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Abstract

It is well known that the perfect isometries predicted in Broué’s conjecture do not always exist when
the defect groups are non-abelian, even when the blocks have equivalent Brauer categories. We consider
perfect generalized characters which induce bijections between the sets of irreducible characters of height
zero of a block and of its Brauer correspondent in the normalizer of a defect group, hence providing in
these cases an ‘explanation’ for the numerical coincidence predicted in the Alperin–McKay conjecture. In
this way the perfect isometries predicted in Broué’s conjecture for blocks with abelian defect groups are
generalized. Whilst such generalized characters do not exist in general, we show that they do exist when
the defect groups are non-abelian trivial intersection subgroups of order p3, as well as for 2B2(q) for q

a power of two and PSU3(q) for all q. Further, we show that these blocks satisfy a generalized version of
an isotypy.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let G and H be finite groups. Let B be a p-block of G and b a p-block of H . Write Irr(G,B)

(or sometimes Irr(B) if the meaning is clear) for the set of irreducible characters of G in B ,
and write Z Irr(G,B) for the group of generalized characters of G all of whose irreducible con-
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stituents are in B . Note that Z Irr(G × H ◦,B ⊗ b◦) may also be regarded as the group generated
by the characters of B-b-bimodules, where b◦ and H ◦ are the opposite algebra and group respec-
tively. We define all blocks with respect to a sufficiently large complete discrete valuation ring O
with residue field k of characteristic p and field of fractions K of characteristic zero. Characters
are always defined with respect to K .

For the convenience of the reader we include some definitions found in [9]. For μ ∈
Z Irr(G×H ◦,B ⊗b◦), define Iμ : Z Irr(H,b) → Z Irr(G,B) and Rμ : Z Irr(G,B) → Z Irr(H,b)

by

Iμ(θ)(g) = 1

|H |
∑
h∈H

μ
(
g,h−1)θ(h)

and

Rμ(χ)(h) = 1

|G|
∑
g∈G

μ
(
g−1, h

)
χ(g),

where θ ∈ Z Irr(H,b), χ ∈ Z Irr(G,B). Hence Iμ and Rμ are adjoint with respect to the usual
scalar product on characters.

Given Iμ, we may recover μ as

μ =
∑

θ∈Irr(H,b)

θIμ(θ).

A generalized character μ ∈ Z Irr(G × H ◦,B ⊗ b◦) is called perfect if the following two
conditions hold:

(I) for each g ∈ G and h ∈ H , we have μ(g,h)
|CG(g)| ∈O and μ(g,h)

|CH (h)| ∈ O;
(II) if g and h are both p-singular or both p-regular, then μ(g,h) = 0.

The motivation for this definition is that we think of μ as coming from a linear combination of
OG-OH -bimodules which are projective on restriction to OG and to OH . Note that induction
and restriction are examples of maps Iμ and Rμ. In this case μ is the character of KG with left
G-action and right H -action. We say that Iμ is a perfect isometry if μ is perfect and Iμ is an
isometry with respect to the usual form (−,−)G on class functions.

Conjecture 1.1 (Broué). If B has an abelian defect group D and b is the Brauer correspondent
of B in NG(D), then there exists perfect μ ∈ Z Irr(G×H ◦,B ⊗ b◦) such that Iμ and Rμ defined
above are isometries.

It is well known that such a perfect isometry does not necessarily exist when D is non-abelian,
even when B and b satisfy various identities which occur when there is a perfect isometry (such
as there being the same number of irreducible characters at each height), as is the case when D

is trivial intersection. Specifically, it is expected that many of the properties which follow from
the existence of a perfect isometry hold when the Brauer categories BrB(G) and Brb(H) are
equivalent. The group 2B2(8) for p = 2 is the best-known example where a perfect isometry
cannot exist (see [13] or [25]) but the Brauer categories are equivalent.
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For this reason, and guided by conjectures such as those of Alperin and Dade, we take the
view that if there should be a generalization of Broué’s conjecture to blocks with arbitrary defect
groups, then the blocks where this generalization would be most clearly apparent, would be those
with trivial intersection (TI) defect groups. Recall that a block B of a group G is a TI defect block
if a defect group D is TI, in the sense that if g ∈ G \ NG(D), then Dg ∩ D = 1.

Some further evidence that there should be a generalization of Broué’s conjecture which ap-
plies to blocks with TI defect groups comes from the following. The reader should note that if
there is a perfect isometry between blocks, then their Cartan matrices have the same elementary
divisors (with equal multiplicities). If q is a power of p, write mB(q) for the multiplicity of q as
an elementary divisor of the Cartan matrix of B .

Proposition 1.2. Let B be a p-block of G and suppose B has a TI defect group D. Let b be the
unique block of NG(D) with Brauer correspondent B . Let q be a power of p. Then mB(q) =
mb(q).

Proof. Since D is TI, it follows that D and 1 are the only radical p-subgroups of G contained
in D. Hence by [23, 4.3] (using the complex of radical p-subgroups, and noting that only those
chains whose final terms are contained in a conjugate of D contribute to the sums) we have that
mB(1) − mb(1) = k(B) − k(b). But k(B) = k(b) by [4], so the result follows for q = 1.

Now suppose that q �= 1. The result is then an easy consequence of those in [8], but we outline
the proof here.

By [8, (II)1.3] and [8, (II)2.8]

mB(q) =
∑

Q∈Pq (G)

m
Gp′
B (Q),

where m
Gp′
B (Q) = dim((TrNG(Q)

Q (kCGp′ (Q)))BrQ(eB)), and Pq(G) is a set of G-conjugacy
class representatives of p-subgroups of order q . Only sums with Q lying in a conjugate
of D contribute to the sum, and so we assume Q � D. Since q �= 1 and D is TI, we have

NG(Q) � NG(D). Hence m
Gp′
B (Q) = m

NG(D)p′
b (Q) for each Q � D. Since NG(D) controls

fusion of subgroups of D, it follows that mB(q) = mb(q) as required. �
Blocks with TI defect groups were classified in [3], and it has been our strategy to use this as

a tool to find and provide evidence for the shape of a generalization of Broué’s conjecture. We
present here an idea which has resulted from this strategy. This is at the level of characters, and
we make no attempt to formulate anything more structural, in order that there should be as few
restrictions as possible to the interpretation of the evidence. This being said, we see the ultimate
goal of such investigations as being an explanation at the level of categories for the numerical
coincidences highlighted in conjectures such as Alperin’s and Dade’s.

We are motivated in part by a talk given by Jonathan Alperin at Oberwolfach in 2003 where,
amongst other things, he highlighted a result of Gabriel Navarro which gives a connection be-
tween the height zero characters in a case where Broué’s conjecture does not necessarily hold,
and suggested that this may be possible to generalize. Recall that the defect of an irreducible
character χ of G is the (non-negative) integer d(χ) such that pd(χ)χ(1)p = |G|p . If χ lies
in a block B of G with defect group D, where |D| = pd(B), then d(χ) � d(B), and we call
d(B)− d(χ) the height of χ . Write Irr0(G,B) for the set of irreducible characters in B of height
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zero. Navarro’s result says that if G is p-solvable, with P ∈ Sylp(G) such that NG(P ) = P , then

for each θ ∈ Irr0(P ) and χ ∈ Irr0(G), we have that IndG
P (θ) and ResG

P (χ) each have precisely
one irreducible constituent of height zero.

We are interested in when the following weaker form of Navarro’s result holds. For a block B

of an arbitrary finite group with defect group D, let b be the unique block of NG(D) with bG = B .
We say that B satisfies property (P) if:

(P) There exists perfect μ ∈ Z Irr(G × NG(D)◦,B ⊗ b◦) such that for each θ ∈ Irr0(NG(D), b)

and χ ∈ Irr0(G,B), we have that Iμ(θ) and Rμ(χ) each have precisely one irreducible
constituent of height zero, and this occurs with multiplicity ±1.

By adjointness, if B satisfies property (P), then Iμ, Rμ induce a bijection Irr0(G,B) ↔
Irr0(NG(D), b). Hence (P) implies the Alperin–McKay conjecture, which states that
|Irr0(G,B)| = |Irr0(NG(D), b)|.

Remark 1.3. Suppose that Brauer’s conjecture that if a block B has abelian defect groups, then
every irreducible character of B has height zero, holds. Then Broué’s conjecture is precisely
equivalent to (P) holding for all blocks with abelian defect groups.

Actually, for blocks with trivial intersection defect groups, we will often be able to show some-
thing a little stronger. Throughout write ΦB for the character of B regarded as a left OG-module
and a right ONG(D)-module. Note that ΦB is itself perfect, and IΦB

and RΦB
are ‘blockwise

induction and restriction,’ i.e., induction or restriction, taking only components from the block
or its Brauer correspondent.

(P+) There exists μ ∈ Z Irr(G × NG(D)◦,B ⊗ b◦) of the form μ = Φ + ∑
t εtΓit Φjt , where

each Γit is the character of a projective indecomposable module of B and each Φjt is
the character of a projective indecomposable module of b, and εt = ±1, such that for
each θ ∈ Irr0(NG(D), b) and χ ∈ Irr0(G,B), we have that Iμ(θ) and Rμ(χ) each have
precisely one irreducible constituent of height zero, and this occurs with multiplicity ±1.

Note that by [9] every generalized character μ as in (P+) is perfect, so (P+) implies (P). We
see below that (P+) is important when D is TI since is implies the existence of a generalized
version of an isotypy defined below. We will abbreviate ‘principal indecomposable module’ to
PIM.

A consequence of (P+) is that the strengthening of the Alperin–McKay conjecture due to
Isaacs and Navarro (see [22]) holds. This states that for each integer κ , we have
|Irr0(G,B, [cκ])| = |Irr0(NG(D), b, [κ])|, where c = [G : NG(D)]p′ and χ ∈ Irr0(G,B, [r]) if
χ(1)p′ ≡ ±r modp. If further D is TI, then we obtain equality with congruences modulo |D|
when D ∈ Sylp(G) (since in this case [G : NG(D)] ≡ 1 mod |D|). This has already been ob-
served to hold for blocks with TI defect groups in [4].

If G is p-solvable and P ∈ Sylp(G) satisfies NG(P ) = P , then the principal block B0 is the
only p-block of G of maximal defect. Then B0, with G acting on the left and P on the right
gives μ, so that (P+) holds in this case.

The purpose of this paper is to present evidence which suggests that (P) should hold whenever
NG(D) controls fusion in D, for example when D is TI.
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We make it clear that although the Alperin–McKay conjecture suggests that |Irr0(G,B)| =
|Irr0(NG(D), b)| for every block B , property (P) does not hold in general. For consider the prin-
cipal block B of G = PSU3(2) for p = 2. In this case a Sylow p-subgroup P is self-normalizing
and dihedral of order 8. The irreducible characters of B have degrees 1,3,3,7,6. It is easy to
see that we cannot have μ satisfying μ(1, h) = 0 for every h ∈ P − Z(P ).

In some cases, for example with the unitary groups, to save notation we do not always
calculate precisely which irreducible characters of positive height occur as irreducible con-
stituents, since we are still able to compute μ. Hence for an arbitrary generalized character χ

we write χ0 for the character formed by omitting irreducible constituents of positive height, i.e.,
if χ = ∑

χi∈Irr(G) aiχi , then χ0 = ∑
χi∈Irr0(G) aiχi .

1.1. Generalized isotypies

Let B and b be p-blocks of finite groups G and H respectively. Suppose that μ ∈ Z Irr(G ×
H ◦,B ⊗ b◦) is perfect.

Write CFp′(G,B,K) for the subspace of CF(G,B,K) consisting of class functions vanishing
on p-singular elements. Then Rμ and Iμ induce maps Rμ,p′ : CFp′(G,B,K) → CFp′(H,b,K)

and Iμ,p′ : CFp′(H,b,K) → CFp′(G,B,K).
Let y ∈ G be an element of p-power order, and let By be a block of CG(y) with BG

y = B , i.e.,
(〈y〉,By) is a B-subpair. Define the decomposition map

d
(y,By)

G : CF(G,B,K) → CFp′
(
CG(y),By,K

)

by d
(y,By)

G (α)(x) = α(xyeBy ) for x ∈ CG(y)p′ (see [18]).
Suppose now that B and b share a defect group D. Fix a maximal B-subpair (D,BD) and

a maximal b-subpair (D,bD). For each Q � D this fixes a unique B-subpair (Q,BQ) � (D,BD)

and a unique b-subpair (Q,bQ) � (D,bD). If y ∈ D, then we write, e.g., By for B〈y〉. We say
that Rμ is compatible with fusion if for each y ∈ D there exists μy ∈ Z Irr(CG(y) × CH (y)◦,
By ⊗ (by)

◦) such that d
(y,by)

NG(D) ◦ Rμ = Rμy,p′ ◦ d
(y,By)

G and each μy gives property (P) for By .
We say that there is a generalized isotypy between B and b if the Brauer categories BrB(G)

and Brb(H) are equivalent and there is Rμ compatible with fusion (see, for example, [18] for
a definition of the Brauer category).

Note that if B is a controlled block or has trivial intersection defect group D, then by the re-
marks in [9, 4B] BrB(G) and Brb(NG(D)) are equivalent, where b is the unique block of NG(D)

with bG = B . Whilst we are on the subject, we also note that whilst it is true that every TI block
(in the sense of [1]) is a controlled block, it is not true that every block with TI defect groups
is controlled, just as it is not true that every block with abelian defect groups is controlled. For
example, the block given in [2, p. 127], which has abelian TI defect groups but is not TI, is not
controlled.

We note that condition (P+) is particularly well suited to finding generalized isotypies:

Lemma 1.4. Let B be a block of a finite group G with TI defect group D. Let b be the unique block
of NG(D) with bG = B . Suppose that condition (P+) holds for B . Then there is a generalized
isotypy between B and b.

Proof. We have already seen that B and b have equivalent Brauer categories. Let y ∈ D be
non-trivial. If χ ∈ Irr(B), then Rμ(χ) = ResG

NG(D)(χ)+Λ, where Λ vanishes on p-singular ele-
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ments, and it follows that d
(y,by)

NG(D) ◦ Rμ(χ) = d
(y,by)

NG(D) ◦ ResG
NG(D)(χ). We have CG(y) � NG(D).

Take μy = ∑
χ∈Irr(CG(y)) χ

2, so that Rμy is the identity map and μy gives (P+). Hence

Rμy,p′ ◦ d
(y,By)

G (χ) = d
(y,By)

G (χ), and d
(y,by)

NG(D) ◦ Rμ(χ) = Rμy,p′ ◦ d
(y,By)

G (χ) as required. �
For brevity, we say that a block B of G satisfies (PI) if:

(PI) There is a generalized isotypy between B and b, where b is the unique block of NG(D)

with bG = B , where D is a defect group for B .

The main result of the paper, which we prove using the classification of finite simple groups, is:

Theorem 1.5. Let B be a block of G with non-abelian TI defect group D with |D| = p3. Let b be
the unique block of NG(D) with bG = B . Then there is a generalized isotypy between B and b.

This, along with other evidence presented below, leads us to make the following conjecture:

Conjecture 1.6. Let B be a block of G with TI defect group D. Let b be the unique block
of NG(D) with bG = B . Then there is a generalized isotypy between B and b.

The paper is structured as follows: In Sections 2–6 we verify (P+) for various blocks of the p′
central extensions of automorphisms of non-abelian simple groups having TI defect groups, in-
cluding all those with non-abelian defect groups of order p3. In Section 7 we give two examples
of controlled blocks for which (P+) holds. In Section 8 we give a proof of Theorem 1.5 by means
of Clifford-theoretic reductions, a classification and the calculations in the previous sections.

2. Suzuki groups in the defining characteristic

Let G = 2B2(q), where q = 22m+1 and m � 1. Write r = 2m+1. Then the principal 2-block B

of G is the unique 2-block of G of positive defect. Let P ∈ Sylp(G), and let b be the Brauer
correspondent of B in NG(P ). The characters of G and NG(P ) are determined in [27], and we
use the same labelling for the characters of G (but not for the characters of NG(P ), which are
not all given labels in [27]).

The irreducible characters of B are: the trivial character 1; Xi for 1 � i � q/2 − 1, of degree
q2 + 1; Yj for 1 � j � q+r

4 , of degree (q − r + 1)(q − 1); Zk for 1 � k � q−r
4 , of degree

(q + r + 1)(q − 1); Wl for i = 1,2, of degree r(q − 1)/2. The characters Xi are induced from
the non-trivial linear characters of NG(P ).

The irreducible characters of b are: the trivial character 1; linear characters θi for 1 � i �
q/2 − 1, where θG

i = Xi ; linear characters θ ′
i for 1 � i � q/2 − 1, where (θ ′

i )
G = θG

i ; ζ of
degree q − 1, ζj for = 1,2, of degree r(q − 1)/2.

The characters of the PIMs of b that we need are Φi = θi + ζ + r/2ζ1 + r/2ζ2, for 1 � i �
q/2 − 1.

The irreducible characters of height zero of B decompose on restriction to NG(P ) as follows:
ResG

NG(P )(1) = 1;

ResG
NG(P )(Xi) = θi + θ ′

i + ζ + r/2ζ1 + r/2ζ2 = θ ′
i + Φi ;

ResG
NG(P )(Yj ) = ζ + (r/2 − 1)(ζ1 + ζ2) = −θj − ζ1 − ζ2 + Φj ;
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ResG
NG(P )(Zk) = ζ + (r/2 + 1)(ζ1 + ζ2). This is −θt+k + ζ1 + ζ2 +Φt+k for 1 � k � q−r

4 − 1,
where t = (q + r)/4.

Hence μ = ΦB − ∑ q+r
4

i=1 Φi(Xi + Yi + W1 + W2) − ∑ q−r
4 −1

k=1 Φt+k(Xt+k + Zk − W1 − W2)

gives Rμ with
Rμ(1) = 1;
Rμ(Xi) = θ ′

i ;
Rμ(Yj ) = −θj − ζ1 − ζ2;
Rμ(Zk) = θt+k + ζ1 + ζ2 for 1 � k � q−r

4 − 1;
Rμ(Z(q−r)/4) = ζ + (r/2 + 1)(ζ1 + ζ2);

Rμ(Wl) = ResG
NG(P )(Wl) − ∑ q+r

4
i=1 Φi + ∑ q−r

4 −1
k=1 Φt+k .

From the character table for G we see that Xi +Yi +W1 +W2 and Xt+k +Zk −W1 −W2 van-
ish on p-singular elements for each t and k. Hence both are Z-linear combinations of characters
of PIMs of G (by, for example [24, 2.16]), and so (P+) holds in this case.

3. 2G2(3)

Let G = 2G2(3) and p = 3. Let B be the principal block and P ∈ Sylp(G). Let b be the

principal block of NG(P ). Then P ∼= 31+2− and is TI.
Here (blockwise) induction and restriction are sufficient to give (P+), i.e., μ = ΦB . This

results in the following bijection, with signs, between Irr0(B) and Irr0(b):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11
12
13
71
72
73
81
82
83

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

↔

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11
14
12
16
13
15
21
22
23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We note that B and b are in fact isotypic, although not via a perfect isometry satisfying (P+)
(we thank Shigeo Koshitani for this observation).

4. Aut(2B2(32))

Let G = 2B2(32) and p = 5. Let B be the principal block and P ∈ Sylp(G). Let b be the
principal block of NG(P ). Note that B is the unique 5-block of positive defect of G. Write
2B2(32) ∼= N � G, so [G : N ] = 5. Then P ∼= 51+2− and is TI.

The irreducible characters of height zero of B and b are all extensions of irreducible characters
of N and NN(P ∩ N) respectively (actually, this happens in general by [10, Proposition 2]), and
we label them accordingly: Irr0(B) = {11,j : 1 � j � 5} ∪ {1241,j : 1 � j � 5} ∪ {1242,j : 1 �
j � 5} ∪ {10241,j : 1 � j � 5} ∪ {12711,j : 1 � j � 5} and Irr0(b) = {1i,j : 1 � i � 4, 1 �
j � 5} ∪ {41,j : 1 � j � 5}.

The characters of the PIMs of b are Φi = ∑
1�j�5(1i,j + 41,j ) + 5 · 201, for 1 � i � 4.

The characters of the PIMs of B are Γ1 = ∑
1�j�5(11,j + 10241,j ); Γ2 = ∑

1�j�5(1241,j +
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12711,j ) + 5 · 63551; Γ3 = ∑
1�j�5(1242,j + 12711,j ) + 5 · 63551; Γ4 = ∑

1�j�5(10241,j +
12711,j ) + 5 · 63551.

The irreducible characters in Irr0(B) restrict to NG(P ) as follows:
ResG

NG(P )(11,j ) = 11,j ;

ResG
NG(P )(1241,j ) = ∑

1�k�5(14,k + 41,k) + 5 · 201 − 14,j = Φ4 − 14,j ;

ResG
NG(P )(1242,j ) = ∑

1�k�5(12,k + 41,k) + 5 · 201 − 12,j = Φ2 − 12,j ;

ResG
NG(P )(10241,j ) = 2Φ1 + 2Φ2 + 2Φ3 + 2Φ4 + 41,j + 201;

ResG
NG(P )(12711,j ) = 2Φ1 + 3Φ2 + 2Φ3 + 3Φ4 + 13,j + 201.

Hence we deduce that μ = ΦB − 2(Φ1 +Φ3)Γ4 −Φ2(Γ3 + 2Γ4)−Φ4(Γ2 + 2Γ4) gives (P+)
and the following bijection with signs between Irr0(B) and Irr0(b):

⎛
⎜⎜⎜⎝

11,j

1241,j

1242,j

10241,j

12711,j

⎞
⎟⎟⎟⎠ ↔

⎛
⎜⎜⎜⎝

11,j

−14,j

−12,j

41,j

13,j

⎞
⎟⎟⎟⎠ ,

where 1 � j � 5.
We note that B and b are in fact isotypic, although not via a perfect isometry satisfying (P+)

(we thank Shigeo Koshitani for this observation).

5. McL

Let N = 3.McL, the (perfect) triple cover of McL, and let p = 5. Let P ∈ Syl5(G), so
P ∼= 51+2+ and P is TI. Let B0 be the principal 5-block, and B1, B2 be the two remaining blocks
of positive defect. B1 and B2 both have maximal defect and are faithful. Further, they are Galois
conjugate, so it suffices to consider just B1. We label the characters of G as in the GAP library.

Let bt be the Brauer correspondent of Bt in NG(P ).
To simplify notation, we label the irreducible characters in the block bt by 1t,1, . . . ,1t,8,

2t,1, . . . ,2t,4, 20t,1, . . . ,20t,6, 24t,1, and the characters of the PIMs by

Φt,i =

⎧⎪⎨
⎪⎩

1t,i + 20t,1 + 20t,2 + 20t,4 + 20t,5 + 20t,6 + 24t,1 for i = 1,2,7,8,

1t,i + 20t,1 + · · · + 20t,5 + 24t,1 for i = 3,4,5,6,

2t,i−8 + 2(20t,1 + 20t,2 + 20t,3 + 20t,6 + 24t,1) + 20t,4 + 20t,5 for i = 9,10,

2t,i−8 + 20t,1 + 20t,2 + 2(20t,3 + · · · + 20t,6 + 24t,1) for i = 11,12,

where nt,i corresponds to n3i+t−2 in the notation of the GAP library.
We first consider the principal block B0.
An outer automorphism of G normalizing P interchanges 10,1 and 10,2, 10,7 and 10,8, 200,1

and 200,2, 200,4 and 200,5, leaving the other irreducible characters of b0 fixed.
We direct the reader to [7] for the characters of the PIMs of B0, which are labelled Γ1, . . . ,Γ9,

Γ11,Γ12,Γ13.
The generalized character μB0 giving (P+) in this case is rather involved, so we give it in

table form. Define the generalized character μ1 which is the linear combination of Φ0,iΓj for
i = 1, . . . ,12 and j ∈ {1, . . . ,9,11,12,13}, with coefficients as below:
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Φ0,1 Φ0,2 Φ0,3 Φ0,4 Φ0,5 Φ0,6 Φ0,7 Φ0,8 Φ0,9 Φ0,10 Φ0,11 Φ0,12

Γ1 0 0 0 0 0 0 0 0 0 0 0 0
Γ2 0 0 0 0 0 0 0 0 1 0 0 −1
Γ3 0 0 0 1 0 1 0 0 −1 0 0 1
Γ4 0 0 1 1 0 0 0 0 −1 0 0 1
Γ5 0 0 0 −1 0 0 0 0 0 1 1 1
Γ6 1 1 1 0 1 1 1 1 0 0 0 0
Γ7 1 1 1 1 1 1 1 1 0 0 0 0
Γ8 0 1 0 1 0 0 0 1 1 0 1 1
Γ9 1 0 0 1 0 0 1 0 1 0 1 1
Γ11 −1 −1 0 0 0 0 −1 −1 4 4 3 3
Γ12 1 0 0 1 0 0 0 0 2 3 3 4
Γ13 0 1 0 1 0 0 0 0 2 3 3 4

Let μB0 = ΦB0 −μ1. Then RμB0
: Z Irr(B0) → Z Irr(b0), giving (P+), may be given as follows

(we feel it is informative in this case to include the characters of positive height):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11
221
2311
2521
7701
7702
8961
8962
35201

35202
47521
51031
55441
80191
80192
98561
98562

103951
103952

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

10,3
20,4 − 200,1 − 200,2 + 200,4 + 200,5
10,5 − 200,3
20,1 + 200,1 + 200,2 − 200,4 − 200,5
−10,6 + 20,1 − 20,4 − 2.200,4 − 200,5 − 200,3 − 240,1
−10,6 + 20,1 − 20,4 − 200,4 − 2.200,5 − 200,4 − 240,1
10,4 + 200,3
−240,1 − 200,4 − 200,5 − 200,1 − 200,2
10,1 + 10,5 + 10,7 − 10,4 + 10,2 − 10,6 + 10,8
−20,3 − 20,4 + 2(200,1 + 200,2) − 3.200,3
10,3 + 10,5 + 10,4 + 10,6 + 200,6
20,2
−20,3 − 200,3
−10,6 − 200,4 − 200,5 − 200,1 − 200,2
−10,1 + 200,3
−10,2 + 200,3
10,7 − 200,3
10,8 − 200,3
−10,6 − 20,1 + 20,4 − 2.200,1 − 200,2 − 200,3 − 240,1
−10,6 − 20,1 + 20,4 − 200,1 − 2.200,2 − 200,3 − 240,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

An outer automorphism interchanges 7701 and 7702, 80191 and 80192, 98561 and 98562,
103951 and 103952, leaving every other irreducible character in B0 fixed. An outer automor-
phism also interchanges Γ12 and Γ13, leaving every other Γi fixed. We see that Rμ (and Iμ) is
Aut(G)-equivariant.

Now write E = Aut(G) � G, and note that [NE(P ) : NG(P )] = [E : G] = 2. Let BE be the
principal block of E and let bE be the principal block of NE(P ). Label the irreducible characters
of BE as in [7].
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Then there is μBE
∈ Z Irr(E × NE(P )◦,BE ⊗ b◦

E), obtained from μB0 in the natural way,
giving (P+) such that RμBE

gives the following bijection with signs Irr0(BE) ↔ Irr0(bE):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11

12

221

222

2311

2312

2521

2522

8961

8962

8963

8964

47521

47522

51031

51032

55441

55442

160381

197121

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

17

18

23

24

15

16

22

21

12

11

−241

−242

25

28

−26

−27

−14

−13

−29

210

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Finally consider B1. The characters of the PIMs of B1 are labelled Γ18, . . . ,Γ29. Define the
generalized character μ2 which is the linear combination of Φ1,iΓj for i = 1, . . . ,12 and j ∈
{18, . . . ,29}, with coefficients as below:

Φ1,1 Φ1,2 Φ1,3 Φ1,4 Φ1,5 Φ1,6 Φ1,7 Φ1,8 Φ1,9 Φ1,10 Φ1,11 Φ1,12

Γ18 0 0 0 0 0 0 0 0 0 0 0 0
Γ19 0 −1 0 0 0 0 0 0 1 0 0 0
Γ20 0 0 0 0 0 0 0 −1 1 0 0 0
Γ21 1 0 0 0 1 1 1 0 0 −1 0 0
Γ22 0 1 1 1 0 0 0 1 −1 1 0 0
Γ23 0 0 0 1 1 0 1 0 2 0 0 0
Γ24 −1 0 0 0 −1 0 −1 0 1 1 2 1
Γ25 1 1 2 1 1 2 0 1 0 1 0 −1
Γ26 0 0 −1 0 0 −1 0 0 1 2 1 2
Γ27 −1 0 0 −1 −1 −1 −1 0 2 3 3 3
Γ28 2 2 1 2 1 1 1 2 2 2 3 3
Γ29 3 3 2 2 2 2 3 3 2 1 3 3
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Let μB1 = ΦB1 − μ2. Then RμB1
: Z Irr(B1) → Z Irr(b1) gives (P+) and the following bijec-

tion with signs Irr0(B1) ↔ Irr0(b1):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1261

1263

7921

23761

23763

27721

47522

51032

63361

63363

80193

80195

80641

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−11,2

−11,8

−21,1

−11,3

−11,4

21,4

21,2

−21,3

11,5

11,7

241,1

−11,6

−11,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

6. Unitary groups

In this section we show that (P+) holds for all blocks in the defining characteristic for SU3(q),
GU3(q), SU3(q).2 and GU3(q).2, where the extension is by a field automorphism of order two.
Unfortunately general arguments such as those used in [18] to study SL2(q) may not be translated
neatly into our situation, and we are forced to construct the generalized character μ in each of
these cases.

Let N = SU3(q), where q = pm is odd and m � 1. Let τ ∈ Aut(N) be a field automorphism
of order two (coming from an automorphism of Fq2 ). Define G = N〈τ 〉, and choose a Sylow
p-subgroup P of N such that τ ∈ NG(P ). Let d = (3, q + 1). Then |Z(G)| = |Z(N)| = d , and
there are precisely d blocks C0, . . . ,Cd−1 of positive defect of N , where C0 is the principal
block. These correspond to the irreducible characters of Z(G), and have maximal defect. Let ci

be the unique block of NN(P ) with Brauer correspondent Ci . Note that Cτ
1 = C2 and cτ

1 = c2

if d = 3. Let B0 be the principal block of G, and let B1 be the unique block of G covering C1

(and C2). Let bi be the unique block of NG(P ) with Brauer correspondent Bi . Then each Bi

and bi also has defect group P , and bi covers ci .
Write Irrτ (H) = {θ ∈ Irr(H): θτ = θ}.
The irreducible characters of N and NN(P ) are given in [19], and we use the notation given

there.
Now NN(P ) has irreducible characters θ

(u)
1 for 0 � u � q2 − 2; θ

(u)
q(q−1) for 0 � u � q;

θ
(u,v)

(q2−1)/d
for 0 � u,v � d − 1. If d = 1, then we sometimes write simply θq2−1 for θ

(0,0)

(q2−1)/d
. If

v ≡ umod(q2 − 1), then by θ
(v)
1 we mean θ

(u)
1 .

If d = 1, then Irr(c0) = Irr(NN(P )). If d = 3, then θ
(u)
1 ∈ Irr(ci) if u ≡ i mod 3, θ

(u)
q(q−1) ∈

Irr(ci) if u ≡ i mod 3, and θ
(u,v)

(q2−1)/d
∈ Irr(ci) if u = i.
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Lemma 6.1.

(a) (θ
(u)
1 )τ = θ

(qu)

1 , so θ
(u)
1 ∈ Irrτ (NN(P )) if and only if q + 1 | u.

(θ
(u)
q(q−1))

τ = θ
(q+1−u)

q(q−1) , so θ
(u)
q(q−1) ∈ Irrτ (NN(P )) if and only if u = 0,

q+1
2 .

(θ
(1,v)

(q2−1)/d
)τ = θ

(2,v)

(q2−1)/d
for each v, so θ

(u,v)

(q2−1)/d
∈ Irrτ (NN(P )) if and only if u = 0.

Hence |Irrτ (NN(P ))| = q + 1 + d .
(b) θ

(u)
1 ∈ Irrτ (NN(P )) if and only if θ

(−qu)

1 ∈ Irrτ (NN(P )).

(c) τ cannot permute θ
(u)
1 and θ

(−qu)

1 .

Proof. (a) and (b) are immediate from the character table.

If (θ
(u)
1 )τ = θ

(−qu)

1 , then q2 − 1 | 2qu. But q is odd, so q + 1 | u, so θ
(u)
1 is fixed by τ ,

a contradiction. �

Blau and Michler, in [6], computed the number of conjugacy classes of NN(P ) and N fixed by
a field automorphism. By Brauer’s permutation lemma the number of fixed irreducible characters
is as follows:

Proposition 6.2. (See [6].) |Irrτ (N)| = q + 2 + d .

The irreducible characters of N are as follows:
χ1 ∈ Irr(C0);
χq2−q ∈ Irr(C0);
χq3 , the Steinberg character, in a p-block of defect zero;

χ
(u)

q2−q+1
, for 1 � u � q;

χ
(u)

q(q2−q+1)
, for 1 � u � q;

χ
(u,v)

(q−1)(q2−q+1)
, for 1 � u � (q + 1)/3 and u < v < 2(q + 1)/3 (there are 1

6q(q − 1) such

characters if d = 1 and 1
6 (q + 1)(q − 2) if d = 3);

χ
(u)

q3+1
for 1 � u � q2 − 1 such that q − 1 � u, and we identify χ

(u)

q3+1
and χ

(u1)

q3+1
when u1 ≡

−qumodq2 − 1 (there are 1
2 (q + 1)(q − 2) such characters);

χ
(u)

(q+1)2(q−1)
, where q2 − q + 1 � u, and we identify χ

(u)

(q+1)2(q−1)
and χ

(u1)

(q+1)2(q−1)
when u1 ≡

−qumodq2 − q + 1, and χ
(u)

(q+1)2(q−1)
and χ

(u2)

(q+1)2(q−1)
when u2 ≡ q2umodq2 − q + 1 (there

are 1
3q(q − 1) such characters if d = 1 and 1

3 (q + 1)(q − 2) if d = 3);

if d = 3, then we also have χ
(u)

(q−1)(q2−q+1)/3
∈ Irr(C0), for 0 � u � 2; χ

(u,v)

(q+1)2(q−1)/3
, for

0 � u � 2 and 1 � v � 2.
If d = 1, then each irreducible character, except for the Steinberg character, is in C0. If d = 3,

then χ
(u)

q2−q+1
∈ Irr(Ci) if u ≡ i mod 3; χ

(u)

q(q2−q+1)
∈ Irr(Ci) if u ≡ i mod 3; χ

(u,v)

(q−1)(q2−q+1)
∈

Irr(Ci) if u + v ≡ i mod 3; χ
(u)

q3+1
∈ Irr(Ci) if u ≡ i mod 3; χ

(u)

(q+1)2(q−1)
∈ Irr(Ci) if u ≡ i mod 3;

χ
(u,v)

(q+1)2(q−1)/3
∈ Irr(Cv).
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In the following table, recall that for χ ∈ Irr(N), we denote by ResN
NN(P )(χ)0 the part of the

restriction whose summands have height zero.

χ ResN
NN(P )(χ)0 (d = 1) ResN

NN(P )(χ)0 (d = 3)

χ1 θ
(0)
1 θ

(0)
1

χ
(u)

q2−q+1
θ

((q−1)u)

1 θ
((q−1)u)

1

χ
(u,v)

(q−1)(q2−q+1)
θq2−1 θ

(u+v,0)

(q2−1)/3
+ θ

(u+v,1)

(q2−1)/3
+ θ

(u+v,2)

(q2−1)/3

χ
(u)

q3+1
θ

(u)
1 + θ

(−qu)

1 + θq2−1 θ
(u)
1 + θ

(−qu)

1 + θ
(u+v,0)

(q2−1)/3
+ θ

(u+v,1)

(q2−1)/3
+ θ

(u+v,2)

(q2−1)/3

χ
(u)

(q+1)2(q−1)
θq2−1 θ

(u+v,0)

(q2−1)/3
+ θ

(u+v,1)

(q2−1)/3
+ θ

(u+v,2)

(q2−1)/3

χ
(u)

(q−1)(q2−q+1)/3
– θ

(0,u)

(q2−1)/3

χ
(u,v)

(q+1)2(q−1)/3
– θ

(v,u)

(q2−1)/3

We gather some facts concerning the action of τ on Irr(N), all of which follow from exami-
nation of the character tables, the previous lemmas and Proposition 6.2:

Lemma 6.3.

(a) χ
(u)

q3+1
∈ Irrτ (N) if and only if θ

(u)
1 ∈ Irrτ (NN(P )).

(b) (χ
(u)

q2−q+1
)τ = χ

(q+1−u)

q2−q+1
. Hence χ

(u)

q2−q+1
∈ Irrτ (N) if and only if θ

((q−1)u)

1 ∈ Irrτ (NN(P )).

(c) (χ
(u)

q(q2−q+1)
)τ = χ

(q+1−u)

q(q2−q+1)
. Hence χ

(u)

q(q2−q+1)
∈ Irrτ (N) if and only if θ

((q−1)u)

1 ∈
Irrτ (NN(P )).

(d) (χ
(u)

q3+1
)τ = χ

(qu)

q3+1
. Hence χ

(u)

q3+1
∈ Irrτ (N) if and only if θ

(u)
1 ∈ Irrτ (NN(P )).

(e) χ
(u)

(q+1)2(q−1)
is never fixed by τ .

(f) Each χ
(u)

(q−1)(q2−q+1)/3
is fixed by τ .

(g) (χ
(u,1)

(q+1)2(q−1)/3
)τ = χ

(u,2)

(q+1)2(q−1)/3
.

(h) τ fixes precisely (q − 3)/2 of the χ
(u)

q3+1
.

(i) τ fixes precisely (q − 1)/2 of the χ
(u,v)

(q−1)(q2−q+1)
if d = 1 and (q − 3)/2 if d = 3.

(j) χ
(u,v)

(q−1)(q2−q+1)
∈ Irrτ (N) if and only if either (I) u − 2v ≡ 0 mod(q + 1) or (II) v − 2u ≡

0 mod(q + 1). In case (I) q(u + v) ≡ v − 2umod(q + 1), and in case (II) q(u + v) ≡
u − 2v mod(q + 1).

The PIMs of NN(P ) have characters Φ(u) with Φ
(u)
0 = θ

(u)
1 + θq2−1, for 0 � u � q2 − 1 if

d = 1 and Φ
(u)
0 = θ

(u)
1 + θ

(u1,0)

(q2−1)/3
+ θ

(u1,1)

(q2−1)/3
+ θ

(u1,2)

(q2−1)/3
, for 0 � u � q2 − 1 if d = 3, where

u1 ≡ umod 3.
Just as with the Suzuki groups, it is not necessary to work with the characters of the PIMs

of N themselves, but only with linear combinations of such characters. Define
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Γ
u,v,w

1 := χ
(u,v)

(q−1)(q2−q+1)
+ χ

(w)

q3+1
− χ

(u+v)

q(q2−q+1)
− χ

(v−2u)

q(q2−q+1)
,

Γ
u,v,w

2 := χ
(u,v)

(q−1)(q2−q+1)
+ χ

(w)

q3+1
− χ

(u−2v)

q(q2−q+1)
− χ

(u+v)

q(q2−q+1)
,

Γ
u,v,w

3 := χ
(u,v)

(q−1)(q2−q+1)
+ χ

(w)

q3+1
− χ

(v−2u)

q(q2−q+1)
− χ

(u−2v)

q(q2−q+1)
,

Γ
u,v

4 := χ
(u)

q3+1
+ χ

(v)

(q+1)2(q−1)
+ χ

(u)

q(q2−q+1)
.

If w ≡ u − 2v mod(q + 1), then Γ
u,v,w

1 vanishes on p-singular elements of N . If w ≡
v − 2umod(q + 1), then Γ

u,v,w
2 vanishes on p-singular elements. If w ≡ u + v mod(q + 1),

then Γ
u,v,w

3 vanishes on p-singular elements. Finally, Γ
u,v

4 always vanishes on p-singular ele-
ments, hence in these cases all are Z-linear combinations of characters of PIMs.

We gather together some easy facts concerning the action of τ on the Γ
u,v,w
i :

Lemma 6.4.

1. Suppose w ≡ u − 2v mod(q + 1). Then
(a) (Γ

u,v,w
1 )G vanishes on p-singular elements of G,

(b) if Γ
(u,v,w)

1 is τ -stable, then χ
(u,v)

(q−1)(q2−q+1)
and χ

(w)

q3+1
are τ -stable and (χ

(u+v)

q(q2−q+1)
)τ =

χ
(v−2u)

q(q2−q+1)
.

2. Suppose w ≡ v − 2umod(q + 1). Then
(a) (Γ

u,v,w
2 )G vanishes on p-singular elements of G,

(b) if Γ
(u,v,w)

2 is τ -stable, then χ
(u,v)

(q−1)(q2−q+1)
and χ

(w)

q3+1
are τ -stable and (χ

(u−2v)

q(q2−q+1)
)τ =

χ
(u+v)

q(q2−q+1)
.

3. If w ≡ u + v mod(q + 1), then (Γ
u,v,w

3 )G vanishes on p-singular elements of G.
4. (Γ

u,v
4 )G vanishes on p-singular elements of G.

5. If Γ
(u,v,w)
i is τ -stable, where i = 1,2, then Γ

(u,v,w)
i extends to generalized characters

Γ
(u,v,w,1)
i and Γ

(u,v,w,2)
i of G which vanish on p-singular elements.

Proof. The first four parts follow from the previous lemmas and the character table. It remains
to prove the final part. Since G/N is cyclic, every G-stable irreducible character of N extends to
an irreducible character of G. Suppose that Γ is the character of a PIM of N . Since p does not
divide [G : N ], every OG-module is N -projective, so it follows (see, for example, [5]) that there
are distinct characters Γ 1 and Γ 2 of PIMs of G extending Γ . The result follows since Γ

(u,v,w)
i

is a Z-linear combination of PIMs of N . �
We now have enough information to proceed to defining the perfect generalized charac-

ters. First we set up bijections between certain sets of indices for the irreducible characters.
These will be used to associate irreducible characters of N to linear characters of NN(P ),
as well as associating characters χ

(w)

q3+1
with characters χ

(u,v)

(q−1)(q2−q+1)
as constituents of the

same Γi .
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Recall that τ fixes (q − 1)/2 of the χ
(u,v)

(q−1)(q2−q+1)
in case d = 1 and (q − 3)/2 in case

d = 3. Recall also τ fixes (q − 3)/2 of the χ
(u)

q3+1
. Let J1 be the set of pairs (u, v) with

1 � u(q + 1)/3 and u < v < 2(q + 1)/3 such that (q + 1) | (u − 2v), and J2 be the set
of pairs (u, v) with 1 � u(q + 1)/3 and u < v < 2(q + 1)/3 such that (q + 1) | (v − 2u)

(so in either case χ
(u,v)

(q−1)(q2−q+1)
∈ Irrτ (N)). Then J2 �= ∅, since (1,2) ∈ J2. Write J ′

2 =
J2 − {(1,2)} if d = 1 and J ′

2 = J2 if d = 3. We have J1 ∩ J ′
2 = ∅ and |J1 ∪ J ′

2| =
(q − 3)/2.

Write {1 � u < q2 −1: q −1 � u, q +1 | u} = J ∪J ′, where J ∩J ′ = ∅ and multiplication by
−q (modulo q2 − 1) gives a bijection J ↔ J ′. Precisely |J | = (q − 3)/2 of the χ

(u)

q3+1
are fixed

by τ . Choose a bijection α :J1 ∪ J ′
2 → J .

We now turn to the irreducible characters not fixed by τ . Recall that in NN(P ), the linear
characters not fixed by τ are the θ

(u)
1 where q − 1 � u and q + 1 � u.

Write L ∪ M = {1 � u � q2 − 1: q − 1, q + 1 � u} such that multiplication by q (modulo
q2 − 1) gives a bijection L → M . Write L = S ∪ S′, such that multiplication by −q (modulo
q2 − 1) gives a bijection S → S′, and M = T ∪ T ′ such that multiplication by −q (modulo
q2 − 1) gives a bijection T → T ′ and multiplication by q gives a bijection S → T .

Now choose S1 amongst the set of those pairs (u, v) such that χ
(u,v)

(q−1)(q2−q+1)
is not fixed by τ

and let S2 be a set of integers 0 � u � q2 − q giving distinct χ
(u)

(q+1)2(q−1)
, chosen such that:

(i) χ
(u,v)

(q−1)(q2−q+1)
, (χ

(u,v)

(q−1)(q2−q+1)
)τ for (u, v) ∈ S1 account for all non-fixed χ

(u,v)

(q−1)(q2−q+1)
;

(ii) χ
(u)

(q+1)2(q−1)
, (χ

(u)

(q+1)2(q−1)
)τ for u ∈ S2 account for all of the χ

(u)

(q+1)2(q−1)
(recall that every

irreducible character of degree (q + 1)2(q − 1) is moved by τ ).

Note that we have |S| = |S1| + |S2|. Observe that if x ∈ {2, . . . , q}, then there are at most
q − 2 pairs (u, v) with 1 � u � (q + 1)/3 and u < v < 2(q + 1)/3 such that u + v ≡
x mod(q + 1). We also make the trivial observation that 1 � u + v � q for each χ

(u,v)

(q−1)(q2−q+1)
.

Hence we may choose a bijection β :S1 ∪ S2 → S such that if (u, v) ∈ S1, then β(u, v) ≡
u + v mod(q + 1).

Define μN ∈ Z Irr(N × NN(P )◦) by

μN = ΦN −
∑

(u,v)∈J1

Γ
u,v,α(u,v)

1 Φ(α(u,v)) −
∑

(u,v)∈J2

Γ
u,v,α(u,v)

2 Φ(α(u,v))

−
∑

(u,v)∈S1

Γ
u,v,β(u,v)

3 Φ(β(u,v)) −
∑
u∈S2

Γ
β(u),u

4 Φ(β(u))

−
∑

(u,v)∈S1

(
Γ

u,v,β(u,v)

3

)τ (
Φ(β(u,v))

)τ +
∑
u∈S2

(
Γ

β(u),u

4

)τ (
Φ(β(u))

)τ
,

where ΦN denotes the character for induction and restriction for N , excluding the Steinberg
character.

This gives the bijection (with signs) Irr0(N) \ {χq3} → Irr0(NN(P )) given by χ → RμN
(χ)0:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

χ1

χ
(u)

q2−q+1

χ
(u)

q3+1
: u ∈ J

χ
(u,v)

(q−1)(q2−q+1)
: (u, v) ∈ J1

χ
(u,v)

(q−1)(q2−q+1)
: (u, v) ∈ J ′

2

χ
(1,2)

(q−1)(q2−q+1)
: if d = 1

χ
(u)

q3+1
: u ∈ S

χ
(qu)

q3+1
: u ∈ S

χ
(u,v)

(q−1)(q2−q+1)
: (u, v) ∈ S1

(χ
(u,v)

(q−1)(q2−q+1)
)τ : (u, v) ∈ S1

χ
(u)

(q+1)2(q−1)
: u ∈ S2

(χ
(u)

(q+1)2(q−1)
)τ : u ∈ S2

χ
(u)

(q−1)(q2−q+1)/3
: if d = 3

χ
(u,v)

(q+1)2(q−1)/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

↔

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ
(0)
1

θ
((q−1)u)

1

θ
(−qu)

1

θ
(α(u,v))
1

θ
(α(u,v))
1

θq2−1

θ
(−qu)

1

θ
(−q2u)

1

θ(β(u,v))

θ (qβ(u,v))

θ (β(u))

θ (qβ(u))

θ
(0,u)

(q2−1)/3

θ
(v,u)

(q2−1)/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note that by our definition of α and β , and the fact that restriction of characters respects the
Brauer correspondence in this case, this bijection also respects the Brauer correspondence, i.e.,
we have bijections Irr0(Ci) ↔ Irr0(ci).

Our labelling of the terms of Γ
(u,v,w,1)

1 and Γ
(u,v,w,2)

2 will determine our choice of IμG
.

Let Γ
(u,v,w)

1 and Γ
(u,v,w)

2 be G-stable, where w ≡ u − 2v mod(q + 1) and w ≡ v −
2umod(q + 1) respectively. Hence q + 1 | w in each case. For i = 1,2, label extensions
χ

(u,v,i)

(q−1)(q2−q+1)
of χ

(u,v)

(q−1)(q2−q+1)
and χ

(w,i)

q3+1
of χ

(w)

q3+1
so that, according to Lemma 6.4, for

i, j = 1,2,

Γ
(u,v,w,i)
j = χ

(u,v,i)

(q−1)(q2−q+1)
+ χ

(w,i)

q3+1
− (

χ
(u+v)

q(q2−q+1)

)G
.

In this way we account for all of the τ -stable χ
(u)

q3+1
, and either all or all but one of the τ -stable

χ
(u,v)

(q−1)(q2−q+1)
depending on whether d = 3 or d = 1 respectively.

We must label the extensions of the remaining τ -stable irreducible characters of N . Let χi
1, for

i = 1,2 be the extensions of χ1 to G. Let χ
(u,i)

q2−q+1
for i = 1,2 be the extensions of the τ -stable

χ
(u)

q2−q+1
to G. Let χ

(u,i)

(q−1)(q2−q+1)/3
for i = 1,2 be the extensions of χ

(u)

(q−1)(q2−q+1)/3
to G. Let

χ
(u,0,i)

(q+1)2(q−1)/3
for i = 1,2 be the extensions of χ

(u,0)

(q+1)2(q−1)/3
to G.

For the remaining χ ∈ Irr(N), we have χG ∈ Irr(G).
Using the Mackey decomposition, we may compute the restrictions of the irreducible char-

acters of G to NG(P ), noting that [NG(P ) : NN(P )] = 2. Every θ ∈ Irrτ (NN(P )) extends
to NG(P ), and θNG(P ) ∈ Irr(NG(P )) for every θ ∈ Irr(NN(P )) − Irrτ (NN(P )). Choose a la-
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belling of the extensions of the θ ∈ Irrτ (NN(P )) so that the restrictions are as follows, where
i = 1,2, and each constituent written is irreducible:

χ ∈ Irr(G) ResG
NG(P )(χ)0 (d = 1) ResG

NG(P )(χ)0 (d = 3)

χi
1 θ

(0,i)
1 θ

(0,i)
1

χ
(u,i)

q2−q+1
θ

((q−1)u,i)

1 θ
((q−1)u,i)

1

(χ
(u)

q2−q+1
)G (θ

((q−1)u)

1 )NG(P ) (θ
((q−1)u,i)

1 )NG(P )

χ
(u,v,i)

(q−1)(q2−q+1)
θ i
q2−1

θ
(u+v,0,i)

(q2−1)/3
+ θ

(u+v,1,i)

(q2−1)/3
+ θ

(u+v,2,i)

(q2−1)/3

(χ
(u,v)

(q−1)(q2−q+1)
)G θ1

q2−1
+ θ2

q2−1
(θ

(u+v,0,i)

(q2−1)/3
+ θ

(u+v,1,i)

(q2−1)/3

+ θ
(u+v,2,i)

(q2−1)/3
)NG(P )

χ
(u,i)

q3+1
θ

(u,i)
1 + θ

(−qu,i)

1 + θi
q2−1

θ
(u),i
1 + θ

(−qu,i)

1 + θ
(u+v,0,i)

(q2−1)/3

+ θ
(u+v,1,i)

(q2−1)/3
+ θ

(u+v,2,i)

(q2−1)/3

(χ
(u)

q3+1
)G (θ

(u)
1 + θ

(−qu,i)

1 )NG(P ) (θ
(u)
1 + θ

(−qu)

1

+ θ1
q2−1

+ θ2
q2−1

+ θ
(u+v,0)

(q2−1)/3
+ θ

(u+v,1)

(q2−1)/3
+ θ

(u+v,2)

(q2−1)/3
)NG(P )

(χ
(u)

(q+1)2(q−1)
)G θ1

q2−1
+ θ2

q2−1
(θ

(u+v,0)

(q2−1)/3
+ θ

(u+v,1)

(q2−1)/3
+ θ

(u+v,2)

(q2−1)/3
)NG(P )

χ
(u,i)

(q−1)(q2−q+1)/3
– θ

(0,u,i)

(q2−1)/3

(χ
(u,v)

(q+1)2(q−1)/3
)G – (θ

(v,u)

(q2−1)/3
)NG(P )

We see that every θ
(u)
1 ∈ Irrτ (NN(P )) occurs in the restriction of precisely one τ -stable char-

acter χ
(u)

q2−q+1
(if q−1 | u) or χ

(u)

q3+1
(otherwise), hence we may indeed make a consist choice. We

also see that θi
q2−1

and θ
(0,v,i)

(q2−1)/3
may be chosen consistently, and so every irreducible character

of height zero of NG(P ) is now accounted for.
For i = 1,2 and 0 � u � q2 − 1 such that q + 1 | u, write Φ

(u,i)
0 = θ

(u,i)
1 + θi

q2−1
if d = 1

and Φ
(u,i)
0 = θ

(u,i)
1 + θ

(0,0,i)

(q2−1)/3
+ θ

(,1,i)

(q2−1)/3
+ θ

(0,2,i)

(q2−1)/3
if d = 3 and u ≡ 0 mod 3, and Φ

(u,i)
0 =

θ
(u,i)
1 + (θ

(u1,0)

(q2−1)/3
+ θ

(u1,1)

(q2−1)/3
+ θ

(u1,2)

(q2−1)/3
)G, if d = 3 and u1 ≡ u �≡ 0 mod 3.

In each case Φ
(u,i)
0 is the ‘truncation’ of the character of a PIM.

Now define μG ∈ Z Irr(G × NG(P )◦) by

μG = ΦG −
∑
i=1,2

∑
(u,v)∈J1

Γ
u,v,α(u,v),i

1 Φ(α(u,v,i)) −
∑
i=1,2

∑
(u,v)∈J2

Γ
u,v,α(u,v),i

2 Φ(α(u,v,i))

−
∑

(u,v)∈S1

(
Γ

u,v,β(u,v)

3

)G(
Φ(β(u,v))

)NG(P ) −
∑
u∈S2

Γ
β(u),u

4

G(
Φ(β(u))

)NG(P )
,

where ΦG denotes the character for (blockwise) induction and restriction, again excluding ex-
tensions of the Steinberg character.
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This gives the bijection (with signs) Irr0(B0 ⊕ B1) → Irr0(b0 ⊕ b1) given by χ → RμG
(χ)0:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

χ1

χ
((q+1)/2,i)

q2−q+1

(χ
(u)

q2−q+1
)G: u �= (q + 1)/2

χ
(u,i)

q3+1
: u ∈ J

χ
(u,v,i)

(q−1)(q2−q+1)
: (u, v) ∈ J1

χ
(u,v,i)

(q−1)(q2−q+1)
: (u, v) ∈ J ′

2

χ
(1,2,i)

(q−1)(q2−q+1)
: if d = 1

(χ
(u)

q3+1
)G: u ∈ S

(χ
(u,v)

(q−1)(q2−q+1)
)G: (u, v) ∈ S1

(χ
(u)

(q+1)2(q−1)
)G: u ∈ S2

χ
(u,i)

(q−1)(q2−q+1)/3
: if d = 3

(χ
(u,v)

(q+1)2(q−1)/3
)G

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

↔

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ
(0),i
1

θ
((q2−1)/2,i)

1

(θ
(u)
1 )G

θ
(−qu,i)

1

θ
(α(u,v),i)
1

θ
(α(u,v),i)
1

θi
q2−1

(θ
(−qu)

1 )G

(θ
(β(u,v))

1 )G

(θ
(β(u))

1 )G

θ
(0,u,)

(q2−1)/3

(θ
(v,u)

(q2−1)/3
)G

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

It is clear that this bijection respects blocks.
We now turn our attention to GU3(q) and PGU3(q).2. If 3 � (q + 1), then we are done, so let

3 | (q + 1).
First consider N = SU3(q) and choose δ such that H = GU3(q) = N〈δ〉 and δ ∈ NH (P ).
From examination of the character tables, δ fixes every irreducible character of G, except

χ
(u)

(q−1)(q2−q+1)/3
(where u ∈ 0,1,2), which are permuted, and χ

(u,v)

(q+1)2(q−1)/3
, where for each v,

δ permutes χ
(0,v)

(q+1)2(q−1)/3
, χ

(1,v)

(q+1)2(q−1)/3
and χ

(2,v)

(q+1)2(q−1)/3
.

As before, we label the extensions of the irreducible characters of N according to the exten-
sions of the projective indecomposables.

Each Γ
u,v,w
i is H -stable, and there are extensions Γ

u,v,w,[j ]
i of Γ

u,v,w
i for j = 0,1,2

which vanish on p-singular elements. Label extensions χ
(u),[j ]
q3+1

of χ
(u)

q3+1
, χ

(u,v),[j ]
(q−1)(q2−q+1)

of

χ
(u,v)

(q−1)(q2−q+1)
, χ

(u),[j ]
q(q2−q+1)

of χ
(u)

q(q2−q+1)
, and χ

(u),[j ]
(q+1)2(q−1)

of χ
(u)

(q+1)2(q−1)
so that

Γ
u,v,w,[j ]

1 := χ
(u,v),[j ]
(q−1)(q2−q+1)

+ χ
(w),[j ]
q3+1

− χ
(u+v),[j ]
q(q2−q+1)

− χ
(v−2u),[j ]
q(q2−q+1)

,

Γ
u,v,w,[j ]

2 := χ
(u,v),[j ]
(q−1)(q2−q+1)

+ χ
(w),[j ]
q3+1

− χ
(u−2v),[j ]
q(q2−q+1)

− χ
(u+v),[j ]
q(q2−q+1)

,

Γ
u,v,w,[j ]

3 := χ
(u,v),[j ]
(q−1)(q2−q+1)

+ χ
(w),[j ]
q3+1

− χ
(v−2u),[j ]
q(q2−q+1)

− χ
(u−2v),[j ]
q(q2−q+1)

,

Γ
u,v,[j ]

4 := χ
(u),[j ]
q3+1

+ χ
(v),[j ]
(q+1)2(q−1)

+ χ
(u),[j ]
q(q2−q+1)

.
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For each of the remaining χ ∈ Irr(N) fixed by δ, denote by χ [i], for i = 0,1,2, the extensions
of χ to H .

Now δ fixes every irreducible character of NN(P ) of degree 1 and q(q − 1), and for each

u ∈ {0,1,2} permutes θ
(u,0)

(q2−1)/3
, θ

(u,1)

(q2−1)/3
and θ

(u,2)

(q2−1)/3
. Denote the extensions of θ

(u)
1 to NH (P )

by θ
(u),[i]
1 , and the extensions of θ

(u)
q(q−1) by θ

(u),[i]
q(q−1), for i = 0,1,2, chosen so that the restrictions

of the irreducible characters of H are as follows:

χ ∈ Irr0(H) ResH
NH (P )(χ)0

χ
[i]
1 θ

(0),[i]
1

χ
(u),[i]
q2−q+1

θ
((q−1)u),[i]
1

χ
(u,v),[i]
(q−1)(q2−q+1)

(θ
(u+v,0)

(q2−1)/3
)NH (P )

χ
(u)

q3+1
θ

(u),[i]
1 + θ

(−qu),[i]
1 + (θ

(u+v,0)

(q2−1)/3
)NH (P )

χ
(u),[i]
(q+1)2(q−1)

(θ
(u+v,0)

(q2−1)/3
)NH (P )

(χ
(u)

(q−1)(q2−q+1)/3
)H (θ

(0,u)

(q2−1)/3
)NH (P )

(χ
(u,v)

(q+1)2(q−1)/3
)H (θ

(v,u)

(q2−1)/3
)NH (P )

Write Φ(u),[i] = θ
(u),[i]
1 + (θ

(u1,0)

(q2−1)/3
)H , where u1 ≡ umod 3. Then Φ(u),[i] is the character of

a PIM of NH (P ).
Note that the action of δ on Irr0(N) and Irr0(NN(P )) commutes with the action of τ (although

of course this is not the case with the irreducible characters of positive height).
Define μH ∈ Z Irr(H × NH (P )◦) by

μH = ΦH −
∑

i=0,1,2

( ∑
(u,v)∈J1

Γ
u,v,α(u,v),[i]

1 Φ(α(u,v)),[i] −
∑

(u,v)∈J2

Γ
u,v,α(u,v),[i]

2 Φ(α(u,v)),[i]

−
∑

(u,v)∈S1

Γ
u,v,β(u,v),[i]

3 Φ(β(u,v)),[i] −
∑
u∈S2

Γ
β(u),u,[i]

4 Φ(β(u)),[i]

−
∑

(u,v)∈S1

(
Γ

u,v,β(u,v),[i]
3

)τ (
Φ(β(u,v)),[i])τ +

∑
u∈S2

(
Γ

β(u),u,[i]
4

)τ (
Φ(β(u)),[i])τ

)
,

where ΦH denotes the character for induction and restriction for N , excluding the extensions of
the Steinberg character.

This gives the bijection (with signs) Irr0(H) \ {χ [i]
q3 : i = 0,1,2} → Irr0(NH (P )) given by

χ → RμH
(χ)0:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

χ
[i]
1

χ
(u),[i]
q2−q+1

χ
(u)

q3+1
: u ∈ J

χ
(u,v),[i]
(q−1)(q2−q+1)

: (u, v) ∈ J1

χ
(u,v),[i]
(q−1)(q2−q+1)

: (u, v) ∈ J ′
2

χ
(u),[i]
q3+1

: u ∈ S

χ
(qu),[i]
q3+1

: u ∈ S

χ
(u,v),[i]
(q−1)(q2−q+1)

: (u, v) ∈ S1

(χ
(u,v),[i]
(q−1)(q2−q+1)

)τ : (u, v) ∈ S1

χ
(u),[i]
(q+1)2(q−1)

: u ∈ S2

(χ
(u),[i]
(q+1)2(q−1)

)τ : u ∈ S2

(χ
(0)

(q−1)(q2−q+1)/3
)H

(χ
(0,v)

(q+1)2(q−1)/3
)H

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

↔

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ
(0),[i]
1

θ
((q−1)u),[i]
1

θ
(−qu),[i]
1

θ
(α(u,v)),[i]
1

θ
(α(u,v)),[i]
1

θ
(−qu),[i]
1

θ
(−q2u),[i]
1

θ
(β(u,v)),[i]
1

θ
(qβ(u,v)),[i]
1

θ
(β(u)),[i]
1

θ
(qβ(u)),[i]
1

(θ
(0,0)

(q2−1)/3
)NH (P )

(θ
(v,0)

(q2−1)/3
)NH (P )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Again, it is clear that RμH
respects blocks.

Now let E = GU3(q).2 = H 〈τ 〉. Recall that τ ∈ NE(P ). We combine the notations for exten-
sions to G and to H .

Define μE ∈ Z Irr(E × NE(P )◦) by

μE = ΦE −
∑

j=0,1,2

( ∑
i=1,2

∑
(u,v)∈J1

Γ
u,v,α(u,v),[j ],i

1 Φ(α(u,v,[j ],i))

−
∑
i=1,2

∑
(u,v)∈J2

Γ
u,v,α(u,v),[j ],i

2 Φ(α(u,v,[j ],i))

−
∑

(u,v)∈S1

(
Γ

u,v,β(u,v),[j ]
3

)E(
Φ(β(u,v)),[j ])NE(P )

−
∑
u∈S2

Γ
β(u),u,[j ]

4

E(
Φ(β(u)),[j ])NE(P )

)
,

where ΦE denotes the character for (blockwise) induction and restriction, again excluding ex-
tensions of the Steinberg character.

This gives the bijection (with signs) Irr0(E) \ {χ [j ],i
q3 : i, j = 0,1,2} → Irr0(NE(P )) given by

χ → RμE
(χ)0:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

χ
[j ],i
1

χ
((q+1)/2,i),[j ]
q2−q+1

(χ
(u),[j ]
q2−q+1

)E : u �= (q + 1)/2

χ
(u,i),[j ]
q3+1

: u ∈ J

χ
(u,v,i),[j ]
(q−1)(q2−q+1)

: (u, v) ∈ J1

χ
(u,v,i),[j ]
(q−1)(q2−q+1)

: (u, v) ∈ J ′
2

(χ
(u),[j ]
q3+1

)G: u ∈ S

(χ
(u,v),[j ]
(q−1)(q2−q+1)

)E : (u, v) ∈ S1

(χ
(u),[j ]
(q+1)2(q−1)

)E : u ∈ S2

(χ
(u,i)

(q−1)(q2−q+1)/3
)E

(χ
(0,v)

(q+1)2(q−1)/3
)E

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

↔

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ
(0),[j ],i
1

θ
((q2−1)/2,i),[j ]
1

(θ
(u)
1 )G

θ
(−qu,i)

1

θ
(α(u,v),i)
1

θ
(α(u,v),i)
1

θi
q2−1

(θ
(−qu)

1 )G

(θ
(β(u,v))

1 )G

(θ
(β(u))

1 )G

θ
(0,u,)

(q2−1)/3

(θ
(v,u)

(q2−1)/3
)G

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

7. Controlled blocks

Let p = 3 and G = J2 or J3. Then the principal block B is not a TI block, but is however
a controlled block (for principal blocks this means that whenever Q � P ∈ Sylp(G) and g ∈ G

with Qg ∈ P , then g = cn for some c ∈ CG(Q) and n ∈ NG(P )). In these case we are able to
verify that property (P) holds.

Suppose first that G = J2.
Now the principal block b of NG(P ) has linear characters 11, . . . ,18, and the PIMs have

characters Φ1, . . . ,Φ8, where 1i is the unique linear constituent of Φi . There is a unique non-
linear irreducible character 81 of b of height 0.

Using the computer algebra package GAP, the PIMs of G have characters Γ1, . . . ,Γ5,Γ7,

Γ8,Γ11, corresponding to irreducible Brauer characters 11, 131, 132, 211, 212, 571, 572, 1331
respectively.

Then

μ = Φ − Φ1Γ11 − Φ2(Γ2 + Γ8) − Φ3(Γ3 + Γ4 − Γ5 − Γ8) − Φ4(−Γ4 + Γ8 + Γ11)

− Φ5(Γ4 + Γ5) − Φ6(−Γ5 + Γ7 + Γ11) − Φ7Γ11 − Φ8(−Γ4 + Γ7 + Γ8 + Γ11)

gives (P).
This results in the following bijection, with signs, between Irr0(B) and Irr0(b):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11
141
142
701
702

1601
1751
2241
2242

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

↔

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11
−13
−12
16
14
15
17

−18
81

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Now suppose G = J3. Again the principal block b of NG(P ) has linear characters 11, . . . ,18,
and the PIMs have characters Φ1, . . . ,Φ8, where 1i is the unique linear constituent of Φi . There
is a unique non-linear irreducible character 81 of b of height 0.

Using the computer algebra package GAP, the PIMs of G have characters Γ1, . . . ,Γ7,Γ9, cor-
responding to irreducible Brauer characters 11, 181, 182, 841, 842, 1531, 1532, 9341 respectively.

Then

μ = Φ − Φ1Γ9 − Φ2(Γ5 + 2Γ9 − Γ2 − Γ3) − Φ3Γ9 − Φ4(Γ7 + 4Γ9 − Γ2 − 2Γ3)

− Φ5(Γ3 − Γ9) − Φ6(Γ2 − Γ9) − Φ7(Γ6 − Γ2) − Φ8(Γ2 + Γ3 − 2Γ9)

gives (P).
This results in the following bijection, with signs, between Irr0(B) and Irr0(b):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11
851
852
3231
3232
6461
6462

16151
24321

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

↔

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11
12

−81
−17
−14
15
16
13

−18

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We sound a note of caution here: the principal 5-block for Co3 is also a controlled block.
However, in this case the index in Co3 of the normalizer of a Sylow 5-subgroup is congruent
to 1 modulo 25 (the order of a Sylow 5-subgroup), and there is an irreducible character of degree
congruent to ±3 mod 25, whilst no so such irreducible character exists for the normalizer of
a Sylow 5-subgroup. Hence we cannot hope to verify (P+). It is not clear to us whether (P) holds
in this case or not.

8. Blocks with non-abelian TI defect groups of order p3

The blocks with TI defect groups of automorphism groups of non-abelian simple groups are
determined in [3]. With a suitable reduction, this allows us to apply the classification of finite sim-
ple groups to show that (for p �= 11) every block with non-abelian TI defect groups of order p3

satisfies (PI). For p = 11, the group J4 has TI defect groups, but as yet the simple kJ4-modules
are not known, it is unrealistic to hope to check this case at this stage. However, (PI) will hold
for p = 11 provided that J4 is not involved in G. We emphasize again that J4 is not necessarily
a counterexample to property (PI).

We first give the classification, which is a direct consequence of [3, 1.1]:

Lemma 8.1. Let G be a central extension of an automorphism group of a non-abelian simple
group and let B be a block with non-abelian TI defect group D of order p3, such that Z(G) � G′.
Then G and D satisfy one (or more) of the following:

(a) D ∼= Q8;
(b) D ∼= 31+2− and G is Aut(2G2(3)′) = 2G2(3);
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(c) D ∼= 51+2+ and G is 3.McL or Aut(McL);

(d) D ∼= 51+2− and G is Aut(2B2(32));
(e) D ∼= 111+2+ and G is J4;

(f) D ∼= p1+2+ and G is SU3(p), PSU3(p).2, GU3(p) or PGU3(p).2, where the extension is by
the unique field automorphism of order 2 and p is odd.

Proof. We have one subtlety to address. Whereas the Schur multipliers of the simple groups are
well known, it is not always so clear what the Schur multiplier of a group of automorphisms
of a non-abelian simple group is. However, note that in every case considered here the outer
automorphism group has cyclic Sylow l-subgroups for every prime l. Hence by [14, 3.5] the
Schur multiplier of a group of automorphisms is a quotient of the Schur multiplier of the simple
group in each case.

Note also that we do not need to consider SU3(p).2 and GU3(p).2 instead of PSU3(p).2 and
PGU3(p).2 since in these cases, the field automorphism does not centralize non-trivial elements
of the centre of SU3(p) and GU3(p). �
Lemma 8.2. Let B be a block of G with defect group B , and let b be the Brauer correspondent
of B in NG(D). If there is a perfect isometry Iμ : Z Irr(NG(D), b) → Z Irr(G,B), then (P) holds
for B . The analogous statement holds for generalized isotypies and isotypies.

Proof. This is immediate, since a perfect isometry takes an irreducible character of height zero
to plus/minus an irreducible character of height zero (see [9, 1.5]). �
Lemma 8.3. (See [11].) Let B be a 2-block of G with TI defect group D ∼= Q8. Then there is an
isotypy between B and its Brauer correspondent b in NG(D).

Proof. By [11] (and the corrected version [12]), there is an isotypy (and hence a perfect
isometry) between B and its Brauer correspondent c in CG(Z(D)). Since D is TI, we have
CG(Z(D)) � NG(D), and by the transitivity of the Brauer correspondence there is an isotypy
between b and c. �
Lemma 8.4. Let B be a block of G with TI defect groups. Let N � G and let b be a block of N

covered by B . Write I = IG(b), the stabilizer of b under conjugation in G. Then there is a unique
block BI of I covering b with (BI )

G = B , and BI and B both have defect group D which is TI
in I . The blocks BI and B are isotypic.

Proof. The existence of BI and its Morita equivalence with B are well known. It is clear that D

is also TI in I .
Let eBI

be the block idempotent in Z(OI ) for BI and eB the block idempotent in Z(OG)

for B . Then by [26, 3.1] OGeB
∼= IndG

I (OIeBI
), and further B and BI are Puig equivalent.

By [28, Ex. 47.3] BrB(G) and BrBI
(I ) are equivalent, so by [20, 1.9] B and BI are isotypic. �

A useful result when considering groups with TI Sylow p-subgroup P is that if P is not cyclic
or generalized quaternion, then Op′(G) � NG(P ). This generalizes considerably:
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Lemma 8.5. Let B be a block of a group G with TI defect group D, and suppose that D is not
cyclic or generalized quaternion. Let N � G with N ∩ D = 1. Then N � NG(D). In particular,
if Q � D, then N � CG(Q).

Proof. Choose a D-stable block c of N covered by B . Then c has defect zero and there is
a unique block b of DN covering c, and further b has TI defect group D. The result then follows
from [15, 3.3] (and [16]). �

In order to construct isotypies using correspondences similar to the Fong correspondences we
need to choose extensions of stable irreducible characters of normal subgroups with some care:

Lemma 8.6. Let G be a finite group and D a p-subgroup. Suppose N � G with N ∩ D = 1 and
let c be a G-stable block of defect zero of N . Suppose further that N � CG(D). Let Irr(c) = {ζ }.
Then there is a central extension Ĝ of G by a cyclic p′-group Ŵ such that ζ , regarded as
a character of the appropriate normal subgroup N̂ of Ĝ identified with N , extends to some
θ̂ ∈ Irr(Ĝ) with D̂ � ker(θ̂), where D̂ is the p-subgroup of Ĝ with D = ŴD̂/Ŵ . �
Proof. We follow the construction of a projective representation of G extending ζ given
in [21, 11.2]. Let σ be a representation of N affording ζ . Choose a transversal T of N in G

such that D ⊂ T . For each t ∈ T , a non-singular matrix Pt is chosen so that σ t = PtσP −1
t . Since

D � CG(N), we may take Pd = I for d ∈ D. A projective representation ρ of G is defined by
ρ(nt) = σ(n)Pt for n ∈ N and t ∈ T . Then ρ(n) = σ(n) for n ∈ N and ρ(d) = σ(1) for d ∈ D.

Now it follows from the argument in [3, p. 467] that there is a projective representation ρ1
of G extending σ with cocycle of order prime to p (the argument is phrased in terms the existence
of characters of central extensions by a p′-group which extend ζ , but this implies the existence
of such a projective representation). By [21, 11.2] (and the discussion preceding [21, 11.7]) it
follows that ρ and ρ1 have the same cocycle. Hence we are done by lifting ρ to a representation
of a suitable central extension Ĝ and taking its character θ̂ . �

Now let BY be a block of a finite group Y with defect group D and X�Y such that X∩D = 1
and BY covers a Y -stable block BX of X of defect zero. Suppose that X � CY (D), and that the
unique irreducible character ζ in BX extends to θ ∈ Irr(Y ) with D � ker(θ), as in Lemma 8.6.
Write Y = Y/X. Then there is a unique block BY such that Irr(Y,BY ) = {θχ : χ ∈ Irr(Y ,BY )},
and BY has defect group D (see, for example, [17]).

Lemma 8.7. Let y ∈ D, and write y = yX. Then CY (y) = CY (y).

Proof. Write Q = 〈y〉 � D, and let g ∈ CY (Q) � NY (Q). But NY (Q) = NY (Q)/X since
X � CY (Q), so [y,g] ∈ Y ∩ Q = 1 and we are done. �

Let y ∈ D, and let By be a block of CY (y) with (By)
Y = BY . Let ey be the corresponding

primitive central idempotent (so e1 is the central idempotent for BY ). Then By covers BX . Now ζ

extends to the irreducible character θy = ResY
CY (y)(θ) of CY (y), so as above there is a unique

block By of CY (y) such that Irr(CY (y),By) = {θyχ : χ ∈ Irr(CY (y),By)}. We have (By)
Y = BY

(see [17]). Define Iμy : CF(CY (y),By) → CF(CY (y),By) by Iμy (α) = θyα. Then each Iμy is
a perfect isometry. Write Iμ = Iμ1 .
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For each y ∈ D, write Iμy,p′ for the map CFp′(CY (y),By) → CFp′(CY (y),By) induced
by Iμy .

Lemma 8.8. With the notation above, Iμ is compatible with fusion and gives an isotypy.

Proof. The Brauer categories BrBY
(Y ) and BrBY

(Y ) are isomorphic in this case.

Let α ∈ CF(Y ,B) and h ∈ CY (y)p′ . Then

(
Iμy,p′ ◦ d

(y,By)

Y

)
(α)(h) = θy(h)α(hyey).

The calculation of (d
(y,By)

Y ◦ Iμ)(α)(h) is complicated by the fact that we do not have
Iμ(α)(a) = θ(a)α(a) for arbitrary a ∈ OY .

(
d

(y,By)

Y ◦ Iμ

)
(α)(h) = Iμ(α)(hyBy) = Iμ(α)

(
hy

∑
χ∈Irr(By)

χ(1)

|CY (y)|
∑

g∈CY (y)

χ
(
g−1)g

)

=
∑

χ∈Irr(By)

(
ResY

CY (y)

(
Iμ(α)

)
, χ

)
CY (y)

χ(hy)

=
∑

χ∈Irr(By)

(
ResY

CY (y)(θα), θyχ
)
CY (y)

θy(hy)χ(hy).

Since D � ker(θ) we have θy(hy) = θy(h). Note also that since χ ↔ θyχ gives a bijection

Irr(By) ↔ Irr(By), we have (ResY
CY (y)(θα), θyχ)CY (y) = (ResY

CY (y)(α),χ)CY (y). Hence

(
d

(y,By)

Y ◦ Iμ

)
(α)(h) =

∑
χ∈Irr(By)

(
ResY

CY (y)(α),χ
)
CY (y)

θy(h)χ(hy)

= θy(h)α(hyey)

as required. �
We give the reduction for property (PI) to the list of blocks given in Lemma 8.1.
Let G be minimized with respect to [G : Z(G)], subject to the existence of a block B of G

with non-abelian TI defect group D of order p3 and not satisfying (PI). By Lemma 8.3 and [9]
D is not generalized quaternion, so has p-rank at least two.

Let N � G with Z(G) � N , and let c be a block of N covered by B . Write I = IG(c). By
replacing c with a conjugate block if necessary we may assume D � I . There is a unique block c̃

of DN covering c, and this has defect group D. Let c̃1 be the unique block of NDN(D) with
(C̃1)

DN = c̃. Note that NDN(D) = DNN(D), and NDN(D) � NG(D). We have ING(D)(c̃1) �
NI (D), since if g ∈ ING(D)(c̃1), then c̃g = ((c̃1)

DN)g = (c̃
g

1 )g
−1DNg = (c̃1)

DN = c̃, so g ∈
ING(D)(c̃) � ING(D)(c), as c is the unique block of N covered by c̃. Hence the Brauer correspon-
dence gives a 1–1 correspondence between blocks of NI (D) covering c̃1 and blocks of NG(D)

covering c̃1. Let bI be the unique block of NI (D) with Brauer correspondent BI in I . Since
(bI )

G = ((bI )
I )G = (BI )

G = B = bG, we have (bI )
NG(D) = b.



2326 C.W. Eaton / Journal of Algebra 320 (2008) 2301–2327

By Lemma 8.4 B and BI are isotypic, as are b and bI . Suppose that I �= G. Then [I : Z(I)] <

[G : Z(G)], and so by minimality, and since BI has defect group D which is TI (and possibly
normal), BI satisfies (PI). Hence, using the isotypies we have just constructed, B satisfies (PI),
a contradiction. Hence G = I .

Suppose that I �= G. Then [I : Z(I)] < [G : Z(G)], and so by minimality BI satisfies (PI),
and so B satisfies (PI) (since we have established isotypies between B and BI , BI and bI , bI

and b), and we have a contradiction. Hence G = I .
Hence every block of a normal subgroup containing Z(G) covered by B is G-stable.
Let N � G with D ∩ N = 1 and Z(G) � N , so that B covers a block c of defect zero of N

(recall that Op(G) = 1 since D has non-normal TI defect groups). Note that N � CG(D) by
Lemma 8.5. We have that c is G-stable.

We show that N � Z(G). Write H = NG(D).
By Lemma 8.6 there is a central extension Ĝ of G by a cyclic p′-group Ŵ (with Ŵ � [Ĝ, Ĝ])

such that ζ , regarded as a character of the appropriate normal subgroup N̂ of Ĝ identified with N ,
extends to θ̂ ∈ Irr(Ĝ), where D̂ � ker θ̂ , with D̂ defined as in Lemma 8.6. Let Ĥ � Ĝ be the
subgroup with Ĥ /N̂ = H . Note that Ĥ = N

Ĝ
(D̂). Let B̂ and b̂ be the unique blocks of Ĝ and Ĥ

respectively containing B and b respectively. Both B̂ and b̂ have defect group D̂, and D̂ is a TI
subgroup of Ĝ. By Lemma 8.8 B is isotypic with B̂ and b is isotypic with b̂.

Write G̃ = Ĝ/N̂ . As in the discussion preceding Lemma 8.5, there are blocks B̃ and b̃

of G̃ and H̃ respectively with defect group D̃ = D̂N̂/N̂ such that χ̃ ↔ θ̂ χ̃ gives a bijection

Irr(G̃, B̃) ↔ Irr(Ĝ, B̂) and χ̃ ↔ ResĜ

Ĥ
(θ̂ )χ̃ gives a bijection Irr(H̃ , b̃) ↔ Irr(Ĥ , b̂).

Since D̂ is a TI subgroup of Ĝ, by Lemma 8.5 B̂ and b̂ both satisfy the hypotheses of
Lemma 8.8 with X = N̂ . Hence there are isotypies B̂ ↔ B̃ and b̂ ↔ b̃. Since N̂ � C

Ĝ
(D̂) we

have H̃ = N
G̃
(D̃). By [17] we have b̃G̃ = B̃ .

Suppose that N �= Z(G). Then [G̃ : Z(G̃] � [G : N ] < [G : Z(G)], so by minimality (PI)
holds for B̃ . But then we have isotypies B → B̂ → B̃ → b̃ → b̂ → b, a contradiction. Hence
there is no N � G with Z(G) � N such that D ∩ N = 1.

Let F ∗(G) be the generalized Fitting subgroup of G. We have CG(F ∗(G)) � F ∗(G) and
Z(G) � F ∗(G), so D ∩ F ∗(G) �= 1, since otherwise G is abelian, a contradiction. Write E(G)

for the layer of G (that is, the product of the subnormal quasisimple subgroups of G). Then
Z(G)E(G) is a central product M1 ∗ · · · ∗ Ms of normal subgroups Mi � G, and each Mi is the
central product of Z(G) ∗ Mi1 ∗ · · · ∗ Miti , where each Mij is quasisimple. We have D ∩ Mi �= 1
for each i. Let bi be a block of Mi covered by B with defect group D ∩ Mi . Then bi has non-
normal TI defect groups. So Mi/Z(G) has a non-trivial TI radical p-subgroup (recall that a
p-subgroup Q of H is radical if Q = Op(NH (Q))). By [2] if Q is a radical p-subgroup of
H1 × H2 then Q = Q1 × Q2, where Qi is a radical p-subgroup of Hi , and if Q is TI, then
Q1 = 1 or Q2 = 1. Since bi is G-stable, this implies that s = 1 and t1 = 1. Hence E(G) is
quasisimple. Write M = E(G)Z(G)/Z(G), so M = F ∗(G/Z(G)). Then CG/Z(G)(M) � M , so
G/Z(G) � Aut(M), where the preimage of M in G is perfect.

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let B be a counterexample with [G : Z(G)] minimized. Then G is a p′
cyclic central extension of an automorphism group of a non-abelian simple group. Such blocks
are listed in Lemma 8.1. We have seen that (P+) holds for each of the blocks on this list. Hence
by Lemma 1.4 (PI) holds for each of these blocks, and we are done. �
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