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Abstract. We show that Uno’s refinement of the projective conjecture of Dade holds for every block
whose defect groups intersect trivially modulo the maximal normal p-subgroup. This corresponds to
the block having p-local rank one as defined by Jianbei An and Eaton. An immediate consequence
is that Dade’s projective conjecture, Robinson’s conjecture, Alperin’s weight conjecture, the Isaacs–
Navarro conjecture, the Alperin–McKay conjecture and Puig’s nilpotent block conjecture hold for
all trivial intersection blocks.
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1. Introduction

In this paper we verify that the refinement by Uno of Dade’s projective conjecture
(DPC) generalising the Isaacs–Navarro conjecture holds whenever a block B of a
finite group G has defect groups which intersect pairwise in Op(G) (blocks of p-
local rank one as defined in [2]). DPC is already known to be true when additionally
B has defect groups which are Sylow p-subgroups (see [11], extending results
of [7]), the proof depending on the classification detailed in [17] and [30]. We
make use of the classification of the blocks with trivial intersection defect groups
given in [4].

We briefly review the notation necessary to state the conjecture. Let G be a finite
group and p a prime. We consider p-chains of p-subgroups σ : Q0 < · · · < Qn

(where < denotes strict inclusion), and write |σ | = n for the length of σ . The
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stabilizer under the natural conjugation action of G is Gσ = NG(σ) = NG(Q0) ∩
· · · ∩ NG(Qn). Write σi for the initial subchain Q0 < · · · < Qi . Denote by C(G)

the set of all such chains and if X(G) is some subset of C(G), we denote by
X(G|Q) the set of chains in X(G) with initial subgroup Q and by X(G)/A a set
of orbit representatives under the action of a group of automorphisms A provided
that X(G) is an A-set. A p-subgroup Q of G is radical if Q = Op(NG(Q)), and
the p-chain σ is radical if Qi = Op(NG(σi)) for each i. Denote by R(G) the set
of radical p-chains of G.

Let O be a local complete discrete valuation ring containing a primitive |G|3
root of unity, whose residue field k = O/J (O) is algebraically closed of charac-
teristic p and whose field of fractions K has characteristic zero. Denote by Blk(G)

the set of blocks of G with respect to this system and let B ∈ Blk(G). If H � G,
then denote by Blk(H, B) the set of blocks of H with Brauer correspondent B.

Following [2] and [27], define the p-local rank to be plr(B) = max{|σ | :
σ ∈ R(G, B)}, where R(G, B) ⊆ R(G) consists of those chains σ for which
Blk(Gσ , B) �= ∅. Define the p-local rank of G to be plr(B0), where B0 = B0(G)

is the principal p-block of G. By [2, 5.1] plr(B) = 1 if and only if B has a defect
group D for which D/Op(G) �= 1 and is a trivial intersection (TI) subgroup of
G/Op(G) (recall that a subgroup H of G is a trivial intersection subgroup of G if
Hg ∩ H = 1 whenever g ∈ G \ NG(H)). It follows in this case that D contains no
radical p-subgroups aside from Op(G) and itself, so that R(G, B)/G may be taken
to be {Op(G), D, Op(G) < D}. Following [3], when plr(B) = 1 and Op(G) = 1,
we refer to B as a TI defect block.

Write Irr(G) for the set of irreducible characters of G, and Irrd(G) for the set of
those χ ∈ Irr(G) with defect d (i.e., pdχ(1)p = |G|p). If N � G and µ ∈ Irr(N),
then write Irr(G, µ) for the set of irreducible characters of G covering µ. Denote
by Irr(G, B) the set of irreducible characters belonging to B, and more generally,
for H � G write Irr(H, B) for the set of irreducible characters of H belonging to
Brauer correspondents of B. For brevity we sometimes write, for example, Irr(B)

for Irr(G, B) when B is a block of G. Write k(G), kd(G), etc. for the cardinality
of these sets. Write l(H, B) for the number of isomorphism classes of simple kH -
modules belonging to Brauer correspondents of B, and write lB(Q) for the number
of isomorphism classes of simple kG-modules in B with vertex Q. Following [27]
and [9], for a normal p-subgroup Q of G write w(G, Q) for the number of Q-
projective irreducible characters of G, i.e., those characters χ ∈ Irr(G) satisfying
χ(1)p = [G : Q]pµ(1) whenever µ ∈ Irr(Q) is covered by χ (or alternatively,
χ may be afforded by a Q-projective OG-module). We combine all of the above
notations freely.

Dade’s projective conjecture (in its most general form) is as follows:
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CONJECTURE 1.1 (Dade [9]). Let G be a finite group and B ∈ Blk(G). Then for
every λ ∈ Irr(Op(Z(G))) and every d we have

∑

σ∈R(G|Op(G))/G

(−1)|σ |kd(Gσ , B, λ) =
∑

σ∈R(G|Op(G))/G

(−1)|σ |wd(Gσ , B, λ, Op(G)).

Remarks. (i) This is of course trivially true when Op(G) is a defect group for
B, so we assume otherwise. If Op(G) � Z(G) (and the defect groups of G strictly
contain Op(G)), then the right-hand-side of the equation predicted by the equation
is zero. If further plr(B) = 1, then the conjecture predicts that kd(G, B, λ) =
kd(NG(D), B, λ) whenever D is a defect group for B.

(ii) When plr(B) = 1, the above conjecture is identical to Robinson’s conjec-
ture [27, 4.1].

Let H � G, ϕ ∈ Irr(H) and let r(ϕ) = rp(ϕ) be the integer 0 < r(ϕ) � (p−1)

such that the p′-part (|H |/ϕ(1))p′ of |H |/ϕ(1) satisfies

( |H |
ϕ(1)

)

p′
≡ r(ϕ) (mod p).

Given an integer 1 � r � (p − 1)/2, let Irr(H, [r]) be the subset of Irr(H)

consisting of those characters ϕ such that r(ϕ) ≡ ±r (mod p), and let

Irrd(H, B, λ, [r]) = Irrd(H, B, λ) ∩ Irr(H, [r])
and kd(H, B, λ, [r]) = | Irrd(H, B, λ, [r])|.

Let B ∈ Blk(G) with defect group D = D(B) and Brauer correspondent b ∈
Blk(NG(D)). Then

kd(B)(Gσ , B, [r]) =
∑

λ∈Irr(Op(Z(G)))

kd(B)(Gσ , B, λ, [r])

is the number of characters ϕ ∈ Irr(b) such that ϕ has height 0 and r(ϕ) ≡
±r(mod p), where d(B) is the defect of B. The following is the Isaacs–Navarro
conjecture.

CONJECTURE 1.2 (Conjecture B [20]). In the notation above,

kd(B)(G, B, [r]) = kd(B)(NG(D), B, [r]).

The Isaacs–Navarro conjecture is a refinement of the Alperin–McKay conjec-
ture. The following refinement of Dade’s projective conjecture is due to Uno. We
state it in a more general (but equivalent – see [12]) form. In its original form it is
assumed that Op(G) � Z(G) and that Op(G) is not a defect group for B.
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CONJECTURE 1.3 (Conjecture 3.2 [32]). Let G be a finite group and B ∈ Blk(G).
Then, for every λ ∈ Irr(Op(Z(G))), every d and every r with 1 � r � (p − 1)/2,
we have

∑

σ∈R(G|Op(G))/G

(−1)|σ |kd(Gσ , B, λ, [r])

=
∑

σ∈R(G|Op(G))/G

(−1)|σ |wd(Gσ , B, λ, [r], Op(G)).

Remarks. (i) If p = 2 or 3, then the conjecture is equivalent to Dade’s projective
conjecture.

(ii) It is clear that this is a direct refinement of Conjecture 1.1. The proof that
it is a strengthening of the Isaacs–Navarro conjecture is not available at the time
of writing. However, when plr(B) = 1 the Isaacs–Navarro conjecture is in fact
a special case (since the terms on the right hand side are all zero when d is the
defect of the block (except when Op(G) is a defect group for B) and the only
radical chains used are of the form Op(G) or Op(G) < D, where D is a defect
group of B). For this reason we treat only Uno’s version explicitly, remarking that
Isaacs–Navarro’s conjecture is a consequence.

The main result of this paper is as follows:

THEOREM 1.4. Let G be a finite group and B a p-block of G. If plr(B) � 1, then
Conjecture 1.3 holds for B. In particular, kd(G, B, [r]) = kd(NG(D), B, [r]) for
any integers d and r , when Op(G) � Z(G).

We give some consequences.

COROLLARY 1.5. Both the Isaacs–Navarro conjecture (and so the Alperin–
McKay conjecture) and Alperin’s weight conjecture hold for every block satisfying
the conditions of Theorem 1.4. In particular, l(G, B) = lB(Op(G))+l(NG(D), B).

Proof. We have already discussed the Isaacs–Navarro and Alperin–McKay con-
jectures, so consider Alperin’s weight conjecture.

First assume that Op(G) = 1. Theorem 1.4 tells us that k(G, B) = k(NG(D), B)

(summing over all integers d, r), and so l(G, B) = l(NG(D), B) (by the results
of [21], after cancelling nonradical chains). But this is precisely the statement of
Alperin’s weight conjecture for a block with TI defect groups (since there are no
non-trivial radical p-subgroups contained in D). Now suppose Op(G) �= 1, write
G = G/Op(G). It is easy to see that if Alperin’s conjecture holds for every block
B of G contained in B, then it holds for B, so the result follows by the previous
argument. �
COROLLARY 1.6. Conjecture 1.3 and Alperin’s weight conjecture hold when-
ever B is a TI block.
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Proof. This follows immediately from Theorem 1.4 and Corollary 1.5 since
every TI block has TI defect groups by [3, 3.3]. �

Watanabe in [33] shows that if Alperin’s weight conjecture holds, then a ques-
tion of Puig’s (see [26, 1.9]) relating to nilpotent blocks has a positive answer. We
apply Corollary 1.5 to give a special case.

COROLLARY 1.7. Let B ∈ Blk(G) have p-local rank at most one. Then B is
nilpotent if and only if l(QCG(Q), bQ) = 1 for every B-subgroup (Q, bQ).

Proof. We must show that if Alperin’s weight conjecture holds for blocks of p-
local rank at most one, then any such block B is nilpotent if and only if l(QCG(Q),
bQ) = 1 for every B-subgroup (Q, bQ). The argument given in [33] uses induc-
tion on |G|, so cannot be used directly. However we observe that in the proof of
Proposition 5 of [33], induction on |G| is invoked only twice (this occurring in
the first paragraph). The blocks involved in the inductive steps, bQ and B in the
notation of [33], each have p-local rank at most one by Proposition 2.1 (ii) and (iii)
respectively, and hence we may indeed apply the argument of [33]. �

2. The p-local Rank

We include for the convenience of the reader some properties of the p-local rank
of a block and of TI defect blocks. Proofs may be found in [3] and [4].

PROPOSITION 2.1. Let B ∈ Blk(G) have defect group D. Let H � G and
N � G. Then:

(i) plr(B) = 0 if and only if D � G; plr(B) � 1 if and only if D/Op(G) is TI;
(ii) if b ∈ Blk(H, B), then plr(b) � plr(G);

(iii) suppose µ ∈ Irr(N) is G-stable and extends to θ ∈ Irr(G); if ψ ∈ Irr(G/N)

lies in the block bN of G/N and θψ ∈ Irr(G, B), then plr(bN) � plr(B); if
further plr(B) = 1 and Op(G) = 1, then bN either has a normal defect group
or TI defect groups;

(iv) if G = G1 × G2 and B = B1 × B2, where Bi ∈ Blk(Gi), then plr(B) =
plr(B1) + plr(B2);

(v) if b ∈ Blk(N) is covered by B, with plr(B) = 1 and Op(G) = 1, then
plr(b) = 0 or plr(b) = 1 and Op(N) = 1;

(vi) if N � Z(G), plr(B) = 1 and B is the unique block of G/N corresponding
to B under the natural epimorphism, then plr(B) = 1.

3. Character Correspondences

Here we summarize the character correspondences needed for the reduction step.
We use the methods of [4], and apply the work of Külshammer and Puig in [24]
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to move from covered blocks of defect zero to covered blocks with central defect
group.

Let B ∈ Blk(G), Z = Op(Z(G)) and N � G. Suppose that B covers b ∈
Blk(N), where b is G-stable and has defect group D0 contained in Z. Let D be a
defect group of B, so D ∩ N = D0.

As a block with central defect group D0, we have k(N, b, λ) = 1 for each
λ ∈ Irr(D0). Fix λ0 ∈ Irr(D0), and let Irr(N, b, λ0) = {ζ }, so IG(ζ ) = G. We may
choose a central extension Ĝ of G (with Ŵ � Z(Ĝ) where Ĝ/Ŵ ∼= G) such that
there is an irreducible character θ̂ ∈ Irr(Ĝ) extending ζ . Let N̂ be the subgroup of
Ĝ identified with N , so that N̂ ∩ Ŵ = 1. Set G̃ = Ĝ/N̂ , a central extension of
G/N by W̃ (where W̃ is the image of Ŵ under the natural homomorphism). Thus
θ̂ lies over a unique linear character µ̂ of Ŵ . Let µ̃ be the complex conjugate of
µ̂, regarded as a character of W̃ . There is a one-to-one correspondence between
Irr(G, ζ ) and Irr(G̃, µ̃), given by χ ↔ θ̂ χ̃ , where, of course, we are identifying
χ with its inflation to Ĝ. Now there is a collection of blocks B̃1, . . . , B̃r of G̃

(the Dade correspondents of B) so that, writing B̃ = B̃1 + · · · + B̃r , there is a
correspondence between Irr(G, B, ζ ) and Irr(G̃, B̃, µ̃), where implicitly we are
using the one-to-one correspondence between blocks of G and blocks of Ĝ given
by the natural epimorphism. Let B̂ be the unique block of Ĝ corresponding to B.
The Dade correspondence respects the Brauer correspondence as described in [13].
By the results of [24] we have r = 1.

4. Reductions

In this section we give the reductions which state that in order to prove Theorem
1.4 it suffices to consider the situation where F(G) � Z(G) and F ∗(G)/Z(G) is
non-abelian simple (i.e., G is a covering group of a group Y of the form X � Y �
Aut(X) where X is non-Abelian simple). Throughout this section we consider the
following hypotheses.

HYPOTHESES 4.1. B is a block of p-local rank one of G for which Conjec-
ture 1.3 fails, and first [G : Z(G)], then |G| are minimized subject to the presence
of such a block. Let D be a defect group for B.

Although the reductions can be achieved through the application of the results
of [28] and [29], this can only be achieved through detailed examination of the
proofs, ensuring that each step is compatible with the p-local rank and also with
respect to the refinement involved in Uno’s conjecture. In the interests of com-
pleteness, we provide reductions here (except where reductions exist which make
explicit reference to the p-local rank). The ideas are broadly similar to those used
in [29], but are a great deal simpler due to our specific situation.

PROPOSITION 4.2. Under Hypotheses 4.1 Op(G) � Z(G) ∩ G′.
Proof. This is [12, 1.8]. �
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PROPOSITION 4.3. Consider Hypotheses 4.1. Suppose that N � G and that B

covers b ∈ Blk(N). Then b is G-stable, i.e., G = IG(b).
Proof. By [1, 15.1] we may choose defect groups D0 of b and D of B such that

D0 = D ∩ N and D � I = IG(b). Let BI be the unique block of I covering
b with Brauer correspondent B. Necessarily, BI and B have a defect group in
common, and we may take this to be D (see [14, V.2.5]). Let λ ∈ Irr(Z), where
Z = Op(Z(G)). Let d be an integer and r ∈ {1, . . . , p − 1}. Now IG(ζ ) � I for
each ζ ∈ Irr(N, b), so

kd(G, B, λ, [r]) =
∑

ζ∈Irr(N,b)/G

kd(G, B, λ, ζ, [r]) =
∑

ζ∈Irr(N,b)/G

kd(I, BI , λ, ζ, [r])

by Clifford theory (we are also using Frobenius reciprocity to ensure that characters
lie over λ where necessary). Observe that I controls fusion in Irr(N, b), so this is

∑

ζ∈Irr(N,b)/I

kd(I, BI , λ, ζ, [r]) = kd(I, BI , λ, [r]).

We move to the Brauer correspondent for b in NN(D0). However, as will be-
come apparent, it is necessary to consider instead of b, the unique block b̃ of DN

covering b (such a block of DN exists by [14, V.3.5]). Since D � I , by [1, 15.1]
D is a defect group for b̃. Let b̃1 be the unique Brauer correspondent for b̃ in
NDN(D) = DNN(D). Note that NDN(D) � NG(D).

Let x ∈ ING(D)(b̃1). Then b̃x = (b̃DN
1 )x = (b̃x

1)
x−1DNx = (b̃1)

DN = b̃. So
x ∈ I . Hence ING(D)(b̃1) � NI(D). Hence the Brauer correspondence gives a one-
to-one correspondence between blocks of NG(D) covering b̃1 and blocks of NI(D)

covering b̃1.
Let B ′

I be the Brauer correspondent of BI in NI(D), and let B ′ be the Brauer
correspondent of B in NG(D). By [18] B ′

I covers b̃1, as does B ′. Hence the transi-
tivity of the Brauer correspondence and a repetition of the above argument ensures
that

kd(NG(D), B, λ, [r])
=

∑

ζ∈Irr(NDN(D),b̃)/NG(D)

kd(NG(D), B, λ, ζ, [r])

=
∑

ζ∈Irr(NDN(D),b̃)/NI (D)

kd(NI (D), BI , λ, ζ, [r]) = kd(NI (D), BI , λ, [r]).

Now since BG
I = B, we have plr(BI ) � plr(B) = 1. Hence, if I �= G, then

kd(G, B, λ, [r]) = kd(I, BI , λ, [r]) = kd(NI (D), BI , λ, [r])
= kd(NG(D), B, λ, [r]),

either because Z < Op(I) and this equality holds for trivial reasons, or Z = Op(I)

and Conjecture 1.3 holds for BI by induction. Hence, Dade’s conjecture does hold
for B, contradicting our choice of B as a counterexample. �
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PROPOSITION 4.4. Under the hypotheses of Proposition 4.3, if b has a defect
group central in G, then N � Z(G).

Proof. In this case it is possible to apply the results of [24] as in [29]. However,
in our special situation it is possible to use more elementary methods based on the
contents of Section 3. Our arguments here are broadly a simplification of those
in [29].

Suppose that b has defect group D0 � Z = Op(Z(G)). Let ζ ∈ Irr(N, b). By
Proposition 4.3 we have IG(ζ ) = G. Let D be a defect group of B, so that D∩N =
D0. Take the notation of Section 3, so that B̃ is the unique Dade correspondent of
B (with respect to ζ ).

Now let H = NNG(D). Then NH(D) = NG(D). Let A be the unique Brauer
correspondent of B for NG(D). The Brauer correspondent AH of A for H exists,
satisfies (AH)G = B and has D as a defect group. Note that C = AH also covers
b. Since ζ ∈ Irr(N, b) extends to Ĝ, it also extends to Ĥ � Ĝ, a central extension
of H by Ŵ . Hence we may apply the whole of Section 3 to H and C, obtaining
an unique Dade correspondent C̃, a block of H̃ , etc. Let λ ∈ Irr(Z). Suppose λ

covers λ0 ∈ Irr(D0). Then λ may be written uniquely as λ0λ1, where λ1 is the
inflation of an irreducible character of Z/D0 (once we have chosen an extension
of λ0 to Z). Now DN � H , and DN/N � H/N . Write D̃ � H̃ for the relevant
central extension of DN/N . Now C̃ has D̃ as a defect group, and by the character
correspondences given in Section 3 we have

kd(G, B, λ, [r]) = kd̃(G̃, B̃, λ̃0λ̃1, [r̃])
and

kd(NNG(D), C, λ, [r]) = kd̃(H̃ , C̃, λ̃0λ̃1, [r̃])
for each integer d. Here

d̃ = d + logp(ζ(1)p|W̃ |p/|N |p) = d + logp(|W̃ |p/|D0|p),

λ̃1 is the inflation of λ1 to the subgroup of G̃ corresponding to Z, and r̃ ≡
(|W̃ |p′ζ(1)p′)/(|N |p′)r (mod p). But plr(B̃) = 1 with Op(G̃) = Op(W̃) � Z(G̃)

and defect group D̃, H̃ = NG̃(D̃), and [G̃ : Z(G̃)] < [G : Z(G)], so the
conjecture holds for B̃, and

kd̃(G̃, B̃, λ̃0λ̃1, [r̃]) = kd̃(H̃ , C̃, λ̃0λ̃1, [r̃]).
It remains to show that kd(NNG(D), C, λ, [r]) = kd(NG(D), B, λ, [r]), so that

kd(NG(D), B, λ, [r]) = kd(G, B, λ, [r]) and B is not a counterexample to the
conjecture after all. If H = NNG(D) = NG(D), then we are done, so suppose
otherwise. Recall that NH(D) = NG(D) and that D is a defect group for C. Since
we are assuming NH(D) �= H , H must possess a distinct conjugate Dh of D.
Then Op(H) � Dh ∩ D = Z. Further plr(C) = 1 and [H : Z(H)] < [G : Z(G)],
so the conjecture holds for C, and kd(H, C, λ, [r]) = kd(NH(D), C, λ, [r]) as
required. �
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COROLLARY 4.5. Consider Hypotheses 4.1. Then Op′(G) � Z(G).
Proof. This is immediate since every block of Op′(G) has defect zero. �
Consider E(G), the normal subgroup generated by the components of G (recall

that a component is a subnormal quasisimple subgroup). This is a central product
M1 ∗ · · · ∗ Mr of normal subgroups of G, where each Mi is a central product
Mi1 ∗ · · · ∗ Mis of quasisimple groups.

COROLLARY 4.6. Consider Hypotheses 4.1. Then E(G) is quasisimple.
Proof. Let b ∈ Blk(E(G)). Then b = b1 × · · · × br for bi ∈ Blk(Mi).

By Proposition 4.4, bi has noncentral defect groups (since it is covered by B

and since Z(Mi) � Z(G)). Hence plr(bi) > 0. But by Proposition 2.1 1 =
plr(B) � plr(b) = plr(b1) + · · · + plr(br) � r . So r = 1 and plr(b1) = 1.
Now b1 = b11 × · · · × b1s , where b1i ∈ Blk(M1i ). By Proposition 4.3 b1 is G-
stable. Since G permutes the M1i transitively, this means that b11

∼= b1i for each i.
Hence, by Proposition 2.1 1 = plr(b1) = s(plr(b11)), and s = 1 as required. �
PROPOSITION 4.7. Under Hypotheses 4.1, M � G/Z(G) � Aut(M) for some
non-Abelian simple group M .

Proof. Immediate from the previous two corollaries. �
It is worth noting here that we only need consider automorphisms which fix

each element of the centre of the covering group of our simple group.

5. Blocks with Cyclic Defect Groups

Although the case where D/Op(G) is cyclic follows directly from the results of
the next section and the proof of the Isaacs–Navarro conjecture for blocks with
cyclic defect groups given in [20], we digress in this section in order to prove a
stronger result in this direction. We first state Uno’s refinement of Dade’s invariant
projective conjecture, then prove the conjecture for all blocks with cyclic defect
groups. We state the refinement in a character version but prove a twisted group
algebra version which is equivalent to the character one.

In the notation of Section 1, let E be an extension of G, F = E/G, σ ∈
R(G), ψ ∈ Irr(Gσ ) and NE(σ, ψ) the stabilizer of (σ, ψ). Then NF (σ, ψ) =
NE(σ, ψ)/Gσ � F . For U � E, denote Irr(Gσ , U) the subset of Irr(Gσ ) consist-
ing of characters ψ such that NF (σ, ψ) = U and let

Irrd(Gσ , B, U, λ) = Irrd(Gσ , B, λ) ∩ Irr(Gσ , U)

and kd(Gσ , B, U, λ) = | Irrd(Gσ , B, U, λ)|. The following is Uno’s refinement of
Dade’s invariant projective conjecture.
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CONJECTURE 5.1 ([32]). Let E be an extension of a finite group G with Op(G) �
Z(G), and let F = E/G, B ∈ Blk(G) with D(B) > Op(G). Then for every
λ ∈ Irr(Op(Z(G))), U � F , every d and every r with 1 � r � (p −1)/2, we have

∑

σ∈R(G|Op(G))/G

(−1)|σ |kd(Gσ , B, λ, U, [r]) = 0.

THEOREM 5.2. Let G be a finite group with Op(G) � Z(G), and let B ∈ Blk(G)

such that D(B)/Op(G) is cyclic. Then Conjecture 5.1 holds for B.
Proof. We will prove a refinement of [10, Conjecture 7.9], which is equivalent

to Conjecture 5.1 for the blocks with cyclic defect groups. We will use the notation
of [10].

Case (1) The corresponding result of Uno’s refinement to the ordinary theorem,
[10, Theorem 4.3], holds, that is, in the notation of [10, Theorem 4.3] Irr(B, [r]) is
isomorphic to Irr(B̃, [r]) as NF (B)-sets, where Irr(B, [r]) = Irr(B) ∩ Irr(G, [r])
and Irr(B̃, [r]) = Irr(B̃)∩ Irr(G̃, [r]). Here B ∈ Blk(G) with cyclic defect groups,
B̃ is the Brauer correspondent of B in G̃ = NG(	(D)), where 	(D) � D is the
unique subgroup of order p.

This follows by [6, Proposition 2.1].
Case (2) The corresponding result of Uno’s refinement to the covering theorem,

[10, Theorem 5.3], holds, that is, in the notation of [10, Theorem 5.3] Irr(B, λ, [r])
is isomorphic to Irr(B̃, λ, [r]) as NF (B)-sets.

In the notation of Section 5 of [10], suppose e(B) > 1. Then the degree-

preserving bijections 
: Irr(B) → Irr(B|λ) and 
̃: Irr(B̃) → Irr(B̃|λ) are uniquely
determined, where 
 and 
̃ are given by [10, (5.8) and (5.9)].

If χ ∈ Irr(B) and χ = 
(χ) ∈ Irr(B|λ), then χ(1) = χ(1) and

r(χ) ≡ |G|p′

χ(1)p′
= |G|p′ |Z|p′

χ(1)p′
≡ r(χ)|Z|p′ (mod p).

Similarly, if χ̃ ∈ Irr(B̃) and χ̃ = 
̃(χ̃) ∈ Irr(B̃|λ), then

r(χ̃) ≡ r(χ̃)|Z|p′ (mod p).

Let � be the NF (B)-isomorphism of Irr(B) and Irr(B̃) such that r(χ) ≡ ±r(χ̃) and
� = 
̃◦�◦
−1. As shown in the proof of [10, p. 956] � is an NF (B)-isomorphism
between Irr(B|λ) onto Irr(B̃|λ). But

r(χ) ≡ ±r(�(χ)) (mod p)

so that � is an NF (B)-isomorphism of Irr(B, λ, [r]) onto Irr(B̃, λ, [r]).
Suppose e(B) = 1. Then χi(1) = χj(1) and χ̃i(1) = χ̃j (1) for any χi, χj ∈

Irr(B|λ) and χ̃i , χ̃j ∈ Irr(B̃|λ) (cf. [10, p. 958]). It follows that r(χi) ≡
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r(χj )(mod p) and r(χ̃i) ≡ r(χ̃j )(mod p). In addition, there is an NF (B)-isomorph-
ism �′ of Irr(B|λ) onto Irr(B̃|λ) (cf [10, p. 959]). Since 
 and 
̃ are degree-

preserving and since there is a bijection � of Irr(B) onto Irr(B̃), it follows that

r(χ) ≡ r(�′(χ)) (mod p)

so that �′ is an NF (B)-isomorphism of Irr(B, λ, [r]) onto Irr(B̃, λ, [r]).
Case (3) The corresponding result of Uno’s refinement to the projective theo-

rem, [10, Theorem 6.1], holds, that is, in the notation of [10, Theorem 6.1]
Irr(B, [r]) is isomorphic to Irr(B̃, [r]) as NF (B) sets.

In the notation of [10, (6.15)], let �∗ be the covering bijection of Irr(B) onto
Irr(B∗|ζ ∗

p). Then by definition,

r(χ) ≡ r(�∗(χ))|Z∗|p′ (mod p)

for each χ ∈ Irr(B).
Similarly, in the notation of [10, (6.16)], let �̃∗ be the covering bijection of

Irr(B̃) onto Irr(B̃∗|ζ ∗
p). Then

r(χ̃) ≡ r(�̃∗(χ̃))|Z∗|p′ (mod p)

for each χ̃ ∈ Irr(B̃).
It follows that the isomorphism �∗ of Irr(B∗|ζ ∗

p) onto Irr(B̃∗|ζ ∗
p) given by [10,

(6.17)] is an NF (B) isomorphism of Irr(B∗, ζ ∗
p, [r]) onto Irr(B̃∗, ζ ∗

p, [r]). Thus

there is an NF (B) isomorphism of Irr(B, [r]) onto Irr(B̃, [r]).
Case (4) Now applying the proof given in [10, Section 7], we get the proof of

Theorem 5.2. �

6. p-Central Extensions and p-Blocks

We consider the relationship between p-blocks of central extension by a (cyclic) p-
group and blocks of the original group. Given a central extension X̂ of a finite group
X by a p-group Ŵ and corresponding blocks A and Â of X and X̂ respectively,
we would like to have k(X, A) = k(X̂, Â, λ) for each λ ∈ Irr(Ŵ ), and that similar
equalities hold with respect to the more refined character counts considered in this
article. This is studied in [10] when A has cyclic defect groups, and in [25] when Â

has Abelian defect groups. Strong results concerning the role of fusion are obtained
in [22], and it is these that we use, in particular to consider the case where A has p-
local rank one and generalised quaternion defect groups. We first need a definition
from [22]. Note that although here we use B and G to represent blocks and groups,
we are not constraining ourselves to Hypotheses 4.1.

Let B be a block of a finite group G with a Sylow B-subgroup (D, bD), and
Q a normal subgroup of D. Following [22], we say that the Brauer category of B
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is Q-locally controlled by (D, bD) if, for any B-subgroup (R, bR) � (D, bD) and
any g ∈ G such that (R, bR) � (D, bD)g := g(D, bD)g−1, there are elements
c ∈ CG(R, Q) and u ∈ D such that g = cu, where

CG(R, Q) = {y ∈ G : [ R, y ] ⊆ Q}.

PROPOSITION 6.1. Let G be a finite group and B ∈ Blk(G) a block of p-local
rank one with a maximal Sylow B-subgroup (D, bD). Suppose that L = Op(G) is
cyclic and central in G, and that we may write D = L × Q for some Q. Then:

(a) the Brauer category of B is Q-locally controlled by (D, bD);
(b) if B be the image of the block B in G/Op(Z(G)) and λ is a faithful linear

character of L, then B is a block of G/Z(G) with a defect group D/L  Q,
and there is a degree-preserving bijection between Irr(B, λ) and Irr(B).

Proof. (a) Note that since plr(B) = 1, it follows that D/L  Q is a TI subgroup
of G/Z(G). Since L is cyclic, it possesses a faithful linear character λ. Let µ be
the canonical extension of λ to D with ker(µ) = Q. If (R, bR) is a B-subgroup of
(D, bD) with (R, bR) � (D, bD)g for some g ∈ G, then CG(LR) = CG(R) and
CG(LR, Q) = CG(R, Q) and (LR, bR) is also a B-subgroup with (LR, bR) �
(D, bD), (D, bD)g. In particular we may assume that L � R. We may further
assume that L < R, since otherwise CG(R, Q) = G and g ∈ CG(R, Q) trivially.
Write R = L × R1 with R1 = R ∩ Q �= 1. Since 1 �= R/L � D/L ∩ (D/L)gL

and D/L is TI, it follows that g ∈ NG(D). But then µg = µ, so g normalizes
Q = ker(µ). Thus R

g

1 � Qg = Q and g ∈ CG(R, Q) = CG(R1, Q). Hence by
definition the Brauer category of B is Q-locally controlled by (D, bD).

(b) B can be viewed as a subalgebra of OG, so B is a subalgebra of O(G/L).
By part (a) and Theorem 7 of [22], Bγ

∼= OL ⊗O Bγ , where Bγ is the source
algebra associated to a defect pointed group Dγ corresponding to (D, bD), and Bγ

is the image of Bγ in O(G/L). Now Bγ = iOGi for i ∈ γ and Bγ = iOGi, so i

must necessarily be primitive and Bγ is a source algebra for B. Hence B is Morita
equivalent to Bγ and B to Bγ .

As shown in the proof of [23, Theorem 5],

B  OL ⊗O B

as algebras. (This can also be obtained by going through the results of [22] using
B instead of Bγ .) Proposition 6.1 follows. �

Remark. The conditions of the above proposition are satisfied whenever a block
B ∈ Blk(G) satisfies all of: (i) plr(B) = 1, (ii) Op(G) is cyclic and central in
G, (iii) a defect group D of B is abelian or D/Op(G) has trivial Schur multiplier.
Note that generalized quaternion and cyclic p-groups have trivial Schur multiplier.
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COROLLARY 6.2. Suppose that a block B satisfies the conditions of Proposi-
tion 6.1 and Conjecture 1.3 holds for the unique block B of G/L corresponding to
B. Then the conjecture holds for B.

Proof. Since plr(B) = 1 and Op(G) � Z(G), we must show that kd(G, B, λ,
[r]) = kd(NG(D), B, λ, [r]). But applying Proposition 6.1 to B and its Brauer
correspondent in NG(D) gives

kd(G, B, λ, [r]) = kd ′(G/L, B, [r]) = kd ′(NG(D)/L, B, [r])
= kd(NG(D), B, λ, [r]),

since the conjecture holds for B (here d ′ = d − logp(|L|)). �

7. Checking the Conjecture

We have shown in Section 4.7 that in proving Theorem 1.4 it suffices to check Con-
jecture 1.3 for TI defect blocks of groups G with F(G) � Z(G) and F ∗(G)/Z(G)

non-abelian simple (and Z(G) � G′ with Z(G) cyclic). We still keep the notation
of Hypotheses 4.1. A complete list of such blocks is obtained in [4], which we
summarise here. Since there is a one-to-one correspondence between blocks of
G and blocks of G/Op(Z(G)) which preserves the p-local rank and takes defect
groups to their quotient modulo Op(Z(G)), it suffices to classify those blocks of
groups with Op(Z(G)) = 1.

THEOREM 7.1. Let B be a block of p-local rank one of a finite group G for
which F(G) � Z(G) and F ∗(G)/Z(G) is non-Abelian simple. Let B be the unique
p-block of G/Op(Z(G)) corresponding to B. Then B is one of the following:

(a) a block with cyclic or generalised quaternion or Klein-four defect groups;
(b) a 2- or 3-block with maximal defect groups;
(c) the unique block of O ′N ,

mathrmAut(O ′N), 2.Suz,
mathrmAut(Suz) with defect groups of the form C3 × C3;

(d) a 5-block of maximal defect of 3.McL or
mathrmAut(McL);

(e) the principal 11-block of J4;
(f) a p-block of maximal defect of a p′-central extension of a group X with Y �

X � Aut(Y ), where (p, [X : Y ]) = 1 and Y ∼= PSL2(p
m) or PSU3(p

m) for
some m > 1;

(g) the principal 5-block of 2F4(2)′, 2F4(2) or
mathrmAut(2B2(25)).

There is a subtlety which we address here. Note that most of the above cases
occur as central extensions of some group of automorphisms of a non-Abelian
simple group. It may so happen that the Schur multiplier of the automorphism



440 JIANBEI AN AND CHARLES W. EATON

group of a simple group is different from that of the simple group itself. We deal
with this in the same way as in [11]. First, observe that if the outer automorphism
group is cyclic, then there is no problem.

LEMMA 7.2. Let Y � X, where Y is perfect and X/Y is cyclic. Then the Schur
multiplier of X is a quotient of that of Y .

Proof. This follows directly from [11, 3.4]. �
This applies to cases (c), (d), (e), (g). We examine case (a) by general methods

in which Schur multipliers do not play a role, and (b) will follow from [11]. This
leaves case (f), which we address as follows.

Suppose that X has TI Sylow p-subgroups, Op(X) = 1, Z(X) is cyclic and
contained in X′, and that there is Y � X such that Y is a central extension of a
non-Abelian simple group by Z(X). Suppose also that X/Y is a direct product of
two cyclic p′-groups, and let Y � T � X, where T/Y and X/T are cyclic. Write
W for the central extension of T/Z(G) by T ′ ∩ Z(G) such that W � T . We have
Z(Y ′) � Z(W) � Z(G). The proof of the following is based on [7, 3.6].

LEMMA 7.3. Let X be as above. Then there is a finite group H satisfying

(i) Z(H) � Y ′ � H ,
(ii) Op′(H) = Z(H) � H ′, Z(H) is cyclic and Op(H) = 1,

(iii) CH(Y ′) = Z(H) = Z(Y ′),
(iv) H/Y ′ is a p′-group,
(v) Conjecture 1.3 holds for X if and only if it holds for H .

Proof. This is almost identical to the proof of [11, 3.6, 3.7]. The difference
is that our character count is more refined than that for DPC, however, we have
already seen that the Clifford-theoretic techniques used in the proof of [11, 3.6] are
compatible with the residues used in the statement of Conjecture 1.3. �
PROPOSITION 7.4. Let G be a finite group and B ∈ Blk(G) with a defect group
D. Suppose G, D are given as follows.

(i) G = 3.McL or Aut(McL) = McL.2 and D = 51+2
+ ∈ Syl5(G).

(ii) G = 2F4(2)′ or 2F4(2) and D = C5 × C5 ∈ Syl5(G).

Table I. The normalizers N = NG(D)

G N G N

3.McL 3 × 51+2+ : 3: 8 McL.2 51+2+ : 3: 8.2
2F4(2)′ 52: 4.A4

2F4(2) 52: 4.S4
2B2(25).5 25: 20 J4 111+2+ : (5 × 2.S4)
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Table II. The characters of Irr(N, B)

N Irr(N, B)

3 × 51+2+ : 3: 8 {8 × 1, 4 × 2, 6 × 20, 1 × 24}
51+2+ : 3: 8.2 {8 × 1, 10 × 2, 4 × 20, 2 × 24, 2 × 40}
52: 4.A4 {6 × 1, 6 × 2, 2 × 3, 2 × 24}
52: 4.S4 {4 × 1, 6 × 2, 4 × 3, 2 × 4, 4 × 24}
25: 20 {20 × 1, 5 × 4, 1 × 20}
111+2+ : (5 × 2.S4) {10 × 1, 15 × 2, 10 × 3, 5 × 4, 3 × 110, 2 × 120, 3 × 220, 1 × 330}

Table III. The values kd(G, B, [r])

Defect d 3 3 2 2 otherwise

value r 2 1 2 1 otherwise

kd(3.McL,B, [r]) 9 4 6 0 0

kd(McL.2, B, [r]) 10 10 4 2 0

kd(2F4(2)′, B, [r]) 0 0 8 8 0

kd(2F4(2), B, [r]) 0 0 10 10 0

kd(2B2(25).5, B, [r]) 0 25 0 1 0

Table IV. The values kd(J4, B0, [r])

Defect d 3 3 3 2 2 2 otherwise

value r 2 3 5 1 2 3 otherwise

kd(J4, B0, [r]) 12 10 5 3 3 1 0

(iii) G = Aut(2B2(25)) = 2B2(25).5 and D = 51+2
+ ∈ Syl5(G).

(iv) G = J4 and D = 111+2
+ ∈ Syl11(G).

Thus B is the principal block B0 = B0(G) of G except when G = 3.McL, in
which case B is one of the three blocks B0, B1, B2 with a defect group D. Then
Conjecture 1.3 holds for B.

Proof. If N = NG(D), then by [8], the structure of N is given in Table I.
Note that N is a maximal subgroup of G and that its character table can be

found in the library of character tables distributed with GAP, except when N =
N2F4(2)(D) = 52: 4.S4 or N = N2B2(25).5(D) = 25: 20. In the latter case, Irr(N)

is given by [11, p.635], and in the former case, it can be calculated easily using
the table of N2F4(2)′(D) = 52: 4.A4. If G = 3.McL and B = Bi for 0 � i � 2,
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then there is a degree-preserving bijection of Irr(N, Bi) onto Irr(N, B0), since N =
3 × NMcL(D). The characters of Irr(N, B) are given in Table II.

The character table of G is given by [8]. Suppose p = 5. Then the values
kd(G, B, [r]) are given in Table III.

If p = 11, then the values kd(J4, B0, [r]) are given in Table IV.
Now Proposition 7.4 follows by Tables II, III and IV. �
In order to verify Conjecture 1.3 for case (f) of Theorem 7.1 we make use of

the computations of numbers of fixed points under the action of automorphisms
on the irreducible characters of these groups. As with [11], in order to do so we
must use a strengthened version of [7, 2.3]. Since the proof is essentially the same,
with the observation that all the methods involved respect the residues used in
Conjecture 1.3, we omit it.

Let O be a finite group acting on a finite set 	 and f (	, t) the number of
elements of 	 fixed by t . Note that if O acts on another set 	′, then there is a
bijection 
 from 	 to 	′ such that 
(x)τ = 
(xτ ) if and only if f (	, w) =
f (	′, w) for each w ∈ 〈τ 〉, where τ is a fixed element of O.

LEMMA 7.5. Suppose X is a finite group, H � G � X with X/G a cyclic
p′-group. Suppose y ∈ X generates X/G and normalizes H and that |X: G| =
|H 〈y〉: H |. Let B be a union of p-blocks of G and b a union of p-blocks of H such
that y stabilizes B and b. Suppose for each subgroup C of 〈y〉,
f (Irrd(G, B, [r]), C) = f (Irrd(H, b, [r]), C). Let B1 be the union of all p-blocks
of X covering B and b1 the union of all p-blocks of H 〈y〉 covering b. Then

| Irrd(X, B1, [r])| = | Irrd(H 〈y〉, b1, [r])|.
PROPOSITION 7.6. Let B be a p-block of maximal defect of a p′-central ex-
tension G of a group X with Y � X � Aut(Y ), where (p, [X : Y ]) = 1 and
Y ∼= PSL2(p

m) or PSU3(p
m) for some m > 1. Then Conjecture 1.3 holds for B.

Proof. If p = 2 or 3, then Conjecture 1.3 is equivalent to Conjecture 1.1, so that
Proposition 7.6 follows by [11] as G has p-local rank one.

Suppose p � 5 and q = pm (so Op(G) = 1). By Lemma 7.3 it suffices to
assume that the preimage K of Y in G is perfect, i.e., K = SL2(q) or SU3(q)

(since by considering the principal block we obtain the conjecture for the case
where the centre is trivial).

Let U be the Sylow p-subgroup of K consisting of unit lower triangular matri-
ces of K , W = NK(U) a Borel subgroup of K , so that W = U � Cqn−1−1, where
n = 2 or 3 according as K = SL2(q) or SU3(q). In addition, let δ = gcd(n, q − ε)

and Z = Z(K), so that |Z| = δ, where ε = 1 or −1 according as K = SL2(q) or
SU3(q).

Case (1) If K = SU3(q), then the character tables of both W and K are given
by [16, Tables 2.1 and 3.1]. In particular, | Irr(W)| = q2 + q + δ2 and | Irr(K)| =
q2 + q + 1 + δ2. If δ = 1, then the principal blocks B0 = B0(K) and b0 = B0(W)
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are the only blocks of K and W with maximal defect, respectively. If δ = 3, then K

and W both have three blocks Bi and bi , respectively with maximal defect, where
µi ∈ Irr(Z) with µ0 = 1, and Bi and bi cover the block B(µi) of Z containing µi .
Thus B0 = B0(K), B1 and B2 are conjugate under the complex conjugation.

Suppose δ = 3. In the notation of [16, Tables 2.1 and 3.1], let

XK = {χ(u)

(q−1)(q2−q+1)/3
, χ

(u,v)

(q−1)(q+1)2/3
: 0 � u � 2, v = 1, 2} ⊆ Irr(K)

and XW = {ϑ(u,v)

(q2−1)/3
: 0 � u, v � 2} ⊆ Irr(W). Then |XK | = |XW | = 9 and

| Irr(Bi) ∩ XK | = | Irr(bi) ∩ XW | = 3 for each i.
For χ ∈ (Irr(K)\{St}) ∪ Irr(W),

r(χ) ≡
{±1 (mod p) if δ = 1 or δ = 3 and χ �∈ XK ∪ XW ,

±3−1 (mod p) if χ ∈ XK ∪ XW ,

where St is the Steinberg character of K .
Suppose L = K or W . Let bi(L) = Bi or bi(L) = bi according as L = K or

W , and when δ = 3, let

ϕ
(u,v)
L =






ϑ
(v,u)

(q2−1)/3
if L = W ,

χ
(u)

(q−1)(q2−q+1)/3
if L = K and v = 0,

χ
(u,v)

(q−1)(q+1)2)/3
if L = K and v = 1, 2.

If δ = 1, then r(χ) ≡ ±1 (mod p) and d(χ) = 2m or 3m for each χ ∈
Irr(b0(L)), so that Irrd(b0(L), λ, [1]) = Irrd(b0(L), λ).

Suppose δ = 3. Then Irrd(L, Bi, λ, [1]) = Irrd(L, Bi, λ) except when d = 3m,
in which case,

Irr3m(bi(L), [3−1]) = XL ∩ bi(L) = {ϕ(u,i)
L },

Irr3m(bi(L), [1]) = Irr3m(bi(L))\ Irr3m(bi(L), [3−1]). Note that b0(L) is the unique
block of L with maximal defect covering the trivial character of Z. Moreover, if χ

is the complex dual character of χ , then χ �→ χ is a bijection from Irr(b1(L)) onto
Irr(b2(L)).

Note a semisimilarity t ∈ �U3(q) stabilizing bi(L) always stabilizes Irrd(bi(L),
λ, [r]), since t normalizes Z and preserves degree.

Let x be the diagonal element of U3(q) given by [7, p. 436], so that x induces
a diagonal automorphism on K and x3 ∈ K . In the notation of [16] (cf. [7, Table
2]), x normalizes L and fixes each conjugacy class C of L except when C = C

(k,l)

3

or B
(k,l)

3 according as L = K or W , in which case δ = 3 and x fuses {C(k,l)

3 : 0 �
� � δ} or {B(k,l)

3 : 0 � � � δ} (see the remark of [16, p. 566]). It follows by the
character tables of K and W that x fixes each character of Irrd(bi(L), [r]) except
when d = 3m and r ≡ ±3−1 (mod p), in which case δ = 3 and x fuses characters
in Irr3m(bi(L), [3−1]) (cf. Remarks on [16, p. 571]). In particular,
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(χ)w = (χw) (7.1)

for each χ ∈ Irr(b1(L)) and w = x.
Suppose y is a semisimilarity inducing the field automorphism τ e on K and

stabilizing bi(L), where τ is the Frobenius automorphism of K . Thus (C
(0,l)

3 )y =
C

(0,pel)

3 and (B
(0,l)

3 )y = B
(0,pel)

3 , so that y fixes ϕ
(0,i)
L , and y fuses ϕ

(1,i)
L and ϕ

(2,i)
L if

and only if y fuses C
(0,1)
3 and C

(0,2)
3 , or B

(0,1)
3 and B

(0,2)
3 . Since B

(0,l)
3 ⊆ C

(0,l)
3 for

each l, it follows that y fuses ϕ
(1,i)
K and ϕ

(2,i)
K if and only if y fuses ϕ

(1,i)
W and ϕ

(2,i)
W .

Moreover, by the character tables of K and W , (7.1) holds for w = y, so that it
holds for any w ∈ �U3(q) centralizing Z.

If follows that for any t ∈ �U3(q) centralizing Z, any integers d, r and any
λ ∈ Irr(Z),

f (Irrd(b1(L), λ, [r]), t) = f (Irrd(b2(L), λ, [r]), t). (7.2)

As shown in [7, p. 455], f (Irr3m(B0), t) = f (Irr3m(b0), t) and in addition, if δ = 3,
then

f (Irr3m(B1), t) + f (Irr3m(B2), t) = f (Irr3m(b1), t) + f (Irr3m(b2), t).

By (7.2),

f (Irrd(Bi), t) = f (Irrd(bi), t) (7.3)

for any i when d = 3m.
By [7, Table 1] and the Brauer permutation lemma, f (Irr(B0), t) = f (Irr(b0), t)

and if δ = 3, then

f (Irr(B1), t) + f (Irr(B2), t) = f (Irr(b1), t) + f (Irr(b2), t).

It follows by this and (7.2) that

f (Irr(Bi), t) = f (Irr(bi), t) (7.4)

for each i. But each character of Irr(bi(L)) either has defect 3m or 2m and (7.3)
holds when d = 3m, so (7.3) holds for any d and this implies that

f (Irrd(Bi, λ, [r]), t) = f (Irrd(bi, λ, [r]), t) (7.5)

when d �= 3m, since r(χ) ≡ ±1 (mod p) for each χ ∈ Irr2m(Bi) ∪ Irr2m(bi).
Suppose d = 3m. By reordering, we may suppose the action of x on Irr3m(bi(L),

[3−1]) is given by the permutation (ϕ
(0,i)
L , ϕ

(1,i)
L , ϕ

(2,i)
L ), with ϕ

(0,i)
L fixed by y, where

x and y are given as before. Given i, define φ: Irr3m(Bi, [3−1]) → Irr3m(bi, [3−1])
by φ(ϕ

(u,i)
K ) = ϕ

(u,i)
W . Then

φ(χt) = φ(χ)t
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for t = x and y, so that it holds for any t ∈ �U3(q) stabilizing bi . In particular,
(7.5) holds when d = 3m and r = 3−1. It follows by (7.3) that (7.5) holds for
d = 3m and r = 1, so that it holds for any d, λ and r .

If G/K is cyclic, then Proposition 7.6 follows by (7.5) and Lemma 7.5.
Suppose G/K is non-cyclic. We may suppose x, y ∈ G. Applying the remark

given before Lemma 7.5 with τ = y, we have a bijection �: Irrd(Bi, λ, [r]) →
Irrd(bi, λ, [r]) such that

�(χt) = �(χ)t (7.6)

for t = y and χ ∈ Irrd(Bi, λ, [r]). Since x fixes each character in the complement
of Irr3m(bi(L), [3−1]) in Irr(L), it follows that (7.6) holds when t = x if d �= 3m

or r �≡ ±3−1 (mod p). If d = 3m and r ≡ ±3−1 (mod p), then we may choose
� = φ given above, so that (7.6) still holds when t = y. Thus (7.6) holds for any
t ∈ �U3(q) stabilizing bi .

Let b′
i (L) be the block of L〈x〉 covering bi(L). For any χ ′ ∈ b′

i (L), d(χ ′) = 2m

or 3m and r(χ ′) ≡ ±3 (mod p).
Let θ be the inflation to L〈x〉 of a fixed non-trivial character of Irr(L〈x〉/L).

Suppose χL ∈ Irr(bi(L)). If χL �∈ Irr3m(bi(L), [3−1]), then χL has three extensions
χL ⊗ θ l, l = 0, 1, 2 in Irr(b′

i (L)). Define �′(χK ⊗ θ l) = �(χW) ⊗ θ l . Then

�′(χK ⊗ θ l)y = �(χ
y

W) ⊗ (θpel) = �′((χK ⊗ θ l)y).

If χL ∈ Irr3m(bi(L), [3−1]), then χL has a unique extension χ ′
L in Irr(b′

i (L)) and χ ′
L

is the unique character in Irr(b′
i(L)) covering all characters of Irr3m(bi(L), [3−1]).

In particular, y fixes χ ′
L. Set �′(χ ′

K) = χ ′
W . Then �′ is an isomorphism from

Irrd(b′
i(K), λ, [r]) onto Irrd(b′

i(W), λ, [r]) as 〈y〉-sets, since r(�′(χ ′)) ≡ r(χ ′)
(mod p). In particular,

f (Irrd(b
′
i (K), λ, [r]), t) = f (Irrd(b

′
i(W), λ, [r]), t)

for any t ∈ 〈y〉. Now Proposition 7.6 follows by Lemma 7.5.
Case (2) Let K = SL2(q). Then

Irr(K) =
{
χ1, χq, χ

(u)

q+1, χ
(v)

(q−1), χ
(a)

(q+1)/2, χ
(a)

(q−1)/2 :

1 � u � q − 3

2
, 1 � v � q − 1

2
, a = 1, 2

}

and | Irr(K)| = q + 4, where χ1(1) = 1, χq(1) = q and χ
(l)
i (1) = i for all i, l. In

addition, Z � ker(χ(a)

(q−ν)/2) if and only if 4|(q − ν), where ν = −1 or 1.

Let Irr(U) = {η(j)

1 : 0 � j � q}, where η
(0)

1 is the trivial character of U . Thus
IW(η

(j)

1 ) = W or UZ according as j = 0 or j �= 0. It follows by Clifford theory
that

Irr(W) = {
ψ

(j)

1 , ψ
(a)

(q−1)/2 : 1 � j � q − 1, 1 � a � 4
}
,



446 JIANBEI AN AND CHARLES W. EATON

so that | Irr(W)| = q + 3, where ψ
(l)
i (1) = i. Moreover, there are exactly two

characters ψ = ψ
(a)

(q−1)/2 with Z � ker(ψ). Suppose ψ
(1)

(q−1)/2 and ψ
(2)

(q−1)/2 cover
η ⊗ 1 ∈ Irr(U × Z), where η is a fixed generator of Irr(U).

Let XW = {ψ(a)

(q−1)/2 : 1 � a � 4} and XK = {χ(a)

(q+1)/2, χ
(a)

(q−1)/2 : a = 1, 2}.
Then |XK | = |XW | = 4 and for χ ∈ (Irr(SL2(q))\{St}) ∪ Irr(W),

r(χ) ≡
{±1 (mod p) if χ �∈ XK ∪ XW ,

±2−1 (mod p) if χ ∈ XK ∪ XW .

For each µi ∈ Irr(Z) with µ0 = 1, SL2(q) and W both have exactly one block Bi

and bi with maximal defect and covering the block B(µi) of Z containing µi , and
moreover, |XK ∩ Bi | = |XW ∩ bi | = 2.

Suppose L = K or W . Let bi(L) = Bi or bi according as L = K or W . Each
χ ∈ Irr(bi(L)) has defect m, so Irrm(bi(L), [2−1]) = XL ∩ bi(L) and

Irrm(bi(L), [1]) = Irr(bi(L))\ Irrm(bi(L), [2−1]).
Suppose x = diag{α, −α−1} with α a generator of GF(q)×. Then x2 ∈ K , x

induces the diagonal automorphism of K and stabilizes W . Since the irreducible
characters of GL2(q) have degrees 1, q, q ±1, it follows that x fuses the characters
in {χ(1)

(q±1)/2, χ
(2)

(q±1)/2} and stabilizes other characters. Similarly, it follows from the
degrees of irreducible characters of a Borel subgroup of GL2(q) that x fuses the
characters in each set {ψ(1)

(q−1)/2, ψ
(2)

(q−1)/2} and {ψ(3)

(q−1)/2, ψ
(4)

(q−1)/2}, and fixes the
other characters in Irr(W). Thus (7.5) holds when t = x.

Suppose y ∈ �L2(q) induces the standard Frobenius automorphism of K . Let
C(u) for 1 � u � 4 be the 4 nonsemisimple classes of L with representatives,

(
1 0
1 1

)
,

(
1 0
α 1

)
,

(−1 0
1 −1

)
,

(−1 0
α −1

)
.

Thus y fixes each C(u).
If e|m, then CK(ye) = SL2(p

e) and CW(ye) is a Borel subgroup of SL2(p
e),

so that ye fixes pe + 4 classes of K , and pe + 3 of W . But ye fixes the Steinberg
character St of K , so by Brauer permutation lemma,

f (Irr(B0), y
e) + f (Irr(B1), y

e) = f (Irr(b0), y
e) + f (Irr(b1), y

e).

Similarly, since ye fixes the two unipotent classes of L/Z, it follows by [7,
Lemma 4.3] and the Brauer permutation lemma that f (Irr(K/Z)\{St}, ye)

= f (Irr(W/Z), ye). But L has only one block with maximal defect covering each
linear character of Z, so

f (Irr(Bi), t) = f (Irr(bi), t) (7.7)

for i = 0, 1 and t = ye.
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The values of χ
(a)

(q±1)/2 on the classes C(1) and C(2) of K (cf. [15, Lecture 5])

imply that ye fixes each character χ
(a)

(q±1)/2 as ye fixes each C(u). Similarly, the

values of ψ
(a)

(q−1)/2 on the classes C(3) and C(4) of W imply that ye fixes each

character ψ
(a)

(q−1)/2. Thus (7.5) holds when d = m, r = 2−1 and t = ye, this
and (7.7) imply that (7.5) holds for any m, r and t = ye. If G/K is cyclic, then
Proposition 7.6 follows by Lemma 7.5.

If G/K is noncyclic, then we may suppose x ∈ G. Let b′
i (L) be the unique

block of L〈x〉 covering bi(L). Since the actions of x and y on L are commutative,
it follows that there is a bijection �: Irrd(Bi, λ, [r]) → Irrd(bi, λ, [r]) such that
(7.6) holds for t = x and y, and so for any t ∈ �L2(q) stabilizing W . A similar
proof to that of Case (1) shows that the bijection � can be extended to a 〈y〉-set
isomorphism of Irrd(b′

i(K), λ, [r]) and Irrd(b′
i (W), λ, [r]). Thus Proposition 7.6

follows by Lemma 7.5. �
PROPOSITION 7.7. Let G be a finite group, B ∈ Blk(G) with a defect group D,
and b the Brauer correspondent of B in N = NG(D). Suppose that B is any of the
following:

(i) a block with cyclic, generalised quaternion or Klein-four defect group D such
that D/Op(G) is TI, Op(G) � Z(G) and Op(G) is cyclic;

(ii) a 3-block of Suz, 2.Suz, 3.Suz, 6.Suz, Suz.2, 2.Suz.3, 3.Suz.2, O ′N , 3.O ′N ,
O ′N.2.

Then Conjecture 1.3 holds for B.
Proof. Conjecture 1.3 holds when D is cyclic by [20, Theorem (2.1)], and when

D is generalised quaternion or Klein-four by [31]. If Op(G) � Z(G) and Op(G)

is cyclic, and D/Op(G) is cyclic or generalised quaternion, then Conjecture 1.3
holds by Corollary 6.2 (taking note of the remarks preceding that result).

(ii) follows from [19] and [5] since the conjecture is identical to DPC for p =
3. �
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