, on R". Write

R*" = R™ x R™ x ... x R™ x R?*™™M 77"k,

If n =nq + ... + ng then we simply have R” =2 R™ x ... x R".

Spy X ... xSy, acts on R" as follows.
Sp, permutes the components of R™ leaving the remaining fixed;
Sn, permutes the components of R™ leaving the remaining fixed;
and so on. If n > ny + ... + ny the components of R~ ~" remain fixed.
This can be interpreted, of course, as the action of the trivial subgroup. As
a consequence, one identify the orbit spaces

R™/(Spy X oo X Sy, ) ER™/S,, X o x R™ /S, x RPTM 7"
Lemma 4.3. K/ (R"/(S,,, X...xS,,) = 0,7 =0,1, where S,, X ... X Sp, C Sh,.
Proof. 1t suffices to prove for R"/(S,, X S,,). The general case follows by
induction on k.

Now, R™/(S,, X Sp,) & R™/S, x R*™/S, . Applying the Kiinneth
formula and Lemma 4.2, the result follows. O
We give now some examples by computing K;CGL(n,R) for small n.

Example 4.4. We start with the case of GL(1,R). We have:
M=R*,"M=7/27 , W(M)=1 and X(M) =R.
Hence,
AR~ || R/1=RUR, (11)
0€(Z/2Z)

and the K-theory is given by

K,C*GL(1,R) = K’ (AL (R)) = K9(RUR) = K/ (R)® K7 (R) = {



Example 4.5. For GL(2,R) we have two partitions of n = 2 and the fol-
lowing data

Partition M oM W(M) | X(M) o€ Ey("M)
2+0 GL(2,R) | SL*(2,R) 1 R |o=igp(D/),l€N
141 R*)? | (2227 | 2/2Z | R® | 0=igp(id® sgn)

Then the tempered dual is parameterized as follows

LR) 2 | | X(M)/Wo(M) = (| |R) U (R?/Sy) U (R*/S,) UR?,

¢eN
and the K-theory groups are given by
O* i(At o~ i J(R2 DienZ j=1
K;C:GL(2,R) & K’/(A4(R)) = Z‘%K )BKI(R?) = { A

Example 4.6. For GL(3,R) there are two partitions for n = 3, to which
correspond the following data

Partition M oM W(M) | X(M)
241 | GL(2,R) xR* | SL*(2,R) x (Z/2Z) | 1 R?
1+1+1 (R*)3 (Z)27.)* Sy R3

For the partition 3 =2+ 1, an element o € Eo(° M) is given by

oc=igp(Df@71),lENand T € (Z//Z\Z)
For the partition 3 =1+ 1+ 1, an element o € Ey(°M) is given by
3 —_—
o= igyp(® ), T € (Z)2Z).
i=1

The tempered dual is parameterized as follows
AYR) = | | X(M)/Wo(M) = || (R*/1) || (R%/Sy).
(M) Nx(Z,/2Z) (2,)22)3
The K -theory groups are given by

] =

* ~ T75( At ~ i (T2 _ @Nxz ZZ
K;C;GL(3,R) = K7 (A4(R) = € KJ(R)@O_{ 0</2> ol

Nx(Z/2Z)
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The general case of GL(n,R) will now be considered. It can be split in
two cases: n even and n odd.

e 1 = 2¢q even
Suppose n is even. For every partition n = 2q + r, either W, (M) = 1 or
Wo(M) # 1. If W, (M) # 1 then R"™ /W,(M) is a cone and the K-groups
K° and K! both vanish. This happens precisely when r > 2 and therefore
we have only two partitions, corresponding to the choices of r = 0 and r = 2,
which contribute to the K-theory with non-zero K-groups

Partition M OM W (M)

2q GL(2,R) SLE(2,R) S

Ag—1)+2 | GLE2, R x (R)? | SLE(2,R)-! x (Z/2Z)* | S, 1 x (Z,/2Z)

We also have X (M) = R? for n = 2¢, and X(M) = R for n =
2(¢—1)+2.
For the partition n = 2¢ (r = 0), an element o € FEo(°M) is given by

g = iG,P<DZ ® ®DZI) s (fl, Eq) - Nq and Ez 7& fj le 7& j

For the partition n = 2(q — 1) + 2 (r = 2), an element 0 € Fy(°M) is
given by

g = Zgyp(DZ®®DZ]71®Zd®Sgn) s (gl, ...gqfl) < qul and gz 7é 5]' if 4 7é j

Therefore, the tempered dual has the following form

AL (R) = A5, (R) = (| RYU( || R*Huc

LeNd ¢'eNa—1
where C is a disjoint union of closed cones as in Definition 4.1.

Theorem 4.7. Suppose n = 2q is even. Then the K-groups are

K,C*GL(n,R) = { B Z  j = q(mod2)

vena—1 L, otherwise.
If ¢ =1 then the direct sum @ ,cno-1 Z will denote a single copy of Z.

en =2q¢+ 1 odd
If n is odd only one partition contributes to the K-theory of GL(n,R) with
non-zero K-groups:

11



Partition M oM W(M) | X(M)

2¢+1 | GL2, R xR* | SLE(2,R)" x (Z/2Z) | S, | R

An element o € Fy("M) is given by
o =igp(D)®..0 D, @T), (l,..L;;T) € N X (Z/2Z) and £; # {; if i # j.
The tempered dual is given by
A,R) = Ay, (R)=( || R*HuC
te(Nax(Z,/2Z))
where C is a disjoint union of closed cones as in Definition 4.1.

Theorem 4.8. Suppose n = 2q+ 1 is odd. Then the K-groups are

K;,C'GL(n,R) = ®Z€NQX(Z/2Z) Z ,j=q+1(mod2)
o ’ 0 , otherwise.

Here, we use the following convention: if ¢ = 0 then the direct sum 1is
@Z/zz L=LSL.

We conclude that the K-theory of C*GL(n,R) depends on essentially one
parameter ¢ given by the maximum number of 2's in the partitions of n into
n—1

I's and 2's. If n is even then ¢ = § and if n is odd then ¢ = "5=.

5 K-theory for GL(n,C)

Let T° be the maximal compact subgroup of the maximal compact torus T’
of GL(n,C). Let o be a unitary character of T°. We note that W = W (T),
W, = W,(T). If W, =1 then we say that the orbit W - ¢ is generic.

Theorem 5.1. The K-theory of C*GL(n,C) admits the following descrip-
tion. If n =3 mod 2 then K is free abelian on countably many generators,
one for each generic W- orbit in the unitary dual of T°, and K;; = 0.

Proof. We have a homeomorphism of locally compact Hausdorff spaces:
AL(C) = | | X(T)/W,(T)

by the Harish-Chandra Plancherel Theorem for complex reductive groups [6],
and the identification of the Jacobson topology on the left-hand-side with the
natural topology on the right-hand-side, as in [11] . The result now follows
from Lemma 4.3. ]
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6 The base change map

In this section we define base change as a map of topological spaces and
study the induced K-theory map.

Proposition 6.1. The base change map BC : AL (R) — At (C) is a contin-
uous proper map.

Proof. First, we consider the case n = 1.
As we have seen in Example 3.1, base change for GL(1) is the map given by
BC(x) = x o N, for all characters xy € A{(R), where N : C* — R* is the
norm map.

Let z € C*. We have

BC(x)(2) = x(|2[*) = |2]*". (12)
A generic element from A% (C) has the form

z

u(z) = ()11, (13)

2|

where ¢ € Z and t € S!, as stated before. Viewing the Pontryagin duals
AL (R) and A% (C) as topological spaces by forgetting the group structure,
and comparing (12) and (13), the base change map can be defined as the
following continuous map

e AAR) R x (2/2Z) — AY{(C)ERXZ
X = (t,¢) > (2t,0)

A compact subset of R x Z in the connected component {¢} of Z has the
form K x {¢} C R x Z, where K C R is compact. We have

oK {1 :{ gxx (e} %ig

where e € Z/27Z. Therefore p~'(K x {(}) is compact and ¢ is proper.

The Case n > 1
Base change determines a map BC : AL (R) — A! (C) of topological spaces.
Let X = X(M)/W,(M) be a connected component of A% (R). Then, X is
mapped under BC' into a connected component Y = Y (T')/W,/(T) of A%(C).
Given a generalized principal series representation

ﬂ—(Xla "'an7€17 "'751")
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where the y;’s are ramified characters of C* and the ¢’s are ramified charac-
ters of R*, then

BC(TF) = iG,B(XlaXIa "'7anX;]ra€1 o N7 "-afr o N)

Here, N = Ngg is the norm map and 7 is the generator of Gal(C/R).
We associate to 7 the usual parameters uniquely defined for each character
x and . For simplicity, we write the set of parameters as a (q + r)-uple:

(t, 1) = (t1, .o by, th, oy 1) € RTTT = X (M),

Now, if m(x1, ..., Xg: 15 -+, &) lies in the connected component defined by
the fixed parameters (¢,¢) € Z9 x (Z/27)", then

(t,t') € X(M) — (t,t,2t') € Y(T)

is a continuous proper map.
It follows that

BC : X(M)/W,(M) — Y(T)/W,/(T)

is continuous and proper since the orbit spaces are endowed with the quotient
topology. O]

Theorem 6.2. The functorial map induced by base change

K;(C:GL(n,©) " K;(CrGL(n, R))

s zero forn > 1.

Proof. The case n > 2
We start with the case n > 2. Let n = 2q + r be a partition and M the
associated Levi subgroup of GL(n,R). Denote by Xg(M) the unramified
characters of M. As we have seen, Xg(M) is parametrized by R?*". On the
other hand, the only Levi subgroup of GL(n,C) for n = 2¢+r is the diagonal
subgroup X¢ (M) = (C*)%atr,

If ¢ = 0 then » = n and both Xg(M) and X¢(M) are parametrized by
R". But then in the real case an element o € Ey(°M) is given by

o=igrmRr),P(X1 ® .- @ Xn),

with x; € Z/27. Since n > 3 there is always repetition of the y;’s. It follows
that the isotropy subgroups W, (M) are all nontrivial and the quotient spaces
R™/W, are closed cones. Therefore, the K-theory groups vanish.
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If ¢ # 0, then Xy (M) is parametrized by R?"" and X¢ (M) is parametrized
by R?*™" (see Propositions 2.2 and 2.3).
Base change creates a map

Rq—i—r N R2q+r.

Composing with the stereographic projections we obtain a map
Sq+r _ S2q+r

between spheres. Any such map is nullhomotopic [4, Proposition 17.9].
Therefore, the induced K-theory map

K (S2q+r> - K (Sq+r)
is the zero map.

The Case n =2
For n = 2 there are two Levi subgroups of GL(2,R), M; = GL(2,R) and the
diagonal subgroup M, = (R*)2. By Proposition 2.2 X (M) is parametrized
by R and X (M) is parametrized by R?. The group GL(2,C) has only one
Levi subgroup, the diagonal subgroup M = (C*)?. From Proposition 2.3 it
is parametrized by R?.

Since K'(AL(C)) = 0 by Theorem 5.1, we only have to consider the K°
functor. The only contribution to K°(A5(R)) comes from M, = (R*)? and
we have (see Example 4.5)

K°(AL(R)) = Z.
For the Levi subgroup M, = (R*)?, base change is

BC: AYR) — AL(C)
(&1, &) = igrec),Be) (1o N, & o N),

Therefore, it maps a class [t1,ts], which lies in the connected component
(€1,€2), into the class [2t1,2t5], which lies in the connect component (0, 0).
In other words, base change maps a generalized principal series m(;,&2) into
a nongeneric point of A4(C). It follows from Theorem 5.1 that

K(BC) : K*(A3(R)) — K°(A3(C))

is the zero map. O
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7 Base change in one dimension

In this section we consider base change for GL(1).

Theorem 7.1. The functorial map induced by base change

Ki(C;GL(1,€)) " K (CGL(1L,R))
is given by K1(BC) = Ao Pr, where Pr is the projection of the zero compo-
nent of K'(A{(C)) into Z and A is the diagonal Z — 7 & 7.

Proof. For GL(1), base change
x € A{(R) — x o Ngjr € AL (C)

induces a map

K'(BC) : K'(Aj(C)) — K'(Aj(R)).

Any character x € A%(R) is uniquely determined by a pair of parameters
(t,e) € RxZ/27Z. Similarly, any character u € A%(C) is uniquely determined
by a pair of parameters (¢,¢) € R x Z. The discrete parameter ¢ (resp., )
labels each connected component of A%(R) = RUR (resp., A} (C) = |, R).

Base change maps each component ¢ of A% (R) into the component 0 of
A (C), sending t € R to 2t € R. The map t — 2t is homotopic to the
identity. At the level of K!, the base change map may be described by the
following commutative diagram

KY(BC
D2z 707

>

Z,
Here, Pr is the projection of the zero component of K'(A!(C)) = P+ Z
into Z and A is the diagonal map. m
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