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Introduction

In these lectures we will cover the following material.

e An elementary introduction to C*-algebras, leading up to a statement of the Richness
Lemma, for liminal C*-algebras.

o A concise account of C*-modules and strong Morita equivalence. Here we follow closely
the account by Alain Connes in his forthcoming book “Non Commutative Geometry”.

e A concise account of equivalence bimodules in the representation theory of reductive
groups. '

o Complete proof of the following new result:

Theorem 1. The reduced Iwahori-Hecke C*-algebra for GL(n) is strongly Morita
equivalent to the Brylinski quotient

Bryl (T™; S,)

where the symmetric group S, acts on the compact torus T™ by permuting co-ordinates.
O

To explain Theorem 1 and its background, we shall give an elementary account of the
Brylinski quotient.

A partition of a number n is a representation of n as the sum of any number of positive
integral parts. Thus

Bmd+1=3+4+2=83+141=2+2+41=2+414+1+1=141+1+41+1

has 7 partitions. The order of the parts is irrelevant. If o is a partition of n then d(a)
 will denote the number of distinct parts in . Thus, with n = 5, we have

o
5

441
342
3+1+1
2+2+1
2414141
1+14141+41
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The Brylinski quotient is naturally defined in great generality — we shall need only
‘the special case

Bryl(n) = Bryl(T"; S,)

where T™.is the compact.torus.of dimension n and S, is the symmetric group acting on
T" by permuting co-ordinates. Then

Bryl(n) = IEJ(T")'Y/Z(’Y)



where a is a partition of n,v has cycle type a,(T")? is the y-fixed set, and Z(y) the
centralizer of 4. Each cycle provides us with one circle, and cycles of equal length
provide us with a symmetric product of circles. With n = 5, the space Bryl(5) is a
compact space whose connected components are the following 7 compact orbifolds, one

for each partition a:

o orbifold
) T
441 T?
3+2 T?
3+1+1 T x Sym?T
24241 (Sym?T) x T
2414141 T x Sym3T
1+14+14+141 Sym®T

Now Sym™T is the space of unordered n-tuples {z,...,2,} with each z; € T,1 <
J < n. The map

Sym"T — T -
{#1y0-y2n} — 21...2
is a deformation retract. This implies that the orbifold associated to the partition « is

homotopy equivalent to T#®). Up to homotopy equivalence, Bryl(5) therefore has the
following connected components.

o component
5 . T
441 , T?
342 T2
34+1+1 T?
242+1 , T?
2414141 : T2
141414141 T.

For the torus of dimension d, we have

Ko(TH = 7*°
Ki(T4 = 7%

So for Bryl(5) we have
Ko, = Lo’ 1’0’0’0 1’01 =1"
]{1 — 212.

Theorem 1 implies that, for GL(5) we have



K;(CHG//T) = 1™ j=0,1.

In general, the K-groups will be finitely generated free abelian groups. The formula
for the number of generators is

E 2d(a)—1
o

the sum taken over all partitions of n. Summarizing this elementary discussion, we have

Corollary 1. Let G = GL(n). The K-groups K, and K; of the reduced Iwahori-
Hecke C*-algebra are finitely generated free abelian groups: the number of generators
is

Z 2d(01)—1

o

where « is a partition of n and d(«) is the number of distinct parts in a. O

Theorem 1 has an important application, which we explain in more detail towards
the end of these lectures. Suffice to say that if we successively use Theorem 1, the Chern
character, the inverse of the equivariant Chern character, the inverse Fourier Transform,
and the B — C conjecture (a provable theorem) for the affine Weyl group W, then we
get:

Ko(CHG//I) ®2C = Ko(Bryl) ®zC

He"(Bryvl; C)
Ko(O(Tn) A Sn) Rz C
Ko(C*(W))®z C

KV(Z)®zC

R IR 1R

where ¥ denotes a single apartment in the affine building AG of GG. There is of course a
similar statement for K;. Since
¢ ¥ embeds isometrically in G

o C*(G//I) is a direct summand of C}(G)

we conclude with the following
Theorem 2. For j = 0,1 we have
K;(CXG//I)) ®2 C = K" (apartment) ®z C

~which is the B — C-conjecture for GL(n)(modulo torsion) localized to a single apartment.
- ,

We would like to make an important general point. Let G = GL(n) and consider the
C*-algebras’



¢ C*(@G) the reduced C*-algebra of G
¢ C*(G//I) the reduced Iwahori-Hecke C*-algebra.

These are non-commutative C*-algebras. In accord with the view forcefully presented
in Connes’ forthcoming book “Non Commutative Geometry”, these two C*-algebras are
“non-commutative spaces”. It is a striking fact that two equivalence bimodules exist
which wash away the non-commutativity. In fact
¢ C*(Q) is strongly Morita equivalent to the tempered dual of G
e C*(G//I) is strongly Morita equivalent to the unramified tempered dual of G.

The tempered dual, and the unramified tempered dual, are geometric objects. For
example, the unramified tempered dual of GL(5) is the disjoint union of 7 orbifolds:

T
T2

T2

T x Sym?T
T x Sym?T
T x Sym3T
Sym>T

We can say therefore that for the general linear group GL(n), the “non commutative
geometry” becomes “commutative geometry”.

We must emphasize that for the special linear group SL(n) the non-commutativity is
a more permanent feature and can not be washed away by equivalence bimodules.

This non-commutative geometry first appears for the reduced Iwahori-Hecke C*-
algebra of SL(2). This unital C*-algebra is strongly Morita equivalent to C @ D when

D= {f € C([0,1], Ma(C)) : f(1) is diagonal}

whose dual is

The “K-theory” of such a space cannot be directly defined in terms of vector bundles.
It is defined indirectly as K-theory of the above non-commutative C*-algebra. As such,
we have

I{o = ZEBZEBZ
K, =20

We see therefore that
o the Steinberg representation of SL(2) contributes one generator to Ko
‘o K, detects reducibility in the unramified unitary principal series of SL(2).



The affine Weyl group of SL(2) is the infinite dihedral group W. For C*(W) we also
have

Ko(C*(W)) = I01IOD1Z
)

even though
C*(W) is not isomorphic to C @ D.

One reason is that
o the dual of C*(W) is connected quasi-compact
o the dual of D @ C is disconnected quasi-compact.



1 (C*-algebras

1.1. * algebras. Let A be an algebra over the field C of complex numbers. An involution
in A is a map £ — z* of A into itself such that

() (=) ==

(i) (z+y)* =2*+y*
(iii) (Az)* = Xa*
(iv) (zy)* =y*z*

for any z,y € A and X € C. An algebra over C endowed with an involution is called a *
algebra. The element z* is often called the adjoint of A. A subset of A which is closed
under the involution operation is said to be self-adjoint.

1.2. A normed * algebra is a normed algebra A together with an involution z +— z*
such that ||z*|| = ||z|| for each z € A. If, in addition, A is complete, A is called a Banach
* algebra.

1.3 A C* algebra is a Banach x algebra such that ||z|]* = ||z*z|| for every z € A.
The condition ||z||> = ||z*z|| is called the C* condition. A C* algebra with unit is called
a unital C* algebra.

The C* condition hides an absolutely crucial feature by letting one believe that, as in
a Banach algebra, there is freedom in the choice of the norm. In fact if a * algebra is a
C* algebra it is so for a unique norm, given for any z by the equality:

[|lz]|* = Spectral radiusof z*z

= sup {JA] : z*z — A not invertible} .

1.4. Examples

1.4.1. Let X be a locally compact Hausdorff space, and A the algebra of complex-
valued continous functions vanishing at infinity on X. Set

@) = fle) fedzeX
Ifll = sup{lf(z)|: =€ X}.
(fo)(=) = fla)g(e)

Then A is a commutative C* algebra denoted Co(X).
The C* algebra Co(X) is unital if and only if X is compact.

1.4.2. Let H be a complex Hilbert space and A = L(H) the algebra of continous
endomorphisms of H. Set



(T*¢l) = (élTn)  EmeH
(STYE) = S(T€) ¢eH
TNl = sup {17¢]1 - llell < 1}

Then £(H) is a unital C* algebra.

1.4.3. Let k(H) be the algebra of compact operators on H. This is the closure in
L(H) of the finite-rank operators on H. Then k(H) is a C*-algebra. This C*-algebra is

unital if and only if H is finite-dimensional.

1.5. Automatic Continuity. Let A be a Banach * algebra, B a C* algebra and 7 a
morphism of A into B; this means that m is a morphism of the underlying x algebras,
without any condition on the norms. Then ||7(z)|| < ||z|| for every z € A. See [D, 1.3.7.]
It follows that an isomorphism of C*-algebras is automatically isometric.

1.6. Let A and B be C*-algebras, ¢ a morphism of A into B. Then the image ¢(A)
is a sub-C*-algebra of B.

1.7. Let A be a * algebra and H a Hilbert space. A representation of A in H is a
morphism of the x algebra A into the * algebra L(H). In other words, a representation
of Ain H is a map 7 of A into L(H) such that

m(z +y) = m(z) + 7(y) m(Az) = Ar(z)
w(zy) = m(z)7(y) m(z*) = m(z)*

for z,y € A,A € C.

1.8. Two representations = and 7’ of Ain H and H' are said to be equivalent, and we
write 7 & 7' if there is an isomorphism U of the Hilbert space H onto the Hilbert space
~H" which transforms «(z) into 7'(z) for each # € A. In other words, Un(z) = ='(z)U

for any & € A. Hence the definition of a class of representations. The operator U is an
intertwining operator for m and 7', ‘

1.9. Let T be a finite group acting as automorphisms of the C*-algebra A. Let AT
be the fixed-point set. Then Al is a sub-C*-algebra of A.

1.10. Irreducible representations. The representation 7 of the C*-algebra A in H is
ireducible if- H admits-no’invariant: closed subspaces-except O -and- H.

1.11. A C*-algebra A is liminal if, for every irreducible representation 7 of A and
each z € A, n(z) is compact.

1.12. Let A be a C*-algebra, and B a sub-C*-algebra of A. Then B is said to be a
rich sub-C*-algebra of A if the following conditions are satisfied.

(i) For every-irreducible representation 7 of A,7|p is irreducible;

8



(ii) If 7 and 7' are inequivalent irreducible representation of A, then 7|g and 7’| are
inequivalent.

1.13. The Richness Lemma. Let A be a liminal C*-algebra with Hausdorff dual, and
B a rich sub-C*-algebra of A. Then B = A.

This result is proved in [D, 11.1.4].

1.14. Non-commutative topology. The conventional wisdom is that C*-algebra theory
may be viewed as “non-commutative topology”. Each property concerning a locally
compact Hausdorff space X can in principle be formulated in terms of the function algebra
Co(X) and will then usually make sense (and hopefully be true) for any non-commutative

C*-algebra. Here is a list of some of the “dualities”

topology algebra
Co(X) C*-algebra A
proper map morphism
homeomorphism automorphism
measure positive functional
disjoint union direct sum :
compact unital
o-compact o-unital
open subset ideal
open dense subset essential ideal
closed subset quotient
compactifications unitizations
connected projectionless
2nd countable separable

The idea is that since an algebra isomorphism of Co(X) onto Co(Y') induces a ho-
-momorphism of X with Y',all topological informationabout X is stored-algebraically in

Co(X). See [W O, p.24].

AY‘,WDE “—> ﬂmsw V\"S‘Aﬂu‘*



#5. C*-modules and strong Morita equivalence

5 .@1. In this section we give a concise account of C*-modules over a C*-algebra and of
strong Morita equivalence of C*-algebras. These concepts are mainly due to Rieffel [R].
We shall follow very closely the exposition by Connes in his forthcoming book “Non
commutative geometry”, Chapter II, Appendix A.

Let B be a C*-algebra. By a B-valued inner product on a right B-module £ we mean
a B-valued sesquilinear form <, >, conjugate linear in the first variable, and such that:

i) < &,¢ > is a positive element of B for any { € €.
ii) < &,n>*=<n¢>foralé,nel.
i) < &b >=<¢n>bforallbe B,( €&, neC’.

By a pre-C*-module over B we mean a right B-module £ endowed with a B-valued inner
product. The following equality then defines a semi-norm on &:

lell =1l < &€> P2 ¢ek.
(where || < §,£ > || is the C*-algebra norm of < £,¢ > B.

2.1.1 Definition. A C*-module £ over B is a pre-C*-module & for which || |[|is a
complete norm.

By completion any pre-C*-module yields an associated C*-module. Given a C*-
module € over B, an endomorphism 7" of £ is by definition a continuous endomorphism
of the right B-module £ which admits an adjoint 7™, that is an endomorphism of the
right B-module £ such that: '

<&Tn>=<T*,n> Vé,nel.

One checks that T* is uniquely determined by T' and that equipped with this involution
the algebra Endp(€) of endomorphisms of £ is a C*-algebra. One has

<TETESLS||ITI? < &, ¢ > V¢ € E,T € EndgE

where ||T'|| is the C*-algebra norm of T
Of particular importance are the compact endomorphisms obtained from the norm
closure of endomorphisms of finite rank:

2.1.2 Proposition. [R]. Let £ be a C*-module over B.
a) For any ¢,n € € the following equality defines an endomorphism [{ >< 7| €
Endg(€):

(€ ><nl)(e) =€ <mya> Va € E.
b) The linear span of the above endomorphisms is a self-adjoint two-sided ideal of
Endg(€).

The usual properties of the Dirac bra-ket notation hold in this framework, so that for
instance:

10



(|6 ><n))*=n><€ VEpeEE.

([ >< (€ ><n']) = £ <& >><7|
= [><(In>< &Pl V&€ n,n' €&

We let End%(€) be the norm closure in Endg (&) of the above 2-sided ideal (prop. 2.1.2b).
An element of Endy(€) is called a compact endomorphism of €. There are obvious cor-
responding notions and notations: Homg(&y,&,), Hom$%(E1, ;) for pairs of C*-modules
over B. ¢

Consider the speical case when B is a commutative C*-algebra, so that B is the C*-
algebra Co(X) of continuous functions vanishing at co on the locally compact Hausdorff
space X. Then a complex Hermitian vector bundle £ on X gives rise to a C*-module:
& = Co(X, E) is the Cp(X) module of continuous sections of E vanishing at oo and the
Co(X)-valued inner product is given by

<&n>(2)=<{(a),n(z) > ;. VnefzelX.

2.1.3 Proposition. ([R]) Let B,C be C*jélgebras, &' (resp. &£") be a C*-module
over B (resp. C) and p a*-homomorphism B — Endg(E"). Then the following equality
~ yields a structure of pre-C*-module over C' on the algebraic tensor product £ = £'®p £":

<& @M, & ®n >=< p(< 2,6 >)m,m >€C
VE € & € &
We shall still denote by & ®p £ the associated C*-module over C. Given T €
Endg(&') the following equality defines an endomorphism T'® 1 € Endg(E' ®@p £"):

(TeN(Een=TE@n Vet net

By a (B —C) C*-bimodule we shall mean a C*-module £ over C together with a * homo-
morphism from B to Endc(€). In particular given a C*-algebra B, we denote by 1p the
B — B C*-bimodule given by: £ = B, the actions of B by left and right multiplications,
and the B-valued inner product: < by, by >= bjby Vby,b, € B.

2.1.4 Definition. Let B,C be C*-algebras. A strong Morita equivalence B ~ C is
given by a pair &, & of C*-bimodules such that:

E1®0 & =1p, &8 & = 1c.

Once can then show that the linear span in C of the inner products < §,n >;¢,n € &,
is a dense two-sided ideal and that the left action.p; B — Endg(&,) is an isomorphism
of B with End%(&;). It follows thus that &1, the complex conjugate of the vector space
&,, which is in a natural way a C' — B-bimodule: :

c- T b¥ () Vee&
is also endowed with -a B-valued inner product;

11



<&i>=p"Y(In><¢l)€B.

Endowed with this inner product, €, is a C — B C*-bimodule. The bimodule &; is then a
B — C-equivalence bimodule in the sense of [R] and one checks that the above definition
2.1.4 is equivalent to the existence of a B — C equivalence bimodule. (One can then take

82 = 21.)

Let B, C be C*-algebras and &; an equivalence B — C — C*-bimodule. One obtains a
functor from the category of unitary representations of C' to that of B by:

H e Rep C — & ®c H € Rep B,

and using & = €, as the inverse of & one gets a natural equivalence between the two
categories of representations.

It follows in particular that two strongly Morita equivalent C*-algebras have the
same space of classes of irreducible representations. In particular if a C*-algebra B is
strongly Morita equivalent to some commutative C*-algebra then the latter is unique
and is the C*-algebra of continuous functions vanishing at co on the space of irreducible
representations of B.

Strong Morita equivalence preserves many other properties. An equivalence B — C -
C*-bimodule determines an isomorphism between the lattices of two-sided ideals of B
and C, and hence a homeomorphism between the primitive ideal spaces of B and C. It
does also give a canonical isomorphism of the K-theory groups K.(B) ~ K.(C).

2.2. We shall now give some striking examples of equivalence bimodules in the rep-
resentation theory of reductive groups. Let G be a linear connected reductive group. We
shall consider real or p-adic groups. The example to bear in mind is the general linear

group GL(n).

2.3. The parameter space Y. The construction of the parameter space Y is due to
. Harish-Chandra [H]. Choose one: Levi subgroup M in each conjugacy class in G. The
subgroup °M of M is defined as follows: °M is the intersection of the kernels of all maps
z — |x(x)| where x is a rational character of M and |.| is the norm of the underlying
field; this norm may be archimedean or nonarchimedean. Let now W(M) be the group of
all unitary characters of M which are trivial on °M. In the p-adic case, such characters
are called unramified. In the real case, we have the Langlands splitting

(%) M= °MA
-« where A is the split component of M. The.subgroup A isa vector group, and V(M) may
be identified with the unitary dual A which is also a vector group. In the p-adic case
¥(M) has the structure of a compact torus of dimension equal to the parabolic rank of
M. Tn fact, if G is a p-adic Chevalley group and M is minimal, then M is a maximal
torus in G;-thesplitting () is-valid but A now has the structure of a finitely generated
free abehan group whose rank is the parabolic rank of M. Again, the group V(M) may
be identified with the unitary dual A of A so that U(M) is a compact torus.

Let now F5(M) be the discrete series of M. The discrete series of M comprises
‘equivalence classes of irreducible unitary representations of M whose restrictions to °M

12
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have matrix coefficients which are absolutely square integrable. The set Ey(M) admits a
natural action of the group V(M) defined as follows:

(Ao)(z) = Az)o(2)

for all z in M, in ¥(M),o in Ey(M). So the group W(M) acts by twisting each
representation in the discrete series of M by a unitary character which is trivial on °M.

The action of ¥(M) on E,(M) partitions E(M) into disjoint orbits. We make E5(M)
into a topological space by saying that each orbit D in Fy(M) is a connected component
in Ey(M) and that each orbit D inherits its topology from W(M). Then Ey(M) is a
locally compact Hausdorff space: in the real case, each component is a finite-dimensional
vector space; in the p-adic case, each component is a compact torus whose dimension is
the parabolic rank of M. The appropriate Weyl group W (M) is defined to be Ng(M)/M;
the subgroup of W(M) which stabilizes the orbit D is denoted W(M, D). The parameter
space in then defined as

Y =| |D/W(M, D).

It is a disjoint union of orbifolds: in the real case, each orbifold has the structure of a

closed simplicial cone; in the p-adic case, each orbifold is the quotient of a compact torus
by the finite group W (M, D).

2.4. Each point in D is an equivalence class of irreducible unitary representations
in the discrete series of M. Choose a point in D and then choose an element ¢ in this
equivalence class. Extend o across a parabolic subgroup P with Levi factor. M and
then unitarily induce from P to G. The resulting induced representation is denoted
(H(o),n(c)). The group ¥(M) acts by twisting with certain unitary characters; and
we can take the family of Hilbert spaces {H(\o) : A € .¥(M)} to be constant, i.e.,
independent of A. In this way, the parameter space Y becomes a Hilbert bundle which
is trivialized on each component. In other words, Y admits a continuous field of Hilbert
spaces which is constant on each orbifold. Owing to the choices which we have made,
this continuous field of Hilbert spaces is not quite canonical.

DEFINITION. A = reduced C*-algebra C}(G).

DEFINITION. B = Cy(Y).

DEFINITION. £ = all continuous sections of the field {H(c) : ¢ € Y} which vanish
at infinity.

2.5. The representations 7(c) are generically irreducible. This statement may be
made a little more precise in the following way. Equip the space D with a W (M)-

“invariant cell-structure. This determines a-cell-structure onthe orbifold D/W(M, D).

Reducibility of (c) can occur only if the isotropy subgroup W, of W (M) is not the
trivial group: so that in each cell of top dimension the representation 7(c) is necessarily
irreducible. Reducibility can occur only in the £ — 1 skeleton of the orbifold, where £ is
its dimension. :

We now make the temporary assumption that all representations w(o) are irreducible,
and proceed as follows. The B-valued inner product and the A — B-bimodule structure
on £ are determined by



<§n>(0) = <{(o)n(o) >
(b)(o) = £(0)-b(o)

(w6)(@) = ([el9)(x(x)o)dg) £(o)

for all ¢,min £,bin B,o in Y, and all test-functions ¢ in L'(G).
The bimodule £ is full and

£ = Co(Y, H)

where H is the standard Hilbert space.
The fact that A is liminal, together with the left A-module structure, determines a
map

A — K(€).

Injectivity. Let z € A,z # 0. Then there exists 7 in A such that ||r(z)]| = ||z|| by
(D, 3.3.6]. Now 7 is a tempered representation of G' and so 7w = (o) for some o € X by
the Plancherel theorem [H]. Therefore w(o)z # 0. So the map 7 —— 7(7)z is nonzero at
7 = o. Therefore the map A — k(&),z — &, is injective.

2.6. The Richness Lemma (1.13) is now used to prove that the map A — K(£) is
surjective. This secures an isomorphism of C*-algebras:

A= K(E)

and shows that £ is an equivalence bimodule and that A is strongly Morita equivalent to
the abelian C*-algebra B. This implies that the locally compact Hausdorff space Y is a
model of the reduced dual A in its hull-kernel topology.

2.6.1. EXAMPLE [PP]. G is any connected complex semisimple Lie group.

2.6.2. EXAMPLE [P]. G is the general linear group over a local field.

3 ' The Brylinski Quotient

3.1. Let G = GL(n) = GL(n,F) where F is a non-archimedean local field. By the
* Harish-Chandra Plancherel Theorem [H], an irreducible unitary representation 7 is tem-
pered if and only if it comes off the discrete series of some Levi factor. That is, there
exists a block-diagonal subgroup

M = GL(ny) x...x GL(n)

such that



where 7y, ..., 7 are discrete series. Note that = is automatically irreducible, by a result
of Bernstein.

3.2. Let I be the Iwahori subgroup of GL(n). Now m; x...x m will admit /-fixed
vectors iff the supercuspidal support of m; X...x 7 comprises unramified quasi-characters
of GL(1) by [BK, §7][Bo]. Therefore each of m,...,7; must
e be discrete series
e have support comprising unramified quasi-characters of GL(1).

But each discrete series representation comes off a segment [Zel]. Since this segment
comprises unramified quasi-characters of GL(1), each of 7y, ..., 7, must be a Steinberg,
with twisting allowed by unramified unitary characters x1,...,Xs. That is, we must have

M = GL(n) X...x GL(ng)
T = M X...X Tk
(Xj o det)St(nj) i=1...,k

Il

i

This proves
3.3. Lemma. The representation

(x10 det)St(ny) x...x (xxo det)St(ng)

is unitary, irreducible, tempered and admits I-fixed vectors. Moreover, all such represen-
tations are accounted for in this way.

3.4. The next step is to delve into the combinatorics of the representations which
feature in Lemma 3.3.

Suppose that there are ry blocks of size ny,...,r; blocks of size n,. Then the Weyl
group of the Levi factor M is

W(M)=S5, x...x Sy,
This Weyl group permutes blocks of the same size. By standard Bruhat Theory, the Weyl
group controls equivalences of parabolically induced representations. It follows that the
parameter space for the tempered representations which admit I-fixed vectors is
X = T/8, x...x T/S,
The disjoint union is over all partitions
ng+..n+...+n+. oy =ring .o Feng=n
3.5. Let now 4 be an element in S, whose cycle type is the partition p(n) given by

mt...+m+... Fnt.. Fng=mn.

15



The centralizer Z() is the product of wreath products:

Z(7) = (Z[n18n) %X ...x (Z/nglSy,).
The Brylinski quotient Bryl (T™;S,) is by definition
LIT™)/Z(v)
where (T")7 is the fixed point set
{te T":qt =t}.

In the disjoint union, one « is taken in each conjugacy class. That is, the disjoint
union is over all partitions p(n) of n.
Now

Bryl(T™ S,) = LI(T")/Z(7)

_ u{(a cyby i ey yd, .., d)}
(Z/nl l ST1) X.ooo X (Z/nl ! SN)
b

A, .y b,. ey Cyevnydyo. ., d)}
I—l ST1 X ... X S”

> | |[Sym"T x...x Sym™T

= X.
We summarize the present discussion in

3.6. Lemma. The parameter space for the tempered representations of GL(n)
which admit I-fixed vectors is the Brylinski quotient Bryl(T";S,). O

4 The Reduced Iwahori-Hecke C*-algebra.

4.1. Let G = GL(n) and let I be the Iwahori subgroup. Choose left-invariant Haar
measure such that I has volume 1. The left regular representatlon A of Ll(G) on LZ(G)
is defined as follows:

AN(R) = f*h f e LY(G),h € L*(G)

where * denotes convolution. Thereduced C*:algebra-is the closure-(in-the-norm-topol-
ogy) of the image of A:

A= CHG) = NING) C LLAG)).
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The dual of A is homeomorphic to the tempered dual of G.

4.2. Let e : G —> R be defined as follows:
e(z)=1 zel

0 otherwise

Then e is a projection in A. It determines a (2-sided) ideal AeA. This is a non-unital
ideal in A. The main result of [P], together with the theory of the trivial type, makes it
clear that AeA admits a complementary 2-sided ideal in A, that is

A= AeA P D.

4.3. Consider the corner eAe. This is a unital corner with unit e. Now eAe is strongly
Morita equivalent to AeA with equivalence bimodule £ = eA:

eA
eAe — AeA
Let
B = eAe
C = AeA
E = eA

We have to check 3 points:
(1) £ admits a C-valued inner product given by

< z,Yy Se=2z"Y

" Then |jz]|e = ||z*z||* = ||z||. Since C = AeA is a closed 2-sided ideal, C is ||.||-
complete and £ is a C*-module.
The set {< z,y >¢: 2,y € £} is

{z*y:2y € £} = {a*eb:a,be A} = AeA=C

hence £ is a full C*-module.
(2) € is a right C-module given by

ExC—-E

(ea,c) + eac

(3) The standard rank 1 operators are given by

O,y(2) = z<y,z>

zy*z

with z,y,z € €. Thus
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O,y : 2z — (eab™e)z
with = ea,y = eb. In particular
O, : 2 > (eaa’e)z

These rank 1 operators on £ are realized by positive elements in eAe. The linear span
of such positive elements is eAe itself. So the linear span of the @, is isomorphic to
eAe. Since eAe is complete, the closure of the linear span of the O, is isomorphic to
eAe. Hence eAe is isomorphic to k(€) the compact endomorphisms of £. Hence £ is an
equivalence bimodule ’

£
eAe — AeA

4.4. The equivalence bimodule £ determines a homeomorphism of dual spaces:
(eAe)" = (AeA).
Now AeA is a closed 2-sided ideal in A:
A=AeA® D

Therefore A = (AeA)" || D"
Also

n(e) = /e(w)ﬂ'(az)d:ﬂ
= /IW(a:)dm

which is projection onto the subspace of I-fixed vectors occurring in .

So
m(e) # 0 <= m admits nonzero I — fixed vectors.
Since
m(zey) = n(z)m(e)m(y)
it follows that the dual of AeA is precisely those tempered representations of A which
admit nonzero I-fixed vectors. We shall summarize this by saying that

) (AeA)” is the unramified tempered dual.

We emphasize that the unramified tempered dual comprises unitary, irreducible, tem-
pered representation of GL(n) which admit non zero I-fixed vectors.

Combining the present discussion, section §3, and the main result in [P] we conclude
‘the following.

4.5. Lemma. The dual of eAe is the unramified tempered dual of GL(n). The
Brylinski quotient Bryl(T™;S,) is a model of the unramified tempered dual. a
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5 C*-Plancherel Theorem

5.1. Let H(G//I) be the Iwahori-Hecke algebra. This comprises all complex-valued
functions ¢ on G which are compactly supported, locally constant and bi-invariant with
respect to I:

$(i1zi3) = ¢(2)

for all 41,15 € I,z € G. The product in H(G//I) is the convolution product.
Since

d=exdxe

it is immediate that H(G//I) C eAe. In fact H(G//I) is dense in eAe in the reduced
C* algebra norm, and we refer to eAe as the reduced Iwahori-Hecke C* algebra. The
notation is

CXG/]T) = eAe.

5.2. An Hermitian vector bundle now presents itself.
e The base space X is the dual of eAe. By Lemma 4.5, the base space is the Brylinski
quotient Bryl(T™;S,).
o The total space S is the set of all I-fixed vectors. Of course, only those representations
7 in the dual of eAe admit non zero I-fixed vectors.
e The fibre S, comprises all I-fixed vectors in the representation m. We have

S € S
l l
* € X

5.3. The vector bundle S admits an endomorphism bundle
End(S)=S®S"

Since § is Hermitian, the continuous sections of End(S) form a unital C* algebra
whose dual is homeomorphic to X.

Note that all unramified representations of G can be realized on a fixed Hilbert space.
In consequence, the bundle S is a trivialized vector bundle. Let ¢ € H(G//I).

5.4. Definition. The Fourier Transform ¢ is defined as
d(m) =x(9) = [ d(g)n(9)ds.
Since ¢ = ege it follows that |

<]A$(7r) = n(egpe) = m(e)m(¢)m(e)

where 7(e) projects onto the I-fixed subspace of 7. Therefore
¢(r) € End(Sy).
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Define

a:H(G/]I) — C(EndS)
b — ¢

So
(a(#))(m) = $() € End(Sy).

The following result was conjectured by Nigel Higson in discussions between Nigel Higson
and myself, and subsequently proved by myself.

5.5. Theorem. (C*-Plancherel Theorem for the reduced Iwahori-Hecke C*-algebra
of GL(n)). The Fourier Transform extends uniquely to an isomorphism of unital C*
algebras:

CH(G//I) = C(EndS).

5.5.1. Proof. We have already shown that the Fourier Transform determines a
map v

H(G//T) —> C(EndS).

5.5.2. Injectivity. Let y € eAe. Then there exists = in (eAe)" such that ||y|| =
sup ||7(y)|| by [D, 3.3.6]. Therefore

y # 0= (3m)r(y) # 0
and
y1 # y2 = (Im)n(y1) # 7(y2)
so that
a:H(G]]I) — C(EndS)
is injective.
5.5.3. Surjectivity. The image a(eAe) is a sub-C*-algebra of C(EndS) by 1.6. Let
B = a(eAe).
Note that C(EndS) is a liminal C*-algebra with compact Hausdorff dual X. Let
C = C(EndS).

We shall now apply the Richness Lemma 1.13.
o Let € C. Then 7 € X.
Consider the restriction 7|g. This is irreducible because
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7 : H(G//I) — End(Sx)

is a simple 'H(G’/ /I)-module, H(G//I) is dense in eAe, and B is isomorphic to eAe. The
simplicity of the H(G//I)-module of I-fixed vectors in 7 is a classical result of Borel
[Bo]. )

o Let m,9p € C. Then ¢,9 € X. Restrict to B. We obtain

7 : H(G//I) — EndS, }
Y : H(G//I) — EndSy

Suppose 7 # 1. Then the simple H-modules S, and Sy are distinct owing to the bijection
between unramified irreducible representations of G and simple H-modules. This again is
a classical result of Borel [Bo]. Once again H(G//I) is dense in eAe which is isomorphic
to B. So we conclude that 7|g and t|p are distinct irreducible representations of B. By
the Richness Lemma, B = C. o

6 Localized B — C Conjecture

6.1. In these lectures we have tried to maintain the theme of strong Morita equivalence.
Our conclusion so far is that the reduced Iwahori-Hecke C*-algebra C}(G//I) is strongly
Morita equivalent to the commutative C* algebra C(X) where X is the Brylinski quotient

X = Bryl(T"; Sy).

The equivalence bimodule £ which effects this strong Morita equivalence comprises con-
tinuous sections of the vector bundle S of all Iwahori-fixed vectors. This bundle S is a
Hermitian vector bundle with base X. The picture is:

o(S)
ca/m = o),

6.2. As in [BK]§5.4, the algebra H(G//I) can be described in purely combinatorial
terms. It is canonically isomorphic to the affine Hecke algebra H(n,q) where q is the
cardinality of the residue field of the local field F. Recall that G = GL(n) = GL(n, F).
This algebra has a standard basis {{w]} with w ranging over the affine Weyl group

W=17I"xS,

‘where ‘S, ‘acts on Z™by permuting co-ordinates.
The canonical inner product on H(G//I) which is

<fh>=[r3

corresponds to the combinational inner product on H(n,q): the elements [w] form an
orthogonal basis for this inner product, and

< [w], [w] >= ¢"®)
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where £ is the length function on W (giving the fundamental involutions length 1).

6.3. The algebra H(n,q) acts by convolution on the £?-completion of the pre-Hilbert
space H(n, q). This is the left regular representation of the affine Hecke algebra H(n, g).
The norm closure of the image of the left regular representation defines the reduced
C*-algebra H}(n, q). .

Let f, be the indicator function (characteristic function) of the double coset TwI:

Ju(z)=1 z € Iwl
0 otherwise.

The map
S — [w]
extends to an isomorphism of unital C*-algebras
CHG/11) = Hi(nyq).
6.4. Combining section 6.3 with Lemma 5. = we have a strong Morita equivalence -
Hy(n,0) = O(X).

Notice one striking fact: the right-hand-side is independent of g. Now ¢, as cardinality
of a residue field, is any prime power. So we have isomorphic C*-algebras

Hi(n,2)  Hi(n,3)  Hy(n,4)  Hi(n,5) H;(n,7)

The algebra H}(n, q) is defined for all ¢ > 1.
Note also that

Hi(n,1) = C*(W)

the C* algebra of the discrete group W. Set

A1) = Hy(n,1) =C*(W)
A(g) = Hi(n,q) g>1.

Conjecture 1. (Higson-Plymen). The field of C*-algebras {A(q) : ¢ > 1} has con-
stant K-theory.

- Conjecture 2. (Higson-Plymen). -Same as Conjecture 1, with: GL(n) replaced by
any split reductive p-adic group G.

6.5. Back to Conjecture 1. In the E-theory framework of Connes-Higson [CH] this is a
deformation of C*(W) into the constant C*-algebra H}(n, q) where ¢ > 1.
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Let n > 2. The C*-algebras C*(W) and H}(n, q) where q is a prime power, are definitely
not isomorphic. For example:

e The C*-algebra C*(W) has quasi-compact connected non-Hausdorff dual. The dual of
C*(W) is homeomorphic to the unitary dual of the discrete group W. The result now
follows from Mackey orbital analysis of the semidirect product Z™ % S,,.

o The C*-algebra H}(n,q) has compact disconnected Hausdorff dual X.

The Brylinski quotient X = Bryl(n) can be regarded as a reconstruction of the dual of
W which is true to K-theory.

These conjectures are analogues of the Connes-Kasparov conjecture for Lie groups, as
formulated by [CH]. For let G be a Lie group. Let

Clq) = C;(G) g>1
C(1) = C*(» x K)

where p is the tangent space at K (maximal compact) of the symmetric space G/K.
According to the conjecture, the field {C(q) : ¢ > 1} has constant K-theory. In this
analogy, we have

Lie Groups Hecke Algebras

q>1 CH(G) H;(n, q)
=1 C*(» x K) C*(W)

In other words

o The affine Weyl group is a discrete motion group.

6.6. Theorem. ,
KiH:(n,q) = K/(X)

for all ¢ = p™ > 1.

Proof. This follows from 5.5 and 2.1. m]

6.7. We may take an apartment ¥ in the affine building BG of G as model for the
universal example EW. So we have

Y =EW.

Of course X has the structure of affine Euclidean space [BT]. The B-C conjecture for the
discrete group W is the provable statement

KY (%) = K;C*(W).

The left-hand-side comprises W-invariant “Dirac operators” on 3, organized into two
equivariant K-homology groups, 7 = 0, 1.
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6.8. Combining 6.6-6.7 we obtain an isomorphism
KY(5) 2 K;CH(G//1)

Now
. ¥ embeds isometrically in the affine building G
o Cr(G//I) embeds as direct summand of C}G.

6.9. So the isomorphism in 6.8 is a localized version of the isomorphism (conjectured by
Baum-Connes) for GL(n)

K$(Q) = K,;C*(Q).

6.10. The isomorphism in 6.8 is a consequence of Conjecture 1. Let’s see how close we
can get to 6.8 without assuming Conjecture 1.

Consider the K-theory of the C*-algebra of the discrete group W. Now W is an amenable
group so C*W = C*W. Fourier Transform determines an isomorphism

CHW) 2 C(T") % S,

the crossed product of an abelian C* algebra by the symmetric group S,,.
The equivariant Chern character [BC] determines isomorphisms

ch: Ko(C(T") x S,)®2C = H*™(X;C)
ch: K1(C(TY) % S,)®C = H“(X;C)

6.11. The classical Chern character gives isomorphisms

K(X)®2Q = H™(X;Q).

K'(X)®2Q = H™(X;Q).
We now have
Ky(C*(W))®z2C = Ko(C(T") % S,)®zC (1)
= H"(X;C) (2)
~ K'X)®zC (3)
& Ko(H;(n,q)) @z C (4)

whenever ¢ = p™ > 1.
"The reasons are

1. Fourier Transform

2. Equivariant Chern character
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3. Chern character

4, Theorem 6.6

Exactly similar conclusion for K. Summarizing we have
Theorem 2. We have
. K;(H:(n,q)) ®2 C = K;(C*(W))®zC forall g=p™ >1and j =0,1.

¢ The Baum-Connes conjecture for GL(n), localized to an apartment, is true modulo
torsion:

(K} (2)) ®2 C = K;(C;(G/ /1)) ®z C.
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7 Satake Isomorphism

7.1. The strong Morita equivalence

cwein Y o

has been proved by Fourier Transform methods. This depends crucially on the Zelevinsky
theory of segments [Z]; note that this can be reproved in the Hecke algebra framework of
Howe-Bushnell-Kutzko [H][BK]. The question arises whether the result under discussion
may succumb to more intrinsic methods, i.e. avoiding Fourier Transform.

7.2. A purely algebraic approach cannot work, owing to the difference between the
reduced C*-algebra C}(G//I) and the full C*-algebra C*(G//I). This is manifest even
for GL(2). For GL(2) the Brylinski quotient is

X = (T*)/2(e) LI(T*)/2(v)
where |
Z/2 ={e,v}.
So we have
X =Sym®T||T
But the full Iwahori-Hecke C*-algebra is strongly Morita equivalent to
Y = Syszl_lTLIT.

This is because GL(2) admits a “circle” of representations which are
e unramified

¢ non-tempered.

These representations are very easy to describe explicitly. They are

GL(2) — UQ)

z z'ual (detx)

where the parameter z is a complex number of modulus 1, z € U(1). If z € I then
det z € O% so that

z € I = pralldets) — 1,

The trivial representation of GL(2) is of course given by z = 1: it is non-tempered.

7.3. Let K be a maximal compact subgroup of GL(n). They are all conjugate. We may
take K = GL(n,O). We have '

C(G//K) C CHG//D).
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The Brylinski quotient X contains the ordinary quotient

X = (T/2(e)]]...
T"/Su| |-
= Sym"T|]...

7.4. In the standard strong Morita equivalence

" c(s
cenn P o
the sub-C*-algebra C}(G//K) determines a strong Morita equivalence

o(L)
CxG/JK)  ~  C(BbI™/S,)

where L is the line bundle of all K-fixed vectors. This of course means that
Cr(G//K) = C(T"[Sy).
This is the C*-algebra version of the Satake isomorphism [Car, p.147]
H(G//K) = C[A]"

where the lattice A = Z". The group algebra C[A] will Fourier Transform to a dense
subalgebra of C(T"/S,). The intermediate compact subgroups J

IcCJCK

and the associated bi-invariant C*-algebras C*(G//J) may account for the various com-
ponents in the Brylinski quotient: this is currently under investigation [HP].
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