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Chapter 2

FLOWS IN DEFORMABLE TUBES AND CHANNELS
THEORETICAL MODELS AND BIOLOGICAL APPLICATIONS

M. HEIL
Department of Mathematics, University of Manchester,

Oxford Road, Manchester M13 9PL, UK

O.E. JENSEN
School of Mathematical Sciences, University of Nottingham,

University Park, Nottingham NG7 2RD, UK

Abstract

This chapter gives an overview of the main physiological applications of
collapsible tube flows and reviews the major theoretical and computational
developments of the past twenty-five years, ranging from lumped-parameter
models to three-dimensional Navier–Stokes simulations. We also discuss
some of the significant questions that, despite substantial progress, still
remain open.
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1. Introduction

Many fluid-conveying vessels in the human body are highly elastic and de-
form substantially in response to the traction (pressure and viscous stress)
that the fluid exerts on them. The study of flows in elastic vessels is therefore
of considerable interest in many biomechanical and biomedical applications.
It also presents an interesting and extremely challenging fluid-mechanical
problem in its own right. Experimental studies of flow in collapsible tubes,
described in more detail in Chapter 3, show that the interaction between
the finite-Reynolds-number internal flow and large deformations of the tube
wall can cause the development of large-amplitude self-excited oscillations.
Many distinct modes of oscillation have been observed experimentally. Un-
derstanding fully the mechanisms driving these oscillations remains a major
research goal.

A completely rational theoretical description of flow in collapsible tubes
would have to be based on the unsteady 3D Navier-Stokes equations, cou-
pled to the equations of large-displacement shell theory. The numerical
solution of this problem would require enormous computational resources,
and would yield limited (but of course very valuable) insights into the un-
derlying physics. Much theoretical work on flow in collapsible tubes has
therefore concentrated on the development and analysis of simpler models,
obtained, for example, by reducing the spatial dimension of the problem.
Such simplified models invariably involve a number of ad hoc assumptions
whose validity must be critically assessed as better models or more detailed
experimental data become available.

The problem of flow in collapsible tubes has many obvious similarities
to the problem of flow past compliant surfaces and coatings, which is re-
viewed in other Chapters in this volume. However, there are a few important
differences between these problems. First, collapsible tube experiments are
performed with finite-length elastic tubes whose upstream and downstream
ends are held open. The inertia and resistance of the fluid in the supporting
rigid tubes have an important influence on the system’s overall dynamics;
conversely, most (but not all) theoretical studies of flow past compliant
coatings are based on infinite domains. Second, self-excited oscillations in
collapsible tubes tend to have large amplitude and can develop from steady
states in which the tube is strongly deformed, and in which the viscous pres-
sure drop along the tube is significant; conversely, most stability analyses of
flows past compliant coatings are based on perturbations of an initially uni-
form, undeformed state. Third, self-excited oscillations in collapsible tubes
do not always require the presence of wall inertia, whereas most flutter-type
analyses consider systems in which wall inertia is significant.

It is the aim of this Chapter to provide a review of previous theoretical
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and computational analyses of flows in collapsible tubes (earlier review
articles on the subject were written by Shapiro 1977, Kamm & Pedley
1989, Grotberg 1994 and Pedley & Luo 1998), to identify the current state
of the art in the field, and to outline some open research problems. The
Chapter includes brief summaries of relevant talks presented at the IUTAM
Symposium. Since many of these talks contained unpublished work, we have
included references to papers which, at the time of writing, are in press,
under review or even in preparation.

The structure of this Chapter is as follows: Section 2 provides an overview
of the major biological applications of collapsible tube flow. Section 3 in-
troduces the model problem considered in most theoretical analyses and
discusses its relation to typical laboratory experiments. Sections 4–6 dis-
cuss successively 1D, 2D and 3D models of flow in collapsible tubes. Finally,
Section 7 provides a brief summary and some suggestions for future work.

2. Biological Background

The propagation of the pulse wave through the arterial system is a well-
known and well-understood example of a physiological flow in which wall
elasticity plays an important role. One-dimensional models, based on an in-
viscid description of the fluid dynamics, coupled to a simple description of
the wall mechanics, are able to explain satisfactorily many features of this
problem (see e.g. McDonald 1974, Lighthill 1975, Pedley 1980). The anal-
ysis of pulse-wave propagation is facilitated by the fact that under normal
conditions the arteries are subject to a positive transmural (internal minus
external) pressure and therefore remain inflated and relatively stiff through-
out the pulse cycle. There are, however, many examples of fluid-conveying
vessels that are subject to negative (compressive) transmural pressures,
which cause the vessels to buckle and collapse non-axisymmetrically. Buck-
led vessels are very flexible and even small changes in fluid pressure can
induce large changes of their cross-sectional area. This leads to a strong
interaction between fluid and solid mechanics, which gives rise to many
intriguing phenomena, including flow limitation and the propensity to de-
velop large-amplitude self-excited oscillations.

Physiological examples of collapsible tubes are numerous, as are corre-
sponding models, so the following list of topics is far from complete but
hopefully reasonably representative. In the cardiovascular system, first of
all, spontaneous collapse can occur in veins above the heart and outside
the skull (due to hydrostatic reduction of blood pressure). This is partic-
ularly important in subjects with long necks, such as giraffes (see Pedley
et al. 1996). Flow-induced collapse of blood vessels is believed to play a role
in the auto-regulation of blood supply to many internal organs; see Rod-
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bard & Takacs (1966) and Rodbard (1966). Dynamic flow-induced collapse
of blood vessels downstream of atherosclerotic stenoses has been proposed
as a mechanism of plaque rupture, which can lead to vessel occlusion dis-
tally, with potentially serious consequences (Binns & Ku 1989; Ku 1997).
Blood vessels can also collapse as a result of external compression. Coro-
nary blood vessels collapse during systole (see e.g. Gregg & Fisher 1963),
and collapsible-tube models have been used to understand how compres-
sion mediates their delivery of blood to the myocardium (e.g. Guiot et al.

1990). Active compression of veins in the lower limbs is used successfully
as a therapy to prevent deep-vein thrombosis; see e.g. Kamm (1982) and
Olson et al. (1982). Both veins and arteries also collapse during sphyg-
momanometry, when an inflatable cuff is placed around the upper arm to
measure blood pressure.

During micturition, the urethra behaves like a passive collapsible tube
(e.g. Griffiths 1969, 1971), which can exhibit flow limitation effects. In con-
trast the ureter, and a number of other deformable muscular vessels in the
body (particularly in the gut), transport fluid by active peristaltic pumping,
a process which couples fluid, solid and muscle mechanics (e.g. Carew &
Pedley 1997) in a manner that is only beginning to be properly understood.

Air flow in the lung is strongly affected by the elasticity of the airways.
For instance during forced expiration, contraction of the expiratory muscles
increases the pleural pressure that drives air out of the peripheral airways.
If the pleural pressure increases beyond a critical level, it can initiate the
collapse of the proximal airways. The reduction of their cross-sectional area
increases the local fluid velocity. The Bernoulli effect, which then reduces
the internal fluid pressure, leads to a further increase in compression. This
mechanism causes an increasingly strong collapse of the airways and re-
sults in so-called flow limitation and possibly ‘negative effort dependence,’
whereby an increase in expiratory effort (at a given lung volume) beyond a
certain level can lead to a reduction in expiratory flow rate.

Self-excited oscillations of collapsible lung airways are believed to give
rise to a number of different respiratory noises. Flutter instabilities have
been proposed as the origin of respiratory wheezes during forced expiration
(e.g. Gavriely et al. 1984; 1989), and speech production involves controlled
flow-induced vibrations of the vocal chords, which can be modelled as a
collapsible tube system (e.g. Berke et al. 1991). Similarly bird song involves
oscillations of a set of membranes in the avian syrinx. Fee et al. (1998) have
shown that modulations of bird song display characteristics (such as mode
locking and period doubling) of a nonlinear dynamical system, and they
provide experimental and theoretical evidence of the primary mechanism
being a dynamic flow-structure interaction. Results from a computational
model of this process were presented to the IUTAM Symposium by J. L. van
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Leeuwen.

Snoring sounds in humans during obstructive sleep apnea have their
origins in flow-induced deformation of the soft palate and pharyngeal wall.
The Bernoulli effect can induce upper airway collapse and closure (char-
acterised using a simple lumped-parameter model by Gavriely & Jensen
1993, for example), and flow-induced instabilities of the airway wall can
then lead to noise production; for a distributed collapsible-tube model of
this process see Aittokallio et al. (2001). Flow-induced flutter of the soft
palate, which can be modelled as a flexible cantilevered elastic plate that
can flap as air flows past it (Huang 1995), is an independent source of
noise production. In a study presented to the IUTAM Symposium, Balint
& Lucey used Navier–Stokes simulations, coupled to plate equations, to
show how instabilities of the soft palate can arise either through a flutter
mechanism or through so-called static divergence (where the plate under-
goes a non-oscillatory sideways displacement); for full details see Balint
(2001).

Spontaneous flow-induced oscillations also arise throughout the cardio-
vascular system. These include cervical venous hum, arising through os-
cillations of the external jugular vein, which is collapsed because of a low
hydrostatic pressure (Danahy & Ronan 1974). Korotkoff sounds heard dur-
ing sphygmomanometry have been associated with the development of self-
excited oscillations of the partially reopened brachial artery (see e.g. Ur &
Gordon 1970 and Bertram et al. 1989), although alternative mechanisms
of noise production have also been proposed, for example by Shimizu &
Tanida (1983). Oscillations in coronary blood vessels have also been ob-
served during open-heart surgery (Tsuji et al. 1978).

3. Background to theoretical models of collapsible-tube flows

Many of the physiologically observed phenomena described above can be
reproduced in laboratory experiments using the ‘Starling Resistor,’ shown
in Fig. 1. Inside a pressure chamber, a thin-walled elastic tube (typically
made of latex rubber) is mounted on two rigid tubes. Fluid (typically air or
water) is driven through the tube, either by applying a controlled pressure
drop pentry − pexit between the ends of the rigid tubes or by controlling the
flow rate Q. The external pressure, pext, can be controlled independently.
If pext exceeds the fluid pressure by a sufficiently large amount, the tube
buckles non-axisymmetrically, as sketched in Fig. 1. Flow-structure interac-
tions then lead to a strongly nonlinear relation between pressure-drop and
flow-rate, depending on which pressure differences are held fixed as the flow
increases (e.g. Conrad 1969). Among these are flow limitation (increasing
pup − pdown while keeping pup − pext fixed limits the maximum possible
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flux Q) and pressure-drop limitation (increasing Q with pdown − pext fixed
limits the maximum possible pup − pdown). At sufficiently large Reynolds
numbers, the system also readily produces self-excited oscillations, and ex-
hibits hysteresis in transitions between dynamical states, multiple modes of
oscillations (each having a distinct frequency range) and rich and complex
nonlinear dynamics (Bertram 1986; Bertram et al. 1990). For full details
see Chapter 3.

p p p
down

p
exit

A B

BA
ext

Q
B−B

A−A

entry up

p

Figure 1. Left: sketch of the typical experimental setup which forms the basis of most
theoretical models. Right: tube cross-sections at A–A and B–B.

A closely related physical model system was introduced by Pedley (1992).
It consists of a 2D channel, one wall of which has a segment replaced by a
membrane under longitudinal tension, as shown in Fig. 2. Viscous flow is
driven through the channel by an imposed pressure drop pentry −pexit. The
external pressure pext and the internal flow determine the deformation of
the membrane. Despite the practical difficulties of producing 2D flows ex-
perimentally, this system has attracted considerable theoretical attention
since it avoids the complications of fully 3D flows found in the Starling
Resistor, while still exhibiting phenomena such as flow limitation and self-
excited oscillations.

The earliest theoretical models of flow in collapsible tubes (e.g. Conrad
1969, Katz et al. 1969, Bertram & Pedley 1982) were lumped-parameter
models in which the system’s behaviour is characterised by a small number
of scalar variables (such as the cross-sectional area, the transmural pressure
and the fluid velocity at the point of strongest collapse, etc.). The tempo-
ral variations of these quantities are described by nonlinear ODEs whose
numerical solutions can exhibit oscillatory behaviour reminiscent of that
observed in experiments. While these models successfully capture many
important flow features (such as the crucial role played by the fluid in the
rigid parts of the system), they fail to describe such key phenomena as wave
propagation. A more sophisticated approach is therefore warranted.
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Figure 2. Sketch of the 2D model problem: viscous flow through a channel in which
part of one wall has been replaced by an elastic membrane under tension T0.

4. One-dimensional models

4.1. DERIVATION

Motivated by the successful application of 1D inviscid models for pulse-wave
propagation in the arteries, the earliest distributed models of collapsible
tube flow were based on a similar mathematical framework. Employing a
long-wavelength approximation to the Navier-Stokes equations (including
body forces and a ‘lumped’ representation of small viscous effects), the axial
component of the momentum equation is given by

∂u

∂t
+ u

∂u

∂x
= g −

1

ρ

∂p

∂x
−Ru. (1)

Here u = u(x, t) is the cross-sectionally averaged axial fluid velocity, p =
p(x, t) is the fluid pressure, ρ the fluid density and R > 0 is a friction factor
whose value depends on the local cross-sectional area A(x, t) (and also on u
in certain circumstances). g represents the gravitational acceleration when
the tube is held vertically. The integral continuity equation is

∂A

∂t
+

∂(uA)

∂x
= 0. (2)

These equations need to be augmented by a constitutive model for the wall.
In the earliest 1D models, this was provided by a functional relationship
between the local transmural pressure, ptm(x, t) = p(x, t)−pext, and A(x, t).
This relationship is generally referred to as the ‘tube law’ and has the
general form

ptm(x, t) = P(A(x, t), x) or A(x, t) = A(ptm(x, t), x), (3)
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where the vessel’s undeformed cross-sectional area, A0, is characterised by

P(A = A0) = 0 or A(ptm = 0) = A0. (4)

Note that the functional form (3) of the tube law allows for axial variations
of the vessel’s elastic properties (reflecting, for example, changes in the
undeformed cross-sectional area or variations in the vessel’s wall thickness
and Young’s modulus).

p
b

ptm

1 A/A0
p
owc

(iv)

(iii) (ii)

(i)

(i)

(ii)

(iii)

(iv)

Figure 3. Left: schematic representation of the tube law. Right: typical tube shapes.

The schematic representation of the tube law in Fig. 3 illustrates the
drastic change in the wall distensibility (the inverse stiffness)

D =
1

A

(

∂A

∂p

)

=
1

A

(

∂P

∂A

)

−1

(5)

as the tube’s cross-section changes from inflated to collapsed. In the ax-
isymmetrically inflated state, (i) in Fig. 3, any deformation is accompanied
by a stretching of the wall. Therefore large changes in transmural pressure
are required to induce any change to the vessel’s cross-sectional area. The
axisymmetric vessel can withstand small compressive loads (0 > ptm > pb).
However, when the transmural pressure falls below pb, the tube buckles non-
axisymmetrically, typically to a two-lobed state. Once buckled, only the
tube’s small bending stiffness resists any further collapse. Hence the vessel
can undergo large changes in cross-sectional area when the transmural pres-
sure changes slightly; see (ii)–(iii) in Fig. 3. As the compression increases
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further, the vessel’s opposite walls come into contact (when ptm < powc)
and the wall stiffness increases again as the two outer lobes need to be bent
strongly in order to further reduce the cross-sectional area, (iv) in Fig. 3.
Various curve fits which approximate the ptm = P(A) relationship sketched
in Fig. 3 and which incorporate the correct solid-mechanical behaviour (see
Flaherty et al. 1972) have been suggested in the literature; see e.g. Shapiro
(1977) or Elad et al. (1987).

4.2. STEADY FLOW: CHOKING, FLOW LIMITATION AND ELASTIC
JUMPS

Valuable insight into the behaviour of collapsible tubes can be gained from
the steady version of equations (1–3). We will initially ignore the effect of
gravity (g = 0) and assume that the elastic properties of the vessel (and
thus the tube law) are independent of axial position. The three steady
equations can then be combined to give

1

A

dA

dx
= −

1

u

du

dx
=

−Ru

c2 − u2
, (6)

where uA = Q is a constant and

c =
√

1/(ρD) (7)

is the wavespeed of small-amplitude disturbances travelling along the tube
(as in pulse-wave propagation). The dependence of the wavespeed c on the
tube’s stiffness implies that c is much larger in regions where the vessel
is inflated than in those where it is collapsed without opposite walls in
contact.

Equation (6) predicts an interesting phenomenon, known (in analogy
to a related phenomenon in gas dynamics) as ‘choking.’ Assume that, at
the upstream end of the tube, the average fluid velocity u is less than the
wavespeed c. Since R > 0, (6) implies that dA/dx < 0, i.e. the tube’s col-
lapse increases in the direction of the flow. Continuity then requires that
du/dx > 0, i.e. the flow is accelerated in the streamwise direction. Pro-
vided the tube is long enough, we will therefore approach a location at
which the ‘speed index’ S = u/c → 1 and thus dA/dx → −∞, violating
the long-wavelength assumption implicit in the 1D model. Clearly, this sit-
uation is physically unrealisable, implying that steady flows are impossible
(according to this simple model) if the flow rate becomes so large that u
approaches c anywhere along the tube. Alternatively, if S > 1 at some point
along the tube, then variations in downstream conditions cannot propagate
upstream (since small-amplitude waves travel at speeds u± c); this under-
lies the wave-speed mechanism of flow limitation that is believed to operate
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in the large airways of the lung (Dawson & Elliot 1977; Elliot & Dawson
1977). Several authors speculated that the occurrence of supercritical flow
(u > c) at some point along the tube might coincide with the onset of self-
excited oscillations. Experimental evidence (e.g. Brower & Scholten 1975
and Bonis & Ribreau 1978) appeared first to provide partial support for
this view. However Gavriely et al. (1989) found that while flow-induced
oscillations in a tube with large wall inertia occurred only when the flow
was limited, the onset flow speed could be as low as S ≈ 0.3 (although their
definition of wave speed did not take account of wall mass). Later experi-
ments by Bertram & Raymond (1991) and computations by Luo & Pedley
(2000) have also cast doubt over a causal link between flow limitation and
self-excited oscillations.

Having identified a choking mechanism which is similar to that found in
compressible gas flow, one might expect the 1D collapsible tube equations
to have shock-like solutions similar to those found in gas flows through
Laval nozzles (resembling also hydraulic jumps in shallow-water flows). Ex-
perimentally, shock-like structures (known as ‘elastic jumps’) in collapsible
tube flow are easily generated (see e.g. Kececioglu et al. 1981). Within
the framework of the 1D model, elastic jumps are predicted to occur in
situations where supercritical (S > 1) flow is generated somewhere in a
collapsible tube. Experimentally this is done most effectively by pinching
the tube at a far upstream location; the reduction in cross-sectional area
increases the fluid velocity u while the associated reduction in wall stiffness
simultaneously reduces the wavespeed c. The ensuing supercritical flow is
still governed by (6), which now predicts that dA/dx > 0. Hence the cross-
sectional area A increases and, provided the tube is long enough, the reduc-
tion in fluid velocity u now leads to a situation in which dA/dx → +∞ at
some point. As in the case of choking, this locally violates the model’s as-
sumptions. However, a shock-like transition region, in which the flow speed
is reduced from super- to subcritical, can instead develop upstream of the
point where dA/dx → +∞ would occur. The application of jump condi-
tions (similar to those used in gas dynamics) across the thickness of the
elastic jump (Oates 1975, Shapiro 1977, Cowley 1982) establishes how the
flow changes as it passes from the supercritical to the subcritical regime.
The location of the elastic jump is determined by the downstream bound-
ary conditions, which can influence only the subcritical region of the flow
downstream of the jump. Standing waves can appear either upstream or
downstream of elastic jumps through the effects of longitudinal bending
or tension, attenuated by viscous effects (McClurken et al. 1981; Cowley
1983).
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4.3. EFFECTS OF GRAVITY AND NON-UNIFORM TUBE PROPERTIES

As mentioned in Section 2, the venous system is strongly affected by gravi-
tational pressure variations. Inclusion of gravity for a vertical tube changes
the steady equation (6) to

1

A

dA

dx
= −

1

u

du

dx
=

g −Ru

c2 − u2
. (8)

In the presence of gravity, choking can be avoided because smooth tran-
sitions from sub- to supercritical flows are possible if the flow becomes
critical (u = c) at a location where g = Ru. Shapiro (1977) lists a num-
ber of other physiologically relevant scenarios in which smooth transitions
through u = c are possible. They include (i) axial variations of the vessel’s
elastic properties; (ii) spatial variations in the external pressure (repre-
senting, e.g., a localised compression as in sphygmomanometry); and (iii)
variations in the vessel’s undeformed cross-sectional area (corresponding to
flow in tapered elastic tubes). Properties (i) and (iii) in particular have
been used (for example by Elad et al. 1987) to describe flow limitation in
the lung: during forced expiration, a sub- to supercritical flow transition
arises through non-uniform airway properties, and a super- to subcritical
transition can occur further downstream via an elastic jump. Changes in
the downstream boundary conditions affect the location of the elastic jump
but not the overall flow.

A closely related example is provided by the giraffe jugular vein. Exper-
iments suggest it is in a strongly collapsed state when the giraffe is standing
upright, and that the flow in it can be supercritical. Pedley et al. (1996)
related the position of an elastic jump in the vein to the downstream flow
rate Q and the vein’s downstream cross-sectional area (which is set at the
junction with the distended superior vena cava). Pedley et al. (1996) showed
that an increase in Q forces the elastic jump to move further downstream,
and concluded that, in steady flow, Q cannot exceed the value Qmax for
which the elastic jump occurs at the downstream end of the jugular vein.

4.4. UNSTEADY FLOWS AND WAVE PROPAGATION

The full time-dependent equations (1–3) are of hyperbolic character. Kamm
& Shapiro (1979) performed a detailed analysis of the linear and nonlinear
waves governed by these equations. Particular attention was paid to the
time-dependent collapse and refilling of tubes which are subjected to an
instantaneously applied, spatially non-uniform external pressure, a model
of compression therapy for deep-vein thrombosis (Kamm 1982, Olson et al.

1982, Dai et al. 1999).
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For a particular choice of the tube law P(A) and the resistance function
R, Cowley (1981) was able to show that equations (1–3) have solutions
which have the character of roll-waves in open channel flows (analysed by
Dressler 1949). Recently, Brook et al. (1999) re-examined the properties
of roll-wave solutions in the collapsible-tube equations under less restric-
tive assumptions. Using a numerical Godunov scheme, they found that roll
waves can develop from unstable steady solutions of the 1D collapsible tube
equations. Applying time-dependent computations to the problem of blood
flow in the giraffe jugular vein described above, Brook & Pedley (2001)
showed that for Q > Qmax the flow remains unsteady, but roll waves were
not predicted to occur. At the IUTAM Symposium, Brook & Pedley showed
that axial variations of the tube properties result in smooth super- to sub-
critical transitions that are temporally stable. An increase in flow rate is
again found to move the position of the critical point (at which u smoothly
falls below c) further downstream. Thus a maximum flow rate is predicted
above which the critical point would no longer be located inside the col-
lapsible tube; for flow rates in excess of this value, the flow must therefore
be unsteady; see Brook (1997) and Brook & Pedley (2001).

At the IUTAM Symposium, Berkouk, Carpenter & Lucey presented a
study of the propagation of pressure waves along the fluid-filled spinal cord
(Carpenter et al. 1999, 2001a, 2001b). The model consists of two co-axial
tubes: the rigid outer tube was taken to represent the bony part of the
spine (the subarachnoid space), while the elastic inner tube represents the
spinal cord containing cerebrospinal fluid. It was shown that the propaga-
tion of pressure waves in the cerebrospinal fluid is strongly affected by the
presence of blockages in the outer tube, a situation that is characteristic of
syringomyelia, a disease of the spinal cord.

4.5. FLUTTER AND STATIC-DIVERGENCE INSTABILITIES

The models described so far are relevant for systems in which the inertia
of the fluid dominates that of the wall. In experiments mimicking flows in
lung airways, however, in which air is blown through thin-walled tubes,
wall inertia cannot be neglected. Drawing on studies in aeroelasticity, a
number of workers have presented investigations of the stability of poten-
tial flows in channels where one or both walls of the channel are some form
of heavy spring-backed plate with bending stiffness and subject to longi-
tudinal tension. In these studies it was assumed that the flow domain is
unbounded in the streamwise direction, and a linearised (small-amplitude)
analysis was used to obtain dispersion relations for waves of a given wave-
length, assuming also that the mean velocity profile is uniform across the
channel. Grotberg & Davis (1980), for example, showed how such a system,
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in the absence of any dissipation, exhibits an oscillatory flutter instability,
for which a downstream-propagating wave can grow temporally. The in-
troduction of a small amount of wall damping had the dramatic effect of
changing the instability to one of static divergence (a non-oscillatory in-
stability in which hydrodynamic pressures overcome the restoring forces
in the channel wall), as was also found by Weaver & Païdoussis (1977)
and Matsuzaki & Fung (1977). (Choking, described in Section 4.2, can also
be regarded as a manifestation of static divergence.) Only by adding dis-
sipation to the fluid (using a Darcy-type term that was later justified by
Grotberg & Shee 1985), making pressure and displacement act out of phase
with one another so that the fluid could do work on the wall, could an os-
cillatory travelling-wave flutter (TWF) instability be recovered (Grotberg
& Reiss 1984). In this sense TWF is a Class B instability (in the energy
classification of Benjamin 1963 & Landahl 1962), in that it is destabilised
when energy is transferred from the flow to the wall. Even though these
investigations involved 2D potential flows, Walsh (1995) has demonstrated
that their long-wave (1D) limit captures the dominant physical behaviour,
while showing also that coupling between axial and transverse motion for
curved shells (such as the trachea) can be dynamically significant (see also
Walsh et al. 1991).

These models capture two fundamental mechanisms of instability in in-
finitely long fluid-filled channels (static divergence and TWF), and demon-
strate the important role of dissipation in both the fluid and the wall, and of
the mechanical model chosen for the wall. However to understand the role
of such instabilities in the Starling-Resistor, in which the flexible segment
has finite length, alternative models and solution techniques are required.

4.6. 1D MODELS OF FLOW IN THE STARLING RESISTOR

4.6.1. Model development

To describe flows in the Starling Resistor (Fig. 1), the governing equa-
tions (1–3) must be supplemented by boundary conditions describing the
rigid parts of the system, which are known both experimentally and from
lumped-parameter models to have a major effect on both steady and un-
steady flows. Typical pressure-flux relationships that incorporate the effects
of viscous resistance (R) and fluid inertia (I) in the upstream and down-
stream segments are of the form

pentry − pup = RupQup + Iup
dQup

dt
,

pdown − pexit = RdownQdown + Idown
dQdown

dt
.

(9)
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The tube area must also be prescribed at either end of the collapsible
segment, where it is mounted onto the rigid pipes (e.g. Aup = Adown = A0,
where A0 is defined in (4)). However an immediate problem with the model
given by (1–3) is that it is only possible to prescribe the cross-sectional area
at a single (say, upstream) location. To overcome this problem, McClurken
et al. (1981) augmented the tube law (which only represents the effect of the
tube’s transverse bending stiffness) by terms which represent the effects of
the axial wall elasticity. Given that in a strongly collapsed state the aspect
ratio of the tube’s cross-section is large, McClurken et al. (1981) suggested
that the flow in such a tube would be similar to the flow between two
parallel membranes. Provided the tube is subject to a large axial tension
T0 (as are many biological vessels), and that wall inertia can be neglected,
the constitutive equation for the wall can be written as

ptm = P(A) − T0
∂2A

∂x2
. (10)

Mathematically, the inclusion of the axial-tension term increases the order
of the governing equation and thus allows the application of additional
boundary conditions. Furthermore, it makes the system dispersive, allowing
sufficiently short waves to propagate upstream against any oncoming flow.
Representation of tension in this way was one reason the simpler 2D channel
flow illustrated in Fig. 2 attracted subsequent interest, and indeed if P(A)
is removed from (10), and A in (2) and (10) is replaced by the width h(x, t),
the resulting equations then apply directly to this simpler system, provided
membrane slopes are sufficiently small.

A further significant improvement to the 1D model was proposed and
analysed by Cancelli & Pedley (1985). In earlier lumped-parameter mod-
els (e.g. Bertram & Pedley 1982), it had been found that the energy loss
in the separated-flow region downstream of the point of strongest collapse
played an important role in the development of self-excited oscillations. In
particular, if this energy loss was completely neglected (corresponding to
attached, inviscid flow with complete pressure recovery, as in Fig. 4a), the
tube was found always to choke if the flux was increased sufficiently (i.e.
A → 0 at some point along the length of the collapsible tube in finite time
via a static divergence instability). Cancelli & Pedley (1985) showed that
such behaviour persisted in a 1D inviscid model even when the dispersive
effects of longitudinal tension were accounted for. In contrast, if the energy
loss associated with flow separation was made as large as possible (cor-
responding to the formation of a parallel-sided jet beyond the narrowest
point in the tube, along which there is no pressure recovery, as in Fig. 4b),
Bertram & Pedley (1982) found that steady flow was always possible and no
oscillations were predicted. They found that self-excited oscillations arose
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Figure 4. Models of flow separation in a collapsible tube: (a) Attached flow; no pressure
loss. (b) Ideal separation; parallel-sided jet downstream of the separation point; no pres-
sure recovery. (c) An intermediate case: 0 < χ < 1 downstream of the separation point
corresponds to partial pressure recovery.

only if some pressure recovery was allowed. To represent this effect in a
1D framework, Cancelli & Pedley (1985) replaced the inviscid momentum
equation (1) by

∂u

∂t
+ χ u

∂u

∂x
= −

1

ρ

∂p

∂x
, (11a)

where

χ = 1 upstream
0 < χ < 1 downstream

}

of the separation point. (11b)

(The small viscous losses represented by R in (1) were found to be of minor
importance and were therefore neglected.) Fig. 4 illustrates the idea behind
this approach and shows that (11a,b) are intermediate between the extreme
cases of no separation (χ ≡ 1) and perfect separation (χ = 0 downstream



30 M. HEIL AND O.E. JENSEN

of the separation point). Estimates for χ were based on the steady Borda–
Carnot condition. Cancelli & Pedley’s (1985) theory also allowed for the
motion of the separation and attachment points by linking their position to
the value of the pressure gradient (although the only way for the dissipative
term (1 − χ)uux to vary smoothly across the separation point is to choose
this point to coincide with that at which ux = 0). Significantly, they found
that fixing the location of the separation point was sufficient to suppress
oscillations.

4.6.2. Computational results

Cancelli & Pedley’s (1985) numerical solution of the new time-dependent
equations showed that, as in the lumped parameter model, self-excited os-
cillations occurred only if 0 < χ < 1 downstream of the assumed point
of flow separation. Following Cancelli & Pedley’s (1985) initial computa-
tions, Reyn (1987) and Jensen & Pedley (1989) used phase-plane techniques
to investigate systematically the existence and non-existence of steady so-
lutions of this model, and demonstrated the existence of multiple steady
states. An important effect of dissipation due to flow separation was to
reduce the tendency of the tube to choke, and to increase the range of
parameters over which a steady solution could exist. Typical steady flow
states are illustrated in Fig. 5. Jensen (1990) then analysed the stability
of the steady solutions and identified distinct modes of oscillation, each
with its own range of frequencies, capturing a key qualitative feature of
experiments (Bertram et al. 1990, 1991). A weakly nonlinear analysis was
employed to explore interactions between these different modes.

In addition, many authors (e.g. Matsuzaki & Matsumoto 1989, Jensen
1992, Matsuzaki et al. 1994, Hayashi et al. 1998, Ikeda & Matsuzaki 1999)
performed detailed numerical simulations to explore the time-dependent
behaviour of this and closely related models. Matsuzaki and co-workers re-
fined the representation of energy losses in the region of separated flow;
Hayashi and co-workers replaced the dissipative term with a distributed
frictional term similar to that in (1). All these numerical studies exhibited
self-excited oscillations of considerable complexity. While care is required
in solving this problem numerically (to avoid generating spurious numerical
oscillations), there is convincing evidence that these studies captured gen-
uine oscillatory behaviour, and there is even evidence of chaotic dynamics
(Jensen 1992). Nonlinear periodic oscillations obtained from computations
are illustrated in Fig. 6.

Despite the use of ad hoc assumptions, 1D models can reproduce steady
behaviour with reasonable quantitative accuracy. Fig. 7, for example, shows
how such a model predicts pressure-drop limitation, and the corresponding
experimental results. Major qualitative features of unsteady flows, such
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Figure 5. Wall shapes predicted by Cancelli & Pedley’s 1D model: an increase in flow
rate (a → b → c) at constant downstream transmural pressure reopens the tube. The
flow is assumed to separate beyond the constriction. From Jensen (1992).

Figure 6. Time-traces of the downstream pressure, flow rate and the minimum
cross-sectional area during a self-excited oscillation. From Jensen (1992).

as multiple modes of oscillation, can also be simulated with qualitative
success. The key ingredients for the prediction of low-frequency oscillations
in both lumped and 1D models therefore appear to be (i) representation
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Figure 7. Pressure drop through the tube vs. flow rate for fixed downstream transmural
pressure. (a) Experimental results of Bertram (1986) (numbers adjacent to symbols de-
note frequency of oscillations; for these cases time-averaged pressures are recorded); (b)
numerical predictions from the 1D model of Jensen & Pedley (1989).

of fluid inertia (introduction of wall inertia can introduce additional higher
frequency modes); (ii) representation of dissipation in the system, either
distributed along the collapsible tube or confined to the separated flow
region (either of which can introduce a phase difference between pressure
fluctuations and wall displacement, overcoming the tendency of the tube to
collapse directly via static divergence); and (iii) strong coupling of the flow
in the collapsible tube to the rigid upstream and downstream segments via
(9).

4.6.3. Links with flutter instabilities

The connection between oscillations in the Starling resistor and travelling-
wave-flutter identified in potential-flow calculations is not directly obvious,
because of the neglect of wall inertia in many of the computational studies
and the profound influence of the rigid parts of the system. However some
insight into their relationship can be obtained by examining the situation
in which the longitudinal tension T0 in (10) is large, specifically

T ≡
T0A0

ρU2
0 L2

0

� 1, where U0 ≡
pentry − pexit

ρRL0 + (Rup + Rdown)A0
(12)

is the speed of the mean flow through the system assuming A = A0 along the
length L0 of the collapsible segment (the total pressure drop balancing the
viscous resistances defined in (1) and (9)). The large tension ensures that
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the tube remains almost uniform (A ≈ A0 in 0 ≤ x ≤ L0), that its shape is
insensitive to the magnitude of the external pressure (unless of course |pext|
is very large) and that transverse elastic stresses (represented by P(A) in
(10)) are not significant. Rather like a stretched string, the Starling Resistor
then admits a family of discrete, high-frequency normal modes in which the
tube wall oscillates in and out (with one or more half-wavelengths along its
length) and the fluid inside the tube oscillates backwards and forwards. To

illustrate, we write A = A0+Re(Â(X)E), u = Re(û(X)E), where x = L0X,
E ≡ exp(iβ(A0T0/ρL4

0)
1/2t) and β is a dimensionless frequency, and then

linearise (1, 2, 9, 10) about the uniform state; the dominant terms at high
frequencies are unsteady fluid inertia in both the compliant and rigid parts
of the system and membrane tension (neglecting gravity in (1) and P(A) in
(10)). The perturbation velocity along the collapsible segment then turns
out to satisfy

û′′′′ − β2û = 0 (0 ≤ X ≤ 1), (13a)

û′(0) = 0, û′′′(0) − β2(A0Iup/ρL0)û(0) = 0, (13b)

û′(1) = 0, û′′′(1) + β2(A0Idown/ρL0)û(1) = 0, (13c)

with area fluctuations given by Â(X) = −A0û
′(X)/iβL0. This fourth-order

problem can be solved to obtain a family of eigenmodes with discrete fre-
quencies 0 < β1 < β2 < . . . . Taking the first mode plus a mean flow as
the leading-order term in an expansion in powers of T −1/2, one obtains at
the following order the linear system (13) with forcing terms arising from
advective inertia and viscous dissipation. Applying a solvability condition
leads to a condition on the growth rate of the normal modes: the growth
rate is positive when

û2(0) − û2(1) >
RupA0

ρU0
û2(0) +

RdownA0

ρU0
û2(1) +

RL0

U0

∫ 1

0
û2 dX. (14)

Provided û2(0) > û2(1) (which computations indicate is the case for Idown >
Iup, since large downstream inertia suppresses velocity fluctuations at X =
1), as the pressure drop across the system increases, U0 increases through
the threshold defined by (14) and normal mode oscillations can become
unstable, extracting more energy from the mean flow than is lost to viscous
dissipation throughout the system. These oscillations can therefore be re-
garded as a form of flutter, although in this spatially bounded system they
are distinct from convectively unstable travelling waves that arise also in
either potential-flow models (e.g. Grotberg & Reiss 1984) or in studies of
thin falling liquid films, which are governed by a closely related set of PDEs
(Chang & Demekhin 1996).
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The analysis leading to (14) was presented to the IUTAM Symposium
by Jensen (2001) (for a very similar set of governing equations), who showed
also that (14) agrees well with both a stability analysis for arbitrary T0 and
numerical solutions of the full equations. At lower tensions, Jensen’s (2001)
1D model also exhibits multiple nonlinear static solutions (arising via static
divergence instability), and remarkably intricate oscillations exhibiting, for
example, a well-defined period-doubling cascade towards chaos. However,
while the stability threshold (14) is effective in understanding 1D model
systems in the high-tension limit, it is physically inconsistent: at high fre-
quencies, dissipation is likely to be confined to thin viscous boundary layers
that are very poorly described by quasi-steady dissipative terms as simple
as that in (1). This reflects the deficiencies present in any 1D model of a
high-Reynolds-number flow, and motivates the analysis of more rational 2D
systems.

5. Two-dimensional models

5.1. THE MODEL PROBLEM

Given the large resources required for the numerical solution of the 3D
problem, much recent activity has focussed on the 2D deformable channel
problem illustrated in Fig. 2. The flow is governed by the 2D Navier–Stokes
equations

ρ

(

∂ui

∂t
+ uj

∂ui

∂xj

)

= −
∂p

∂xi
+ µ

∂2ui

∂x2
j

and
∂uj

∂xj
= 0, (15)

where µ is the fluid’s viscosity and u(x, t) the 2D velocity field. No-slip and
kinematic conditions are imposed at the walls and a prescribed parabolic
velocity profile may be imposed at the inlet. The wall is typically modelled
as a membrane under axial tension T0, whose deformation (characterised
by the variable channel width h(x)) is assumed to be governed by

p − pext = T0 κ, (16)

where κ is the wall curvature, which can be approximated by κ ≈ −d2h/dx2

if the membrane slope is small, as in (10). The flow can then be parame-
terised by a Reynolds number Re = ρU0H0/µ based on the inlet channel
width H0 and an inlet flow speed U0, and a dimensionless tension parameter
T = T0/H0ρU2

0 .
Pedley (1992) studied this problem in the lubrication-theory limit (as-

suming small membrane slope and low Re), and showed how steady solu-
tions may break down if the fluid shear stress reduces the wall tension to
zero at some point along the wall. Matsuzaki & Fujimura (1995) showed
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later that inclusion of bending stiffness in (16) ensures the existence of
steady solutions for all values of the tension. Jensen (1998) also used lubri-
cation theory to obtain explicit pressure-flow relations for a highly collapsed
channel that exhibits flow and pressure-drop limitation through purely vis-
cous mechanisms.

The remaining studies of this problem have employed either direct nu-
merical methods or high-Reynolds-number asymptotics. In numerical stud-
ies (details of which are given below), a moving mesh was employed to dis-
cretise the ‘Arbitrary Lagrangian Eulerian’ form of the Navier-Stokes equa-
tions by finite elements. The fluid-mesh update in response to the move-
ment of the wall was typically performed by variants of Kistler & Scriven’s
(1983) ‘Method of Spines’. Two different methodologies were employed to
obtain coupled solutions of the fluid and solid equations. In the segregated
approaches of Lowe & Pedley (1995), Luo & Pedley (1995) and Liang et al.

(1997), the fluid and solid equations were discretised independently and a
coupled solution was obtained by a fixed-point iteration between the two
domains. All subsequent work was based on a fully-coupled approach in
which a global Newton–Raphson method was employed to solve the large
system of nonlinear algebraic equations which arises from a coupled dis-
cretisation of both sets of equations. The fully-coupled approach is more
difficult to implement but tends to provide a much more robust procedure.
In fact, most authors found the use of a fully-coupled approach to be nec-
essary to obtain converged solutions for the simulation of time-dependent
problems with significant fluid-structure interaction.

5.2. STEADY FLOW

5.2.1. Numerical studies

Following Lowe & Pedley’s (1995) initial study of zero-Reynolds-number
flow in collapsible channels, Rast (1994) and Luo & Pedley (1995) per-
formed detailed studies of the system’s behaviour at finite Reynolds num-
ber. Fig. 8 illustrates some of Rast’s (1994) results and shows the stream-
lines for the flow through a strongly collapsed channel. Downstream of the
point of strongest collapse the flow field is similar to that found in the flow
over a backward facing step (Armaly et al. 1983). As Re increases, a se-
quence of recirculating eddies develops on alternate sides of the channel.
Note that the flow field immediately downstream of the separation point is
not dissimilar to that assumed in Cancelli & Pedley’s (1985) 1D represen-
tation of flow separation.

When studying the system’s response to changes in the wall tension
T , Luo & Pedley (1995) noticed that it became increasingly difficult to
obtain converged solutions as the tension was reduced. No solutions could
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Figure 8. Streamlines for steady finite Reynolds number flow through a collapsible
channel; reproduced from Rast (1994) with permission.

be obtained if the tension was decreased below some critical value Tc, which
was dependent on Re. It was observed that Tc was close to the tension
Tb at which the wall began to bulge out near the upstream end of the
elastic segment (resulting in a wall shape similar to that shown in Fig. 9a
below). Bulging of the wall presents computational difficulties, since the
fluid pressure and the vorticity develop singularities at the convex upstream
corner. In the context of the collapsible-channel problem, these singularities
were first analysed by Lowe & Pedley (1995). The development of sharp
corners (and the associated singularities in the flow field) can be suppressed
by including bending stiffness into the wall model. This was first done by
Liang et al. (1997), whose linear Eulerian wall model represented the elastic
section as a pre-stressed elastic beam. At the IUTAM Symposium, Cai &
Luo (2001) presented a model which incorporated bending and extensional
stiffness into a geometrically nonlinear Lagrangian representation of the
wall; they also analysed how bending stiffness affects the structure of the
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flow near the ends of the flexible segment.

5.2.2. Asymptotic models

Only a few studies are available in which high-Reynolds-number asymptotic
analysis has been applied to steady flows in deformable tubes and chan-
nels. Tutty (1984) solved the boundary-layer equations coupled to a tube
law to integrate into a singular choke point over a long O(Re) lengthscale
(recovering the basic choking phenomenon described in Section 4.2), while
Rothmayer (1989) used interactive triple-deck theory to describe so-called
‘free interaction’ solutions over shorter lengthscales for nearly uniform sym-
metric channels. This work builds on the framework of Smith (1976a,b),
who showed how to couple viscous boundary layers on either wall of a
long channel to an inviscid rotational core flow between them. More re-
cent work in this direction by Guneratne (1999) and Guneratne & Pedley
(2001) was reported to the IUTAM Symposium by Pedley. At high T or
small transmural pressure, the membrane deflection is weak enough that
the wall displacements are of comparable magnitude to the boundary-layer
thickness. Displacement of the wall, induced either by the external pressure
pext or by flow-induced pressure variations, causes a sideways displacement
of the inviscid core flow. Guneratne solved the interactive boundary-layer
equations to determine steady flow configurations, formally assuming that
the channel length L0 = H0λ is large (Re1/7 � λ � Re) and the bound-
ary layers are narrow (having thickness of order H0(λ/Re)1/3). The special
case λ = O(Re1/7) captures the effect of a cross-stream pressure gradient,
although this turns out not to be particularly significant to the overall solu-
tion structure. With pext = 0, the uniform state loses stability to eigensolu-
tions in which the membrane is either weakly indented or dilated, or both.
Stability is lost through a sequence of transcritical bifurcations, with mem-
brane tension a bifurcation parameter. Imposition of nonzero pext acts as a
symmetry-breaking effect. When the upstream transmural pressure is held
constant the system exhibits abrupt jumps between solutions and there are
even ranges of T for which no steady solution could be found. Guneratne
demonstrated that the system exhibits a rich variety of nonuniform steady
states, reminiscent of those identified in the inviscid 1D models of Jensen
& Pedley (1989) and Reyn (1987), and which presumably are once again a
nonlinear manifestation of static divergence instability. Although the sta-
bility of these solutions to unsteady disturbances was not determined, their
richness points to even greater complexity in the full dynamic problem.
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5.3. UNSTEADY FLOW AND SELF-EXCITED OSCILLATION

5.3.1. Fundamental modes of instability

Before discussing computational studies of unsteady 2D flows, it is helpful
to digress briefly to mention studies of the linear stability of 2D flows in
unbounded channels having deformable walls. For more detailed reviews of
much of this work see Davies & Carpenter (1997a) and Chapter 4 of this vol-
ume. These studies, extending the simpler potential-flow models described
in Section 4.5, identify three primary modes of instability for channels with
spring-backed walls having bending stiffness, longitudinal tension, damp-
ing and inertia. As we have seen already, travelling-wave flutter (TWF) is
a convective, oscillatory Class B instability (in the Benjamin-Landahl en-
ergy classification), destabilised when energy is transferred from the flow
to the wall. These waves are stabilised by wall damping. In their long-wave
analysis of the Orr-Sommerfeld problem for disturbances to Poiseuille flow
in a compliant channel, Davies & Carpenter (1997a) show how TWF is
destabilised by effects confined to critical layers (which put pressure and
wall displacement out of phase, allowing the flow to do work on the wall, an
effect described also by Huang 1998), but is stabilised by viscous effects in
wall (Stokes) layers. Tollmien–Schlichting (TS) waves are intrinsic hydro-
dynamic modes of instability that are present even when the channel walls
are rigid; these are Class A waves (stabilised when energy is transferred
from the flow to the wall, and destabilised by wall damping).

Finally, static divergence is a direct, non-oscillatory (or very low fre-
quency) instability that is Class A or C (C being one that is insensitive to
energy transfer between the flow and the wall). In addition to these three
primary modes, further modes can arise through mode coalescence, so that
TWF and TS modes can combine to give rise to a powerful Class C flutter
instability. Larose & Grotberg (1997) also identified an apparently distinct
long-wave instability of developing flow in a compliant channel, and Davies
& Carpenter (1997b) showed how energy can be transferred from TS waves
to flow-induced surface instabilities at junctions in flows over compliant
panels of finite length. Huang (2001) has also examined the linear stability
of the configuration shown in Fig. 2 when the membrane is nearly flat, and
shown how both flutter and divergence modes can arise when the membrane
has significant inertia. It should be borne in mind that (i) the strongly non-
linear phenomena to be described below presumably have their origins in
these fundamental instabilities and (ii) neglecting effects such as bending
stiffness or wall damping may be dangerous because these can be singular
limits of the full stability problem.
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5.3.2. Computational studies

Unsteady finite-Reynolds-number flows in collapsible channels have been
computed by Luo & Pedley (1996, 1998, 2000), Liang et al. (1997) and
Pedrizzetti (1998). For time-dependent problems, the application of the
no-slip condition on the channel wall poses a subtle problem because the
Eulerian wall model (16) determines the wall’s overall shape but not the
position of individual material particles. Therefore certain ad hoc assump-
tions regarding the wall displacement field have to be made when matching
the fluid and wall velocities. Luo & Pedley (1996) considered two reasonable
assumptions (wall displacements either in the vertical direction or in the
direction normal to the wall’s instantaneous shape) and showed that the
results obtained with the two boundary conditions differed only slightly.
Cai & Luo’s (2001) new Lagrangian wall model will avoid this ambiguity
in future time-dependent simulations. Given the important role that the
wall tension T appeared to play for steady flows, Luo & Pedley (1996)
investigated the system’s time-dependent behaviour for different values of
T . They found that, for sufficiently large Reynolds number, self-excited os-
cillations developed when the tension was reduced below a critical value,
Tu. They reported that Tu tended to be close to but not identical to the
value Tb at which the upstream end of the collapsible segment began to
bulge out, although without varying many of the remaining parameters in
the problem the significance of bulging is hard to estimate. For values of
T just below Tu, the wall performed sustained harmonic oscillations. As
the tension was reduced further, the system appeared to undergo several
period-doubling bifurcations and carried out increasingly complex oscilla-
tions, many features of which were reminiscent of those observed in the
experiments of Bertram et al. (1990).

5.3.3. Vorticity waves

Fig. 9 shows the wall shapes and instantaneous streamlines in a channel
which is undergoing such large-amplitude self-excited oscillations. One of
the key features in the flow field is the generation of travelling waves down-
stream of the oscillating wall. The waves are very similar to the ‘vorticity
waves’ which are generated in 2D channels in which an elastic segment of
one wall is oscillated in a prescribed manner (Stephanoff et al. 1983; Ped-
ley & Stephanoff 1985; Ralph & Pedley 1988, 1989, 1990). Comparison in
these studies between experiment and a weakly nonlinear theoretical anal-
ysis supports the view that small-amplitude vorticity waves are sustained
through an inviscid mechanism, involving perturbations of the vorticity in
the oncoming Poiseuille flow, and that they have a wavelength O(St−1/3)
that is approximately independent of Re, where St = (H 2

0ω/µ) � 1 is the
Strouhal number of the oscillation (ω being the oscillatory frequency). In
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a similar way, flow forced by unsteady pressure gradients through channels
with fixed asymmetric indentations also generates vorticity waves (Sobey
1985; Tutty 1992; Tutty & Pedley 1993; Rosenfeld 1995), provided the forc-
ing frequency is in an appropriate range.

The origin of vorticity waves is of fundamental interest to the present
problem. The analysis of Bogdanova & Rhyzov (1983) of TS waves in plane
Poiseuille flow, using the interactive boundary-layer framework developed
by Smith (1976a,b), shows that downstream-propagating TS waves with
wavelength aRe1/7 can grow spatially if StRe3/7 exceeds a critical value;
Smith & Burggraf (1985) went on to suggest a link between large ampli-
tude lower-branch TS waves and vorticity waves. These observations are
consistent with the computations of Rosenfeld (1995) who shows how, as
St increases with Re fixed for oscillatory flow through a channel with one
indented wall, waves (presumably vorticity waves) are generated when St
is of magnitude comparable to Re−3/7. The waves change character as St
increases, suggesting alternative mechanisms are operating, and are sup-
pressed as St rises above unity.

These observations raise some immediate questions. Are the self-excited
oscillations computed by Luo & Pedley (1996) generated by a primary flut-
ter mechanism, which then forces secondary vorticity (TS) waves, or do vor-
ticity waves generate the primary instability? Might a combined TS/TWF
mode (such as reported by Davies & Carpenter 1997a) be driving the os-
cillations? And if any one of these mechanisms operates, how universal is
it as membrane properties and upstream and downstream flow conditions
are varied?

While we are far from a satisfactory answer to these questions, some
useful evidence is provided by results of a recent combined asymptotic
and computational study (Jensen & Heil 2002) suggesting that the high-
tension flutter instability described in a 1D model by Jensen (2001) (see
Section 4.6.3) has a direct analogue in two dimensions. A formal asymptotic
approximation of the 2D problem illustrated in Fig. 2, assuming Re � 1,
T � 1 and membrane length L0 � H0, predicts that under suitable condi-
tions the normal modes of the system described by (13) can become unsta-
ble and grow into self-excited oscillations when the Re exceeds a threshold
Rec of the form

Rec ∝ T 1/2β

[

∫ 1
0 Â2

X dX

Â2
X(1) − Â2

X(0)

]2

. (17)

Here β and Â(X) are exactly the eigenfrequency and area perturbation
computed using the 1D model via (13) (with Iup and Idown defined appro-
priately). Again, the analysis indicates that a necessary condition for this
instability to occur is that Idown > Iup. Since dissipation is confined to
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Figure 9. Wall shapes and instantaneous streamlines during self-excited oscillations of
a collapsible channel; from Luo & Pedley (2000).
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unsteady Stokes layers at high frequencies, Rec scales with T 1/2, an impor-
tant feature that was not captured in the analogous 1D result (14). It is
also striking that dissipation in the rigid parts of the system does not con-
tribute to the stability boundary in this limit. Predictions such as (17) show
good agreement with Navier–Stokes computations (for details see Jensen &
Heil 2002), supporting the view that flutter alone can provide the primary
mechanism of instability, at least when membrane tension is large.

5.3.4. Dissipation and flow limitation

Luo & Pedley (1996) computed the rate of dissipation in the fluid in order to
check Cancelli & Pedley’s (1985) assumption that most of the energy loss,
which had been found to be crucial for the development of self-excited os-
cillations, occurred in the separated-flow region downstream of the point of
strongest collapse. Interestingly, their computations did not confirm this as-
sumption but showed that most of the energy is dissipated in the boundary
layers which form on the walls upstream of the point of strongest collapse.
Pedley & Luo (1998) attempted to employ a von Karman–Pohlhausen tech-
nique (similar to the one initially suggested by Ikeda & Matsuzaki 1999)
to incorporate these findings into an improved 1D model. Unfortunately,
the predictions from this model agreed only poorly with those from the 2D
computations.

In a later study, Luo & Pedley (1998) showed that the inclusion of wall
inertia into the system allows the wall to perform flutter-type oscillations of
relatively high frequency. During the early stages of the self-excited oscilla-
tions, these higher-frequency oscillations were found to be merely superim-
posed on to the lower-frequency oscillations which develop in the absence of
wall inertia. However, the higher-frequency oscillations were found to grow
in amplitude so that they ultimately dominated the system’s behaviour. At-
tempts were made to relate these observations to the predictions from stud-
ies of flutter-type instabilities in flows past compliant boundaries (Grotberg
& Reiss 1984; Davies & Carpenter 1997a, 1997b; Larose & Grotberg 1997).
Some common trends were observed but overall the agreement tended to be
no more than qualitative, presumably because of the significant differences
between the systems considered in the different studies (large amplitude
oscillations of a finite-length elastic wall in Luo & Pedley (1998) vs. small
amplitude oscillations of (usually) infinite, initially undisturbed panels in
the flutter-type studies). It was established, however, that in all cases the
unstable growth of the high-frequency oscillations was caused by the en-
ergy transfer from the fluid into the wall, which is possible because of the
inertially-induced phase differences between the fluid loading and the wall
displacement field. This behaviour is typical of a class-B flutter instability.

In all the computational studies reviewed so far, the transmural pres-
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sure at the far downstream end of the rigid tube (p
(exit)
tm = pexit − pext in

Fig. 2) was held constant while other parameters (such as the flow rate or
the wall tension) were varied. Under these conditions, an increase in the
driving pressure drop, ∆p = pentry−pexit can be caused only by an increase

in the upstream transmural pressure p
(entry)
tm = pentry − pext which causes

the wall to bulge out. Hence the channel’s flow resistance decreases as the
flow rate is increased, leading to pressure-drop limitation. Physiologically

more relevant is the case in which the upstream transmural pressure p
(entry)
tm

is held constant (corresponding to the conditions during forced expiration
from the lung, for example). An increase in ∆p (by lowering the down-
stream transmural pressure) now increases the collapse of the wall and thus
increases the overall flow resistance. Luo & Pedley (2000) confirmed the ex-
pected occurrence of flow limitation in the 2D model but failed to confirm
any correlation between flow limitation and the onset of self-excited oscil-
lations. Both stable and unstable solutions were found in the flow-limited
regime. The stability properties of the steady solutions were also found to
be strongly dependent on the boundary conditions and in particular on
the position at which pressures and fluxes were prescribed. This is consis-
tent with the findings in Pedrizzetti’s (1998) study of forced oscillations in
axisymmetric collapsible tubes.

6. Three-dimensional models

The 2D physical model discussed in the previous section is a rational and
(at least in principle) realisable system which can be interpreted as an
approximation to the flow in a strongly collapsed 3D tube. However, it is
clear that the model ignores many potentially important 3D effects such
as (i) the strong three-dimensionality of the flow field during phases when
the tube collapse is moderate; (ii) the significant differences between flow
separation in 2D and 3D flows (see e.g. Tobak & Peake 1982); and (iii) the
drastic changes in wall stiffness as the tube changes from an axisymmetric
to a non-axisymmetrically buckled state.

6.1. THE MODEL PROBLEM

The first step towards the development of a rational computational model of
flow in 3D collapsible tubes was undertaken in Heil’s (1995) PhD thesis. The
collapsible tube was modelled as a thin-walled elastic shell (of length L0,
radius R0 and wall thickness h) whose deformation was described by large-
displacement, geometrically nonlinear shell theory. It is known from the
experiments of, e.g., Elad et al. (1992) that the non-axisymmetric collapse
of thin-walled elastic tubes only induces small extensional deformations of
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the tube wall. Therefore, a linear stress-strain relationship with two elastic
constants (Young’s modulus E and the Poisson ratio ν), was used as the
constitutive equation.

The tube’s undeformed geometry was described by the position vec-
tor rw(ζ1, ζ2) to the tube’s midplane which was parametrised by two La-
grangian coordinates ζ1 and ζ2. The vector field v(ζ1, ζ2) which displaces
material particles to their new positions Rw = rw +v was then determined
from the principle of virtual displacements

∫ 2π

0

∫ L0/R0

0

[

Eαβγδ

(

γαβ δγγδ +
1

12

(

h

R0

)2

καβ δκγδ

)

−

(

R0

h

)

(f · δRw)

]

dζ1dζ2 = 0, (18)

where γαβ and καβ are the midplane strain and bending tensors, respec-
tively, and Eαβγδ represents the fourth order tensor of elastic constants; see
Heil & Pedley (1996) for details. The load vector f is given by the combina-
tion of the external pressure and the traction that the fluid exerts onto the
tube wall. A finite-element method was used to discretise the variational
equation (18).

6.2. STEADY FLOWS IN COLLAPSIBLE TUBES

In a series of papers, Heil & Pedley (1995, 1996) and Heil (1996) coupled
the wall model (18) to a lubrication-theory-based description of the fluid
mechanics and investigated (i) the flow through axisymmetric tubes, (ii)
the tubes’ linear stability to non-axisymmetric perturbations and (iii) their
large-displacement postbuckling behaviour, respectively.

For strongly buckled tubes, the wall slope is no longer small and the ap-
plicability of lubrication theory must be questioned. Therefore, Heil (1997)
replaced the lubrication-theory model by a solution of the 3D steady Stokes
equations and performed extensive parameter studies to investigate the sys-
tem’s behaviour under conditions which correspond to typical experimental
procedures. The computational study was accompanied by an experimen-
tal investigation and good agreement between the numerical predictions
and the experimental results was reported. Interestingly, the predictions
from the lubrication-theory model were found to agree very well with those
from the full Stokes equations, even in cases where the tube was strongly
collapsed.

Figure 10 illustrates the wall deformation and the flow field inside a
strongly buckled elastic tube which conveys viscous fluid at zero Reynolds
number. The noticeable asymmetry of the tube’s deformation reflects the
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Figure 10. Strongly collapsed tube conveying viscous flow at zero Reynolds number. (a)
Wall shape. (b) Flow field in four cross-sections in the most strongly collapsed part of
the tube. The white lines indicate the streamlines of the transverse velocity field. After
Heil & Pedley (1996).

strong interaction between the fluid and solid mechanics. The tube’s up-
stream end is distended by a large positive fluid pressure. In the absence
of fluid inertia, the fluid pressure decreases continuously in the streamwise
direction. This leads to an increasingly strong compression of the tube wall
which causes the tube’s downstream end to buckle strongly. The increased
flow resistance in the most strongly collapsed part of the tube creates a
large local pressure drop. This compresses the tube’s downstream end so
much that two small regions on the tube’s sidewall buckle inwards, creating
two ‘dimples’ near the horizontal plane of symmetry.

Figure 10 highlights a number of important differences between flows in
collapsible channels and tubes: (i) The flow in the most strongly collapsed
part of the tube has little resemblance to the flow between two parallel
membranes. The contours of the axial velocity show that, long before the
first occurrence of opposite wall contact, the axial flow begins to split up
into two separate branches as it passes around the most strongly collapsed
region near the tube’s centreline. Recent computational studies of finite-
Reynolds-number flows in collapsible tubes (Hazel & Heil 2002) confirmed
the development of similar flow structures in the presence of fluid inertia.
Two distinct ‘jets’ develop in the outer lobes when the fluid passes through
the most strongly collapsed cross-section. The jets are deflected by the two
‘dimples’ in the sidewall and persist for a significant axial length until sec-
ondary flows and transverse diffusion of momentum smooth out the peaks
in the axial velocity. The structure of the separated-flow region (consist-
ing of a relatively passive separation bubble in the centre of the tube) was
found to be fundamentally different from that observed in collapsible chan-
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nels. These findings are consistent with the experimental observations of
Bertram & Godbole (1997) and Moore et al. (1995). (ii) Even though the
tube’s upstream end is strongly pressurised, its large extensional stiffness
prevents significant axisymmetric inflation; consequently very little bulging
is observed. This is in line with experimental observations but is in stark
contrast to the predictions from the 2D model. (iii) Given the wall defor-
mation shown in Fig. 10, is not clear in what way axial tension should be
represented in a tube-law-based model of the wall mechanics. The tension
term in the modified tube law (10) is based on the assumption that the
tensioned wall collapses radially inwards as sketched in Fig. 2. However,
Fig. 10(a) shows that this assumption is only justified in the tube’s verti-
cal plane of symmetry where little flow takes place. A significant part of
the tube wall (in the vicinity of the horizontal plane of symmetry) bulges
radially outwards. The convex wall curvature in this region implies that
axial tension would manifest itself in a relation similar to (10) but with a
plus rather than a minus sign. These observations raise serious doubts as to
whether it is reasonable to assume that flow in a collapsible tube is similar
to flow between two parallel tensioned membranes. Furthermore, while ax-
ial tension represents an essential ingredient for the formulation of the 2D
model, Heil & Pedley (1996) showed that it is only of minor importance for
the deformation of 3D tubes. This observation is also consistent with ex-
perimental observations. Most investigators subject their tubes to a certain
amount of axial tension, primarily to keep the tube from sagging under its
own weight. Despite the fact that it is difficult to prescribe precisely the
axial pre-stretch in an experiment, the tube’s behaviour does not seem to
be significantly affected by this lack of control.

Figure 11 illustrates how the nondimensional volume flux, q = 8µQL0

πR4
0E

,

varies with the driving pressure drop, ∆p = (pup − pdown)/E when the up-

stream transmural pressure p
(up)
tm = pup − pext is held at a constant value

(again with Re = 0). Since the flow is driven by a reduction in the down-
stream transmural pressure, an increase in ∆p increases the compressive
load on the initially axisymmetric tube. In the axisymmetric state (rep-
resented by the dashed line), the tube’s deformation remains very small
and the relation between flow rate and pressure drop is essentially linear.
However, when the compression of the tube’s downstream end exceeds a
critical value (at point A), the axisymmetric state loses its stability and the
tube buckles non-axisymmetrically. Fig. 11 shows that buckling occurs via
a subcritical bifurcation. If the pressure drop ∆p is held constant during
buckling, the tube jumps dynamically to a new strongly collapsed equilib-
rium state (point B) on the post-buckled branch (represented by the solid
line). In the collapsed state, the tube’s flow resistance is strongly increased,
and therefore the flow rate drops significantly during buckling. A further
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Figure 11. Volume flux as a function of the driving pressure drop through the tube for

constant upstream transmural pressure p
(up)
tm = 0. After Heil & Pedley (1996).

increase in the driving pressure drop leads to a further reduction in flow,
illustrating the occurrence of negative effort dependence through a purely
viscous mechanism.

Fig. 11 demonstrates that the transition between axisymmetric and
non-axisymmetric configurations (which cannot easily be incorporated into
lower dimensional models) plays a crucial role in the system’s behaviour.
In experimental studies, the existence of small imperfections will make the
transition between axisymmetric and non-axisymmetric states less abrupt.
However, Heil & Pedley’s (1996) computations with a circumferentially
varying external pressure showed that the system’s overall behaviour is not
strongly affected by the presence of such imperfections.
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7. Summary and suggestions for future work

The theoretical investigations reviewed in this Chapter have provided valu-
able insight into the behaviour of collapsible tubes, both in laboratory
experiments and in a variety of physiological applications. The detailed
analyses of relatively simple 1D models have allowed the identification of a
number of mechanisms which provide qualitative (and occasionally quanti-
tative) explanations for the experimentally observed behaviour of collapsi-
ble tubes. However, almost all 1D models involve a certain number of ad hoc

assumptions whose validity needs to be assessed critically. The analysis of
self-excited oscillations in 2D collapsible channels suggests that it might be
beneficial to develop improved 1D models which incorporate features such
as dissipation in boundary layers and possibly the interaction between wall
oscillation and vorticity waves.

The computational and asymptotic analyses of flow in 2D collapsible
channels have provided much insight into the details of the complex fluid-
structure interaction in this system. Our understanding could be further
improved by systematic analyses of the stability of steady flows. Asymp-
totic approaches (similar to those employed by Guneratne 1999 and Jensen
& Heil 2002) will be most appropriate for the analysis of flows in slightly
deformed channels, whereas the stability of flows in strongly collapsed chan-
nels will probably have to be determined numerically. Further interaction
with researchers interested in the stability of flows past compliant walls
(see Chapters 4 and 5) can be expected to be particularly beneficial for the
study of this problem.

Detailed numerical investigations of steady finite-Reynolds-number flows
in 3D collapsible tubes are currently in progress and have already revealed
many features which cannot be predicted by any of the lower-dimensional
models. The extension of such studies to unsteady flows will demand signif-
icant computational resources but would, for example, reveal whether vor-
ticity waves, which appear to play a significant role in the large-amplitude
self-excited oscillations in collapsible channels, have an equivalent (or even
any) relevance in 3D flows. The development of large-Reynolds-number
asymptotic analyses of flows in slightly buckled elastic tubes can be ex-
pected to provide useful insight into the structure of flow separation and
the development of flow instabilities in this system.

The challenge of understanding self-excited oscillations in collapsible
tubes, and in related problems involving flows over compliant surfaces, re-
mains substantial. As the studies reviewed here have demonstrated, how-
ever, the combined use of theoretical, computational and experimental tech-
niques can provide significant advances in areas that at first seemed in-
tractable. We have good reason to be optimistic about significant future
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progress in this field.
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