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Geometric structure in the principal series of
the p-adic group Go

Anne-Marie Aubert, Paul Baum and Roger Plymen

Abstract

In the representation theory of reductive p-adic groups G, the issue
of reducibility of induced representations is an issue of great intricacy.
It is our contention, expressed as a conjecture in [3], that there exists
a simple geometric structure underlying this intricate theory.

We will illustrate here the conjecture with some detailed compu-
tations in the principal series of Gs.

A feature of this article is the role played by cocharacters hc at-
tached to two-sided cells c in certain extended affine Weyl groups.

The quotient varieties which occur in the Bernstein programme are
replaced by extended quotients. We form the disjoint union 2(G) of all
these extended quotient varieties. We conjecture that, after a simple
algebraic deformation, the space 2A(G) is a model of the smooth dual
Irr(G). In this respect, our programme is a conjectural refinement of
the Bernstein programme.

The algebraic deformation is controlled by the cocharacters he.
The cocharacters themselves appear to be closely related to Langlands
parameters.
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1 Introduction

In the representation theory of reductive p-adic groups, the issue of reducibil-
ity of induced representations is an issue of great intricacy: see, for example,
the classic article by Bernstein-Zelevinsky [6] on GL(n) and the more recent
article by Muié¢ [20] on Gs. It is our contention, expressed as a conjecture in
3], that there exists a simple geometric structure underlying this intricate
theory. We will illustrate here the conjecture with some detailed computa-
tions in the principal series of Gs.

Let F' be a local nonarchimedean field, let G be the group of F-rational
points in a connected reductive algebraic group defined over F', and let Irr(G)
be the set of equivalence classes of irreducible smooth representations of G.

Our programme is a conjectural refinement of the Bernstein programme,
as we now explain. Denote by 3(g) the centre of the category of smooth
G-modules. According to Bernstein[5], the centre 3(G) is isomorphic to the
product of finitely generated subalgebras, each of which is the coordinate
algebra of a certain irreducible algebraic variety, the quotient D/T" of an
algebraic variety D by a finite group I'. Let Q(G) denote the disjoint union
of all these quotient varieties. The infinitesimal character inf.ch. is a finite-
to-one map

inf.ch.: Irr(G) — Q(G).

Our basic idea is simple: we replace each quotient variety D/I" by the ex-
tended quotient D//T', and form the disjoint union 2(G) of all these extended
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quotient varieties. We conjecture that, after a simple algebraic deformation,
the space A(G) is a model of the smooth dual Irr(G).

The algebraic deformation is controlled by finitely many cocharacters he,
one for each two-sided cell ¢ in the extended affine Weyl group corresponding
to (D,T'). In fact, the cells ¢ determine a decomposition of each extended
quotient D//T'. The cocharacters themselves appear to be closely related to
Langlands parameters.

In this article, we verify the conjecture in [3] for the principal series of
the p-adic group G,. We have chosen this example as a challenging test case.

Let T' denote a maximal torus in Go, and let TV denote the dual torus in
the Langlands dual Gy

TV C Gy = Gy(C).

Since we are working with the principal series of Go, the algebraic variety D
has the structure of the complex torus 7.

Let X(TV) denote the group of characters of T and let X,(T) denote
the group of cocharacters of T'. By duality, these two groups are identified:
X, (T) = X(T). Let U(T) denote the group of unramified characters of T.
We have an isomorphism

TV%W(T)v tHXt

where
xe(¢(@wr)) = (1)

forallt € TV, ¢ € X.(T) = X(TV), and wp is a uniformizer in F.

We consider pairs (7, \) consisting of a maximal torus 7" of G and a
smooth quasicharacter A of T. Two such pairs (T}, \;) are inertially equivalent
if there exists g € G and i € ¥(T3) such that

T2 = Tlg and )\? = )\2 & @Z)
Here, TY = g 'T1g and \{ : z — A\ (gzg™') for z € TY. We write [T, Ng
for the inertial equivalence class of the pair (7', A) and T(G) for the set of all

inertial equivalence classes of the form [T, A]s.
We will choose a point s € T(G). Let (T, \) € s. We will write

D* = {A®y: e U(T)}

for the ¥(7T)-orbit of X\ in Irr(7"). Let W(T') be the Weyl group Ng(T')/T.
We set
W2 ={weW() : w-\e& D}. (1)
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We have the standard projection
7w D3 J/W?® — D /W=,
Section 1: this leads up to our main result, see Theorem 1.4.

Section 2: we explain the strategy of our proof. Theorem 2.1 establishes
that the extended quotient TV //W* is a model for the space of Kazhdan-
Lusztig indexing triples. Theorem 2.1 depends crucially on the Springer cor-
respondence [12, Theorem 10.1.4].

Section 3: this contains background material on Gs.

Sections 4—38: these sections are devoted to our proof, which requires 20
Lemmas. The Lemmas are arranged in a logical fashion: Lemma x.y is a
proof of part y of the conjecture for the character A of T" which appears in
section x. These Lemmas involve some detailed representation theory, and
some calculations of the ideals J. in the asymptotic algebra J of Lusztig.
The computation of the ideal J, in section 8 is intricate. Our result here is
especially interesting. We establish a geometric equivalence

Jo, = O(TY /W*) & C

where e is the lowest two-sided cell and A = y®x with x a ramified quadratic
character of F'*. This geometric equivalence has the effect of separating the
two constituents of an L-packet in the principal series of Go.

Let Irr(G)*® denote the s-component of Irr(G) in the Bernstein decom-
position of Irr(G). We will give the quotient variety TV /W?* the Zariski
topology, and Irr(G)® the Jacobson topology. We note that irreducibility
is an open condition, and so the set JR® of reducible points in TV /W*, i.e.
those (M, ® A) such that when parabolically induced to G, ¥ ® A becomes
reducible, is a sub-variety of TV /W?*. The reduced scheme associated to a
scheme X° will be denoted X, as in [9, p.25]. In the present context, a
cocharacter will mean a homomorphism of algebraic groups C* — TV.

Let H*(G) be the Bernstein ideal of Hecke algebra of G determined by
s € T(G). The point s € T(G) and the two-sided ideal H*(G) are said to be
toral.

We continue with the same notation: G = Gy(F) is the group of F-points
of a reductive algebraic group of type Gy. Let GY = G3(C) be the complex
reductive Lie group dual to G, and let TV C Go(C). We define

W2 =W X(TV). (2)
The group W* is a finite Weyl group and Was is an extended affine Weyl group
(that is, the semidirect product of an affine Weyl group by a finite abelian
group), see Section 2.



Then, as any extended affine Weyl group, the group Wj is partitioned
into two-sided cells. This partition arises (together with Kazhdan-Lusztig
polynomials) from comparison of the Kazhdan-Lusztig basis for the Iwahori-
Hecke algebra of W? with the standard basis. Let Cell(W?) be the set of
two-sided cells in W; The definition of cells yields a natural partial ordering
on Cell(W?). We will denote by ¢ the lowest two-sided cell in W¢.

Let J® denote the Lusztig asymptotic algebra of the group W; defined
in [16, §1.3]: this is a C-algebra whose structure constants are integers and
which may be regarded as an asymptotic version of the Iwahori-Hecke al-
gebras H(W:,T) of W;, where 7 € C*. Moreover, J° admits a canonical
decomposition into finitely many two-sided ideals J* = @ J¢, labelled by the
the two-sided cells in W2,

Proposition 1.1. There exists a partition of TV //W* indexed by the two-
sided cells in W :

™vywe= | (TV)/W)e.
ceCell(W)

The partition can be chosen so that the following property holds:
TV JWe C (T [JW?)e. (3)

Remark 1.2. The cell decomposition in Proposition 1.1 is inherited from the
canonical decomposition of the asymptotic algebra J® into two-sided ideals
J&: see (31), (45), (49), (53), and Lemma 4.1, 6.1, 7.1, 8.1. We will also see
there that the inclusion in (3) can be strict.

We choose a partition

™vywe= | J (@)W,

ceCell(Wg)

so that (3) holds. We will call (T //W?). the c-component of TV //W*.

We will denote by k the coordinate algebra O(TY/W?) of the ordinary
quotient TV /W*. Then k is isomorphic to the center of H(W?, 1), [14, §8.1].
Let

Gr: HWZ, T) — J* (4)
be the C-algebra homomorphism that Lusztig defined in [16, §1.4]. The
center of J® contains ¢.(k), see [16, Prop. 1.6]. This provides J° (and also
each J2) with a structure of k-module algebra (this structure depends on the
choice of 7). Both H(W?,7) and J¢ are finite type k-algebras.

We will assume that p # 2,3,5 in order to be able to apply the results
of Roche in [23]. By combining [23, Theorem 6.3] and [2, Theorem 1}, we
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obtain that the ideal H*(G) is a k-algebra Morita equivalent the k-algebra
H(W;, q), where ¢ is the order of the residue field of F. On the other hand,
the morphism ¢,: H(Wj,q) — J* is spectrum-preserving with respect to
filtrations, see [4, Theorem 9.

In [2, §4] we introduced a geometrical equivalence < between finite type
k-algebras, which is generated by elementary steps including Morita equiv-
alences and morphisms which are spectrum-preserving with respect to fil-
trations. Hence it follows that the Bernstein ideal H*(G) is geometrically
equivalent to J*:

H(G) < J°. (5)

Remark 1.3. We observe that similar arguments show that the geometrical
equivalence in (5) is true for each toral Bernstein ideal H*(G) of any p-adic
group G (with the same restrictions on p as in [23, §4]), which is the group
of F-points of an F-split connected reductive algebraic group G such the
center of G is connected.

By a case-by-case analysis for G = Gy(F'), we will prove that the k-algebra
J* is itself geometrically equivalent to the coordinate algebra O(TV //W*) of
the extended quotient T //W*:

J* = O(TY )/W?*). (6)
The geometrical equivalence (6) comes from geometrical equivalences
JE= O(TV)/W*).), for each ¢ € Cell(W?) (7)

that will be constructed in Lemma 4.1, 6.1, 7.1, 8.1.
Let ¢ be a two-sided cell of W;. Then (7) induces a bijection

ne: (T )/W*)e — Irr(Jg). (8)
We will denote by n°: TV //W* — Irr(J°) the bijection defined by
n°(t) = ne(t), fort e (T7//W?)e. (9)

On the other hand, let ¢? . : H(W?,q) — J¢ denote the composition of the
map ¢, and of the projection of J onto J:. Let E be a simple JZ-module,

through the homomorphism ¢¢ ., it is endowed with an H(W¢, ¢)-module

~ q’C7
structure. We denote the H(W;, ¢)-module by (¢; .)*(£). Lusztig showed in
[16] (see also [25, §5.13]) that the set

¢ atwo-sided cell of W?

S * . .
{( 0c) (E) E  asimple Jomodule (up to 1somorphlsms)} (10)
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is a complete set of simple H (W, ¢)-modules.
Hence we obtain a bijection

i TV//WE — Irr(H(ng’ q))
by setting

() = (d3.0)" (ne(t))  for t € (T J/W?)e.

Let
' TV JJW* — Irr(G)®

denote the composition of i® with the bijection
0°: Trr(H(W?,q)) — Irr(G)*

defined by Roche [23].
We have

=00 (¢y)" o’

(11)
(12)

(13)

(14)

We should emphasize that the map p® is not canonical: it depends on a

choice of geometrical equivalence inducing n®.

Here is our main result, which is a consequence of 20 Lemmas: Lemma

4.1,4.2,4.3, 4.4, 45,6.1,6.2,6.3, ..., 8.1, 82, 8.3, 8.4, 8.5.

Theorem 1.4. Let G = Go(F') with p # 2,3,5. Let s = [T, Ng with A a

smooth character of T. Let c denote a two-sided cell of

We=W* x X(TV).

Then we have

1. The algebra J: is geometrically equivalent to the coordinate algebra of

(T //W*)e

2. There is a flat family X5 of subschemes of TV /W, with T € C*, such

that

X = (T )W =TV W), X, =R

The schemes X7, :{f/ﬁ are reduced.

3. There is a cocharacter
he: C* =TV

such that, if we set wi(t) = n%(he(T) - t) for allt € (TV//W?)., then,
for each 7 € C*, w2: TV //W* — TV /W= is a finite morphism with

() sea = (T JJ WP = T /W),
We have he, = 1.



4. The geometrical equivalence in (1) can be chosen so that
(inf.ch.)op® =myg
5. Let E® denote the mazimal compact subgroup of TV. Then we have
W ()W) = ' (G)".

Remark 1.5. Theorem 1.4 shows in particular that Conjecture 3.1 in [3]
and part (1) of Conjecture 1 in [2] are both true for the principal series
of Go(F'). Moreover, we observe that the statement (2) in Theorem 1.4
is slightly stronger than the statement (2) in Conjecture 3.1 of [3] in the
sense that cocharacters are dependent only on the two-sided cells, and not
on the irreducible components of TV //W* (in general, (T //W?*). contains
more than one irreducible component, see Lemmas 4.1, 6.1 and 7.1). Also
the bijection p° is not a homeomorphism in general (see the Note after the
proof of Lemma 8.1).

We would like to thank Goran Muié¢ for sending us several detailed emails
concerning the representation theory of G, and Nanhua Xi for sending us
several detailed emails concerning the asymptotic algebra J of Lusztig.

2 The strategy of the proof

Let G = Go(F) and let s € T(G). In this section we will both explain the
strategy of the proof of Theorem 1 and recall some needed results from [11],

[17] and [22].

2.1 The extended affine Weyl group V~V§

It will follow from equations (27), (43), (44), (48) and (51), that the possible
groups W* are the dihedral group of order 12, Z/27 (the cyclic group of
order 2), the symmetric group Ss, and the direct product Z/2Z x Z/27. In
particular, W* is a finite Weyl group. Let ®° denote its root system, and let
Q° = ZP* be the corresponding root lattice.

The group W7 := W* x ° is an affine Weyl group. Let S® be a set
of simple reflections of W such that S* N W?* generates W* and is a set of
simple reflections of W*. Then one can find an abelian subgroup C* of W?
such that ¢S® = S%c for any ¢ € C® and we have W = W? x C®. This shows
that W; is an extended affine Weyl group. Let ¢ denote the length function
on W2. We extend ¢ to W by {(wc) = £(w), if w € W2 and ¢ € C.
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2.2 The Iwahori-Hecke algebra H(W;, T)

Let T be an indeterminate and let A = C[7,77!]. Let W € {Wg W=}, We
denote by H(W, ) the generic Twahori-Hecke algebra of W, that is, the free
A-module with basis (7,)weww and multiplication defined by the relations

Tl = Tyw, if (lww') = L(w) + ((w'), (15)
(T, — ) (Ts+ 717" =0, if s € 5% (16)

The Iwahori-Hecke algebra H(W, 7) associated to (W, 7) with 7 € C* is
obtained from H(W,T) by specializing 7 to 7, that is, it is the algebra
generated by T,,, w € W, with relations (15) and the analog of (16) in which
T has been replaced by 7.

We observe that the works of Reeder [22] and Roche [23] reduce the study
of Irr*(@) to those of the simple modules of H(W?, ). A classification of these
simple modules by indexing triples (t,u, p) is provided by [11] and [22]. We
will recall some features of this classification in the next subsection.

2.3 The indexing triples

Let @ denote the coroot systems of W* and let Y(T") denote the group
of cocharacters of TV. Let H® be the complex Lie group with root datum
(X(TV), @5, Y(TV), ®). We will see that the possible groups H* are Gy(C),
GL(2,C), SL(3,C) and SO(4, C). We will consider these cases in sections 4,
6, 7 and 8, respectively.

Let L = Wg x SL(2,C) denote the local Langlands group, let Ir be
the inertia subgroup of Wg, let Frobr C Wg be a geometric Frobenius (a
generator of Wg/Ip = 7Z), and let ® be an L-parameter:

¢ € Homy(Lp, H®)/ ~ .

We assume that & is unramified, that is, that ® is trivial on Ir. We will still
denote by @ the restriction of ® to SL(2, C).
Let u be the unipotent element of H® defined by

uch(g }). (17)

We set t = ®(Frobg). Then ¢ is a semisimple element in H® which commutes
with u. Let Zys(t) denote the centralizer of ¢ in H® and let Z%.(t) be the
identity connected component of Zgs(t). We observe that if H® is one of the
groups Go(C), GL(2,C), SL(3,C), then Zys(t) is always connected.

9



For each 7 € C*, we set

aﬂ:¢<gT2>eznw.

Lusztig constructed in [17, Theorem 4.8] a bijection U +— c(U) between
the set of unipotent classes in H*® and the set of two-sided cells of W?. Let
c be the two-sided cell of W; which corresponds by this bijection to the
unipotent class to which u belongs and then let the L-parameter ® be such
that (17) holds. We will denote by F. the centralizer in H* of ®(SL(2,C));
then F¢ is a maximal reductive subgroup of Zys(u).

Define a cocharacter h.: C* — TV as follows:

he(r) i= @ ( g 791 )

o:=he(y/q) -t (18)

Then the element

satisfies the equation
ouo ! = u, (19)

For o a semisimple element in H® and u a unipotent element in H*® such
that (19) holds, let B, be the variety of Borel subgroups of H* containing o
and u, and let A,, be the component group of the simultaneous centralizer
of o and w in H®. Let 7 (H?®) denote the set of triples (o, u, p) such that o is a
semisimple element in H®, u is a unipotent element in H* which satisfy (19),
and p is an irreducible representation of A,, such that p appears in the
natural representation of A,, on H*(B;,,,C).

Reeder proved in [22], using the construction of Roche [23], that the set
Irr*(G) is in bijection with the H®-conjugacy classes of triples (o, u,p) €
T (H?). The irreducible G-module corresponding to the H®-conjugacy class
of (o,u, p) will be denoted V; , , and we will refer to the triples (o,u,p) as
indezing triples for Irr®*(G).

Theorem 2.1. Let T (H?®)/H* denote the set of conjugacy classes of indexing
triples (o,u,p). Assume that, for each t € TV, the centralizer Zys(t) is
connected. Then the extended quotient TV //W* is a model for T (H®)/H*:

T(H?)/H*=T"Y//W*.
Proof. We recall the definition:
TV /W = {(w,t) :w-t =t}/W*.

10



Note that
wet=t <= wtw ' =t <= w € Ly-:(t).

Then we can interpret Zy-(t) as the Weyl group of the centralizer
C(t) :==Zps(1).

From Theorem 3.5.3 of [8] the neutral component of C(t) is generated by the
torus TV and the root subgroups X, such that « satisfies a(t) = 1. Note
that the condition a(t) = 1 is equivalent to the condition s,ts;' = t (as
observed, for instance, by Carter in the proof of [8, Theorem 3.5.6]). From
[8, Theorem 3.5.4], the neutral component of C(t) is a reductive group with
root system the subset of the root system of H® formed by the roots « such
a(t) = 1 and its Weyl group is generated by the s, such a(t) = 1. This gives
what we need, since we have assumed that C(t) is connected.

If we remove the connectness assumption, we can use [8, Theorem 3.5.3]
again to see that C(t) is then generated by the torus T, root subgroups X,
such that « satisfies a(t) = 1, and the elements w in W* which centralize
t. The general result says that the centralizer in W* of t is the semidirect
product of the Weyl group of C'(#)° (the neutral component of C(t)) by the
group of connected components of C'(t), that is:

Zws (t) - WC(t)O X A(t)

where A(t) := C(t)/C(t)°. The group A(t) can be identified with the group
of elements in Zy(t) which fix a Borel subgroup B D TV of H®, it acts on
WC’(t)O'

In the case of principal interest in this paper, namely G = G, all the
groups C(t) are connected: this is because Gy is semisimple and simply
connected. The only possibilities for C(t) are:

TV, GL(2,C), SL(3,C), SO(4,C), Gs(C).

An element in the extended quotient 77 //W* is the W*-orbit of a pair
(w,t) for which w -t = t. We will consider one such pair (w,t). Then w
belongs to a unique conjugacy class in the Weyl group We of C(t). We
choose a bijection between the set of conjugacy classes in W) and the set
of irreducible characters of Wg): this determines an irreducible character
X(w,zt) of We. This irreducible character is attached to the pair (w,t).

Now we apply the Springer correspondence to the irreducible character
X(wzt) of Wey: this gives a unipotent class u in C'(t) and an irreducible
character p of the group of components of Z¢ ) (u). We have

Ty (1) = Zygs () 1 C(t) = Zigs () N Zggs (£).
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In other words, we recover the group of components which occurs in the
definition of the KL-indexing triples.
This creates the required map:

VW — T(H*)/H®,  (t,w) v~ (o,u,p)

where o is defined in terms of ¢ by equation (18). This bijection is not
canonical in general, depending as it does on a choice of bijection between the
set of conjugacy classes in W () and the set of irreducible characters of We ).
When G = GL(n), the finite group We () is a product of symmetric groups:
in this case there is a canonical bijection between the set of conjugacy classes
in Wg) and the set of irreducible characters of We(y, see [12, Theorem
10.1.1]. ]

L-parameters: Let W} be the topological abelianization of Wy and let
I7. be the image in W} of the inertia subgroup Ir. We denote by

rp: Wi — F*

the reciprocity isomomorphism of abelian class-field theory, and set wp =
rrp(Frobp) a prime element in F. Then the map = +— x(wp) defines an
embedding of X(TV) =Y (T) in the p-adic torus 7. This embedding gives a
splitting 7' = T'(or) x X(TV).

We assume given (¢,u) as above, i.e.,t = ®(Froby) and u satisfies (17).

Let A\° be an irreducible character of T'(or), and let A be an extension of
A to T. Let

A T4 — TV

be the unique homomorphism satisfying
zoA=MNozorg, forzeX(TV), (20)

where z is viewed as in X (T") on the left side of (20) and as an element of
Y (T') (a cocharacter of T") on the right side.
The choice of Frobenius Frobyr determines a splitting

Wp = I} x (Frobp),
so we can extends \ to a homomorphism At We — GY by setting
M (Frobg) := t.
Then we define (see [22, § 4.2]):

$: We x SL(2,C) = GY  (w,m) — A(w) - B(m).

12



2.4 The asymptotic Hecke algebra J°

Let ™ A — A be the ring involution which takes 7" to 7™ and let h — h be
the unique endomorphism of H(W? 1) which is A-semilinear with respect
to: A — A and satisfies T, = T, ! for any s € S®. Let w € WZ. There is a
unique

Cy € @ Z[t YT, such that

weWg
C,=C, and C,=T, (mod @ (@ ZT™)T,)
yeWs m<0
(see for instance [18, Theorem 5.2 (a)]). We write
Cyp = Z P,wT,, where P,,, €Z[T7"].

yeWws

For y € W7, c, c~’ € C*, we define Py, as P, if c = ¢ and as 0 otherwise.
Then for w € W7, we set Cpy = > e Py Tyy. It follows from [18, Theo-

rem 5.2 (b)] that (Cy),cps is an A-basis of H(W?, 7). For z,y,w in W, let
hayw € A be defined by

Co-Cy= Y hayuwCu.

wEV~V§
For any w € W; , there exists a non negative integer a(w) such that

hm,y,w € Ta(w) Z[T_l] for all T,y € W:,
Py & o(w)-1 ZlT™1] for some z,y € W;

Let 7, -1 be the coefficient of 7%%) in h, .
Let J° denote the free Abelian group with basis (t,),cis. Lusztig has
defined an associative ring structure on J* by setting

lp -ty = Z Veyw-1 tw. (This is a finite sum.)

w€W§

The ring J® is called the based ring of W; It has a unit element. The
C-algebra
JP =] ®, C (21)

is called the asymptotic Hecke algebra of W;

13



For each two-sided cell ¢ in W;, the subspace J spanned by the t,,

w € ¢, is a two-sided ideal of J°. The ideal J3 is an associative ring, with a
unit, which is called the based ring of the two-sided cell ¢ and

= D K (22)

ceCell(W3)

is a direct sum decomposition of J° as a ring. We set J¢ := J ®z C.

3 Background on the group G»

Let G = Gz be a group of type Gy over a commutative field I, and let Go(FF)
denote its group of F-points.

3.1 Roots and fundamental reflexions

Denote by T a maximal split torus in G, and by ® the set of roots of G with
respect to T. Let (g1, €2, €3) be the canonical basis of R?, equipped with the
scalar product ( | ) for which this basis is orthonormal. Then « := &1 — e,
b := —2¢1 + €9 + £3 defines a basis of & and

Ot ={a,B,a+ B,2a+ 3,3a + 3,3a + 26}

is a subset of positive roots in ® (see [7, Planche IX]).

We have
(ala) =2, (5|6) =6 and (a]f) = 3. (23)
Hence, « is short root, while 3 is long root.
We set 27/ 1)
T
n(vy,7) =) = = (24)
(1)
(see [7, Chap. VI, §1.1 (7)]). We will denote by s, the reflection in W which
corresponds to 7, i.e.,s,(z) ==z — (x,7")y. We set a := s,, b := sz and
r = ba.

23 _21) , and the values of a and b on

The Cartan matrix for Go(F) is (

the elements of ®* are given in the table 1.

We write B = TU for the corresponding Borel subgroup in Gy(F) and
B = TU for the opposite Borel subgroup. Denote by X(T) the group of
rational characters of T. We have

X(T) =ZQ2a+ B) + Z(a + ). (25)
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ala) = —«a a(f) =3a+
a(a+f0) =2a+0 aa+pB) =a+p
a(Ba+p) =70 a(3a+26) =3a+ 20
o) = o1 W) =
bla+pB) =a b2a+f) =2a+ 4
b(Ba+ ) =3a+26| b(Ba+28)=3a+p

Table 1: Values of a and b.

We identify T'= F* x F* by
Coi t— (2a+ B) (1), (a+ B)(1)). (26)
In this realization we have

a(ty, ty) = t1t517 Bty ta) = tfltg
a(ty,ta) = (ta, t1), bt ts) = (t1, t1ty ")

The Weyl group W = Ng,@)(1")/T has 12 elements. They are described
along with the action on the character xy; ® yo of "= F* x F*:

w w(x1 ® x2)
L. 1 X1 @ X2
2. a X2 ® X1
3. b X1X2 @ Xz_l
4. ab X' ® X1X2
5 ba 12 ®Xxi
6. aba X7 ®XxiX2- (27)
7. bab 1 ®@x X!
8.  abab Xflxgl ® X1
9.  baba x2® Xflxgl

10. ababa Xx7'x3' ® xo
11. babab x5 @ xi*
12. bababa x7' @ x5

3.2 Affine Weyl group, two-sided cells and unipotent
orbits

Let W, := W x X(TV) denote the affine Weyl group of the p-adic group
G = Ga(F). Denote by {a,b,d} the set of simple reflections in W,, with
W = (a,b) and (ab)® = (da)* = (db)? = e.

15



As in the case of an arbitrary Coxeter group, the group W, is partitioned
into two-sided cells. The definition of cells yields a natural partial ordering
on the set Cell(W,) of two-sided cells in W,. The highest cell ¢, in this
ordering contains just the identity element of W,. Lusztig defined in [15] an
a-invariant for each two-sided cell. The a-invariant respects (inversely) the
partial ordering on Cell(W,).

The group W, has five two-sided cells c., c1, €2, c3 and cq (see for instance
(25, §11.1]) and the ordering occurs to be total: ¢y < ¢3 < ¢y < ¢; < c,
with

c. ={weW, : alw) =0} = {e},

ci={weW, :alw)=1},
co={weW, :alw) =2},
c; ={weW, : alw) =3},

co={we W, : a(w) =6} (the lowest two-sided cell).

For a visual realization of the two-sided cells see [10, p. 529].

Let U denote the unipotent variety in the Langlands dual G¥ = Gy(C)
of G. For C, C' two unipotent classes in GV, we will write C' < C if ('
is contained in the Zariski closure of C. The relation < defines a partial
ordering on . In the Bala-Carter classification, the unipotent classes in
GY are 1 < Ay < Ay < Gy(ag) < Gy (see for instance [8, p. 439]). The
dimensions of these varieties are 0, 6, 8, 10, 12. The component groups are
trivial except for Go(aq) in which case the component group is the symmetric
group S3. The group S3 admits 3 irreducible representations; two of these,
the trivial and the 2-dimensional representations, namely p;, p2, appear in
our construction. In [21], Ram refers to 1, Aj, A;, Ga(a;) and Gy as the
trivial, minimal, subminimal, subreqular and regular orbit, respectively.

The bijection between Cell(W,) and U that Lusztig has constructed in
[17] is order-preserving. Under this bijection, c. corresponds to the regular
unipotent class and ¢y corresponds to the trivial class. If the two-sided
cell ¢ corresponds to the orbit of some unipotent element u € GV, then
a(c) = dim B, where B, denotes the Springer fibre of u (that is, the set
of Borel subgroups in GV containing ). Lusztig’s bijection is described as
follows:

Ce < G2 C1 < G2<a1) Co < A1 C3 < A1 Cpo < 1.
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3.3 Representations

Let R(G3) denote the Grothendieck group of admissible representations of
finite length of Go. With A € U(T'), we will write I(\) := igr(A) for the
induced representation (normalized induction). We will write ¢(igr(\)) for
the length of this representation, |igr(A)| for the number of inequivalent
constituents.

Let v denote the normalized absolute value of F'. Using [20, Prop. 3.1]
we have the following result: 1(11x1 ® 1ox2), with 11, 1y unramified, and
1X1, Y2 X2 nonunitary, is reducible if and only if at least one of the following
holds:

Pix1 =V l/)%%X%XQ =V %D%?/JQX%Xz =v! P1axix2 = v

PaXe =V PYix1 = vt ¢1¢§X1X% =V ¢1¢§X1X§ =yt (28)
haxa = vt ihaxaxe = v Uiy xaxa =V iy xaxs = v

that is, if and only if there exists a root v € ® such that
(X1 ® x2) 07 = v (29)

From now on we will assume that F = F', a local non Archimedean field.
Let G = Gy and let s = [T, x1 ® xa]g. Let W(F*) denote the group of
unramified quasicharacters of F*. We have

D* = {t1x1 ® thaxa : 1,00 € U(FX)} = {(21,22) : 21,20 € C*} = TV,

the Langlands dual of T', a complex torus of dimension 2.
Let U*(F*) denote the group of unramified unitary quasicharacters of F'*
and let £ = E® be the maximal compact subgroup of D*. We have

E® = {{h1x1 @ Yaxz : 1,00 € UH(FX)}.
Let w € W(T) = W. Then we have
5= [T7 X1 ® XZ]G = [T,U) : (Xl X X?)]G' (30)

We are also free to give x an unramified twist: this will not affect the inertial
support.

4 The Iwahori point in T(Gy)

We will assume in this section that s = i = [T, 1]¢. We have W' = W and
W} =W,. The group W is a finite Coxeter group of order 12:

W = {a,b,a®> = b*> = (ab)® = 1).
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Representatives of W-conjugacy classes are:

{e,r, 2,3, a, b}.

Definition. We define the following partition of T //W:

™vw= ||

c;€Cell(W,)

where

N /N /N /N A/
~
<
=
\_/\_/\_g/\_/\_/
8
I
A~~~ /N —~
~N
<

TV /W )eg - TV /W.

(Tv//W)Civ

(31)

NoOTE 1. The Springer correspondence for the group Gy (see [8, p. 427])

is as follows:

$1,0
P21
/
1,3
P2,
/!
1,3
P16
Each of the following two bijections:
(r) < 1o
(r’) P21
(r’) < d13
(a) < @2
(b)) /1,,3
(1) < e

1111171

Ce

(c1,p1)
(c1,p2)

Co
C3

Cop.

(

(r

r

N~

r

a
b
1

3

)
’)

)

)
)
)

111111

b1
/
1,3

D21

G22
/!
1,3

P16

by composing with the Springer correspondence, sends

e (r) to the unipotent class in GV corresponding to c.,

e (r?) and (r?) to the unipotent class in G corresponding to ¢y,
e (a) to the unipotent class in G corresponding to cs,
(

e (b) to the unipotent class in G corresponding to cs,
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e (1) to the unipotent class in GV corresponding to co.

This is compatible with (31). Thanks to Jim Humphreys for a helpful
comment at this point.

NOTE 2. The correspondence between conjugacy classes in W and unipo-
tent classes in GV in Note 1 can be interpreted as a partition of the set W
of conjugacy classes in W indexed by unipotent classes in G':

W=||s.. (32)

where u runs over the set of unipotent classes in GV. Moreover, each s, is a
union of n, conjugacy classes in W, where n,, is the number of isomorphism
classes of irreducible representations of the component group Zgv (u)/Zgv (u)°
which appear in the Springer correspondence for GY. In [19, §8-9], Lusztig
defined similar kind of partitions in a more general setting and more canonical
way for adjoint algebraic reductive groups over an algebraic closure of a finite
field. The partition (32) coincides with those obtained by Lusztig for a group
of type Gg on the top of page 7 of [19].

Let J = J' be the asymptotic Iwahori-Hecke algebra of W, let A! denote
the affine complex line, let I denote the unit interval, and let < be the
geometrical equivalence defined in [2, §4].

Lemma 4.1. We have

(T //W)e, = pt. (T /W )e, = pta U pty U pts L pty
(T )| W)ey = A (TY )W )es = A,

E//W = pt, U (pty Upts Upts Upty) UTUTL E/W,
and J =< O(TV //W), where Jo, < O(TV //W)¢,), and

Jeo ~morita O((TV//W)ce> Jey ~morita O((TV//W)w)
JC3 ~morita O((TV//W)%) JCO ~morita O((T\///W)CO)'

Proof. The centralizers in W are:
Z(1) =W, Zr)=(r), Z0°)=(r), Z0°)=W
Z(a) = (r® a), Z(b) = (r’,b)

Case-by case analysis. We will write X = TV.
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e c=cy, c=1. X/7Z(c)=X/W.
ec=c, c=r. X=(1,1), X/%Z(c) = pt..

ec=oc,c=r X={(1,1),(-1,1),(1,-1),(=1,—-1)}. Note that
(1,1) is fixed by W and

(=1, =1) ~pap (—1,1) ~, (1, -1)
are in a single W-orbit. X¢/Z(c) = pt; U pty. Also, attached to this
cell, c=r% X¢={(1,1),(4,7), (5% 5%}, where j = exp(27i/3). Now
(G:3) ~ea (5°,57)
are in the same Z(c)-orbit. X¢/Z(c) = pts U pt4.
e c=a X°={(z,2):2€ C*}.

X/7(c) = {{(z,2),(z 1,z )} : 2z € C*} 2 AL,

e c=0b. X°={(z2,1): z2€ C*}.

X¢/7(c) = {{(z,1),(z71, 1)} : z € C*} = AL

Let F, denote the maximal reductive subgroup of the centralizer in GV
of the unipotent class corresponding to ¢ and let Rp, denote the rational
representation ring of F.

e We have F,, = G". Since the group G, is F-split adjoint, we have (see
[2, Theorem 2]):

O<TV/W) ~morita Jco-

Let 1e,: TV /W — Trr(Je,) denote the bijection induced by the Morita equiv-
alence above.

e The reductive group Fp, is the center of GV and that J.,, = C. Let
Ne, (pt«) be the simple module of J..

o Let ¢ € {2,3}. We have Fi, ~ SL(2,C). In proving the Lusztig conjec-
ture [17, Conjecture 10.5] on the structure of the asymptotic Hecke algebra,
Xi constructed in [25, §11.2] an isomorphism

Jci ~ MG(RFci)'

This shows that
Jci ~morita O(Al)
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It follows that .
Jci ~morita (TV//W1>CZ-7 for i =2,3. (33)

Let ne,: (TV//WY)e, — Irr(Je,) denote the bijection induced by the Morita
equivalence (33).

e According to [25, §11.2], we have F,, = Ss3, the symmetric group on
{1,2,3}. We write S3 = {1, (12), (13),(123), (132),(2,3)}. Let

T={1}, (12)={(12),(13),(23)} and (123) = {(123),(132)}

denote the three conjugacy classes in S3. According to [25, §11.3, §12], the
based ring J., has four simple modules: (FEy,m ), (Ea,ms), (E3,73), (Ey,m4)
with dim £} = dim Ey = 3, dim F3 = 2, dim F; = 1, where

By =FE;,, By=Eg;, BEi=Egy E=FE

17p17 192’

(34)

using the notation [25, §5.4].
Consider the map e, : Jo, — M3(C) & M3(C) & My(C) & C, defined by

de, () = (m1(x), ma(x), m3(x), m4(x)), for x € Jq,.

The map d,, is spectrum-preserving. For the primitive ideal space of J., is
the discrete space {E1, Fa, E3, E4} and the primitive ideal space of M3(C) @
M;3(C) & My(C) & C is {pt U pt LI pt L pt}.

Then we get J, < C* < O((TV//W),,). Moreover we can choose the geo-
metrical equivalence J., < O((TY//W)e,) in order that the induced bijection
Ney: (TV )W )e, — Irr(Je,) satisfies

Ne, (pti) = E;  for 1 <i <4, (35)
O
Lemma 4.2. The flat family is given by
X (1—7%y)(x — %) = 0.

Proof. The curves of reducibility &;, &, €3, with & U & U & =X 5 =R,
are given by

¢ = {(Yevy e V(F)} = {(z,q7"2) : z€C*},
¢ = {Yov:ypeV(F*}={(zq¢"):2eC"}.

We write down all the quasicharacters of T" which obey the reducibility
conditions (28):

VY, VI @y, 0 @y, @ Y@y, @y
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Vv Ry, v @Y, vy Ty, p @y Y @yrT Y @y

with 1) an unramified quasicharacter of F’*. These quasicharacters of T fall
into two W -orbits:

{1. W (Y ®v),
2. W- (¢ @vy).

For the first W-orbit, we obtain the curve
C={vvy: e V(F)}=2{(z,¢'2):2€C}.
The second W-orbit creates the curve

C={YRuv:ipecp(F*}=2{(z,¢"):z€C*}
[

Lemma 4.3. For each two-sided cell ¢ of W', the cocharacters he are as
follows:

hey =1, he, (T) = (7—’ 7—_1)7 th(T) = (7—7 7—_2)’
he (1) = (172,1), he (1) = (772,77%)

Now define
() = m(he(7) - )

for all x in the c-component. Then, for allt € TV /W we have
4 (O] = ligr(t)]-

Proof. Let € be the unique unramified quadratic character of F'*, and let w
denote an unramified cubic character of F'*. In the article of Ram [21] there
is a list t,,...,t; of central characters, their calibration graphs, Langlands
parameters and indexing triples. After computing the calibration graphs, we
are now able to identify these central characters with points in the complex
torus TV = U(T):

fa= <q_1,q_2) =ve Vz’ ty = (Z7q_1z) = ¢ X Vw7 t. = (]7 q_1j> =W rw,
tqg = (qfl, —1> =VQReE, t. = <q*1’ 1) =r®l, tp = (q2/3’q71/3> _ V72/3®V1/3’
ty= (g%, V) = v 2@ty = (L 2) = v @,
ti = (q_17q—1> =R v, t] — (q—1’q1/2> - ® V_1/2
with 2 = i(wr). We have

CoNCy = {ta, ta, te}.
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We compare the description of the irreducible components of /(1 ® v)
given by Mui¢ [20] with those which occur in Ram’s table [24, p.20]. Then
it follows from [20, p. 476 and Prop. 4.3] that

(1@ ) =1(1) +7(1) + Ja(1/2,6(1)) + 2J5(1/2,5(1)) + Js(1, 7(1, 1))

so that
((I(1®v)) =6, I(1®v)| =5.

When we collate the data in the table of Ram [24, p.20], we find that
ligr(te)| =5
ligr(t)| =4 if t=t,, t. tq
licr(t)| =2 if t=tyts ty th, ti, 1.
We have

|7r\_/%(t)| =4 if t=t, t., tg
mAB =2 i =ttty bt
Consider the two distinct points in (7V)*/Z(a), the affine line attached

to the cell c,:

G/Vai/va), (/a5
The map 7 5 sends these two points to the one point ¢. € TV /W since
(4,7/9), (5%, 4%/q) are in the same W-orbit: (J,7/q) ~aba (32, 5%/q)- O

Lemma 4.4. Part (4) of Theorem 1.4 is true for i € B(Gs).

Proof. We will denote elements in the five unipotent classes of Go(C) by 1,
ug, Ug, U1, U (trivial, minimal, subminimal, subregular, regular).

We recall that the irreducible G-module in Irr'(G) corresponding to the
Kazhdan-Lusztig triple (o,u,p) is denoted V, . According to [21, Ta-

Vi _ P — dim Vi _
ble 6.1], we have dimV, , . =1, dmV;, , = dimV; ,, = 3, and
dimV; , ; = 2. Hence we have

c, U1,

i _ i _ i _ i _
Vtevulva - E4vq’ Vte,m,m - El,q, tg,ui,l T Equ’ te,ul,l E3v‘1’
p— * 1

where E; , := ¢ . (E;), with Ej as (34).

The semisimple elements ¢, o below are always related as in equation (18),
that is,

o =he(\/q) t =7 4(t).
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Then the definition (12) of u' gives (using the maps 7. defined in the proof
of Lemma 4.1):

i1, dfteTV/W,

pi(t) = ;,uz,l , if t € A! (attached to cy),
;,u3,1 , if t € A! (attached to c3);

two of the isolated points are sent to the L-indistinguishable elements in the
discrete series which admit nonzero Iwahori fixed vectors:

_ i

1 Pt) =V g 0 = Vi

and
:u‘(pt2) = thd,u1 1

,U/I(ptg) - l}c,uhl
1 (pt) = V4 wa

Now the infinitesimal character of V} , , is o, therefore the map p' satisfies

inf.ch.opu' = T /g
The map p' is compatible with the cell-partitions

p((TY[/W)e) € Ir'(G)e.

Lemma 4.5. Part (5) of Theorem 1.4 is true for i € B(Gy).

Proof. As for the compact extended quotient, this is accounted for as follows:
The compact quotient £ /W is the unitary principal series, one unit interval
is one intermediate unitary principal series, the other unit interval is the
other unitary principal series, and the five isolated points are the remaining
tempered representations itemized in [21, 20]. H

NOTE. Among the tempered representations of G which admit non-zero
Iwahori fixed vectors, those which have real central character are in bijection
with the conjugacy classes in W. For G of type Gg, they are (see [21, Fig. 6.1,
Tab. 6.3]):

i i i i i i
t071=1’ Vtg7u371’ th,UQ,l? Vt€7u17p17 Vt€7u17p27 Vta7u€71'
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These representations correspond (via the inverse map of u') to points in
TV/W, (TV//W)637 (TV//W)027 Pt € (TV//W)CU Pty € (Tv//W)Clv and
pt. € (T //W)e,, respectively.

Hence the correspondence with conjugacy classes in W that we obtained
is the following:

ti()71,1 A (1)

v;g,u;371 « ()
Vtij,ug,l — (a)
Vi = 09
b (1)

Vtia,ue,l = (T)

5 Some preparatory results

5.1 The group W*

When W* = {1}, our conjecture is easily verified.

Lemma 5.1. We have W* # {1} if and only if s = [T, x ® x]¢ or s =
[T, x ® 1|g with x an irreducible character of F*.

Proof. From (1), we have
Wei={weW : w-(x1®x2) =¢(x1 ® x2) for some ¢ € U(T)}.
Let 0° := X1|o; ® X2|0;. Then we get
We={weW : w-0°=0°}. (36)

Let x¢ := Xi|,x. From (27), it follows that we have W* = {1} if and only if

OF
XT#L X#L XDG#L XT#x5 0D #L xia) #1L (37)
Hence we have W* # {1} if and only if we are in one of the following cases:
1. We have x] = x5. We may and do assume that y; = x2 = x.

2. We have x5 = 1. We may and do assume that x; = x and y» = 1.
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]

Remark 5.2. We observe that the condition (37) is equivalent to the con-
dition

((Xl & X2> © ’7\/)|o;, 7£ 17 for all v E ®.
Note that this condition is closely related to the condition (29).

Remark 5.3. The group W* admits the following description (which is com-
patible with [23, Lemma 6.2]):

We = {37 : v € ® such that ((x1 ® x2) oyv)|oé = 1}.

In particular, this shows that W* is a finite Weyl group.
5.2 The list of cases to be studied

5.2.1 W-orbits

1. The orbit W - (x ® x) consists of the following characters:

XX, X Tex L x¥exTh xTexh xex T xCex. (38
It follows that
W Cxex, x®1, 1®x if y is quadratic,
: (X ® X) - -1 -1 1 -1 . . .
X®X, X®X 7, X ®Xx, x ®@x  if xis cubic.
We have
1 if x is trivial,
3 if x is quadratic,
W (x®x)| = e (39)
4 if x is cubic,
6 otherwise.
2. The orbit W - (x ® 1) consists of the following characters:
X®1L 1oy, x@x ' x @1, 1ox™, x " @x. (40)

If x is quadratic, then we have
W-(xel)=xox, x®1L, 1®x.

We have
1 if x is trivial,
W (x®1)| =<3 if yis quadratic, (41)
6 otherwise.
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5.2.2 The cases

From now on we will assume that W* # {1}. Then the above discussion
leads to the following cases:

(1) s =i=[T,1]g. Here W* = W. Already studied in section 4.
(2) s = [T, x ® 1] with x ramified non-quadratic, see section 6.

(3) s = [T, x ® x|g with x ramified, neither quadratic nor cubic, see sec-
tion 6:

(4) s = [T, x ® x]¢ with x ramified cubic, see section 7.

(5) s = [T, x ® x]g with x ramified quadratic, see section 8.

5.3 Lengths of the induced representations

We fix root groups homomorphisms z,: F' — G and Z-homomorphisms
¢, SL(2, F) — G for v € . We have

v () = ¢, ((1) 1{), ()= ¢, (i (1)) and +Y(t) = ¢, (3 ,fl).

For v € {a, 3}, let P, be the maximal standard parabolic subgroup of G
generated by v, and M, be the centralizer of the image of (7/)¥ in G, where

,  J3a+p  ify=a,
3a+28 ify =4

Then M, it is a Levi factor for P,.
We extend (,: SL(2, F') — M, to an isomorphism (,: GL(2, F') — M, by

(6 9)) = ((6 %)) toree v

Then the restriction to T" of the inverse map of ¢, coincides with the isomor-
phism &, : TSF* x F*, where &, has been defined in (26), while

§p: 1= ((a+ P)(1), at)).

For v € {«, 8}, and ¢ a smooth irreducible representation of GL(2), let I, (o)
denote the representation of GG defined by

L(0) =Indg (0o @ 1. (42)
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Let ¢ be the Steinberg representation of GL(2) and let §(y) denote the
twist of § by the one dimensional representation y o det. Then d(x) is the
unique irreducible subrepresentation of IndgL(Q) (V2x @v~1/2y). Tt is square
integrable if y is unitary. The representation ¢ has torsion number 1, and so
all the twists {6(x) : x € V(F*)} are distinct.

The inertial support of the representation I,(d(x)) is [T, (x ® x) 0 &le if
vy=aand [T,(x ® x) 0 &slec = [T, (x ® 1) 0 &, ] if v = 5. We observe the
following consequence (which will be crucial in the sequel of the paper):

Proposition 5.4. The representations 1,(0(x)) and I5(0(x)) have same in-
ertial support when x? = 1 and have distinct inertial supports otherwise.

Lemma 5.5. Let x, ¥ be two characters of F*, with ¢ unramified and x
ramified. We set

7)2 = {(V:tl/Qa X)7 (Vil/?fa X) X 18 quadmtz’c} ,
7)3 = {(Vﬂ:l/za X)v (V:tl/2w7 X)7 (V:tl/zWQ, X) X iS CUbZ'C} s
7) - PQ U Pg.

Then we have

4 if (¥, x) € P,

I Pox @ v Pex)) = [T Pux @ v!Pey)| = .
2 otherwise,

4 Zf (¢7X> S PQ}

2  otherwise.

(I PPy @v)) = II(V‘”Q@Dx@VI:{

Proof. In R(M,), we have (see for instance [20, Proposition 1.1(ii)]):

Ind} (0 (V7 20x @ v 20x) = (1) ® (¥x o det).

Similarily, in R(Mpg) (using now [20, Proposition 1.1(iii)]), we get:

Indij\“/[([‘;]ﬂMﬁ)(V_lnwx ®@v) = 6(x) @ (Yx o det).

Then, by transitivity of parabolic induction, we obtain

I Py @ v Pyx)) = La(6(x)) + La(tx o det),
I Py @v) = I(6(yx)) + Is(tx o det).
Applying the involution Dg defined in [1], it follows from [1, Th. 1.7] that,

for v € {«, B}, the induced representations I,(0(¢x)) and I, (¢x o det) have
the same length.
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To describe the length of 1,(6(¢x)), we write ¢ = v°, s € C. Now, in a
different notation, we write

Io(Re(s), 6(¥ "m0 x)) = 1, (3(¥x)).

Then [20, Theorem 3.1 (i)] implies the following conclusion:
1. If  is neither quadratic nor cubic then I,(d(¢x)) is irreducible. Hence

L1 R @ v ) = 2.
2. If x is ramified quadratic, then [,(6(¢x)) reduces if and only if
pV=1me) € 1 €} and Re(s) = +1/2. Hence:

o If ¢ & {vF1/2 ¥/ 2} then ¢ (I(v~'*x @ v'/2Yy)) = 2.

e Otherwise, Rodier’s result [24, Corollary on p. 419] (see [20, Prop. 4.1])
implies that I(v~"/2¢x ® v'/?1y) has length 4 and multiplicity 1.

3. If y is cubic ramified, then I,(8(zx)) reduces if and only if V1™ ¢
{1,w,w?} and Re(s) = +1/2. Hence:

o If o & {v*1/2, =120 v 202} then £ (I(v~ "2y @ v 2Yy)) = 2.
e Otherwise, it follows from loc. cit. that I(v~/2xy®@v'/?¢x) has length
4 and multiplicity 1.

If x is (ramified) not quadratic then Iz(d(x)) is irreducible. Then
(I Ppx @v)) = 2.

We assume from now on that x is quadratic ramified. To describe the
length of I5(d6(¢x)), we write b = v*iy, where s € R, ) is unitary. Then
I5(6(¢x)) reduces if and only if s = +1/2 and 1§ = 1. Therefore the length
of I(v™%¢x ® v) is two unless ¢ = /2 p*1/2¢, O

~ We will denote by J° the based ring of the extended affine Weyl group
W2 defined in (2).
5.4 Two Lemmas

The next two Lemmas will be needed in section 8 in the proof of Lemma 8.1.

5.4.1 Crossed product algebras

Let A be a unital C-algebra and let I' be a finite group acting as automor-
phisms of the unital C-algebra A. Let

AV:={a€A:~v-a=a, VyeT}.
Let A x I' denote the crossed product algebra for the action of I' on A: The

elements of A x I' are formal sums »°_ 1. a,[y], where:
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o the addition is (> pay[7]) + (3,0 by 11]) = 3, cpay + )[4,

e the multiplication is determined by (a,[v])(ba[a]) = ay (7 - ba) [y,

e the multiplication by A € Cis given by A(3_. r a,[7]) = >_ cr(Aay ) [7].

er = L[ ) hl.

yel’

Let

Then er is an idempotent (i.e., €2 = er).

Lemma 5.6. The unital C-algebras A* and (A x T')er(A x T') are Morita
equivalent.

Proof. The result will follow from the following two claims:

Claim 1: A" = ep(A x D)er.

Proof. We view each element ) _ra,[7] in A x I' as the function
f: ' — A whose value at v € I' is a,. Let fr denote the average
value of the values of f:

o= 10 ).

By the constant function fr we shall mean the function which takes
only one value, namely fr. Hence, we have fr = Eyer fr[7]: Then
the element fer in A x I' is the constant function fr. Indeed, for each
g € I', we have

C[(fer)(9) = her FNDD Qe YD9) = (22, yrer F(NIMIY](9)
= e SN D(9) = 2yer () = U] fr.

It gives
Ul (er fer)(9) = D (WDl D(9) = D (o) 1(9) = > (v fr),

vy €D vy'er ~er

that is, er f er is the constant function ! fp := ZWEF(’Y - fr). Note that
U fris I-fixed. We map A' to er(A x I')er by sending 2 to the constant
function z. The map is injective and surjective. O]

Claim 2: ep(AxT)er and (AxT)er(AxTI") are Morita equivalent (the bimodules
are er(A x I') and (A x I')er): see for instance [2, Lemma 2].

[]
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5.4.2 Ring homomorphisms

Lemma 5.7. Let A be a ring with unit and let B be a ring (which is is
not required to have a unit). Let J C B be a two-sided ideal. Then any
surjective homomorphism of rings p: J — A extends uniquely to a ring
homomorphism ¢: B — A.

Proof. Choose 6y € J such that ¢(6y) = 14 (the unit in A). Then, given
b € B, we define ¢(b) by @(b) := ¢(6pb).

1. We will check first that ¢ is well-defined, i.e., that the definition does
not depend on the choice of 6y. Indeed, for every § € J such that
©(0) = 14, then we have, on one hand:

©(0bo) = ©(0b)p(0h) = ©(6D),
and on the other hand:
@(0b8y) = p(0)p(bbo) = p(bby).

Hence ¢(0b) = ¢(bby). In particular, we have p(6pb) = ¢(bby). Thus
p(6b) = ¢ (6oD).

2. Let ¢ be any extension of . We have
P(b) = 14@(b) = ©(60)@(b) = (bob) = p(6b),
since 6yb € J.
3. Finally, we check that ¢ is a ring homomorphism. Indeed,
@(b1 + b2) = (0o (b1 + b2)) = p(Oobr + Ooba) = 5(b1) + H(ba);
@(brba) = o(Oobibz) = (0obibab) = (Oob1)p(b2bh) = G(b1) (b))
O

6 The two cases for which H® = GL(2,C)

In this section, we will consider the following two cases.

Case 1: We assume here that yo = 1 and y; = x with y a ramified non-
quadratic character. Then from (40) we obtain

5 = [T7X®]-]G - [T71®X]G - [T1X®X_1]G
= Tx'®le = T19x e = [T'x'®xle

It follows from (27) that
W* = {e, b} = S,. (43)
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Case 2: We assume that xy; = yo = x with y a ramified character which is
neither quadratic nor cubic. From (38) we obtain

s = [T.x®xle = Ix'ox'e = [I[,X*®x e
= Tx'exYe = [Txox?le = [T.x?®xe

It follows from (27) that

W*={e,a} = 5. (44)

In both Case 1 and Case 2, we have W2 = S, x X (TV). Hence W2 is the
extended affine Weyl group of the p-adic group GL(2, F). There are 2 two-
sided cells, say b, and by, in Wj; they correspond to the regular unipotent
class and to the trivial unipotent class of GL(2,C), respectively. Hence b,
and by correspond to the partitions (2) and (1,1,1) of 2, respectively. We
have by < b,.

Definition. We define the following partition of 7 //W*:
TV W= = (T /W), U(T" /W), (45)

where (TV //W?)y,, := (TV)¢/Z(c), where ¢ is the nontrivial element in ¢,
and (TV /W)y, =TV /W=.
We set
Ul):={2€C:|z| =1} (46)

Lemma 6.1. We have
(TV//Ws)be = C*, E*[/Ws=UQ1)U E*/W?,

and
J? = ‘]15)5 + Jf,o ~morita O(TV//WS)a

where J§ ~morita O((T [/W?®)p,) and Iy ~morita O(TY J/W*)p,).
Proof. Let D = D* and E := E*®. We give the case-by-case analysis.
o c=1. D°/Z(c) = D/W* and E°/Z(c) = E/W>.
o c# 1.

Case 1: c=b:

DYJ)7(b) = D* = {(t,1) : t € C*}. E’={(t,1):t € U(1)}.

32



Case 2: ¢ = a:
D*/Z(a) = D* = {(t,t) : t € C*}. E"={(t,t):t € U(1)}.
We have J® = Jp, + Jp, and (see [2, proof of Theorem 3]):
Tb. ~morita O(CX), Ty ~morita O((C*)?/S2) = O(D*/W?).

It gives
Jo; ~morita O(T" [/W*)p,, for i€ {e,0}. (47)

Lemma 6.2. The flat family is given by
X, :1—71y=0, in Case I;
X,:x—7y =0, in Case 2.
Proof. We will considerate the two cases separately.
Case 1: The curve of reducibility €& = X 5 = R is given by
¢ = {vv e Y e U(FX)} 2 {(2y/g,1/yq) : z € C*}

We write down all the quasicharacters (¢ x ®1), with ¢y, e € W(F™),
which obey the reducibility conditions (28):

Yy @vh Yy ®v,  with ¢ € W(FX).
We get only one W*-orbit of characters.

Case 2: The curve of reducibility €; = X 7 =R is given by

¢y = {wxu_1/2®wxul/2 s e W(F)} =2 {(2va,2/\/q) : z€C*}.

We write down all the quasicharacters of T" which obey the reducibility
conditions (28):

DX @YrTix, Yx @yrx,  with g € U(F).
We get only one W*-orbit of characters. Indeed,

e the family of characters {)x®@vvyx : ¢ € U(F*)}, with the change
of variable ¢ := Y2 is {pv™1/2x @ pv/?x : ¢ € U(FX)};
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e the family of characters {1y @ Yv~'x : ¢p € U(F*)}, with the
change of variable ¢ := v~ is {¢pv'/2x @12y : ¢ € U(F*)};
by applying a, we then get {¢pv =2y @ ¢v'/?x : ¢ € W(F*)}.

]

Lemma 6.3. The cocharacters are as follows:
by, =1, hy, (1) = (1,771)
which leads to
mr(v) = m(h,(T) - v)
for all v in the b;-component, i € {0, e}.

Proof. We apply Lemma 6.1. For all v € D*/WW* we have
75 (0)] = ligr(v)].

If v ¢ €U, we have |igr(v)| =1 = |7r\_/%(v)|. On the other hand, for
each v € €U ¢, from Lemma 5.5 we have

Uiar(v)) = licr(v)] = 2 = |1 A(v)],
due to Lemma 6.2. O

Lemma 6.4. Part (4) of Theorem 1.4 is true for the points s = [T, x ® 1],
with x ramified non quadratic and s = [T, x ® x|, with x ramified neither
quadratic nor cubic.

Proof. The semisimple elements v, o are always related as follows o = 7 5(v).
Let n°: (TV//W?*) — Irr(J*) be the bijection which is induced by the Morita
equivalences in (47). Then the definition (12) of p*: (TV//W?*) — Irr(G)*
gives:
() = {vg}l,l, itv e T/W,
o ifve (TV/)/Wp,.

o,uy,l

Now the infinitesimal character of V7,  is o, therefore the map u° satisfies

inf.ch.op® =m s

Lemma 6.5. Part (5) of Theorem 1.4 is true.
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Proof. As for the compact extended quotient, this is accounted for as follows:
The compact quotient E/W is sent to the unitary principal series

{I(V1x @ ax) © 1, 0py € (L) }/ WP

and the other component U(1) to the intermediate unitary principal series

{La(0(x)) : v € WH(F™)}.

7 The case H* = SL(3,C)

We assume in this section that y; = y2 = x, with y a ramified character of
order 3. We have

s=[Txexe=[Tx"@x le=[Tx®x e=[Tx"®xe
It follows from (27) that
W?* = {e, a, bab, abab, baba, ababa} = S. (48)

We have a = s, and bab = s,43. We observe that the root lattice
Zo ® Z(a + B) equals X(T). Tt follows that W¢ (as defined in (2)) is the
extended affine Weyl group of the p-adic group Gs = PGL(3, F).

There are 3 two-sided cells dgy, dy, d. in W;, they are in bijection the 3
unipotent classes of SL(3,C). The two-sided cell dy corresponds to the trivial
unipotent class, d; corresponds to the subregular unipotent class, and d.
corresponds to the regular unipotent one. Hence we have dy < d; < d. and
d., d;, dy correspond respectively to the partitions (3), (2,1) and (1,1,1)
of 3. We will denote elements in the three unipotent classes by 1, uy, u.
(trivial, subregular, regular). The group W?* admits 3 conjugacy classes:
{1}, {a, bab, ababa} and {abab, baba}. We recall that r = ba.

Definition. We define the following partition of T //W*:

TY W= = (T [JW*)a, U(T" [JW*)a, U(T" /JW*)q,, (49)
where
(TY)JWo)a, = (V)" /2(r?),
(TY)/W*)a, = (T7)"/Z(a),
(TY )/W®)g, = TV/W?*.
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Lemma 7.1. We have

(TV//W*®)a, = pt1Upts U pts
(TV)/W*)g, = C*
E//W* = (pt,Upts Upts) LU(1) U E*/W?,

and J® ~porita O(TY [/W?), where

Jde ~morita O((TV//Ws)de)7
Ja, ~morita O(T")/W?)a,),
Jdo ~morita O((TV//WS)do)-

Proof. We have Zys(a) = {e,a} and Zys(abab) = {e, abab, baba}. Let D :=
D® and E := E°. We obtain

D*={(t,t) : t€C*} and Dabab — {(t,t7") : teC*}.
Case by case analysis.

o d=d., c=abab. X°/Zy-(c) = {(1,1),(4,5°), (4%, 1)} = E¢/Zw(c),
where j is a primitive third root of unity. The points (1,1), (J, %),
(52, 7) belong to 3 different WW*-orbits. Therefore
D¢/ Zws(c) = E°/Zw=(c) = pt; U pty L pts.
e d=dy, c=a. DZw:(c)=D=C*.
E¢)Zws:(c) = E°={(t,t) : t € U(1)}.
e d=dy, c=1. D/Zyws(c) = D/W=. E¢/Zys(c) = E/W?*.
We have J® = Jg, + Ja, + Ja, and (see [2, proof of Theorem 4]):
Ja. ~morita C°, Ja, ~morita O(C*), Jay ~morita O(D*/W?).

It gives
Ja; ~morita O((T" /JW?*)q,), fori e {e,1,0}. (50)

Lemma 7.2. The flat family is given by

X, x—1%y=0.
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Proof. The curve of reducibility € = X 5 = R is given by

¢={v Yy vy : P € U(F*)} =2 {(2/q,2/vq) : 2 € C}.

We write down all the quasicharacters of T" which obey the reducibility con-
ditions (28):

;

Yx @ P Pry
Px @Yy
YPux @ X
YPTY ® b
Px @Yty
(0. Y ®@yYrx

with ¢ € W(F*).

A

We get only one W-orbit of characters. Indeed,

6:

the family of characters {¢)x ® Yy : ¢ € U(F*)}, with the change of
variable ¢ 1= /2 is {pv™ 2 @ ov/2y 1 ¢ € W(F*));

. the family of characters {1y ®@yv 1y : ¢ € U(F*)}, with the change of

variable ¢ := v ~1/2 is {pv/?x @ o2y : ¢ € U(F*)}; by applying
a, we then get {ov12xy @ ¢v'/?x : ¢ € U(FX)};

: we have baba(¢ 2 x ® ) = ¥x @ vy, which belongs to the family

of characters in 6;

. we have baba (" 2vx @) = ¥y @Yv 1y, which belongs to the family

of characters in 5;

: we have bab(vy @ ¢ 2v1y) = 1y ® vy, which belongs to the family

of characters in 6;

: we have bab(¢xy ® ¥ ~2vx) = ¢y @ v~ 'y, which belongs to the family

of characters in 5.

The induced representations {I(¢v=2x ® ¢pv*/?x) : ¢ € U(F*)} are para-
metrized by {(z¢'/?, z¢" %) : z € C*}. O

We set

vo=(1,¢7Y, v.=0,q"), vl=(0G*q"5),
yy = (¢"%2,¢7%2), where 2 ¢ {q7 % ¢ V/%5, ¢ ?5%).
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Lemma 7.3. Define, for each two-sided cell d of W, cocharacters hq as
follows:

ha, =1, hdl(T) = (T7 7_—1)’ hde(T) = (177—_2)'
Then, for all y € D*/W* we have
7 W) = licr(y)].

Proof. 1t y ¢ {ya, v., v, yp}, then we have |igr(y)] =1 = ]ﬂ&%(y)]. On the
other hand, Lemma *.* gives

liar(yo)| = 2 = |7 ().
This leads to the following points of length 4:
XQUYX, wYRrwy, w2x®uw2x, Vﬁlx®x, V71WX®WX, V*1w2x®wzx,
where w denotes an unramified cubic character of F*. Since

baba(v™'x ®x) = X @V,
baba(v'wxy @ wy) = wyx ® Lwy,
baba(v 1wy @ wW?Y) = wiy @ vwiy,

this leads to exactly 3 points in the Bernstein variety Q°(G) which parametrize
representations of length 4, namely

[T7X®VX]G7 [Tu WX®VWX]G7 [Tu w2X®VW2X]G'

The coordinates of these points in the algebraic surface Q°(G) are y,, y., v,
respectively.

The map 7 s sends the two distinct points (1/,/g,1/,/q) and (1/q, /q) in
D®/Zys(a), the affine line attached to the cell dy, to the one point y, € D/W*
since (1,471), (g,1) are in the same W*-orbit: (1,¢7") pupa (¢,1). It follows
that

™ a(Wa)| = 4 = licr(ya)l-

Similarily we obtain that |7T\_/$(y;)| = |7T\_/é(y(’l'| =4 = ligr(y))| = licr(y))|-
[

Lemma 7.4. Part (4) of Theorem 1.4 is true for the point
s=[T,x®x|¢ € B(Gs)

when x is a cubic ramified character of F'*.
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Proof. The semisimple elements y, o below are always related as follows:

o= ﬂ(y)
Let n°: (TV//W?#) — Irr(J*) be the bijection which is induced by the Morita
equivalences in (50). Then the definition (12) of p®: (TV//W?®) — Irr(G)®
gives:
s Vi, ifyeTv/we,
) =20 v/ :
Va,ul,l ) if yE (T /W )d1;
the three isolated points are sent to the L-indistinguishable elements in the
discrete series which has inertial support s:

S

/’L5<pt1) = V;a.,ue,pl’ Ms(pt2> = V;&,“e,pQ’ /"Ls(pt?)) = Vygyue’pl‘

Now the infinitesimal character of Vg ,  is o, therefore the map u° satisfies

inf.ch.op®=m s

Lemma 7.5. Part (5) of Theorem 1.4 is true in this case.

Proof. 1t follows from [20, Prop. 1.1, p. 469] that 6(x) (viewed as a repre-
sentation of M,) is the unique subrepresentation of I*(v'/2y ® v=/2x). So
it has inertial support [T, 2"y ® v="/?x]as,. It implies that 1,(0,5(x)) has
inertial support [T, Y%y @ v™12x]g = [T, x ® X]¢ = 5.

If we look at Mg, still from [20, Prop. 1.1, p. 469], we see that J(x)
(here viewed as a representation of Mpg) is the unique subrepresentation of
I°(v='2x ® v). Hence it has inertial support [T,v~"/?x ® V|n,. It follows
that 15(0,8(x)) has inertial support [T, v~y @ v]g = [T, x ® 1], which is
not equal to s, because x ® 1 does not belong to the W-orbit of x ® x (see
also Proposition 5.4).

Hence the compact extended quotient is accounted for as follows: The
compact quotient £/W is sent to the unitary principal series

{1(h1x @ Pax @ b1, ho € W(FF)}/ W,
the component U(1) to the intermediate unitary principal series
{Ia(075(¢X)> : 2/} S ‘Ift(FX)}J

and the 3 isolated points pty, pto, pts are sent to the 3 elements in the discrete
series

m(x) CI(vx®x), w(wx)CI(vwx @wy), mw’x) C I(vw’y ® w?y).
0
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8 The case H* = S0O(4,C)

We assume in this section that y; = x2 = x with x a ramified quadratic
character. It follows from (30) that

s=[Tx@xle=[Tx®le=[T1®xc-
From (27), we get

W = {e,a,babab,bababa} = {e,a,r’ ar’} (51)
= <Saa33a+2,@> g Z/2Z X Z/QZ

We recall that QQ° C X (7') denotes the root lattice of ®°. We have
Q° = Za @ Z(3a + 23). (52)

Hence @° is strictly contained in X (7'), see (25). This shows that the group
H* is not simply connected. Setting V' := @Q° ®z Q, we define the weight
lattice P?, as in [7, chap. VI, 1.9], by

P={xeV :<x,y>€Z Vyed}.

We have ) .
P = EZa ® iZ(Ba +20).

Hence X(T') is strictly contained in P°. This shows that the H® is not
of adjoint type. Now, let X, denote the subgroup of X(7') orthogonal to
PV, We see that Xy = {0}. This means that the group H* is semisimple.
Hence H* is isomorphic to SO(4,C). The group SO(4,C) is isomorphic to
the quotient group (SL(2,C) x SL(2,C))/(—I, —I), where I is the identity in
SL(2,C).

The group H® admits 4 unipotent classes eg, e, €/, e.. The closure order
on unipotent classes is the following:

We have
JO=Jg, @ J5, @IS D g,

Definition. We define the following partition of T //W*:

TYJJW® = (T [JW®)e, LT [JW®)ey U (T /W ®)ey (T /W ®)ey,  (53)
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where

(TY//W*)e, = pt1Upts,
(TY)/W=)e, = (T7)"/2Z(a) = A",
(TY)|W®)e, = (TV)" [Z(ar®) = AL,
(TY )W), = TY/W Upt,,

with pt; := (1,1), pty := (=1, —1) and pt, := (1, —1) ~ps (—1,1).

Lemma 8.1. We have

TV /WS = (pt; Upty)) WA LA L (TY/W* LU pt,)
E*JJ/W* = (pty Upty) UTUTU (E/W* U pt,).

Moreover, we have a ring isomorphism
C[TV/Wﬁ] ~ (C[X7 Y]Oa

where C[X, Y]y denotes the coordinate ring of the quotient of A2 by the action
of Z.)27 which reverses each vector.

We have J* =< O(T" //W?), where

Jge ~morita O«TV//WS)%)? ng ~morita O((TV//Ws)m)’
Jé’l ~morita O«Tv//Ws)e )v Jgo = O((TV//Wﬁ)eo)~

/
1

Proof. 1. Extended quotient: Let D = D* = TV. We give the case-by-case
analysis.

e c=1. D°/Z(c) = D/W>.
e c=a. D°={(t,t):t e C}.

D¢/ Z(c) = {{(t,t), (", t )}t e C*} =2 AL

e c=1r% D= {(1,1),(1,-1),(—1,1),(=1,—1)}. Therefore D/Z(c) =

e c=ar®. D°={(t,t7'):t € C*}.

DeJZ(e) = {{(t,+7Y), (71, 8)) : t € C¥} = AL
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Let M[u] := C[u,u™!] denotes the Z/2Z-graded algebra of Laurent poly-
nomials in one indeterminate u. Let a denote the generator of Z/2Z. The
group Z/27 acts as automorphism of M[u], with a(u) = u~'. We define

Lu] := {P € M[y] : a(P) = P}

as the algebra of balanced Laurent polynomials in u.
Let T be the maximal torus of SL(2, C) x SL(2, C). Then the coordinate
ring C[TV/W?] is L[u] ® L[v]. The map

(u+1/u,v+1/v) — (X,Y)

sends C[TV/W*] to C[X,Y] (the polynomial algebra in two indeterminates
X,Y), aring isomorphism. The coordinate ring of an affine plane AZ?.

Recall that TV is the standard maximal torus in H® = (SL(2,C) x
SL(2,C))/(—1I,—I). Hence it follows that C[T"/W*] is the ring of balanced
polynomials in u, v which are fixed under (u,v) — (—u,—v). These poly-
nomials correspond to those polynomials in X, Y which are fixed under
(X,Y) — (=X,=Y). Therefore we have a ring isomorphism C[T"V/W*] ~
C[X, Yo.

2. Compact extended quotient:

Ef/WeululuptUptUpt = E5//W®.

The group W2 (see (2)) is the extended affine Weyl group of the p-adic group
(SL(2, F') x SL(2, F'))/(—1,—I), which admits H* as Langlands dual.

3. Extended affine Weyl group:

We will describe the group W; Let W5 be the extended affine Weyl
group corresponding to PGL(2, F'), that is Wy = Z /27 x X, where X} is the
cocharacter of a maximal torus of PGL(2, F') and Z/2Z = {e,a}. Let t # a
be the other simple reflection in W5. In Wy there exists a unique element g
of order 2 such that gag = t. It is known that the length of ¢ is 0. Let W}
be a copy of Wa. The simple reflections in W} will be denoted by ' = ar?, ¢/
correspondingly. Denote by ¢’ the element corresponding to g, then (¢')* = ¢
and g'a’¢’ = t'. Then WY is the subgroup of Wy x W} generated by g¢/, a, t,
a,t.

4. Asymptotic Hecke algebra: Recall that J° denotes the asymptotic
Iwahori-Hecke algebra of W?.

e From the above description, we see that the two-sided cell e, of Wj
consists of e and gg’ and that its based ring is isomorphic to the group
algebra of Z/2Z. 1t follows that Je, is Morita equivalent to C & C. Hence we
have

Ja, ~morita O((TV//Wﬁ)ee)- (54)

€e
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e Let U; be the subgroup of W;’ generated by g¢’, a, t, then the map which
sends gg’ to g, a to a, t to t defines an isomorphism from U, to Ws. Thus e;
is the lowest two-sided cell of Uy, which equals Us — {e, g¢g'}. Therefore the
based ring of e; is isomorphic to My(R), where R denotes the representation
ring of SL(2,C). Hence the based ring of e; is clearly Morita equivalent to
R, but R is isomorphic to the polynomial ring Z[u] in one variable. It follows
that Je, is Morita equivalent to Clu], where u is an indeterminate. From the
first part of the Lemma, we get that

ng ~morita O((TV//Ws)e1)' (55)

e Similarly, let U} be the subgroup of W,j generated by gg’, ', t’, then the
map which send gg’ to g, a’ to a, t’ to t defines an isomorphism from U} to
Wj. Thus €] is the lowest two-sided cell of Uj, which equals Uj —{e, g¢'}. So
the based ring of €] is isomorphic to My(R), which is also Morita equivalent
the polynomial ring Z[v] in one variable. From the first part of the Lemma,
we obtain that

J:’l ~morita O((TV//WS)EQ) (56)

e Let X be the cocharacter group of a maximal torus of PGL(2, F) x
PCL(2, F), and let W¢ := W?® x X. Then W is a subgroup of WZ. So the
based ring of W,j can be described as a subring of the based ring of W?. In
fact, W2 = Wy x Wi, where Wy & W5 = 7 /27 x X, (recall that X, is the
cocharacter group of a maximal torus of PGL(2, F')). Let = be the fundamen-
tal cocharacter of Xy and write the operation in X, by multiplication. For
the fundamental cocharacter x, we still use x if it is regarded as an element
in W5 and denote it by 2’ if it is regarded as an element in Wj. Let a be the
non-unit element of Z/2Z. For the element a, we still use a if it is regarded
as an element in W5 and denote it by o’ if it is regarded as an element in
W}. In this way W is the subgroup of W? which consists of the elements
(a™z")(a"x"7) with i + j even and m,n € {0,1}.

The lowest two-sided cell ey of W consists of the following elements:

(1) (az™)(a’z'™), m,n > 0, m + n even 9) (az™)(a’z'™), m < =2, n > 0, m 4+ n even
(2) (az™)(z'™), m >0, n > 1, m+n even (10) (az™)(z'™), m < =2, n > 1, m + n even
(3)  (az™)(a’z’™), m >0, n < —2, m + n even (11)  (az™)(a’z’™), m < -2, n < —2, m + n even
(4) (az™)(z'™), m >0, n < —1, m + n even (12) (az™)(z'™), m < =2, n < —1, m + n even
(5) (z™)(a’z'™), m > 1, n > 0, m + n even (13) (z™)(a’z'™), m < —1, n > 0, m + n even
(6) (z™)(z'™), m > 1, n > 1, m + n even (14) (™)(z'™), m < -1, n > 1, m 4+ n even
(7) (™)(a'z'™), m > 1, n < —2, m 4+ n even (15) (™) (a’z'™), m < =1, n < =2, m 4+ n even

, _
(8) (™) (z'™), m > 1, n g_—l, m + n even (16) (™) ('), m < =1, n < —1, m + n even.

(Removing the restriction on m + n, the above elements form the lowest
two-sided cell &y of W?2).
It follows from [26, Theorem 1.10] that the based ring of €, is isomorphic
to My (R) ® My(R), which is Morita equivalent to Z[X]| ® Z]Y]| = Z[X, Y].
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(az™)(a’z’™), m,n > 0, m + n even Vi1(m) ® Vi1(n)
(az™)(z'™), m >0, n>1, m+n even Vii(m) ® Vai(n — 1)
(az™)(a’z™), m >0, n < —2, m + n even Vii(m) ® Vag(—n — 2)
(az™)(z'™), m >0, n < —1, m + n even Vii(m) ® Via(—n — 1)
(™) (a’z’™), m > 1, n > 0, m + n even Voi1(m — 1) ® Vi1(n)
(z™)(z'"), m>1,n>1, m+n even Vo1 (m — 1) ® Vo (n — 1)
(™) (a’2’™), m > 1, n < —2, m + n even Voi1(m — 1) ® Vag(—n — 2)
(™) (z'™), m > 1, n < —1, m + n even Voi1(m — 1) ® Vig(—n — 1)
(az™)(a’z’™), m < —2, n > 0, m + n even Voo (—m — 2) ® Vi1(n)
(az™) ('), m < —2, n > 1, m + n even Voo (—m —2) ® Va1 (n — 1)
(az™)(a’z’™), m < —2, n < —2, m + n even Voo (—m — 2) ® Vao(—n — 2)
(az™) (™), m < —2, n < —1, m + n even Vag(—m — 2) ® Viao(—n — 1)
(™) (a’2’™), m < —1, n > 0, m + n even Vig(—m — 1) ® Vi1(n)
(™) (™), m < —1,n > 1, m + n even Vis(—m — 1) ® Voi(n — 1)
(™) (a’2’™), m < —1,n < —2, m + n even Vig(—m — 1) ® Vao(—n — 2)
(z™) ("), m < -1, n < —1, m + n even Vio(—m — 1) ® Vio(—n — 1)

Table 2: Values of w and t,,.

Let V(¢) be the irreducible representation of SLy(C) of highest weight ¢
and let V;;(¢) be the element in My(R) whose (4, j) entry is V() and other
entries are 0. Then the element in My(R) ® Ms(R) corresponding to t,
(w € ep) is given by Table 2.

Then the based ring of ey is isomorphic to the subring of My(R) ®z
Mz (R) spanned by the elements (7;;V (my;)) ® (74,V (ng)), with condition
mij + g + 1+ j + k + 1 is even, where all 7;; and 7;; are integers. Hence
Je, is isomorphic to the subring of My(C[X]) ®c Ma(C[Y]) spanned by the
elements (7;;2™49) ® (,2™"), with condition m;; +ny +1+ 7+ k+1 is even,
where all 7;; and 7;; are integers.

The above parity condition is: m;; + by +4+ j +k +1 even. For example,
mi1 + nq1 IS even, mos + nqp is even, mys + nqq is odd, me; + nqq is odd,
Mg + Nio 1S even, moy + Moy 1S even, Moy + Nog is even; so we are allowed
monomials of even degree on the diagonals of both matrices, monomials of
odd degree on the off-diagonals of both matrices OR the same thing with
reversed parity. Taking the span, we realize all even polynomials on the
diagonal, all odd polynomials on the off-diagonal in both matrices OR the
same thing with reversed parity.

In other words, the ring My(C[X]) is Zs-graded:

(M2(C[X]))o: = even polynomials on the diagonal, odd polynomials on
the off-diagonal;

(My(C[X]))1: = odd polynomials on the diagonal, even polynomials on
the off-diagonal.

Consider the Z,-graded tensor product B[X, Y] := My (C[X])®cMy(C[Y]).
Then Jg, is isomorphic to the even part B[.X, Y], of B[X, Y].

Give C[X,Y] a Zs-grading by the convention that a monomial XY™ is
even (odd) according to the parity of m +n. Form the algebra My(C[X, Y]).
Give this a Zy-grading by saying that the even (resp. odd) elements are those
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which have a 2 x 2-block in the upper left corner consisting of even (resp.
odd) polynomials, a 2 x 2-block in the lower right corner consisting of even
(resp. odd) polynomials, a 2 x 2-block in the lower left corner consisting
of odd (resp. even) polynomials, a 2 x 2-block in the upper right corner
consisting of odd (resp. even) polynomials.

Then the even part of My(C[X]) ® My(C[Y]) is isomorphic to the even
part of My (C[X,Y]) — i.e., as Zy-graded algebras Ms(C[X]) ® Ma(C[Y]) and
M4 (C[X,Y]) are isomorphic.

Let My(C[X,Y])o consist of all 4 x 4-matrices with entries in C[X, Y]
such that: the upper left 2 x 2 block and the lower right 2 x 2 block are
2 x 2 matrices with entries in C[X, Y]y and the lower left 2 x 2 block and
the upper right 2 x 2 block are 2 x 2 matrices with entries in C[X,Y];.
Let P(X,Y) = (P,;(X,Y))1<ij<4 be an element of My(C[X,Y]). We write
P(X,Y) as a 2 x 2 block matrice as

_ P(X,Y)11 P(X,Y)is
P(X’ Y) B (P(X, Y)Z,l P<X7 Y)272)

where P(X,Y);; € My(C[X,Y]), for i, j € {1,2}. Hence the matrix P(X,Y)
is in My(C[X,Y])o if and only if we have, for 7,5 € {1,2},

If (2, 2') is a pair of complex numbers, then evaluation at (z, 2’) gives an
algebra homomorphism

Vi Ma(CLX,Y])o — My(C)
P(X,Y)— P(z,2).
The algebra homomorphism ev . ./ is surjective except when (z,b) = (0,0).
In the case (z,2') = (0,0) the image of ev(, . is the subalgebra of M(C)
consisting of all 4 x 4 matrices of complex numbers such that the lower
left 2 x 2 block and the upper right 2 x 2 block are zero — i.e., the image
is M2(C) & My(C) embedded in the usual way in M4(C). So except for
(2,2") = (0,0) we have a simple module, say M .y. When (z,2) = (0,0)
we have a module which is the direct sum of two Slmple modules, that we
denote by Moo) and Moo)

Since we have

-1 — _
IQ 0 = ’ IQ 0 o P( Z, 2 —P(Z, Z/)LQ
(O —12) P(Z7 z ) <0 —12) o < P(Z, z b 2 1 P(Z, Z/)Q’Q
 (P(=2z,—2)1 P(—2,—2)12
— A\ P(—z,— ) P(—z,—2")22) "

(=
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the matrix L0 ) conjugates the simple modules M, .y and M_, ..

0 —IL
On the other hand, let (21, 2]) be a pair of complex numbers such that
(z1,2)) € {(2,7),(—2,—2")}. Then there exists an even polynomial Q(X,Y)
such that Q(z1, 21) # Q(z, 7). Indeed, if z; ¢ {z, —z}, we can take Q(X,Y) =
X2 if 21 = 2z, we can take Q(X,Y) = XY (since then 2| # 2/), if 2y = —z,
we can take Q(X,Y) = XY (since then z] # —2’). Consider the matrix

QX,Y) 0 0 0
= 0 0 00
0 0 00

We have evi,.n(Q(X,Y)) # ev(.,.)(Q(X,Y)). It follows that the simple
modules M, . and M., ..y are not isomorphic.

Let A= M,(C[X,Y]) and let I' := {1, e}, where ¢: A — A is defined by

_ P(—X, —Y)l,l —p(—X,—Y>1,2
e(P(X,Y)) = (_P(—X, ~Y)s1  P(-X, —Y>2,2> ’

From Lemma 5.6, we know that the unital C-algebras A" and (AxT)er(AxT)
are Morita equivalent. Here ep = 1(1 + ¢).

We embedd A into the crossed product algebra A xT" by sending P(X,Y)
to P(X,Y)[1]. For 1 <1i,j <4,let E;; € A be the matrix with entrie (i, j)
equal to 1 and all the other entries equal to 0. We have

B3 ([1] + [e]) = Esa[l] + Eale] and ([1] + [e]) B3 = E31[1] — E3a[e].

We get
1

Esa[1] = (5E50)([1) + [e]) + ([ + [ED (5 Es),

it follows that Fs1[1] belongs to the two-sided ideal ([1] + [¢]).

Since E;1[1] = E;3(E341(1]), it gives that E;[1] € ([1] + [¢]) for each i.
Since E; ;[1] = (E;1[1])E1;, then we get that E; j[1] € ([1] + [¢]) for any i, j.
Hence we have proved that

N[ —

(AxTD)er(AxT)=AxT.

It follows that the unital C-algebras A" and A x I' are Morita equivalent.

Thus we have proved that for My(C[X,Y])o = A" the M., . with (2, 2') #
(0,0), and M, (’070), M (’670) are (up to isomorphism) all the simple modules and
that they are distinct except that M, .y and M_. . are isomorphic.
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Let J be the ideal in My(C[X,Y])o which (by definition) is the pre-
image with respect to ev(gg) of My(C) @ {0}. Then ev(. . surjects J onto
My4(C) except at (z,2") = (0,0), and ev(g ) surjects J onto My(C) & {0}. In
C[X,Y]o @ C let Z be the ideal C[X,Y ], @ {0}. Consider the two filtrations

{0} ¢ J € My(C[X,Y])o

{0} c T ClX,Y]p®C.

Let ¢ be the algebra homomorphism

(505 (C[X, Y]O © C— M4<C[X7 YDO
P(X,Y) 0 0 0

0 0 00

0 0 0 O

where the complex number 2z is viewed as an even polynomial of degree zero.

We view the ideal J as an algebra. We recall that k = C[X,Y]y. Then k
is a unital finitely generated nilpotent free commutative algebra. Hence k is
the coordinate algebra of an affine variety, the variety C?/(z,2') ~ (—z, —2),
thus & is noetherian. It follows that B := My(C[X, Y]y) is a k-algebra of finite
type. This implies that 7 is a k-algebra of finite type. Therefore any simple
J-module, as a vector space over C is finitely dimensional.

Hence any simple J-module gives a surjection

J — M, (C),

and, by using Lemma 5.7, extends uniquely to a simple B-module.
It follows that g is spectrum preserving with respect to these filtrations.
This proves that J¢ is geometrically equivalent to C[.X, Y], ® C. This is
the coordinate ring of the extended quotient (A?)//(Z/27Z), see first part of
the Lemma. Hence we have

Jey = O(TY [/W®)ey)- (57)
O

NoOTE. When the complex reductive group is simply-connected, we show
in [2, Theorem 4] that we have

Jeg = O(TY /W)
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where ¢ is the lowest two-sided cell. This geometrical equivalence is a Morita
equivalence. This result depends on results of Lusztig-Xi. The above phe-
nomenon, namely
Jo =0T /W*)aC

where e is the lowest two-sided cell, is a consequence of the fact that H* is not
simply-connected. This geometrical equivalence is not a Morita equivalence,
nor is it spectrum-preserving. It is spectrum-preserving with respect to a
filtration of length 2.

The algebraic variety (T //W?)e, has two irreducible components, the
primitive ideal space of J§ does not. Hence the bijection u® is not a home-
omorphism. This implies in particular, by using [4, Theorem 2], that there
cannot exist a spectrum preserving morphism from (T7V//W*)e, to J¢ .

Lemma 8.2. The flat family is given by
X (v — 7)1 — zy) = 0.

Proof. The curves of reducibility &, &}, with & U &} = X 5 =R, are given
by

¢ = {V_1/2¢X®1/1/2¢X NS \IJ(FX)} = {(z\/a,z/\/c_]) : ZGCX},
¢ = VP Iy e v Yy v e W(EF*} 2 {(27/Va 2/Va) 1 2 € T}

We now write down all the quasicharacters of 7" which obey the reducibility
conditions (28):

PTIX@Yvx, Yyx @Yy, ox@yYrT . Yx @yvy,  with ¢ € U(F).
Note that
e the last two characters are in one W-orbit, namely
{ox @ vy e U(F)}
which, with the same change of variable is
{ov ™ Px @ o' x 19 € U(FX)}
Since
babab(¢v ' *x @ ¢v'?x) = ¢ Py @ o7 Py,
the induced representations
{I(gr™"2x @ 9v'2x) : ¢ € U(F¥)}
are parametrized by an algebraic curve €;. A point on €; has coordi-

nates the unordered pair {z,/q, 2/,/q}
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e the first two characters are in another W-orbit, namely
{v™'x @ yvx v € U(F)}
which with the change of variable ¢ := ¢v'/? is
{07 Px @ o' x 1 ¢ € W(FX)}
Since
(¢~ Y2y @ ¢vi2x) = g2y @ 62y
the induced representations
{I(o™"W'2x @ ov'%x) : ¢ € W(FX)}

are parametrized by the algebraic curve (C*)/Z/27. We shall refer to
this curve as ¢}. A point on €] has coordinates the unordered pair

{z7'/\/4d,z//q} with z € C*.

The coordinate ring of €; or € is the ring of balanced Laurent polynomi-
als in one indeterminate t. The map t+¢~! — z then secures an isomorphism

C[t,t71)%/*2 = Cla]

and so

the affine line. O
The algebraic curves €; and €/ intersect in two points, namely
20 = XQUX = (1,q_1), 2. = €X Q@ ey = (—1,—q_1).

According to the next paragraph, these are the points of length 4 and mul-
tiplicity 1.
We define 2, and z, as

2 =V P I @ v Py = (271 Ve, 2 /),
zg =v P @ vt = (24, 2//4).

Lemma 8.3. Define, for each two-sided cell e of W;, cocharacters he as
follows:

hey =1,  he, (1) = (T, T_l)a hey (1) = (7—_177_1)7 he. (1) = (1’T_2)’

and define m.(x) = w(he(T) - ) for all x in the e-component. Then, for all
t € TV/W* we have

7)) = licr (1)
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Proof. We have
’W&%(t)’ =2 ift= Zby Zdy

|7T:/%<t)| =4 ift =z, 2.

On the other hand we observe that
Iy~ x @ v Pyx) = Iaba(v' )~ x @ v 2Px)) = 1™ Py @ v).

Then Lemma 5.5 gives:

|ZGT(t)| =2 ift= Zby 2d

ligr(t)| =4 ift =z, 2.
This leads to the following points of length 4:

X®vx, ex®uex, rx®x, v lex®ex

Since
babab(v'x ® x) = x ® vx

babab(vlex ® ex) = ex @ vex

this leads to exactly 2 points in the Bernstein variety (2°(G) which parametrize
representations of length 4, namely [T, x ® vx|e and [T, ex ® vex|g. The
coordinates of these points in the algebraic surface Q°(G) are (1,¢7') and
(_17 _q_l)' L

Lemma 8.4. Part (4) of Theorem 1.4 is true for the point
s=[T,x ®x]a € B(Gs)
where x 1s a ramified quadratic character of F*.

Proof. This proof requires a detailed analysis of the associated K L-parameters.
We recall (see the beginning of section 8) that

H* = SL(2,C) x SL(2,C)/(~L, —1I).

We recall also the beginning of section 8 that the group H® admits 4 unipo-
tent classes eg, e, €], g. We have the corresponding decomposition of the
asymptotic algebra into ideals:

F=Jl @ e e L.
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We will write

SL(2,C) x SL(2,C) — H®, (z,y) — [z,v],

sT::[T 0 }, for 7 € C*,

|11
U= 01l
Recall that TV is the standard maximal torus in H°. We will write

[s7,8.] € TY.

1

The group W* is generated by the element which exchanges 7 and 77, and

the element which exchanges 7/ and 7/ ".
We will now consider separately the 4 unipotent classes in H*.

8.0.3 Casel

We consider
S:=l[sgsq €T, U:=luulecH".

These form a semisimple-unipotent-pair, i.e.,
SUS™' =U".

We note that the component group of the simultaneous centralizer of S
and U is given by

7(5,U) = Z([s /g, 5 yq)» [w, u]) = {[L1], [I, =1]} = Z /2.

We also have:

Z([S\/ﬁv S—ﬁ]a [uv u]) = {[Iv I]? [17 _I]} = Z/2Z'

In each case, the associated variety of Borel subgroups is a point, namely
[b, b] where b is the standard Borel subgroup of SL(2, C). The K L-parameters
are given by

([Sﬁv S\/@L [uvu]’D? ([8\/57 8—\/6]? [u’u]’l)'
These two K L-parameters correspond to the ideal Jg in J*, for which we
have

Jo xCaoC.

This is not an L-packet in the principal series of H*.
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8.0.4 Case 2
For each 7 € C*, we have
Z([s g, 7], [w,1]) = Z/2Z.

The associated variety of Borel subgroups comprises two points, namely [b, b]
and [b, b°] where b° is the opposite Borel subgroup, i.e. the lower-triangular
matrices in SL(2,C). The component group Z/2Z acts on the homology
of the two points as the trivial 2-dimensional representation. The K L-
parameters in this case are given by

([s\/g[, Se], [u, 1], 1).
These parameters correspond to the ideal Jg of J*:

- 1
Js, < O(A").
8.0.5 Case 3
We also have the K L-parameters

([377 5\/6]7 [Ia u]? 1)
with 7 € C*. These parameters correspond to the ideal Jj,l of J*:

- 1
Jz = O(AY).

8.0.6 Case 4
We need to consider the component group of the semisimple-unipotent-pair
([Sﬂ 87-/], [L I])

The component group of this semisimple-unipotent-pair is trivial unless 7 =
7/ =i, where i = \/—1 denotes a square root of 1. In that case we have

Z([Siy 5i]7 [17 I]) = Z/2Z
The associated variety of Borel subgroups of H® comprises 4 points:
[b,0], [b°0°], [b,0°], [0 0]

The generator of the component group Z /27 switches b and b°. The 4 points
span a vector space of dimension 4 on which Z/2Z acts by switching basis
elements as follows:

[b,b] — [b°, V7], [b,0°] — [b°, 0]
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Therefore, Z /27 acts as the direct sum of two copies of the regular represen-
tation 1 @ sgn of Z/27Z.

We recall that the equivalence relation among the K L-parameters for H*®
is conjugacy in H®. The K L-parameters in this case are

([s7, 0], [11], 1)
with 7,7 € C*, and
([si, sil, [1, 1], sgn).
This corresponds to the ideal J§ C J* for which

J = O(TY/W*) & C.

There is an L-packet in the principal series of H® with the following K L-
parameters:

([Siasi]v[lvﬂvl)v ([sivsiL[LI]ngn)'

The representations indexed by these K L-parameters are tempered. The
corresponding representations of G itself still belong to an L-packet (see the
end of subsection 2.3). These are the representations denoted 7% and 7~ in
the proof of Lemma 8.5.

Throughout §8 we have been using the ring isomorphism

ClX. Y] = C[T"/W"]
induced by the map
Ci(z1,20) = (21 + 275 o+ 257 0.

Note that this isomorphism sends (i,i) to (0,0) € C[X,Y]o. This is the
unique point in the affine space A% which is fixed under the map (x,y) —

(—CL’, _y)
Consider the map

M.z = V[ssqz)ﬁqz')]»[U,ULl’ if (z,2) # (0,0),

{M(/ma M(gl,o} = {Visi,si},[l,ILl’ V[‘ii,si],[LI],sgn}7

from the set of simple J¢-modules to the subset of Irr(G)® such that [U, U]
corresponds to the two-sided cell e. This map induces a bijection which
corresponds, at the level of modules of the Hecke algebra, to the bijection
induced by the Lusztig map ¢,, by the uniqueness property of ¢,.

[
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Lemma 8.5. Part (5) of Theorem 1.4 is true in this case.
Proof. We note that
I(ex®x) =Indfy(ex@x) =n" @7
by [13, Gy Theorem], since , ey are distinct characters of order 2.

We start with the list of all those tempered representations of Gy which
admit inertial support s (see Proposition 5.4):

I{hix ® thax) U La(0,0(¢x)) Um(x) Um(ex) U 150, 6(ox))

where

b= AN, = N = 2N =
are unramified characters of F*, and
m(x) CI(vx ®x), m(ex) C I(vex @ ex)

are the elements in the discrete series described in [20, Prop. 4.1].
We recall from Lemma 8.1 that

E*JJW* = (E°/W* Upt,) UTU (pt; U pte) UL
Then the restriction of p® to Irr®(G)" is as follows:
W (21, 22) = I(th1x1 ® thaxa),
unless z; = —1, 2o = 1 in which case
We. (-1, upt, — - @m,

pty U pty — m(x) Um(ex).

We note that (¢x)" = ¢~"x, so that ,(0,d(¢x)) = I,(0,6(¢¥~"x)) by [20],
where v = «, 3. Finally,

2+ 1,(0,0(¢x)) and w— I5(0,(dx)).
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