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Abstract. Sensing electrodes arranged in or around a display can provide input function for interactive
displays. Commercially this is interesting because the sensing electrodes and electronics can be made
in the same manufacturing process as that of the display itself thus reducing cost. In engineering terms
the electrodes measure capacitance changes resulting from the presence and movement of objects such
as hands and fingers in front of the display. At the quasi static frequencies used (100kHz) the human
body is conductive and the hands or fingers provide a screen between the capacitive electrodes. There is
no need to touch the actual display and the overall system constitutes a touchless gesture input system.

Determining the shape of the hand or fingers is a boundary condition reconstruction problem of
finding the boundary of an earthed conductive object D from electrostatic measurements. This is the
ill-posed problem of recovering the zero-surface of a solution to Laplace’s equation from Cauchy data
on part of the boundary of a domain. The problem has similarities with object reconstruction in EIT
or inverse scattering but is complicated because only a partial Dirichelet-Neumannn map is available as
experimental data.

We suggest an algorithm where at each iteration we have an approximation ∂Dk to ∂D on which
we calculate approximate Cauchy data by solving a Tikhonov regularized linear system. This data is
used to modify ∂Dk by extrapolation towards the zero-surface giving the next approximation ∂Dk+1.

We implemented the algorithm in two and three space dimensions using the Boundary Element
Method for discretization. Numerical results using simulated data with added noise show that simply
connected but not necessarily convex objects can be reconstructed with reasonable positional accuracy
and approximate shape, but as might be expected the shape is more accurately determined near the
plane of measurements.

Submitted to: Meas. Sci. Technol.

1. Introduction

Consider a grounded and conductive object in the half space H := {x ∈ R3 : x3 > 0} above an infinite
plane ∂H. Cauchy data are obtained from capacitance measurements made between electrodes in the
plane with the aim to establish the location, size and shape of the object. We thus have the problem of
finding a domain D ⊂ H with smooth boundary ∂D, such that

∇2u = 0 in H \ D̄

where

u = fH on ∂H

∂u

∂n
= gH on ∂H

u = 0 on ∂D

In this fH is the known potential distribution on the plane and gH the measured charge distribution
on the plane. n is the unit normal pointing out of the domain H \ D̄.

This problem is of interest in providing pointing and gesture input to display screens [1]. The display
is regarded as a ground plane and quasi-static measurements are made between electrodes arranged in or
around the display. The measurements are performed at a frequency high enough to regard the human
body as conductive and connected to ground, but low enough to justify an electrostatic formulation [2].
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Figure 1. A) Schematic illustration of cross capacitance charge imaging. B) Schematic illustration of
the cross capacitance object reconstruction.

Here we study a simplified and idealized version of the problem. Our aim is to show that it is
numerically feasible to extract shape information from limited and noisy data. We require to do this
specifically in the 3D setting. Note that the 1D version of the problem is trivial; it corresponds to finding
the separation d of the parallel plate capacitance. For the 2D case, the logarithmic fundamental solution
limits the relevance to the practical situation of finite 3D objects and sensors arrangements. The next
section describes the forward problem and introduces the concept of a charge image: The change in
charge distribution on the plane ∂H resulting from the presence of the object. It is an image in sense
that it contains enough information to recover (‘see’) the shape of the object. Section 3 formulates the
inverse problem and explores the relation with other, better known inverse problems. Sections 4 to 6 set
out our solution to the inverse problem. Numerical examples are then provided in the following sections.

2. FORWARD PROBLEM

This section gives an integral formulation of the forward charge imaging problem. We consider the case
of a single voltage electrode, referred to as the transmitter, at the origin. As illustrated in Figure 1A, a
grounded object is located above the ground plane. Using Green’s theorem, the potential in the space
above the sensor plane is given by

u(x) =
∫

∂H

fH(y)
∂G(x, y)

∂y3
ds(y) +

∫
∂D

G(x, y)gD(y) ds(y) , x ∈ H \ D̄ (1)

gD = ∂u/∂n is the charge distribution on the object. G(x, y) is the free space Green’s function including
the image charge contribution to account for the ground plane [3, 4]. This means that there is no single
layer contribution on ∂H. Also, the fact that u(x) = 0 on ∂D was used to ignore the double layer
potential contribution on ∂D. The potential distribution fH(y) on the plane will typically be nonzero
only for the small, central transmitter electrode. The first term in (1) represents the contribution to u(x)
from the transmitter, y3 represents the coordinate along the positive x3-axis, that is, opposite to the
outward pointing normal. The second term in (1) is the contribution to the potential from the charge
distribution gD on the object. The charge distribution gD is found by solving (1) with u = 0 on ∂D.

−
∫

∂D

G(x, y)gD(y) ds(y) =
∫

∂H

fH(y)
∂G(x, y)

∂y3
ds(y) , x ∈ ∂D (2)

Although the integral operator on the LHS is compact, the equation is solved numerically with relative
ease. This is due to the smoothness of the RHS and the fact that as an operator from H−1/2(∂D) →
H1/2(∂D), the operator has a bounded inverse [5].

The presence of the object decreases the charge density on the ground plane. We refer to this decrease
as a charge image c(x). It is given by the normal derivative of the second term in (1).

c(x) = −
∫

∂D

∂G(x, y)
∂x3

gD(y) ds(y) , x ∈ ∂H (3)
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Figure 2. Simulated charge image c(x) for three axi-symmetric objects. Indicated is the axis of rotation
and the shape of the three objects used.

The minus sign in front of the integral is due to the fact that x3 is oriented opposite to the outward
pointing normal. c(x) is measured as a decrease in capacitance between the transmitter and electrodes
in the ground plane.

Figure 2 illustrates the simulated charge image c(x) for a number of on axi-symmetric 3D objects.
Using rotational symmetry has the advantage of computational efficiency as well as representational
expediency while at the same time remaining close, in terms of the Green’s function for example, to the
full 3D situation that we are ultimately interested in. For clarity, images are plotted noise free, although
in the reconstructions below, 1% or 10% white noise is added. The shape of the three objects is illustrated
in the figure.

3. THE INVERSE PROBLEM

As can be seen the charge images for the three different shapes are different, but it is not immediately
clear that these differences are enough to distinguish between them or even reconstruct the different
shapes from the charge images alone. It is to this inverse problem that we now turn. The challenge is to
find the domain D from limited and noisy measurements of c(x). That is from Cauchy data on the plane
∂H. These measurements are referred to as cross capacitance sensing.

The problem is solved by identifying ∂D as the zero potential contour of the unique solution of the
Cauchy problem for the Laplace equation. A substantial literature exists on inverse boundary problems
of this type, mainly on bounded domains in 2D. For instance, Akduman and Kress [6] studied 2D shape
reconstruction from Cauchy data on an enclosing annulus. Hähner [5] used Dirichlet data on an enclosing
open ball for a multitude of sources for reconstruction of 3D shapes. The operator properties considered
there are relevant to the analysis of eqns (1) and (2) here. Some approaches to Electrical Impedance
Tomography (EIT) [7] and crack detection [8, 9] also tackle inverse boundary problems for the Laplace
equation. In 2D, conditional logarithmic stability estimates for the inverse boundary problem under a
regularity assumption on the unknown boundary have been given [10, 11], and this theoretical result has
been extended to 3D by Cheng et al. [12].

The problem here must be distinguished from that in Electrical Capacitance Tomography (ECT) [13],
which also measures the capacitance between points, but seeks to find domains of differing dielectric
permittivity and is an inverse coefficient problem. It is also important to point out that there are
capacitance measurements in which the load capacitance to single electrodes is measured [14, 15, 16].
These techniques also aim to create an ‘image’ of a remote object but in the vocabulary of this paper,



this image is the sum of multiple c(x), each one sampled at the just point, the position of the corresponding
transmitter. The solution in this paper does not directly provide a reconstruction for this case, but we
look forward to extending the work in the future. As an applied inverse problem, finding D from c(x)
has much in common with inverse acoustic scattering where single layer potential expressions similar to
eqn. (3) are found.

4. INVERSE CHARGE IMAGING

In this paper we use an iterative approach to the inverse problem. A reconstruction algorithm using an
indicator function is described elsewhere[17]. The iteration is illustrated in Figure 1B. At each step k, we
first use the data c(x) to find a potential and charge distribution on an object ∂Dk, the current guess.
This is used to deform ∂Dk towards the real object, yielding ∂Dk+1. The process is then repeated. This
section deals with problem of finding a potential and charge distribution on the object ∂Dk.

We make the assumption that we have a current guess ∂Dk which encloses all singularities of the
analytic continuation of u. An initial guess ∂D0 can be obtained using closed form expressions for the
charge image of a sphere with uniform charge distribution in a Gauss-Newton optimization for position
and size. We also refer to Kim et al. [18] for an interesting example of object location on a bounded
domain. Writing fDk

for the potential on the guess and gDk
for the charge distribution, we obtain from

Green’s theorem

−u(x) = −
∫

∂H

fH(y)
∂G(x, y)

∂y3
ds(y) +

∫
∂Dk

fDk
(y)

∂G(x, y)
∂n(y)

ds(y)

−
∫

∂Dk

G(x, y)gDk
(y) ds(y) , x ∈ H \ D̄k (4)

Because the assumption that u(x) = 0 does not hold on ∂Dk, the double layer potential contribution
on ∂Dk has now been included.

We can evaluate eqn. (4) at the boundaries to obtain a system of equations for the boundary
conditions. Specifically we evaluate (4) on the boundary of the object to find an equation for fDk

. Here
we need to introduce the factor 1/2 to account for the evaluation on the boundary. The normal derivative
of (4) on the ground plane is used to obtain an equation for gH . Hence

−1
2
fDk

(x) = −
∫

∂H

fH(y)
∂G(x, y)

∂y3
ds(y) +

∫
∂Dk

fDk
(y)

∂G(x, y)
∂n(y)

ds(y)

−
∫

∂Dk

G(x, y)gDk
(y) ds(y) , x ∈ ∂Dk

gH(x) = −
∫

∂H

fH(y)
∂2G(x, y)
∂y3∂x3

ds(y) +
∫

∂Dk

fDk
(y)

∂2G(x, y)
∂x3∂n(y)

ds(y)

−
∫

∂Dk

∂G(x, y)
∂x3

gDk
(y) ds(y) , x ∈ ∂Dk

Introducing the following operator short hand

v(x) = fDk
(x)

q(x) = − gDk
(x)

t(x) =
∫

∂H

fH(y)
∂G(x, y)

∂y3
ds(y)

(Kv)(x) =
∫

∂Dk

fDk
(y)

∂G(x, y)
∂n(y)

ds(y)

(Sq)(x) = −
∫

∂Dk

G(x, y)gDk
(y) ds(y)

c(x) =
∫

∂H

fH(y)
∂2G(x, y)
∂y3∂x3

ds(y)− gH(x)

(Mv)(x) =
∫

∂Dk

fDk
(y)

∂2G(x, y)
∂x3∂n(y)

ds(y)

(Tq)(x) = −
∫

∂Dk

∂G(x, y)
∂x3

gDk
(y) ds(y)



The equations become(
1
2I + K S

M T

) (
v
q

)
=

(
t
c

)
(5)

Here the Cauchy data on the object (v, q) is mapped to the functions (t, c) which are derived from the
Cauchy data on the sensor plate. The inverse problem of finding (v, q) from (t, c) is the ill-posed problem
of finding Cauchy data on a part of the boundary.

It is therefore necessary to use regularisation to solve (5) to find (v, q) from (t, c). The regularisation
is provided by the knowledge that ∂Dk is close to the real object and the potential on ∂Dk is small. The
norm ||v|| must therefore be small and this requirement is added to the solution to (5). Hence v, q are
found through minimization of the Tikhonov functional:

||1
2
v + Kv + Sq − t||2 + ||Mv + Tq − c||2 + α2

v||v||2P (6)

In which ||·||P is a first order Sobolev norm and αv is the Tikhonov regularisation parameter. In numerical
experiments we have found that minimizing this functional works well to recover approximate Dirichlet
and Neumann data on a guess ∂Dk. In the next section we will discuss how this data can be used to
deform the object ∂Dk towards an improved approximation ∂Dk+1.

We also consider a simplified functional

||v + Sq − t||2 + 4||Tq − c||2 + α2
q ||q − qp||2PQ

(7)

In this Kv and Mv terms are approximated with 1
2v and qT − c respectively. This substitution is

motivated by numerical efficiency. No K and M matrices have to be calculated and the first term in the
functional can be minimized independently of the last two. It is validated by the results shown in the
next section. The simplification can be justified by the fact that as ∂Dk approaches the correct ∂D, the
variation in fDk

on ∂Dk becomes small. Using proposition 3.19 of [19] we can approximate

(Kv)(x) ≈ fDk
(x)

∫
∂Dk

∂G(x, y)
∂n(y)

ds(y) =
1
2
v(x)

At the same time, it can be shown that in the second term qT − c ≈ Mv as ∂Dk → ∂D. The second term
in (7) is independent of v(x) and alternative regularisation is required. We now require that the charge
distribution q on ∂Dk is close to a charge distribution corresponding to v(x) = 0 on ∂Dk. This implies a
prior for the charge distribution that satisfies eqn.(2) on ∂Dk, that is qp(x) = (S−1t)(x).

Moreover, the prior needs to measured by a normalized first order Sobolev norm || · ||PQ
in which

PQ = Q−1
p PQ−1

p and

(Q−1
p f)(x) =

f(x)
qp(x)

x ∈ ∂Dk

The reason for the use of the normalisation operator Q−1
p is that qp(x) will vary by several orders of

magnitude over an object and will be smallest on the parts of ∂Dk furthest away from the transmitter
and sensor plate. It there where the instability in q(x) is greatest and a pre-conditioned penalty term is
required to constrain solution there. Another way of interpreting the use of the Q−1

p PQ−1
p norm is that

in a statistical sense the prior has a covariance Q2
p and an expected value of qp(x) [20].

5. OBJECT RECONSTRUCTION

Having obtained the potential and charge distribution we now seek to deform the current guess towards the
real object guided by the knowledge that this real object is at ground potential. One method that readily
suggests itself is to use eqn.(4) to find a zero contour, or at least a minimum contour, near the object and
identify that as our next best guess. This approach has been reported for acoustic scattering [21, 22]. A
variation on this would be to refrain from calculating the actual zero contour but use the potential v and
the gradient q to make a extrapolation from ∂Dk towards the zero potential contour.

In numerical experiments we have found that neither method works well. The reason is that finding
or extrapolating towards the zero potential contour will induce the strongest changes in ∂Dk where q(x)
is smallest, i.e. those parts for which the conditioning of eqn.(5) is worst. We therefore opt for an
extrapolation method which is pre-conditioned with the operator Qp. For linear extrapolation this leads
to a dilation function h(x) which gives the deformation at x on the object along the outward pointing
normal.

h(x) = −λv(x) x ∈ Dk (8)
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Figure 3. Reconstructions from the charge images in Figure 2 using functional (6). The average
iteration number (k) and residue at termination (r) are shown in insets.

The attenuation, or relaxation, factor λ avoids overshoot and it is a second, independent regularisation
parameter.

6. STOPPING CRITERION

We thus have a cross capacitance reconstruction algorithm in which the shape is found from a level set
evolution driven by the potential u itself. Level sets have been used in a variety of shape reconstruction
problems [23, 24, 25]. Briefly stated the algorithm here starts with an initial guess and then, through
repeated application of either eqns (6) and (8), or eqns (7) and (8), evolves the object until a stopping
criterion is reached.

A common method for deciding when a best fit has been obtained is the so called ‘Morozov
Discrepancy Principle’, which states that a good fit is obtained when the difference between measured
and fitted image, the so called cost function, is similar to the noise in the measured image. A drawback
of this criterion is however that it requires prior knowledge of the noise in the measurements and is in
any case only valid for true white noise. Instead we use the change in cost function for our stopping
criterion. Thus the iteration is stopped when the iteration to iteration change in the cost function falls
below a certain threshold. ∣∣∣∣rk − rk−1

rk

∣∣∣∣ < E

In which E is the threshold. The cost function, or residue, rk at iteration k is defined in terms of the
piecewise constant elements of the charge image used in the numerical experiments.

rk =

√√√√ 1
n

n∑
i=1

(
ck
i − ci

ck
i

)2

In which ci represents the i-th piecewise constant element in the noisy input image and ck
i the i-th

element of the charge image of the current reconstruction. Strictly speaking the stopping criterion is
only sensible and can only be guaranteed to stop the iteration if rk is strictly decreasing with iteration
number. Currently we lack a formal proof for this, but a strictly decreasing behaviour in the numerical
experiments is always observed. The threshold E is an additional regularisation parameter. Choosing
E too large has obvious drawbacks, but also at excessively small values poor reconstruction is obtained.
We have found that a value of E = 0.01 worked well in all numerical experiments. We stress that with
this construction, the actual noise level is not an input parameter to the stopping criterion.

7. PARAMETER SCALING

Before we turn to the numerical results in the next section a refinement to eqns (6)-(8) is made by
introducing scaled regularisation parameters α̂ and λ̂ that are insensitive to the scale and discretization
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Figure 4. Reconstructions from the charge images in Figure 2 using functional (7). The average
iteration number (k) and residue at termination (r) are shown in insets.

level and can be used in either functional (6) or (7)

αv = α̂
||M ||√
||P ||

(9)

αq = α̂
||T ||

||Q−1
p ||

√
||P ||

(10)

λ =
λ̂

||Qp||
(11)

These factors allow comparison of the effectiveness of the penalty terms in functionals (6) and (7). The
factors α̂ and λ̂ are used as input to the cross capacitance object reconstruction and the values of λ, αv

or αq and are then calculated once only, using the initial guess to calculate the operator norms.

8. NUMERICAL RESULTS

Numerical simulations were performed on a personal computer using C++ code with NAG library
support. The simulations are calculated using a Boundary Element Method (BEM) formulation [26, 27]
with piecewise constant v, q, t and c. The Cauchy principal value integral is used to remove the singularity
in the S and K integral operators. One variant of the code was implemented for an axi-symmetric problem
in which the object and the sample points of c(x) have rotational symmetry around the x3-axis. This
reduces the problem to a two dimensional one in which the Greens function G(x, y) and its derivative on
the ground plane are expressed in complete elliptic integrals of the first and second kind [28]. The second
variant of the code implemented the full 3D problem for non-symmetric triangulated wire frame models
of the objects.

Figure 3 illustrates reconstructions using functional (6) for the axi-symmetric objects of the (axi-
symmetric) charge images illustrated in Figure 2. Each object was reconstructed five times for different
draws of 1% normally distributed noise added to the input image. The objects were defined in 51 linear
line segments and the charge image c(x) was sampled at 200 equidistant radial points from ρ = 0 to
ρ = 6. In each case a unit sphere centred at x3 = 3 was used as initial guess. Heuristic regularisation
parameters α̂ = 1 and λ̂ = 1 were used.

The objects and reconstructions show the variation in reconstruction attributable to the noise in the
input images and the reconstructions here have been chosen to illustrate both what can be and what
cannot be reconstructed. As is perhaps obvious, no significant reconstruction is achieved on the side of
the object facing away from the sensor plane. However, fair reconstruction is obtained at the facing side.

Figure 4 illustrates reconstructions using simplified functional (7) for the same axi-symmetric objects.
Again each object was reconstructed five times for different draws of 1% Gaussian noise added to the
input image and regularisation parameters α̂ = 1 and λ̂ = 1 were again used. As can be seen, the
reconstructions are very similar to those shown in Figure 3. These reconstructions typically took a third
of the CPU time of the reconstructions shown in Figure 3. We stress that the same α̂ and λ̂ were used
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Figure 5. Reconstructions at 10% input noise level for different regularisation parameters using
functional (6). The average iteration number (k) and residue at termination (r) and the regularisation
parameter (α̂) are shown in insets.

for the results in Figures 3 and 4. The actual regularisation parameters αv and αq used in functionals
(6) and (7) differed by two orders of magnitude. Results at 3× discretization or 100× scale, again with
the same α̂ and λ̂, but with very different values of αv, αq and λ, yield virtually identical results. These
observations support the approximate equivalence of the functionals and the scaling of the regularisation
parameters.

The results in Figure 5 explore the effect of the input noise and the Tikhonov regularisation parameter
α̂ on the reconstruction. Shown are three reconstructions of object C in Figure 2, each again for 5 draws
of the input noise, which is this time set at 10% rather that 1%. The reconstruction in Figure 5A was done
with the same regularisation parameters as before (α̂ = 1, λ̂ = 1) and shows that increased noise on the
input data deteriorates the reconstruction. This deterioration is particularly noticeable as an increased
variation in the reconstructed object between noise draws. In Figure 5B this variation is reduced by
increasing the Tikhonov regularisation parameter (α̂ = 10, λ̂ = 1). Figure 5C shows that increasing
the regularisation parameter further (α̂ = 100, λ̂ = 1) reduces the variation to zero but also obliterates
meaningful reconstruction. Note that the average error at termination is close to the 10% input noise
level for all results in Figure 5.

9. MULTIPLE TRANSMITTERS

In the situation of practical interest the experimental data are obtained from a linear array of electrodes
arranged around the edge of a display surface, instead of being distributed over the whole surface of
the display itself. Also, each electrode in turn functions as a transmitter electrode, collecting n seperate
charge images ci. This influences the object reconstruction in a number of ways. On the one hand the
reduced aperture of the measurements will make the problem harder. On the other hand, the multiple
charge images ci provide a richer data set in analogy with multiple incident wave directions in acoustic
scattering[21] or multiple illumination sources in machine vision.

Now (5) must be solved for each transmitter i, using simplified functional (7), we obtain the sum∑
i

||vi + Sqi − ti||2 + 4||Tqi − ci||2 + α2
q ||qi − qp,i||2PQ,i

(12)

In which the sum is over n transmitter experiments and a subscript has been added to each quantity that
depends on the specific transmitter being used.

Functional (12) is minimized by n independent under-determined regularised solutions qi which
provide n estimates of vi. The dilation function is now given by

h(x) = −λ
1
n

∑
i

vi(x) x ∈ Dk (13)

Figure 6 provides an example of a reconstruction for this situation. Figure 6A illustrates a simulated
object located 30mm above the model of a 6” display surrounded by 32 electrodes. Each electrode in turn



Figure 6. Perspective views of original (A) and reconstructed object (B) above a model experimental
system.

functions as transmitter electrode and all electrodes function as receive electrode. The charge images ci

for each transmitter are calculated from (3), after solving (2) using midpoint quadrature on a triangle
mesh for the object consisting typically of 420 triangles. Doubling or halving the triangle mesh does
not affect the results. The computer code used was developed separately from that used to calculate
the results shown in the previous sections. 1% noise was added to the measurements from the 32 edge
electrodes. The white object in figure 6A illustrates the original object while the object in figure 6B
illustrates the reconstructed object. An intial guess obtained from Gauss-Newton optimization of the
position and size of a sphere, was used as initial guess and 12 dilation iterations applied subsequently.
Clearly the object is reconstructed in the correct place with some shape features. If the object is moved
and rotated above the display, the location and orientation continue be to reconstructed correctly‡.

Figure 7 provides more detail on the shape reconstruction. Figure 7A shows cross sections in the
x3 = 30mm plane and 7B shows cross sections in the x2 = 0 plane. The full line illustrates the original
object and the dashed lines five reconstructions for different draws of the noise. Regularisation parameters
α̂ = 0.1 and λ̂ = 1 were used. Behaviour as illustrated in Figure 5 was observed for increased regularisation
or noise.

The approach above solves the inverse problems for each charge image ci separately using prior
qp,i = S−1ti for each case. An alternative would be a Kacmarz like approach. The Kacmarz approach
is an iterative method used, for instance, in Computerized Tomography[29] in which an orthogonal
projection of the current solution is applied into the affine subspace of the set of equations provided by
the next incident direction. Here we can use the solution (vi−1, qi−1) for transmitter i − 1 to provide a
prior for the solution (vi, qi) at transmitter i. That is, in (12) we replace qp,i with

qK,i = S−1(ti + vi−1) (14)

This uses the fact that dilation function (8), of the solution (vi−1, qi−1) should be identical to the dilation
function of the next solution (vi, qi). Hence rather than using vi = 0 as prior information, we use vi = vi−1

instead for i ≥ 2. For i = 1 the prior v1 = 0 is used. The dilation is now not calculated from a sum as in
(13) but only from the last solution. That is, h = −λvn. Normalisation of the regularisation as defined
in (10) and (11), continues to be used.

Figures 7C and 7D illustrate cross sections of the reconstructed object for this case. Here α̂ = 1 and
λ̂ = 1 was used.

10. CONCLUSIONS

In this paper we have presented the problem of finding the shape of an earthed object from electrostatic
measurements made in a plane. The problem is ill-posed but we have shown that an iterative algorithm
with three levels of regularisation can recover shape information from noisy data. The algorithm is
regularised by 1) the assumption that the initial guess is close to the real object, 2) by the relaxation

‡ Note to the reviewers and editor. Movies in animated gif format of all results are available at
http://www.ma.umist.ac.uk/bl/objrecon/
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Figure 7. Cross sections of the orginal (bold) and reconstructed object (dashed) 3D object from edge
capacitance data with multiple transmitters. A and B: using (13), C and D: using (14)

parameter in the deformation of the guess and 3) by the stopping criterion. We have shown that a
simplification can be made to the minimization functional, which yields similar reconstruction results
but makes the numerical execution three times faster. We have introduced a scaling of the regularisation
parameters that makes the algorithm robust across a range of object and sensor sizes, as well as different
discretization levels.

The reconstruction works for realistic sensor configurations.
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