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Abstract. The implementation of quadratic velocity, linear pressure finite element
approximation methods for the steady-state incompressible (Navier-)Stokes equations
is addressed in this work. Three types of a posteriori error indicator are introduced and
are shown to give global error estimates that are equivalent to the true discretisation
error. Computational results suggest that the solution of local Poisson problems pro-
vides a cost-effective error estimation strategy, both from the perspective of accurate
estimation of the global error and for the purpose of selecting elements for refinement
within a contemporary self-adaptive refinement algorithm.
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1 Introduction

During the last two decades there has been a rapid development in practical a posteri-
ori error estimation techniques for elliptic PDEs. This explosion in interest has been
driven by the underlying need to increase the reliability and efficiency of finite element
software for solving such problems. The books by Ainsworth & Oden [3] and Verfürth
[16] give a general overview. In the specific case of the Stokes and Navier-Stokes equa-
tions governing the steady flow of a viscous incompressible fluid, the work of Bank &
Welfert [4] and of Verfürth [15] laid the basic foundation for the mathematical analysis
of practical methods. The “local Poisson problem” error estimation methodology that
we adopt herein was introduced Ainsworth & Oden in [2] and is strongly featured in
the book of Elman et al. [9, section 5.4.2].

The pioneering a-posteriori error estimation techniques for incompressible flow
were built around stable P1–P1 (linear velocity, continuous linear pressure) mixed ap-
proximation, using either bubble terms (i.e. the mini-element, see e.g. [5, p. 153]), or
a macroelement definition of the pressure (see e.g. [5, p. 152]) to guarantee stability.
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(Qifeng.Liao@postgrad.manchester.ac.uk, d.silvester@manchester.ac.uk).
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EFFECTIVE A POSTERIORI ERROR ESTIMATION 2

The aim of this paper is to provide simple and effective error estimation techniques for
higher order stable mixed approximations: in particular Q2–P−1 (biquadratic velocity,
discontinuous linear pressure, see [9, p. 234]), and the Crouzeix-Raviart P2∗–P−1 ap-
proximation (superquadratic velocity, discontinuous linear pressure, see [9, p. 248]).
Although we restrict attention to two dimensional approximation throughout, the ex-
tension of our approach to three dimensional Q2–P−1 or P2∗–P−1 approximation us-
ing bricks or tetrahedra is completely straightforward. The paper builds on our earlier
work [12] where we considered error estimation and adaptivity in the case of unstable
P1–P0 (linear velocity, constant pressure) approximation in two dimensions. Finally,
although our focus here is on the simplest case of Stokes flow, our methodology can
be readily extended to the Navier-Stokes equations. See [9, section 7.4.2] for further
details.

An outline of the paper is as follows. In the next section we review the notion
of mixed approximation of the Stokes equations. We present a theoretical analysis
of three a posteriori error estimation strategies for Q2–P−1 mixed approximation in
§3. Specifically, three alternative error estimators are shown to be equivalent to the
discretisation error. Some numerical results are presented in §4. Here the efficiency
and reliability of the Poisson problem estimator is compared with the popular Z–Z
error indicator originally introduced by Zienkiewicz & Zhu [17]. Some conclusions
are given in §5.

2 Mathematical Setting

We will consider the simplest possible model of viscous incompressible flow in an
idealized, bounded, connected domain in R2:

−∇2~u + ∇p = 0 in Ω, (1)

∇ · ~u = 0 in Ω, (2)

~u = ~w on ∂ΩD, (3)
∂~u
∂n
− ~np = 0 on ∂ΩN . (4)

We also assume that Ω has a polygonal boundary ∂Ω = ∂ΩD ∪ ∂ΩN , ∂ΩD ∩ ∂ΩN = ∅,
so that ~n is the usual outward-pointing normal. The vector field ~u is the velocity of
the flow and the scalar variable p represents the pressure. Our mathematical model is
very simple: the velocity is given on inflow and fixed parts of the boundary ∂ΩD, and
there is a zero flux condition that applies on ∂ΩN typically representing an outflow.
For convenience, the boundary data ~w will also be assumed to be a polynomial with
order at most two—this will ensure that there is no error incurred in approximating the
boundary condition on ∂ΩD.
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In the following we will use the standard function space notation given in [9,
p. 222]. The weak formulation of (1)–(4) is: find ~u ∈ H1

E and p ∈ L2(Ω) such that∫
Ω

∇~u : ∇~v −
∫

Ω

p∇ · ~v = 0 ∀~v ∈ H1
E0
, (5)∫

Ω

q∇ · ~u = 0 ∀q ∈ L2(Ω). (6)

As is well known, see Girault & Raviart’s book [10, pp. 59–61], a sufficient condition
for the existence and uniqueness of a solution satisfying (5)–(6) is the (continuous–)
inf-sup condition that is stated below.

Definition 2.1 Continuous inf-sup condition: there exists a positive constant γ depen-
dent on the shape of the domain Ω such that,

inf
0,q∈L2(Ω)

sup
~0,~v∈H1

E0

|(q,∇ · ~v )|
|~v |1‖q‖0

≥ γ. (7)

In the sequel, this continuous inf-sup condition will be assumed to be satisfied. An
immediate consequence of the stability bound (7) is the “B-stability bound” given
below. For a proof see [9, Lemma 5.2].

Proposition 2.2 B-stability: working with the “big” bilinear form
B : (H1, L2(Ω)) × (H1, L2(Ω))→ R so that

B((~u, p); (~v, q)) = (∇~u,∇~v ) − (p,∇ · ~v ) − (q,∇ · ~u ), (8)

then, for all (~w, s) ∈ H1
E0
× L2(Ω), we have that

sup
(~v,q)∈H1

E0
×L2(Ω)

B((~w, s); (~v, q))
|~v |1,Ω + ‖q‖0,Ω

≥ γD(|~w|1,Ω + ‖s‖0,Ω), (9)

where γD depends only on the shape of the domain Ω.

2.1 Finite element approximation

Mixed finite element approximation of (5)–(6) is obtained by taking finite dimensional
subspaces Xh

E to approximate H1
E , Xh

0 to approximate H1
E0

and Mh to approximate
L2(Ω). Thus, the Galerkin formulation is: find ~uh ∈ Xh

E and ph ∈ Mh such that,∫
Ω

∇~uh : ∇~vh −

∫
Ω

ph∇ · ~vh = 0 ∀~vh ∈ Xh
0 , (10)∫

Ω

qh∇ · ~uh = 0 ∀qh ∈ Mh. (11)
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Note that, the approximation velocity space Xh
E is obtained from the test space Xh

0 :

Xh
E =

~u ∣∣∣ ~u =

nu∑
j=1

a j ~φ j +

nu+n∂∑
j=nu+1

a j ~φ j

 , (12)

with coefficients a j ∈ R and associated basis functions {~φ j}
nu
j=1 that span Xh

0 . The
additional coefficients a j : j = nu + 1, ..., nu + n∂ are associated with the Lagrange
interpolation of the boundary data ~w on ∂ΩD. Collecting the coefficients {a j}

nu
j=1 into a

vector u and associating a vector p ∈ Rnp with the coefficients in the expansion of ph

leads to a chracteristic system of algebraic equations: A BT

B 0

  u
p

 =

 f
g

 . (13)

The finite dimensional spaces Xh
0 and Mh are related to the partitioning Th of Ω.

In this work, we will focus on the simplest case of regular rectangular meshes—which
implies that the aspect ratio of each rectangle in the mesh is bounded—and we concen-
trate on the Q2–P−1 approximation that has the degrees of freedom shown in Fig. 1.
This velocity-pressure combination is regarded by practitioners as being one of the
most cost-effective approaches in two dimensions.

u u

uu

u
u

u
u u c6-

Figure 1: Q2–P−1 element (• velocity node; ◦ pressure;
↑
→ pressure derivative).

One necessary condition for the mixed approximation is that the associated “saddle-
point” system (13) is solvable. Analogously to the continuous situation, a sufficient
condition for the unique solvability of (13) is a (discrete–) inf-sup condition.

Definition 2.3 Discrete inf-sup condition: there exists a positive constant γ∗ (called
the inf-sup constant) independent of h, such that

min
0,qh∈Mh

max
~0,~vh∈Xh

0

|(qh,∇ · ~vh)|
|~vh|1‖qh‖0

≥ γh ≥ γ∗ > 0. (14)

As discussed in [9, section 5.5], for any given grid, γh is just the square root of the
smallest nonzero eigenvalue λ of the following generalized eigenvalue problem,

BA−1BT x = λQx, (15)
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where the matrices B, A are those given in (13), and Q is the Grammian matrix as-
sociated with the basis functions spanning the pressure approximation space Mh. The
stability of Q2–P−1 approximation was first established by Stenberg in [14]. In the case
of enclosed flow, ∂ΩN = ∅, computational results presented in [9, Table 5.6] suggest
that the inf-sup constant associated with Q2–P−1 approximation on uniform square
grids satisfies γ∗ > 1/5.

We let (~u, p) denote the solution of (5)–(6) and let (~uh, ph) denote the solution of
(10)–(11) with Q2–P−1 approximation on a rectangular subdivision Th. Our aim is to
estimate the velocity and the pressure errors

~e = ~u − ~uh, ε = p − ph, (16)

by post-processing the computed solution (~uh, ph). To make progress towards this aim,
some notation is needed. For any T ∈ Th, ωT is the set of rectangles sharing at least
one edge with element T , while ω̃T is the set of rectangles sharing at least one vertex
with T . Also, for an element edge E, ωE denotes the union of rectangles sharing E,
while ω̃E is the set of rectangles sharing at least one vertex with E. Next, ∂T is the
set of the four edges of T . Moreover, εh,Ω is the set of element edges inside of Ω,
εh,D is the set of element edges on the boundary ∂ΩD and εh,N is the set of element
edges on the boundary ∂ΩN . We also follow established convention and let C and c
denote generic constants which are independent of the mesh size, the domain Ω, and
the solution (~u, p). Such constants could depend on the aspect ratio of the elements in
Th.

If an error estimator η is to be useful then an important factor is the requirement
that it should be cheap to compute—as a rule of thumb, the computational work should
scale linearly as the number of elements is increased—yet there should be guaranteed
accuracy in the sense that the estimated global error should give an upper bound on the
exact error, so that

|~e |1,Ω + ‖ε‖0,Ω ≤ CΩη. (17)

Here the generic constant CΩ is independent of the mesh size and the exact solution
but may depend on the domain and the element aspect ratio. If, in addition to satis-

fying (17), the associated local (element–) error estimator ηT (with η =

√∑
T∈Th η

2
T )

provides a lower bound for the exact local error

ηT ≤ CΩ

 ∑
T ′∈ωT

{
|~e |21,T ′ + ‖ε‖20,T ′

}1/2

, (18)

then the estimator ηT is likely to be effective if it is used to drive an adaptive refinement
process. In next section we will introduce three alternative estimators and show that
each satisfies the requirements (17) and (18).
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3 Analysis of estimators

We begin this section by summarising some standard results that will prove to be use-
ful. First, so-called bubble functions on the reference element T̃ = (0, 1) × (0, 1) are
defined as follows:

bT̃ = 24x(1 − x)y(1 − y),

bẼ1,T̃ = 22x(1 − x)(1 − y),

bẼ2,T̃ = 22y(1 − y)x,

bẼ3,T̄ = 22x(1 − x)y,

bẼ4,T̄ = 22y(1 − y)(1 − x).

Here bT̃ is the reference element bubble function, and bẼi,T̃ , i = 1 : 4 are reference
edge bubble functions. For any T ∈ Th, the element bubble function is bT = bT̃ ◦ FT

and the element edge bubble function is bEi,T = bẼi,T̃ ◦ FT , where FT is the affine
map from T̃ to T . For an interior edge E ∈ εh,Ω, bE is defined piecewise, so that
bE |Ti = bE,Ti , i = 1 : 2 where E = T1 ∩ T2. For a boundary edge E ∈ εh,D ∪ εh,N ,
bE = bE,T , where T is the rectangle such that E ∈ ∂T . With these bubble functions,
Creusé et al. [7, Lemma 4.1] established the following lemma.

Lemma 3.1 Inverse inequalities: let T be an arbitrary rectangle in Th and E ∈ ∂T.
For any ~vT ∈ Pk0(T ) and ~vE ∈ Pk1(E), the following inequalities hold,

ck‖~vT ‖0,T ≤ ‖~vT b1/2
T ‖0,T ≤ Ck‖~vT ‖0,T , (19)

|~vT bT |1,T ≤ Ckh−1
T ‖~vT ‖0,T , (20)

ck‖~vE‖0,E ≤ ‖~vEb1/2
E ‖0,E ≤ Ck‖~vE‖0,E , (21)

‖~vEbE‖0,T ≤ Ckh1/2
E ‖~vE‖0,E , (22)

|~vEbE |1,T ≤ Ckh−1/2
E ‖~vE‖0,E , (23)

where, ck and Ck are two constants which only depend on the element aspect ratio and
the polynomial degrees k0 and k1.

Here, k0 and k1 are fixed and ck and Ck can be associated with generic constants c
and C. In addition, ~vE which is only defined on the edge E also denotes its natural
extension to the element T .

Second, we recall some quasi-interpolation estimates in the following lemma.

Lemma 3.2 Clément interpolation estimate: Given ~v ∈ H1, let ~vh ∈ Xh be the quasi-
interpolant of ~v defined by averaging as in [6]. For any T ∈ Th,

‖~v − ~vh‖0,T ≤ ChT |~v |1,ω̃T , (24)
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and for all E ∈ ∂T

‖~v − ~vh‖0,E ≤ Ch1/2
E |~v |1,ω̃E . (25)

We are now ready to introduce our three alternative error estimators.

3.1 A Residual Error Estimator

The material in this section is well known and can be found in several places, e.g. in
Creusé et al. [7], or [9, section 5.4.2]. The element contribution ηR,T of the residual
error estimator ηR is given by

η2
R,T := h2

T ‖
~RT ‖

2
0,T + ‖RT ‖

2
0,T +

∑
E∈∂T

hE ‖~RE‖
2
0,E , (26)

and the components in (26) are given by

~RT := {∇2~uh − ∇ph}|T , (27)

RT := {∇ · ~uh}|T , (28)

~RE :=


1
2J∇~uh − phIKE E ∈ εh,Ω

−

(
∂~uh
∂~nE,T

− ph~nE,T

)
E ∈ εh,N

0 E ∈ εh,D

, (29)

with the key contribution coming from the stress jump associated with an edge E ad-
joining elements T and S :

[[∇~uh − ph~I ]] := ((∇~uh − ph~I )|T − (∇~uh − ph~I )|S )~nE,T .

The global residual error estimator is given by ηR :=
√∑

T∈Th η
2
R,T .

Theorem 3.3 For any mixed finite element approximation (not necessarily inf-sup sta-
ble) defined on rectangular grids Th, the residual estimator ηR satisfies:

|~e |1,Ω + ‖ε‖0,Ω ≤ CΩ ηR,

ηR,T ≤ C

 ∑
T ′∈ωT

{
|~e |21,T ′ + ‖ε‖20,T ′

}1/2

.

Note that the constant C in the local lower bound is independent of the domain.

Proof. We include this for completeness. To establish the upper bound we let [~v, q] ∈
H1

E0
× L2(Ω) and ~vh ∈ Xh be the Clément interpolant of ~v, then

B([~e, ε]; [~v, q]) = B([~e, ε]; [~v − ~vh, q])

= −(∇~uh,∇(~v − ~vh)) + (ph,∇ · (~v − ~vh)) + (q,∇ · uh)

=
∑
T∈Th

{
(∇2~uh − ∇ph,~v − ~vh)T −

∑
E∈∂T

〈
~RE ,~v − ~vh

〉
E

+ (q,∇ · ~uh)T

}
.
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Thus,

|B([~e, ε]; [~v, q])| ≤
∑
T∈Th

{
‖∇2~uh − ∇ph‖0,T ‖~v − ~vh‖0,T +

∑
E∈∂T

‖~RE‖0,E‖~v − ~vh‖0,E

+‖q‖0,T ‖∇ · ~uh‖0,T

}

≤ C


∑

T∈Th

h2
T ‖∇

2~uh − ∇ph‖
2
0,T

1/2 ∑
T∈Th

1
h2

T

‖~v − ~vh‖
2
0,T

1/2

+

∑
T∈Th

∑
E∈∂T

hE‖~RE‖
2
0,T

1/2 ∑
T∈Th

∑
E∈∂T

1
hE
‖~v − ~vh‖

2
0,E

1/2

+

∑
T∈Th

‖q‖20,T

1/2 ∑
T∈Th

‖∇ · ~uh‖
2
0,T

1/2 .
Using Lemma 3.2 then gives

|B([~e, ε]; [~v, q])| ≤ C

∑
T∈Th

{
|~v |21,T + ‖q‖0,T

}1/2

×

∑
T∈Th

{
h2

T ‖
~RT ‖0,T +

∑
E∈∂T

hE‖~RE‖
2
0,E + ‖RT ‖

2
0,T

}1/2

.

Finally, noting that ~e = ~u − ~uh ∈ H1
E0

and using (9) gives

|~e |1,Ω + ‖ε‖0,Ω ≤ CΩ

∑
T∈Th

{
h2

T ‖
~RT ‖0,T +

∑
E∈∂T

hE‖~RE‖
2
0,E + ‖RT ‖

2
0,T

}1/2

This establishes the upper bound.
Turning to the local lower bound. First, for the element interior residual part, we

set ~wT := ~RT bT . Since ~wT = 0 on ∂T , it can be extended to the whole of Ω by setting
~wT = 0 in Ω \ T to give an extended function that is in H1

E0
. Then,

(∇~u − pI,∇~wT )T = (∇~u − pI,∇~wT )Ω = 0. (30)

With (30),

(~RT , ~wT )T = (∇2~uh − ∇ph, ~wT )T

= −(∇~uh − phI,∇~wT )T +
〈
(∇~uh − phI) · ~n, ~wT

〉
∂T

= −(∇~uh − phI,∇~wT )T

= −(∇~uh − phI,∇~wT )T + (∇~u − pI,∇~wT )T

= (∇~e − εI,∇~wT )T

≤ (|~e |1,T + ‖ε‖0,T )|~wT |1,T

≤ (|~e |21,T + ‖ε‖20,T )1/2h−1
T ‖

~RT ‖0,T .
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In addition, from the inverse inequality (19), (~RT , ~wT )T = ‖~RT b1/2
T ‖

2
0,T ≥ c‖~RT ‖

2
0,T ,

thus

h2
T ‖
~RT ‖

2
0,T ≤ C

(
|~e |21,T + ‖ε‖20,T

)
. (31)

Next comes the divergence part,

‖RT ‖0,T = ‖∇ · ~uh‖0,T = ‖∇ · (~u − ~uh)‖0,T ≤
√

2 |~u − ~uh|1,T =
√

2 |~e |1,T . (32)

Finally, we need to estimate the jump term. For an edge E ∈ ∂T ∩ εh,Ω we set ~wE =

~REbE so that

2
〈
~RE , ~wE

〉
E

=
∑
i=1:2

〈
(∇~uh − phI)~n, ~wE

〉
∂T

= (∇~uh − phI,∇~wE)ωE +
∑
i=1:2

(∇2~uh − ∇ph, ~wE)Ti .

Using the same argument as for (30), the following equality holds,

(∇~u − pI,∇~wE)ωE = 0, (33)

and then, using inverse inequalities gives

2
〈
~RE , ~wE

〉
E

= −(∇~e − εI,∇~wE)ωE +
∑
i=1:2

(∇2~uh − ∇ph, ~wE)Ti

≤ (|~e |1,ωE + ‖ε‖0,ωE )|~wE |1,ωE +
∑
i=1:2

‖~RTi‖0,Ti‖~wE‖0,ωE

≤ C

(|~e |1,ωE + ‖ε‖0,ωE )h−1/2
E ‖~RE‖0,E +

∑
i=1:2

‖~RTi‖0,Tih
1/2
E ‖

~RE‖E


≤ C

(|~e |21,ωE
+ ‖ε‖20,ωE

)1/2
h−1/2

E ‖~RE‖0,E +
∑
i=1:2

‖~RTi‖0,Tih
1/2
E ‖

~RE‖E

 .
Using (31) gives

2
〈
~RE , ~wE

〉
E
≤ C

(
|~e |21,ωE

+ ‖ε‖20,ωE

)1/2
h−1/2

E ‖~RE‖0,E . (34)

Using (21) gives 〈~RE , ~wE〉E = ‖~REb1/2
E ‖0,E ≥ c‖~RE‖0,E , and thus using (34) gives

hE‖~RE‖
2
0,E ≤ C

(
|~e |21,ωE

+ ‖ε‖20,ωE

)
. (35)

We also need to show that (35) holds for boundary edges. First, for the Dirichlet
boundary edges, the flux jump is set to be zero, thus (35) trivially holds. Second, for
an edge En ∈ ∂T ∩ εh,N , we again set ~w = ~REnbEn,〈

~REn, ~wEn
〉

En
=

〈
(∇~uh − phI)~n, ~wEn

〉
∂T

= (∇~uh − phI,∇~wEn)T + (∇2~uh − ∇ph, ~wEn)T .
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Thus, as for (33), we have that

(∇~u − pI,∇~wEn)T = 0.

Then, using the inverse inequalities and following the argument above gives

hEn‖~REn‖
2
0,En ≤ C

(
|~e |21,T + ‖ε‖20,T

)
. (36)

Finally, combining (31), (32), (35) and (36) establishes the local lower bound.

Remark 3.4 Theorem 3.3 also holds for stable (and unstable) mixed approximations
defined on a triangular subdivisions if we take the obvious interpretation of ωT . The
proof is identical except for the need to define appropriate element and edge bubble
functions.

3.2 A Local Stokes Problem Error Estimator

Here our focus is on the Q2–P−1 approximation method. Specifically, a suitable cor-
rection space QT needs to be introduced at this point. For an interior rectangle (i.e. if
all four edges are in εh,Ω ∪ εh,N), QT is the (Q3(T ))2 space excluding the basis func-
tions associated with the four vertices, and for an element with some edges in εh,D, QT

is the (Q3(T ))2 space excluding the basis functions associated with the four vertices
and all the other nodes on the boundary ∂ΩD. For a rectangle containing edges in εh,D,
it is assumed that at most two neighboring edges are in εh,D. If the rectangle T has
only one edge in εh,D, we call it an edge element, whereas if it has two neighboring
edges in εh,D, we call it a corner element. Fig. 2 illustrates the types of correction
spaces that can arise.

◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦

◦ ◦ ◦

◦ ◦ ◦

◦ ◦

Figure 2: The correction space QT for an interior element (left), for an edge element
(middle) and for a corner element (right)

The local Stokes problem estimator ηS =
√∑

T∈Th η
2
S ,T is then defined as follows,

η2
S ,T = |~eS ,T |

2
1,T + ‖εS ,T ‖

2
0,T , (37)
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where (~eS ,T , εS ,T ) ∈ QT ×Q2(T ) satisfies

(∇~eS ,T ,∇~v )T − (εS ,T ,∇ · ~v )T = (~RT ,~v )T −
∑

E∈∂T

〈
~RE ,~v

〉
E

∀~v ∈ QT , (38)

(∇ · ~eS ,T , q) = (RT , q)T ∀q ∈ Q2(T ). (39)

Note that, (38)–(39) represents a Stokes problem posed on an element T with a Neu-
mann (zero flux) boundary condition. Although the velocity solution for a Stokes
problem is not uniquely defined when a zero flux condition applies everywhere on
the boundary, the special choice of correction space QT guarantees that the system
(38)–(39) always has an unique solution.

We want to establish that the Stokes estimator ηS ,T is equivalent to the residual es-
timator ηR,T . The following local inf-sup stability estimate will be crucial in achieving
this goal.

Lemma 3.5 Local inf-sup stability: for Q2–P−1 approximation on any rectangle T ∈
Th , there exists a positive constant γL independent of h , such that

min
0,qh∈Q2(T )

max
~0,~vh∈QT

|(qh,∇ · ~vh)|
|~vh|1 ‖qh‖0

≥ γL. (40)

Proof. Our proof is a generalization of the approach of Verfürth [15, Lem 4.1]. First,
for the reference element T̃ , the local inf-sup stability associated with the three types
of QT can be established by direct computation of the minimum eigenvalue in (15).
Next, for an arbitrary element T , we let FT denote the affine map from T̃ to T and
denote the Jacobian determinant of FT by |J| = hT,x hT,y , where hT,x and hT,y are
the element sizes in x and y directions respectively. Thus, for any q ∈ Q2(T ), we
define q? := |J|1/2q ◦ FT ∈ Q2(T̃ ). Then, there exists a ~u? = (ux,?, uy,?)T ∈ QT̃ with
|~u?|1,T̃ = ‖q?‖0,T̃ , such that

(∇ · ~u?, q?)T̃ ≥ γ̃‖q?‖
2
0,T̃ (41)

where γ̃ is the local inf-sup constant for the reference element T̃ . If we further define

~uT :=

 |J|1/2 1
hT,y

ux,? ◦ F−1
T

|J|1/2 1
hT,x

uy,? ◦ F−1
T

 , (42)

then, using (s, t) to denote the local coordinates for the reference element we get

|~uT |
2
1,T =

∫
T

(∂ux,T

∂x

)2
+

(∂uy,T

∂y

)2

=

∫
T̃

((
|J|1/2

1
hT,y

∂ux,?

∂s
1

hT,x

)2
+

(
|J|1/2

1
hT,x

∂uy,?

∂t
1

hT,y

)2
)
|J|

= |~u?|21,T̃ = ‖q?‖20,T̃ =

∫
T̃

q2
? =

∫
T

(|J|1/2qT )2|J|−1 = ‖qT ‖
2
0,T .
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So we see that
|~uT |1,T = ‖qT ‖0,T . (43)

Next,

(∇ · ~uT , qT )T =

∫
T

∂ux,T

∂x
qT +

∂uy,T

∂y
qT

=

∫
T̃

(
|J|1/2

1
hT,y

∂ux,?

∂s
1

hT,x
|J|−1/2q? + |J|1/2

1
hT,x

∂uy,?

∂t
1

hT,y
|J|−1/2q?

)
|J|

=

∫
T̃

(
∂ux,?

∂s
q? +

∂uy,?

∂t
q?

)
= (∇ · ~u?, q?)T̃

≥ γ̃ ‖q?‖20,T̃ = γ̃ ‖qT ‖
2
0,T . (44)

This establishes the stability bound (40) with an inf-sup constant γL = γ̃.

Mirroring the discussion of the stability of the continuous problem in section 2 leads
us to the following result.

Lemma 3.6 Local B-stability: if the mixed approximation is locally inf-sup stable,
then, for all (~w, s) ∈ QT ×Q2(T ), we have that

max
(~v,q)∈QT×Q2(T )

B((~w, s); (~v, q))
|~v |1,T + ‖q‖0,T

≥ γB(|~w|1,T + ‖s‖0,T ), (45)

where, γB is a positive constant that only depends on the inf-sup constant γL in (40).

Proof. See Elman et al. [9, Lemma 5.2].

The robustness of the Stokes error estimator is established next.

Theorem 3.7 For Q2–P−1 approximation on a rectangle T ∈ Th, the estimator ηS ,T is
equivalent to the residual estimator: c ηS ,T ≤ ηR,T ≤ CηS ,T .

Proof. The proof is a generalization of [12, Theorem 3.5]. The details are sketched
out below. First, we need to use (45):

ηS ,T =

√
|~eS ,T |

2
1,T + ‖εS ,T ‖

2
0,T

≤ |~eS ,T |1,T + ‖εS ,T ‖0,T

≤
1
γB

max
(~v,q)∈QT×Q2(T )

B((~eS ,T , εS ,T ); (~v, q))
|~v |1,T + ‖q‖0,T

=
1
γB

max
(~v,q)∈QT×Q2(T )

(~RT ,~v )T −
∑

E∈∂T

〈
~RE ,~v

〉
E
− (q,∇ · ~uh)T

|~v |1,T + ‖q‖0,T

≤
1
γB

max
(~v,q)∈QT×Q2(T )

‖~RT ‖0,T ‖~v ‖0,T +
∑

E∈∂T ‖~RE‖0,E‖~v ‖0,E + ‖q‖0,T ‖∇ · ~uh‖0,T

|~v |1,T + ‖q‖0,T
.

(46)
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Now, since ~v is zero at the four vertices of T , a scaling argument and the usual trace
theorem, see e.g. [9, Lemma 1.5], shows that ~v satisfies

‖~v ‖0,E ≤ Ch1/2
E |~v |1,T , (47)

‖~v ‖0,T ≤ ChT |~v |1,T . (48)

Combining these two inequalities with (46) immediately gives the lower bound in the
equivalence relation. For the upper bound, we first let ~wT = ~RT bT (bT is an element
interior bubble function). From (38),

(~RT , ~wT )T = (∇~eS ,T ,∇~wT )T − (εS ,T ,∇ · ~wT )T

≤ |~eS ,T |1,T |~wT |1,T + ‖εS ,T ‖0,T ‖∇ · ~wT ‖0,T

≤
√

2|~wT |1,T (|~eS ,T |1,T + ‖εS ,T ‖0,T )

≤ C
1

hT
‖~RT ‖0,T

(
|~eS ,T |

2
1,T + ‖εS ,T ‖

2
0,T

)1/2
(49)

In addition, from the inverse inequalities, ‖~RT ‖
2
0,T ≤ C(~RT , ~wT )T , and using (49),

h2
T ‖
~RT ‖

2
0,T ≤ C

(
|~eS ,T |

2
1,T + ‖εS ,T ‖

2
0,T

)
. (50)

Next, we let ~wE = ~REbE (bE is an edge bubble function). Then, from (38) and using
(50), (22), together with the estimate |~wE |1,T ≤ Ch−1

T ‖~wE‖0,T , we get〈
~RE , ~wE

〉
E

= −(∇~eS ,T ,∇~wE)T + (εS ,T ,∇ · ~wE)T + (~RT , ~wE)T

≤ |~eS ,T |1,T |~wE |1,T + ‖εS ,T ‖0,T ‖∇ · ~wE‖0,T + ‖~RT ‖0,T ‖~wE‖0,T

≤ C|~wE |1,T (|~eS ,T |1,T + ‖εS ,T ‖0,T ) + Ch−1
T (|~eS ,T |1,T + ‖εS ,T ‖0,T )‖~wE‖0,T

≤ Ch−1
T ‖~wE‖0,T (|~eS ,T |1,T + ‖εS ,T ‖0,T )

≤ Ch−1/2
E ‖~RE‖0,E(|~eS ,T |1,T + ‖εS ,T ‖0,T ). (51)

Then, using ‖~RE‖
2
0,E ≤ C〈~RE , ~wE〉E and (51),

hE‖~RE‖
2
0,E ≤ C(|~eS ,T |

2
1,T + ‖εS ,T ‖

2
0,T ). (52)

Finally, from (39), since ∇ · ~uh|T ∈ Q2(T ) we have that

(∇ · ~eS ,T ,∇ · ~uh)T = (∇ · ~uh,∇ · ~uh)T ,

‖RT ‖0,T = ‖∇ · ~uh‖0,T ≤ ‖∇ · ~eS ,T ‖0,T ≤
√

2|~eS ,T |1,T . (53)

Combining (50), (52) and (53), establishes the the upper bound in the equivalence
relation.
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Remark 3.8 The fact that ∇ · ~uh|T ∈ Q2(T ) is crucial for the last step above. If we
wanted to extend this error estimation approach to other mixed approximations then
we would simply need to ensure that the pressure correction space is big enough to
contain the divergence of the original velocity space. The only difficulty with this is
that we also have to ensure that the velocity correction space is big enough to ensure
that the local inf-sup stability condition (40) is not compromised. Thus, if we wanted
to develop a Stokes error estimator for the P2∗–P−1 mixed approximation, then the first
thing to do is to choose a pressure augmentation space that is big enough to contain the
divergence of P2∗ functions. The standard quadratic polynonial space P2 would work.
We must then choose a velocity augmentation space that is big enough to ensure that
the combination of augmented spaces is locally stable. This suggests using a reduced
P3 space for velocities (that is, with the vertex basis functions removed).

The Stokes estimator leads to large dimensional local problems. For example, the
dimension of the local Stokes problem that must be solved to estimate the error in the
interior element in Fig. 2 is 33 × 33. Our next approach is much simpler and, as we
will see in section 4, effective in estimating the error in practice.

3.3 A Local Poisson Problem Estimator

The local Poisson problem estimator ηP =
√∑

T∈Th η
2
P,T can be derived from the lo-

cally stable Stokes estimator (38)–(39) as follows:

η2
P,T = |~eP,T |

2
1,T + ‖εP,T ‖

2
0,T , (54)

where, (~eP,T , εP,T ) ∈ QT ×Q2(T ) satisfies

(∇~eP,T ,∇~v )T = (~RT ,~v )T −
∑

E∈∂T

〈~RE ,~v 〉E ∀~v ∈ QT , (55)

(εP,T , q) = (RT , q)T ∀q ∈ Q2(T ). (56)

This is much more appealing from a computational perspective. First, (55) decouples
into a pair of local Poisson problems, each one of dimension 10 × 10 in the case of
the interior element in Fig. 2. Second, since by construction RT = ∇ · ~uh ∈ Q2(T ), the
solution of (56) is immediate: εP,T = ∇ · ~uh. The theoretical justification for comput-
ing the Poisson estimator instead of the Stokes estimator is the following equivalence
result.

Theorem 3.9 Given that the spaces defining the Stokes estimator are locally B–stable,
the estimator ηP,T is equivalent to the Stokes estimator: c ηS ,T ≤ ηP,T ≤ CηS ,T .

Proof. The proof is a straightforward extension of [12, Thm 3.6]. We include it here for
completeness. Combining (38), (39), (55), (56), for any T ∈ Th and [~v, q] ∈ QT×Q2(T )
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we get

(∇~eP,T ,∇~v )T − (εP,T , q)T = (~RT ,~v )T −
∑

E∈∂T

〈
~RE ,~v

〉
E
− (∇ · ~uh, q)T

= (∇~eS ,T ,∇~v )T − (εS ,T ,∇ · ~v )T − (∇ · ~eS ,T , q)T

= B((~eS ,T , εS ,T ); (~v, q)). (57)

Then, using the local B-stability (45) gives

|~eS ,T |1,T + ‖εS ,T ‖0,T ≤
1
γB

max
(~v,q)∈QT×Q2(T )

B((~eS ,T , εS ,T ); (~v, q))
|~v |1,T + ‖q‖0,T

=
1
γB

max
(~v,q)∈QT×Q2(T )

(∇~eP,T ,∇~v )T − (εP,T , q)T

|~v |1,T + ‖q‖0,T

≤
1
γB

max
(~v,q)∈QT×Q2(T )

|~eP,T |1,T |~v |1,T + ‖εP,T ‖0,T ‖q‖0,T
|~v |1,T + ‖q‖0,T

≤
1
γB

(|~eP,T |1,T + ‖εP,T ‖0,T ). (58)

This establishes the lower bound in the equivalence relation. In order to show the upper
bound, we take ~v ∈ QT , and then using (38) and (55) we get

(∇~eP,T ,∇~v )T = (~RT ,~v )T −
∑

E∈∂T

〈
~RE ,~v

〉
E

= (∇~eS ,T ,∇~v )T − (εS ,T ,∇ · ~v )T . (59)

Using (39) and (56) means that, for any q ∈ Q2(T ),

(εP,T , q)T = (RT , q)T = (∇ · ~eS ,T , q). (60)

Using (59) gives

|~eP,T |1,T = max
~v∈QT

(∇~eP,T ,∇~v )T

|~v |1,T

= max
~v∈QT

(∇~eS ,T ,∇~v )T − (εS ,T ,∇ · ~v )T

|~v |1,T

≤ max
~v∈QT

|~eS ,T |1,T |~v |1,T + ‖εS ,T ‖0,T ‖∇ · ~v ‖0,T
|~v |1,T

≤ |~eS ,T |1,T +
√

2‖εS ,T ‖0,T , (61)

and, using (60),

‖εP,T ‖0,T = max
q∈Q2(T )

(εP,T , q)T

‖q‖0,T

= max
q∈Q2(T )

(∇ · ~eS ,T , q)T

‖q‖0,T

≤ max
q∈Q2(T )

‖∇ · ~eS ,T ‖0,T ‖q‖0,T
‖q‖0,T

= ‖∇ · ~eS ,T ‖ ≤
√

2 |~eS ,T |1,T . (62)
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Finally, combining (61) with (62) gives the required upper bound.

Remark 3.10 If we wanted to extend this error estimation approach to other mixed
approximations then we simply need to ensure that the pressure correction space is big
enough to contain the divergence of the original velocity space. The upshot of this is
that the Poisson estimator is independent of the pressure approximation—we would
also solve (55)–(56) if we wanted to estimate the error in a solution computed with
Q2–Q1 or Q2–P0 approximation!

4 Computational Experiments

In this section a test problem with an exact solution is solved in order to compare
the effectivity of three error estimation strategies: the residual estimator ηR, and the
Poisson estimator ηP as implemented in the IFISS Matlab toolbox [13]; and a local
recovery Z–Z estimator ηZ as implemented in the Oomph–lib package [11]. The latter
approach is frequently used and is generally considered by practitioners to be one the
best error estimation strategies in terms of its simplicity and reliability, especially when
used as a refinement indicator in a self-adaptive refinement setting.

Our test problem is hard-wired into the IFISS package [8, problem S4], and the
solution is a quartic polynomial:

~u =

 20xy3

5x4 − 5y4

 , p = 60x2y − 20y3. (63)

We solve the problem as an enclosed flow (that is ∂ΩN = ∅) with the boundary data
~w given by interpolating the exact flow solution at the nodes. We could account for
the resulting “variational crime” by using the methodology introduced by Ainsworth
& Kelly [1], but have not done so in the results reported below.∗ The flow problem
is solved on a square domain (−1, 1) × (−1, 1) using a nested sequence of uniformly
refined square grids. The coarsest grid is 8×8 and is associated with a mesh parameter
of h = 1/4. To interpret the results that are presented some notation will be needed:

e =

√
|~u − ~uh|

2
1 + ‖p − ph‖

2
0, (64)

eT =

√
|~u − ~uh|

2
1,T + ‖p − ph‖

2
0,T , (65)

while eωT is defined analogously to eT . Looking first at Table 1, we see that the global
error e is decreasing like O(h2) as expected. It is also evident that the Poisson problem
estimator ηP provides the most accurate estimate of the global error: e

ηP
is close to one,

∗This means that the error estimation is inaccurate for elements next to the boundary. These effects
are evident in the estimated error plots in Fig. 3.
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whereas ηR is about three times larger than the exact error and ηZ is about three times
smaller than the exact error. Turning to Fig. 3 we see that all three error estimators
seem to be able to correctly indicate the structure of the error, although the vertical
scale may be highly inaccurate. As might be anticipated from the results in Table 1,
the only estimator that is quantitatively close to the exact error is ηP,T .

Table 1: Comparison of error estimator effectivity

h e e
ηR

e
ηP

e
ηZ

1
4 1.0278e+00 3.0762e-01 1.0909e+00 3.7098e+00
1
8 2.5569e-01 2.9788e-01 1.0189e+00 3.2837e+00
1

16 6.3825e-02 2.9323e-01 9.8762e-01 3.0741e+00
1

32 1.5950e-02 2.9094e-01 9.7317e-01 2.9737e+00

Table 2: Comparison of effectivity indices

h e maxT∈Th
eT

eωT
maxT∈Th

ηR,T
eωT

maxT∈Th
ηP,T
eωT

maxT∈Th
ηZ,T
eωT

1
4 1.0278e+00 6.3048e-01 2.2169e+00 5.2173e-01 1.9083e-01
1
8 2.5569e-01 6.0283e-01 2.2720e+00 5.2674e-01 2.2408e-01
1
16 6.3825e-02 5.8974e-01 2.2634e+00 5.2173e-01 2.3030e-01
1
32 1.5950e-02 5.8346e-01 2.2518e+00 5.1777e-01 2.3134e-01

It is instructive to look at the local error estimates in more detail. In general, if
an error estimator is to be efficient then the constant on the right hand side of (18)
should be bounded. An estimate of this constant (e.g. maxT∈Th

ηR,T
eωT

for ηR) is provided
in Table 2, where we also estimate this constant for the exact error (maxT∈Th

eT
eωT

) and
refer to it as the “exact value”. From the table, although maxT∈Th

ηR,T
eωT

, maxT∈Th
ηP,T
eωT

and
maxT∈Th

ηZ,T
eωT

all appear to be bounded, only maxT∈Th
ηP,T
eωT

is close to the “exact value”.
Ideally, the local effectivity indices (i.e.. ηR,T

eωT
for ηR) will be bounded above and

below across the whole domain, so that elements with large errors can be singled out
for local mesh refinement. This is assessed in Fig. 4. Looking at the distribution
of these indices it is clear that the our three estimators give a very different picture.
Once again, ηP,T is closely aligned with the exact error but the other two estimators
are not. In particular the Z—Z estimator has relatively large local effectivity indices in
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a) Exact error: eT (b) Estimator: ηR,T

c) Estimator: ηP,T (d) Estimator: ηZ,T

Figure 3: Exact error and estimated errors for the test problem with h = 1
16 .

the “wrong place”, which could lead to the labelling of elements with small error for
adaptive refinement.

5 Conclusion

Our main conclusion is that the solution of local Poisson problems provides a cheap
and effective way of estimating the local discretisation error when solving practical
flow problems. Our numerical results make it clear that a global upper bound and a lo-
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a) Exact effectivity: eT
eωT

(b) Estimator effectivity: ηR,T
eωT

c) Estimator effectivity: ηP,T
eωT

(d) Estimator effectivity: ηZ,T
eωT

Figure 4: The local effectivities of the exact error and the error estimators for the test
problem with h = 1

16 .

cal lower bound on the approximation error does not automatically lead to an effective
error estimator in a adaptive refinement setting. Although there is a theoretical guar-
antee that elements with large errors will be flagged by such an estimator, there is no
guarantee that elements that are flagged as having a small discretization error actually
have a small error in reality.
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