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A continuous KN basis is a family of functions

Φ(P, u)

on an algebraic curve V , that is P ∈ V , num-

bered

by a continuous parameter u. It is assumed

that Φ(P, u) is smooth in u. KN basis is char-

acterized

by the property

Φ(P, u)Φ(P, v) = LΦ(P, u+ v)

where L is a linear differential operator in u,

not depending on the point P .

KN basis is the basis of Fourier-Laurent trans-

form

on the curve V .

We shall start with basic definitions. Then we

focus

on the construction and the properties of dif-

ferential

operator L. We demonstrate a connection of

the the

multiplicative property of the KN basis of V

with the addition law on the Jacobian of V .
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P.G.Grinevich and S.P.Novikov (Topological Charge of

the real

periodic finite-gap Sine-Gordon solutions: Dedicated to

the

Memory of J.K.Moser, Commun. Pure Appl. Math.,

56(7), 2003, 956-978) proposed an analog of the Fourier-

Laurent integral transform on the Riemann surfaces.

They use a continuous analog of the discrete Krichever-

Novikov bases, which were introduced and studied for

the needs of the quantum string theory in the late 80-s.

“ Let us consider the following set of data: a

nonsingular Riemann surface Γ of the genus g

with marked

point ∞ ∈ Γ and selected local parameter near

this point z = k−1, z(∞) = 0. We construct

a function ψ0 = ψ(P, x) holomorphic on Γ\∞
and exponential near the infinite point:

ψ(z, x) = kg exp{kx}(1 +
∑
i>0

ηi(x)k
−i). ”
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“Problem. Which multiplicative properties have

the basic functions ψ(P, x) = ψx(P ) depending

on x as parameter?”

“Theorem. Let x, y 6= 0. There exists a differ-

ential operator L in the variable x of the order

g with

coefficients dependent on the both variables

x, y

such that the following Almost Graded Com-

mutative Associative Ring Structure is de-

fined by the formula

ψ(P, x)ψ(P, y) = Lψ(P, x+ y)

L = ∂gx + [η(x) + η(y)− η(x+ y)]∂g−1
x + . . . ”

When g = 1 one has: L = ∂x − (ζ(x) + ζ(y) −
ζ(x+ y)).

In [4] we construct the operator L for curves of higher

genera. The algorithm is based on reduction of this

problem to an effective description of the addition law

on Jacobi variety.
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Group of covariant shifts

Def. Covariant shift

Wα,β,c(f(u)) :=

exp{πı (〈2u+ α, β〉+ c)}f(u+ α),

where u, α, β ∈ Cg ; c ∈ C, ı2 = −1 and

〈 · , · 〉 is Euclidean scalar product.

Group of covariant shifts := S

Wα2,β2,c2Wα1,β1,c1 =

Wα1+α2, β1+β2, c1+c2+〈β1,α2〉−〈α1,β2〉

6



Representations of lattices

We use representations

Z g × Z g → S

defined by the formula

(n, n′) 7→ (α, β, c) =
(
(n, n′)Ω, φ(n, n′)

)
,

Where:

(1) Ω ∈ Sp(2g,C) :

ΩtJΩ = J, J =

(
0 1g

−1g 0

)
.

(2) φ : Z2g → Z2 is an Arf function:

for all Q1 and Q2 in Z2g Arf identity holds

φ(Q1+Q2) = φ(Q1)+φ(Q2)+Q1JQ
t
2 mod 2;

To define an Arf function φ fix

(`, `′) ∈ Z2g then

φ(n, n′) = 〈n+ `, n′ + `′〉 − 〈`, `′〉 mod 2.
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Explicit formula of a representation

Write Ω in block form

Ω =

(
Ω1,1 Ω1,2
Ω2,1 Ω2,2

)
;

then we have a representation:

W
`,`′
Ω (n, n′) := Wα,β,c,

where

α = (nΩ1,1 + n′Ω2,1)

β = (nΩ1,2 + n′Ω2,2)

c = 〈n+ `, n′ + `′〉 − 〈`, `′〉
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Construction of Sigma-function

Let Ω ∈ Sp(2g,C) and |Ω1,1| 6= 0.

Set

GΩ(u) = exp
{
−
π ı

2
uκut

}
, κ = Ω−1

1,1Ω1,2.

Def. σ(u,Ω; `, `′) :=
∑

(n,n′)∈Z2g

W
`,`′
Ω (n, n′)GΩ(u)

Theorem. σ(u,Ω; `, `′) is entire function of

u ∈ Cg iff Im τ is positive definite.

where

τ = Ω2,1Ω
−1
1,1, ⇒ Ω2,2 = τΩ1,1κ+(Ωt

1,1)
−1
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Families of Sigma-functions

Theorem. Fix Ω and (`, `′).

If W
`,`′
Ω (k, k′)F (u) = F (u), ∀ (k, k′) ∈ Z2g

then F (u) = const · σ(u,Ω; `, `′).

Fix a map

Ω : Cq → Sp(2g,C), |Ω1,1(λ)| 6= 0

then we have

Family of Sigma-Functions:

σ(u, λ; `, `′) :=
σ(u,Ω(λ); `, `′)√

|Ω1,1(λ)|
, λ ∈ Cq.

10



The Heat operators

Fix an arbitrary smooth vector field

L =
q∑

j=1

vj(λ)
∂

∂λj
.

Introduce the second order operator

HΩ =
g∑

r,s=1

(αr,s∂r,s+2αg+r,sur∂s+αg+r,g+surus),

where (αr,s) = L(Ωt)JΩ and ∂r,s =
∂2

∂ur∂us

δΩ(λ) =
1

2
sk-tr

(
L(Ωt)JΩ

)
.

sk-trM :=
g∑

i=1
mi,g+1−i for M = (mi,j)

Lemma. For any constant K ∈ Sp(2g,C)

HΩ = HKΩ, δΩ(λ) = δKΩ(λ).
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Lemma.(
2L+HΩ + δΩ(λ)

) GΩ(u)√
|Ω1,1(λ)|

= 0.

Lemma. For all (k, k′) ∈ Z2g

the covariant shift W
`,`′

Ω(λ)(k, k
′)

and the heat operator 2L+HΩ + δΩ(λ)

commute as the operators on the space of

smooth

functions of u and λ.

Theorem. The family σ(u, λ; `, `′) solves the

equation(
2L+HΩ + δΩ(λ)

)
σ(u, λ; `, `′) = 0
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Example. q = 1, g = 1, L = ∂λ

Ω(λ) =

(
ω ωκ
τω τωκ + 1/ω

)
ω 6= 0, Imτ > 0, κ are smooth functions in λ.

HΩ = a1,1∂
2
u + 2a1,2u∂u + a2,2u

2

δΩ(λ) = a1,2

where

a1,1 = −ω2∂λτ,

a1,2 =
∂λω

ω
− ω2 κ∂λτ,

a2,2 = ∂λκ − ω2 κ2∂λτ + 2κ∂λω
ω

13



Example. q = 1, g is arbitrary

L = ∂λ

Ω(λ) =

(
ω ωκ
τω τωκ + (ωt)−1

)
where |ω| 6= 0, τ t = τ , Imτ is positive definite,

κt = κ are smooth (g × g)-matrix functions in

λ .

HΩ = (∂u)
tA1,1∂u + 2utA2,1∂u + utA2,2u

δΩ(λ) = trA2,1

where

A1,1 = −ωt(∂λτ)ω,
A2,1 = ω−1∂λω+ κA1,1,

A2,2 = ∂λκ +A2,1κ + κAt2,1 − κA1,1κ.
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Abelian Sigma-functions and Heat Equations

in Non-holonomic frame.

Let s > n > 1, gcd(n, s) = 1.

f(x, y, λ) = yn − xs −
n−2∑
j=0

s−2∑
i=0

λns−in−jsx
iyj,

the number m := #{λk | k < 0} is called modal-

ity.

Set: λk = 0, k < 0.

Def. The family of (n, s)-curves:

V = Vλ = {(x, y) ∈ C2 , λ ∈ C2g−m | f(x, y, λ) = 0}

genus of a generic curve Vλ is g = (n−1)(s−1)
2 .

Example. Hyperelliptic curves are (2,2g+ 1)-

curves, m = 0:

f(x, y, λ) = y2 − x2g+1 −
2g−1∑
i=0

λ2(2g−i+1)x
i
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The principal Arf function of (n, s)-curve

Def. Weierstrass sequence (w1, . . . , wg) is the

ordered set N\M, where M = {an+ bs}, a, b ∈
N ∪ 0.

Assign w(ξ) =
∑
i ξ
wi then

w(ξ) =
1

1− ξ
−

1− ξns

(1− ξn)(1− ξs)
.

Now g = w(1) = (n−1)(s−1)
2 .

Let us define (π1, . . . , πg) by the formula

πk = wg−k+1 − (g − k), k = 1, . . . , g.

(wg = 2g − 1 and π1 = g.)

Def. The principal Arf function is defined by

` = (1, . . . ,1) and `′ = (π1, . . . , πg).

Let us fix this value of (`, `′) for the rest of the

talk.

Example. For hyperelliptic family (n, s) =

(2,2g+ 1)

`′ = (g, g − 1, . . . ,1).
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Meromorphic Abelian integrals
We do the hyperelliptic case for simplicity. Set:

duj(x, y) =
xj−1dx

2y
, j = 1, . . . , g,

drj(x, y) = −
(
x∂xπ+

(
f(x, y, λ)

x2j

))
duj(x, y),

where π+( · ) truncates the negative powers of
x.

Def. Universal Abelian cover of V is the space
W

of pairs
(
(x, y); [γ]

)
, where (x, y) ∈ V ; [γ] is

an equivalence class of paths from ∞ ∈ V to
(x, y).
We say that γ1 and γ2 are in [γ] if the contour
γ1 ◦ γ−1

2 is homologous to zero.
Def. Abelian maps: A : W → Cg , A∗ : W →
Cg,

Aj(x, y; [γ]) =
∫
γ
duj(x, y),

A∗j(x, y; [γ]) =
∫
γ
drj(x, y).

j = 1, . . . , g.
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The period map Ω : C2g−m → Sp(2g,C)

Let the contours γ1, . . . , γ2g give a basis in H1(V,Z),

such that the intersection matrix is J:

Ja,b = γa◦γb = sign(b−a)δg,|b−a|, a, b = 1, . . . ,2g.

Set for i, j = 1, . . . , g,

ωi,j =
1

2

∮
γj

dui(x, y), ω′i,j =
1

2

∮
γg+j

dui(x, y),

ηi,j = −
1

2

∮
γj

dri(x, y), η′i,j = −
1

2

∮
γg+j

dri(x, y),

then for Ω(λ) =

(
ω η
ω′ η′

)
, where ω = (ωi,j),

etc.,

we have Legendre relation

Ω(λ)JΩ(λ)t =
πı

2
J

Note: For nonsingular Vλ the choice of basis contours

provides |ω| 6= 0 and positive definiteness of Imω′ω−1.

Note: K = `ω+ `′ω′ is the vector of Riemann constants.
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Frame tangent to Discriminant and Heat operators

Denote by ∆(λ) the discriminant of f(x, y, λ):

∆(λ) = 0 ⇔ ∃ (x, y) f = fx = fy = 0

Consider the space T of polynomial vector fields

tangent to {λ ∈ C2g−m|∆(λ) = 0}.
L ∈ T implies

L∆(λ) = ϕ(λ)∆(λ), ϕ(λ) ∈ C[λ].

T has the basis {L1, . . . , L2g} over C[λ]. The

basis gives a non-holonomic frame which de-

fines a nontrivial polynomial Lie algebra (the

structure is described in [1]).

We use the basis vector fields {L1, . . . , L2g} and

the period map Ω(λ) to construct 2g heat op-

erators.
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Examples of basis fields Li

g = 1. We have ∆(λ) = 4λ3
4 + 27λ2

6

L0 = 4λ4∂4 + 6λ6∂6,

L2 = 6λ6∂4 −
4

3
λ2
4∂6.

Here ∂k =
∂

∂λk
, degλk = k. Then degLj =

j.

g = 2. The symmetric matrix T transforms the

standard fields ∂4, ∂6, ∂8, ∂10 to the basis fields

L0, L2, L4, L6

T =


4λ4 6λ6 8λ8 10λ10

∗ 40λ8−12λ2
4

5
50λ10−8λ4λ6

5 −4λ4λ8
5

∗ ∗ 20λ4λ8−12λ2
6

5
30λ4λ10−6λ6λ8

5

∗ ∗ ∗ 4λ6λ10−8λ2
8

5


Note: ∆(λ) = |T |. The matrix T plays an important

role

in Singularity Theory as the convolution matrix.
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Examples of operators Hi

Here Di =
∂

∂ui
; degui = −i degHi = i.

g = 1.

H0 = u1D1 − 1

6H2 = 3D2
1 − λ4u

2
1

g = 2.

H0 = u1D1 + 3u3D3 − 3

10H2 = 5D2
1 + 10u1D3 − 8λ4u3D1−

− 3λ4u
2
1 + (15λ8 − 4λ2

4)u
2
3

5H4 = 5D1D3 + 5λ4u3D3 − 6λ6u3D1 − 5λ4−
− λ6u

2
1 + 5λ8u1u3 + 3(5λ10 − λ4λ6)u

2
3

10H6 = 5D2
3 − 6λ8u3D1 − 5λ6−

− λ8u
2
1 + 20λ10u1u3 − 3λ4λ8u

2
3
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Abelian Sigma-function.

Our construction gives the following result.

Theorem. The heat equations

Liσ(u, λ) = Hiσ(u, λ),

for i ∈ {nk+ js}, 0 6 j < n− 1, 0 6 k < s− 1,

uniquely define the Abelian σ-function of (n, s)-

curve.

(1) It has the translation property

σ(u+A[χ]) = σ(u) exp
{
−
〈
A∗[χ], u+

1

2
A[χ]

〉
+

+πı
(
〈k+ `, k′ + `′〉 − 〈`, `′〉

)}
,

where [χ] =
∑g
j=1(kjγj + k′jγg+j).

(2) It is an entire function on Cg × C2g−m.

Its power series in u and λ has rational coeffi-

cients.

(3) The grading degx = n, deg y = s and

degλk = k gives deg f(x, y, λ) = ns and the

grading of u s.t.

degσ(u, λ) = −
g∑

j=1
`′j = −

(n2 − 1)(s2 − 1)

24
.
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Krichever-Novikov continuous basis

Def.

ψ(x, y; [γ]) := exp
{
−
∫
[γ]

〈
A∗((x′, y′), [γ′]),dA(x′, y′)

〉}
ψ(x, y; [γ]) is the unique entire function W → C
with:

(1) Single essentially singular point ∞ ∈ V

ψ ∼ ξg(1 +O(ξ)).

(2) No zeros and poles in V \∞.

ξ is local parameter at ∞, deg ξ = −1.

Def.

Ψ
(
u, (x, y)

)
:=

σ(A(x, y; [γ])− u)

ψ(x, y; [γ])σ(u)
exp−〈A

∗(x,y;[γ]),u〉

Ψ is single-valued function Cg × V → C.

If g = 1, Ψ
(
u, (℘(ξ), ℘′(ξ))

)
=

σ(ξ − u)

σ(ξ)σ(u)
exp{uζ(ξ)}.

gives a solution of Lamè equation

∂2
uΨ

(
u, (x, y)

)
−2℘(u)Ψ

(
u, (x, y)

)
= xΨ

(
u, (x, y)

)
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Fix u ∈ Cg. Then Ψ
(
u, (x, y)

)
is

the unique single-valued function on V with:

(1) g zeros on V at A−1(u).

(2) Single essentially singular point ∞ ∈ V

Ψ ∼ ξ−g exp{p(ξ−1;u, λ)}(1 +O(ξ)),

where p(t;u, λ) = p1(u, λ)t+· · ·+p2g−1(u, λ)t
2g−1

is fixed by the choice of f(x, y, λ).

pk(u, λ) is homogeneous polynomial deg pk(u, λ) =

−k. In general case

p1(u1,0, . . . ,0, λ) = u1,

pj(u1,0, . . . ,0, λ) = 0, j > 1.

Note: Ψ
(
u, (x, y)

)
is the Baker-Akhiezer Function corre-

sponding to the degenerate set of Krichever data.
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Example. For hyperelliptic curves

p(t;u,0) =
g∑

i=1

u2i−1t
2i−1.

g = 1, p(t;u, λ) = u1t,

g = 2, p(t;u, λ) = u1t+ u3t
3,

g = 3, p(t;u, λ) =
(
u1 +

1

2
λ4u5

)
t+ u3t

3 + u5t
5.

Also, the equation

∂2
u1

Φ− 2℘1,1(u)Φ = xΦ,

where

℘1,1(u) = −
∂2

∂u2
1

logσ(u)

has solutions

Φ± = Ψ
(
± u, (x, y)

)
,∣∣∣∣∣∂u1Φ+ ∂u1Φ−

Φ+ Φ−

∣∣∣∣∣ = 2y.
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In our notation the “ψ(P, t)” of Grinevich

and Novikov is Ψ(te1, (x, y)) , where e1 is the

1-st ort in Cg.

The relation defining the multiplicative struc-

ture

of the base {Ψ(te1, (x, y))} is a particular case

of the relation

Ψ
(
u, (x, y)

)
Ψ
(
v, (x, y)

)
= LΨ

(
w, (x, y)

) ∣∣∣∣
w=u+v

,

where u, v ∈ Cg and

L =
g∑

j=0

aj(u, v, w)
∂g−i

∂w
g−i
1

, degL = g.
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We define the family of functions on V with

parameter w ∈ Cg

G
(w)
k (x, y) =

∂ kw1
Ψ(w, (x, y))

Ψ(w, (x, y))
, k = 0,1, . . .

Each G
(w)
k (x, y) is rational function on V .

It has g+ k poles in {k∞, A−1(w)}.
Its coefficients are Abelian functions

on the Jacobi variety of V .

G
(w)
0 (x, y) = 1,

G
(w)
1 (x, y) = −

(
ζ1(A(x, y; [γ])− w) + ζ1(w)+

+〈A∗(x, y; [γ]), e1〉
)
,

where ζ1(w) = ∂w1 logσ(w).

For k > 1 we have the recurrence

G
(w)
k+1(x, y) = ∂w1G

(w)
k (x, y)+G

(w)
1 (x, y)G(w)

k (x, y).

We express G(w)
k+1(x, y) as rational functions of

(x, y).
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Example. In the hyperelliptic case

G
(w)
1 (x, y) =

1

2

2y+
g∑

i=1
℘1,1,(g−i)(w)xg−i

xg −
g∑

i=1
℘1,i(w)xg−i

,

G
(w)
2 (x, y) = x+ 2℘1,1(w)

from the recurrence we have for k > 2

G
(w)
k (x, y) = ak + bkG

(w)
1 (x, y)

ak+1 = ∂w1ak + (x+ 2℘1,1(w))bk,

bk+1 = ∂w1bk + ak,

Clearly, ak and bk are polynomials in x.

℘i,j(w) = −
∂2 logσ(w)

∂wi∂wj
,

℘i,j,k(w) = −
∂3 logσ(w)

∂wi∂wj∂wk

where i, j, k are any odd integers between 0 and

2g.
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We prove that for all u, v, w ∈ Cg

Ψ
(
u, (x, y)

)
Ψ
(
v, (x, y)

)
Ψ
(
− u− v, (x, y)

)
= R

(u,v)
3g (x, y),

Ψ
(
w, (x, y)

)
Ψ
(
− w, (x, y)

)
= R

(w)
2g (x, y).

As function on V

R
(u,v)
3g (x, y) has

3g-tuple pole at ∞ and 3g zeros at

{A−1(u), A−1(v), A−1(−u− v)}.

R
(w)
2g (x, y) has

2g-tuple pole at ∞ and 2g zeros at

{A−1(w), A−1(−w)}.

The functions R(u,v)
3g (x, y) and R

(w)
2g (x, y)

define addition and inverse operations on

Symg(V ).
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Theorem. The operator L is defined by the

equality

R
(u,v)
3g (x, y)

R
(u+v)
2g (x, y)

=
g∑

i=0

ai(u, v, u+ v)G(u+v)
i (x, y).

This reduces the problem to comparing the co-

efficients at monomials, after cancelation of

the common

denominator on both sides.

Example. For hyperelliptic curves we have

α0(u, v, w) = 1,

α1(u, v, w) = −ζ1(u)− ζ1(v) + ζ1(w),

2α2(u, v, w) = −℘1,1(u)− ℘1,1(v)− 3℘1,1(w)+

+ α1(u, v, w)2
)
, etc.
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