Krichever-Novikov continuous basis for plane algebraic curves

Buchstaber, Victor M. and Leykin, Dmitry 2005

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

```
Reports available from: http://eprints.maths.manchester.ac.uk/
    And by contacting: The MIMS Secretary
    School of Mathematics
The University of Manchester
Manchester, M13 9PL, UK
```

Krichever-Novikov continuous basis for plane algebraic curves.

Victor M. Buchstaber

Steklov Mathematical Institute,
Russian Academy of Sciences, Moscow

School of Mathematics University of

 Manchester,
Dmitry Leykin

Institute of Magnetism
National Academy of Sciences of Ukraine, Kiev

Manchester Institute for Mathematical Sciences

December 2005

A continuous KN basis is a family of functions $\Phi(P, u)$
on an algebraic curve V, that is $P \in V$, numbered
by a continuous parameter u. It is assumed that $\Phi(P, u)$ is smooth in u. KN basis is characterized
by the property

$$
\Phi(P, u) \Phi(P, v)=L \Phi(P, u+v)
$$

where L is a linear differential operator in u, not depending on the point P.
KN basis is the basis of Fourier-Laurent transform
on the curve V.
We shall start with basic definitions. Then we focus
on the construction and the properties of differential
operator L. We demonstrate a connection of the the
multiplicative property of the KN basis of V with the addition law on the Jacobian of V.

References
Buchstaber, V. M. and Leykin, D. V.
[1] Polynomial Lie algebras.
Funct. Anal. Appl. 36 (2002), no. 4, 267280.
[2] The heat equation in a nonholonomic frame. Funct. Anal. Appl. 38 (2004), no. 2, 88-101. [3] Hyperelliptic addition law.
J. Nonlin. Math. Phys. 12 (2005), S. 1, 106123.
[4] Addition laws on Jacobain varieties of plane algebraic curves.
Proceedings of the Steklov Math. Inst. V. 251, 2005, 1-72.
P.G.Grinevich and S.P.Novikov (Topological Charge of the real
periodic finite-gap Sine-Gordon solutions: Dedicated to the

Memory of J.K.Moser, Commun. Pure Appl. Math., $56(7), 2003,956-978)$ proposed an analog of the FourierLaurent integral transform on the Riemann surfaces. They use a continuous analog of the discrete KricheverNovikov bases, which were introduced and studied for the needs of the quantum string theory in the late 80-s. " Let us consider the following set of data: a nonsingular Riemann surface Γ of the genus g with marked
point $\infty \in \Gamma$ and selected local parameter near this point $z=k^{-1}, z(\infty)=0$. We construct a function $\psi^{0}=\psi(P, x)$ holomorphic on $\Gamma \backslash \infty$ and exponential near the infinite point:

$$
\psi(z, x)=k^{g} \exp \{k x\}\left(1+\sum_{i>0} \eta_{i}(x) k^{-i}\right)
$$

"Problem. Which multiplicative properties have the basic functions $\psi(P, x)=\psi_{x}(P)$ depending on x as parameter?"
"Theorem. Let $x, y \neq 0$. There exists a differential operator L in the variable x of the order g with
coefficients dependent on the both variables x, y
such that the following Almost Graded Commutative Associative Ring Structure is defined by the formula

$$
\begin{gathered}
\psi(P, x) \psi(P, y)=L \psi(P, x+y) \\
L=\partial_{x}^{g}+[\eta(x)+\eta(y)-\eta(x+y)] \partial_{x}^{g-1}+\ldots{ }^{\prime \prime}
\end{gathered}
$$

When $g=1$ one has: $L=\partial_{x}-(\zeta(x)+\zeta(y)-$ $\zeta(x+y))$.
In [4] we construct the operator L for curves of higher genera. The algorithm is based on reduction of this problem to an effective description of the addition law on Jacobi variety.

Group of covariant shifts

Def. Covariant shift

$$
\begin{aligned}
& W_{\alpha, \beta, c}(f(u)):= \\
& \quad \exp \{\pi \imath(\langle 2 u+\alpha, \beta\rangle+c)\} f(u+\alpha),
\end{aligned}
$$

where $u, \alpha, \beta \in \mathbb{C}^{g} ; c \in \mathbb{C}, \imath^{2}=-1 \quad$ and $\langle\cdot, \cdot\rangle$ is Euclidean scalar product.

Group of covariant shifts $:=S$

$$
\begin{aligned}
& W_{\alpha_{2}, \beta_{2}, c_{2}} W_{\alpha_{1}, \beta_{1}, c_{1}}= \\
& \quad W_{\alpha_{1}+\alpha_{2}, \beta_{1}+\beta_{2}, c_{1}+c_{2}+\left\langle\beta_{1}, \alpha_{2}\right\rangle-\left\langle\alpha_{1}, \beta_{2}\right\rangle}
\end{aligned}
$$

Representations of lattices
We use representations
$\mathbb{Z}^{g} \times \mathbb{Z}^{g} \rightarrow S$
defined by the formula

$$
\left(n, n^{\prime}\right) \mapsto(\alpha, \beta, c)=\left(\left(n, n^{\prime}\right) \Omega, \phi\left(n, n^{\prime}\right)\right)
$$

Where:
(1) $\quad \Omega \in \operatorname{Sp}(2 g, \mathbb{C})$:

$$
\Omega^{t} J \Omega=J, \quad J=\left(\begin{array}{cc}
0 & 1_{g} \\
-1_{g} & 0
\end{array}\right) .
$$

(2) $\phi: \mathbb{Z}^{2 g} \rightarrow \mathbb{Z}_{2} \quad$ is an Arf function:
for all Q_{1} and Q_{2} in $\mathbb{Z}^{2 g} \quad$ Arf identity holds

$$
\phi\left(Q_{1}+Q_{2}\right)=\phi\left(Q_{1}\right)+\phi\left(Q_{2}\right)+Q_{1} J Q_{2}^{t} \quad \bmod 2 ;
$$

To define an Arf function ϕ fix $\left(\ell, \ell^{\prime}\right) \in \mathbb{Z}^{2 g}$ then
$\phi\left(n, n^{\prime}\right)=\left\langle n+\ell, n^{\prime}+\ell^{\prime}\right\rangle-\left\langle\ell, \ell^{\prime}\right\rangle \bmod 2$.

Explicit formula of a representation

Write Ω in block form

$$
\Omega=\left(\begin{array}{ll}
\Omega_{1,1} & \Omega_{1,2} \\
\Omega_{2,1} & \Omega_{2,2}
\end{array}\right) ;
$$

then we have a representation:

$$
W_{\Omega}^{\ell, \ell^{\prime}}\left(n, n^{\prime}\right):=W_{\alpha, \beta, c},
$$

where

$$
\begin{aligned}
\alpha & =\left(n \Omega_{1,1}+n^{\prime} \Omega_{2,1}\right) \\
\beta & =\left(n \Omega_{1,2}+n^{\prime} \Omega_{2,2}\right) \\
c & =\left\langle n+\ell, n^{\prime}+\ell^{\prime}\right\rangle-\left\langle\ell, \ell^{\prime}\right\rangle
\end{aligned}
$$

Construction of Sigma-function
Let $\Omega \in \operatorname{Sp}(2 g, \mathbb{C}) \quad$ and $\quad\left|\Omega_{1,1}\right| \neq 0$.
Set

$$
G_{\Omega}(u)=\exp \left\{-\frac{\pi \imath}{2} u \varkappa u^{t}\right\}, \quad \varkappa=\Omega_{1,1}^{-1} \Omega_{1,2} .
$$

Def. $\sigma\left(u, \Omega ; \ell, \ell^{\prime}\right):=\sum_{\left(n, n^{\prime}\right) \in \mathbb{Z}^{2 g}} W_{\Omega}^{\ell, \ell^{\prime}}\left(n, n^{\prime}\right) G_{\Omega}(u)$
Theorem. $\sigma\left(u, \Omega ; \ell, \ell^{\prime}\right)$ is entire function of $u \in \mathbb{C}^{g}$ iff $\operatorname{Im} \tau$ is positive definite.
where
$\tau=\Omega_{2,1} \Omega_{1,1}^{-1}, \quad \Rightarrow \quad \Omega_{2,2}=\tau \Omega_{1,1} \varkappa+\left(\Omega_{1,1}^{t}\right)^{-1}$

Families of Sigma-functions

Theorem. Fix Ω and (ℓ, ℓ^{\prime}).

$$
\begin{aligned}
& \text { If } \quad W_{\Omega}^{\ell, \ell^{\prime}}\left(k, k^{\prime}\right) F(u)=F(u), \quad \forall\left(k, k^{\prime}\right) \in \mathbb{Z}^{2 g} \\
& \text { then } \quad F(u)=\text { cont } \cdot \sigma\left(u, \Omega ; \ell, \ell^{\prime}\right) .
\end{aligned}
$$

Fix a map

$$
\Omega: \mathbb{C}^{q} \rightarrow \operatorname{Sp}(2 g, \mathbb{C}), \quad\left|\Omega_{1,1}(\lambda)\right| \neq 0
$$

then we have
Family of Sigma-Functions:

$$
\sigma\left(u, \lambda ; \ell, \ell^{\prime}\right):=\frac{\sigma\left(u, \Omega(\lambda) ; \ell, \ell^{\prime}\right)}{\sqrt{\left|\Omega_{1,1}(\lambda)\right|}}, \quad \lambda \in \mathbb{C}^{q}
$$

The Heat operators

Fix an arbitrary smooth vector field

$$
L=\sum_{j=1}^{q} v_{j}(\lambda) \frac{\partial}{\partial \lambda_{j}} .
$$

Introduce the second order operator

$$
H_{\Omega}=\sum_{r, s=1}^{g}\left(\alpha_{r, s} \partial_{r, s}+2 \alpha_{g+r, s} u_{r} \partial_{s}+\alpha_{g+r, g+s} u_{r} u_{s}\right)
$$

where $\quad\left(\alpha_{r, s}\right)=L\left(\Omega^{t}\right) J \Omega \quad$ and $\quad \partial_{r, s}=\frac{\partial^{2}}{\partial u_{r} \partial u_{s}}$

$$
\begin{aligned}
\delta_{\Omega}(\lambda) & =\frac{1}{2} \operatorname{sk}-\operatorname{tr}\left(L\left(\Omega^{t}\right) J \Omega\right) \\
\text { sk-tr } M & :=\sum_{i=1}^{g} m_{i, g+1-i} \text { for } M=\left(m_{i, j}\right)
\end{aligned}
$$

Lemma. For any constant $K \in \operatorname{Sp}(2 g, \mathbb{C})$

$$
H_{\Omega}=H_{K \Omega}, \quad \delta_{\Omega}(\lambda)=\delta_{K \Omega}(\lambda) .
$$

Lemma.

$$
\left(2 L+H_{\Omega}+\delta_{\Omega}(\lambda)\right) \frac{G_{\Omega}(u)}{\sqrt{\left|\Omega_{1,1}(\lambda)\right|}}=0 .
$$

Lemma. For all $\quad\left(k, k^{\prime}\right) \in \mathbb{Z}^{2 g}$ the covariant shift $\quad W_{\Omega(\lambda)}^{\ell, \ell^{\prime}}\left(k, k^{\prime}\right)$
and the heat operator $2 L+H_{\Omega}+\delta_{\Omega}(\lambda)$ commute as the operators on the space of smooth
functions of u and λ.

Theorem. The family $\sigma\left(u, \lambda ; \ell, \ell^{\prime}\right)$ solves the equation

$$
\left(2 L+H_{\Omega}+\delta_{\Omega}(\lambda)\right) \sigma\left(u, \lambda ; \ell, \ell^{\prime}\right)=0
$$

Example. $q=1, g=1, \quad L=\partial_{\lambda}$

$$
\Omega(\lambda)=\left(\begin{array}{cc}
\omega & \omega \varkappa \\
\tau \omega & \tau \omega \varkappa+1 / \omega
\end{array}\right)
$$

$\omega \neq 0, \operatorname{Im} \tau>0, \varkappa$ are smooth functions in λ.

$$
\begin{aligned}
& H_{\Omega}=a_{1,1} \partial_{u}^{2}+2 a_{1,2} u \partial_{u}+a_{2,2} u^{2} \\
& \delta_{\Omega}(\lambda)=a_{1,2}
\end{aligned}
$$

where

$$
\begin{aligned}
& a_{1,1}=-\omega^{2} \partial_{\lambda} \tau, \\
& a_{1,2}=\frac{\partial_{\lambda} \omega}{\omega}-\omega^{2} \varkappa \partial_{\lambda} \tau, \\
& a_{2,2}=\partial_{\lambda} \varkappa-\omega^{2} \varkappa^{2} \partial_{\lambda} \tau+2 \varkappa \frac{\partial_{\lambda} \omega}{\omega}
\end{aligned}
$$

Example. $q=1, g$ is arbitrary

$$
\begin{aligned}
& L=\partial_{\lambda} \\
& \Omega(\lambda)=\left(\begin{array}{cc}
\omega & \omega \varkappa \\
\tau \omega & \tau \omega \varkappa+\left(\omega^{t}\right)^{-1}
\end{array}\right)
\end{aligned}
$$

where $|\omega| \neq 0, \tau^{t}=\tau, \operatorname{Im} \tau$ is positive definite, $\varkappa^{t}=\varkappa$ are smooth $(g \times g)$-matrix functions in λ.

$$
\begin{aligned}
& H_{\Omega}=\left(\partial_{u}\right)^{t} A_{1,1} \partial_{u}+2 u^{t} A_{2,1} \partial_{u}+u^{t} A_{2,2} u \\
& \delta_{\Omega}(\lambda)=\operatorname{tr} A_{2,1}
\end{aligned}
$$

where

$$
\begin{aligned}
& A_{1,1}=-\omega^{t}\left(\partial_{\lambda} \tau\right) \omega \\
& A_{2,1}=\omega^{-1} \partial_{\lambda} \omega+\varkappa A_{1,1}, \\
& A_{2,2}=\partial_{\lambda} \varkappa+A_{2,1} \varkappa+\varkappa A_{2,1}^{t}-\varkappa A_{1,1} \varkappa .
\end{aligned}
$$

Abelian Sigma-functions and Heat Equations

in Non-holonomic frame.
Let $s>n>1, \quad \operatorname{gcd}(n, s)=1$.

$$
f(x, y, \lambda)=y^{n}-x^{s}-\sum_{j=0}^{n-2} \sum_{i=0}^{s-2} \lambda_{n s-i n-j s} x^{i} y^{j}
$$

the number $m:=\#\left\{\lambda_{k} \mid k<0\right\}$ is called modality.
Set: $\quad \lambda_{k}=0, \quad k<0$.
Def. The family of (n, s)-curves:
$V=V_{\lambda}=\left\{(x, y) \in \mathbb{C}^{2}, \lambda \in \mathbb{C}^{2 g-m} \mid f(x, y, \lambda)=0\right\}$
genus of a generic curve V_{λ} is $g=\frac{(n-1)(s-1)}{2}$.
Example. Hyperelliptic curves are ($2,2 g+1$)curves, $m=0$:

$$
f(x, y, \lambda)=y^{2}-x^{2 g+1}-\sum_{i=0}^{2 g-1} \lambda_{2(2 g-i+1)} x^{i}
$$

The principal Arf function of (n, s)-curve
Def. Weierstrass sequence $\left(w_{1}, \ldots, w_{g}\right)$ is the ordered set $\mathbb{N} \backslash \mathcal{M}$, where $\mathcal{M}=\{a n+b s\}, a, b \in$ $\mathbb{N} \cup 0$.
Assign $w(\xi)=\sum_{i} \xi^{w_{i}} \quad$ then

$$
w(\xi)=\frac{1}{1-\xi}-\frac{1-\xi^{n s}}{\left(1-\xi^{n}\right)\left(1-\xi^{s}\right)} .
$$

Now $g=w(1)=\frac{(n-1)(s-1)}{2}$.
Let us define (π_{1}, \ldots, π_{g}) by the formula

$$
\begin{aligned}
& \quad \pi_{k}=w_{g-k+1}-(g-k), \quad k=1, \ldots, g . \\
& \left(w_{g}=2 g-1 \text { and } \pi_{1}=g .\right)
\end{aligned}
$$

Def. The principal Arf function is defined by

$$
\ell=(1, \ldots, 1) \quad \text { and } \quad \ell^{\prime}=\left(\pi_{1}, \ldots, \pi_{g}\right) .
$$

Let us fix this value of $\left(\ell, \ell^{\prime}\right)$ for the rest of the talk.
Example. For hyperelliptic family $(n, s)=$ $(2,2 g+1)$

$$
\ell^{\prime}=(g, g-1, \ldots, 1) .
$$

Meromorphic Abelian integrals
We do the hyperelliptic case for simplicity. Set:

$$
\begin{aligned}
& \mathrm{d} u_{j}(x, y)=\frac{x^{j-1} \mathrm{~d} x}{2 y}, \quad j=1, \ldots, g \\
& \mathrm{~d} r_{j}(x, y)=-\left(x \partial_{x} \pi_{+}\left(\frac{f(x, y, \lambda)}{x^{2 j}}\right)\right) \mathrm{d} u_{j}(x, y),
\end{aligned}
$$

where $\pi_{+}(\cdot)$ truncates the negative powers of x.

Def. Universal Abelian cover of V is the space W
of pairs $((x, y) ;[\gamma])$, where $(x, y) \in V ;[\gamma]$ is an equivalence class of paths from $\infty \in V$ to (x, y).
We say that γ_{1} and γ_{2} are in $[\gamma]$ if the contour $\gamma_{1} \circ \gamma_{2}^{-1}$ is homologous to zero.
Def. Abelian maps: $A: W \rightarrow \mathbb{C}^{g}, A^{*}: W \rightarrow$ \mathbb{C}^{g},

$$
\begin{aligned}
A_{j}(x, y ;[\gamma]) & =\int_{\gamma} \mathrm{d} u_{j}(x, y), \\
A_{j}^{*}(x, y ;[\gamma]) & =\int_{\gamma} \mathrm{d} r_{j}(x, y) .
\end{aligned}
$$

The period map $\quad \Omega: \mathbb{C}^{2 g-m} \rightarrow \operatorname{Sp}(2 g, \mathbb{C})$
Let the contours $\gamma_{1}, \ldots, \gamma_{2 g}$ give a basis in $H_{1}(V, \mathbb{Z})$, such that the intersection matrix is J :
$J_{a, b}=\gamma_{a} \circ \gamma_{b}=\operatorname{sign}(b-a) \delta_{g,|b-a|}, \quad a, b=1, \ldots, 2 g$.
Set for $i, j=1, \ldots, g$,
$\omega_{i, j}=\frac{1}{2} \oint_{\gamma_{j}} \mathrm{~d} u_{i}(x, y), \quad \omega_{i, j}^{\prime}=\frac{1}{2} \oint_{\gamma_{g+j}} \mathrm{~d} u_{i}(x, y)$,
$\eta_{i, j}=-\frac{1}{2} \oint_{\gamma_{j}} \mathrm{~d} r_{i}(x, y), \quad \eta_{i, j}^{\prime}=-\frac{1}{2} \oint_{\gamma_{g+j}} \mathrm{~d} r_{i}(x, y)$,
then for $\quad \Omega(\lambda)=\left(\begin{array}{cc}\omega & \eta \\ \omega^{\prime} & \eta^{\prime}\end{array}\right)$, where $\omega=\left(\omega_{i, j}\right)$, etc.,
we have Legendre relation

$$
\Omega(\lambda) J \Omega(\lambda)^{t}=\frac{\pi \imath}{2} J
$$

Note: For nonsingular V_{λ} the choice of basis contours provides $|\omega| \neq 0$ and positive definiteness of $\operatorname{Im} \omega^{\prime} \omega^{-1}$. Note: $K=\ell \omega+\ell^{\prime} \omega^{\prime}$ is the vector of Riemann constants.

Frame tangent to Discriminant and Heat operators Denote by $\Delta(\lambda)$ the discriminant of $f(x, y, \lambda)$:

$$
\Delta(\lambda)=0 \Leftrightarrow \exists(x, y) f=f_{x}=f_{y}=0
$$

Consider the space \mathcal{T} of polynomial vector fields tangent to $\left\{\lambda \in \mathbb{C}^{2 g-m} \mid \Delta(\lambda)=0\right\}$. $L \in \mathcal{T}$ implies

$$
L \Delta(\lambda)=\varphi(\lambda) \Delta(\lambda), \quad \varphi(\lambda) \in \mathbb{C}[\lambda] .
$$

\mathcal{T} has the basis $\left\{L_{1}, \ldots, L_{2 g}\right\}$ over $\mathbb{C}[\lambda]$. The basis gives a non-holonomic frame which defines a nontrivial polynomial Lie algebra (the structure is described in [1]).

We use the basis vector fields $\left\{L_{1}, \ldots, L_{2 g}\right\}$ and the period map $\Omega(\lambda)$ to construct $2 g$ heat operators.

Examples of basis fields L_{i}

$$
\begin{gathered}
g=1 . \text { We have } \Delta(\lambda)=4 \lambda_{4}^{3}+27 \lambda_{6}^{2} \\
L_{0}=4 \lambda_{4} \partial_{4}+6 \lambda_{6} \partial_{6} \\
L_{2}=6 \lambda_{6} \partial_{4}-\frac{4}{3} \lambda_{4}^{2} \partial_{6} .
\end{gathered}
$$

Here $\partial_{k}=\frac{\partial}{\partial \lambda_{k}}, \quad \operatorname{deg} \lambda_{k}=k$. Then $\quad \operatorname{deg} L_{j}=$ j.
$g=2$. The symmetric matrix T transforms the standard fields $\partial_{4}, \partial_{6}, \partial_{8}, \partial_{10}$ to the basis fields
$L_{0}, L_{2}, L_{4}, L_{6}$
$T=\left(\begin{array}{cccc}4 \lambda_{4} & 6 \lambda_{6} & 8 \lambda_{8} & 10 \lambda_{10} \\ * & \frac{40 \lambda_{8}-12 \lambda_{4}^{2}}{5} & \frac{50 \lambda_{10}-8 \lambda_{4} \lambda_{6}}{5} & -\frac{4 \lambda_{4} \lambda_{8}}{5} \\ * & * & \frac{20 \lambda_{4} \lambda_{8}-12 \lambda_{6}^{2}}{5} & \frac{30 \lambda_{4} \lambda_{10}-6 \lambda_{6} \lambda_{8}}{5} \\ * & * & * & \frac{4 \lambda_{6} \lambda_{10}-8 \lambda_{8}^{2}}{5}\end{array}\right)$
Note: $\quad \Delta(\lambda)=|T|$. The matrix T plays an important role
in Singularity Theory as the convolution matrix.
$\frac{\text { Examples of operators }}{\partial} H_{i}$
Here $D_{i}=\frac{\partial}{\partial u_{i}} ; \quad \operatorname{deg} u_{i}=-i \quad \operatorname{deg} H_{i}=i$. $g=1$.

$$
\begin{aligned}
& H_{0}=u_{1} D_{1}-1 \\
& 6 H_{2}=3 D_{1}^{2}-\lambda_{4} u_{1}^{2} \\
& g=2 . \\
& H_{0}=u_{1} D_{1}+3 u_{3} D_{3}-3 \\
& 10 H_{2}=5 D_{1}^{2}+10 u_{1} D_{3}-8 \lambda_{4} u_{3} D_{1}- \\
&-3 \lambda_{4} u_{1}^{2}+\left(15 \lambda_{8}-4 \lambda_{4}^{2}\right) u_{3}^{2}
\end{aligned}
$$

$5 H_{4}=5 D_{1} D_{3}+5 \lambda_{4} u_{3} D_{3}-6 \lambda_{6} u_{3} D_{1}-5 \lambda_{4}-$

$$
-\lambda_{6} u_{1}^{2}+5 \lambda_{8} u_{1} u_{3}+3\left(5 \lambda_{10}-\lambda_{4} \lambda_{6}\right) u_{3}^{2}
$$

$10 H_{6}=5 D_{3}^{2}-6 \lambda_{8} u_{3} D_{1}-5 \lambda_{6}-$

$$
-\lambda_{8} u_{1}^{2}+20 \lambda_{10} u_{1} u_{3}-3 \lambda_{4} \lambda_{8} u_{3}^{2}
$$

Abelian Sigma-function.
Our construction gives the following result.
Theorem. The heat equations

$$
L_{i} \sigma(u, \lambda)=H_{i} \sigma(u, \lambda)
$$

for $i \in\{n k+j s\}, 0 \leqslant j<n-1,0 \leqslant k<s-1$, uniquely define the Abelian σ-function of (n, s) curve.
(1) It has the translation property

$$
\begin{aligned}
& \sigma(u+A[\chi])=\sigma(u) \exp \left\{-\left\langle A^{*}[\chi], u+\frac{1}{2} A[\chi]\right\rangle+\right. \\
&\left.+\pi \imath\left(\left\langle k+\ell, k^{\prime}+\ell^{\prime}\right\rangle-\left\langle\ell, \ell^{\prime}\right\rangle\right)\right\},
\end{aligned}
$$

where $[\chi]=\sum_{j=1}^{g}\left(k_{j} \gamma_{j}+k_{j}^{\prime} \gamma_{g+j}\right)$.
(2) It is an entire function on $\mathbb{C}^{g} \times \mathbb{C}^{2 g-m}$.

Its power series in u and λ has rational coefficients.
(3) The grading $\operatorname{deg} x=n$, $\operatorname{deg} y=s$ and $\operatorname{deg} \lambda_{k}=k$ gives $\operatorname{deg} f(x, y, \lambda)=n s$ and the grading of u s.t.

$$
\operatorname{deg} \sigma(u, \lambda)=-\sum_{j=1}^{g} \ell_{j}^{\prime}=-\frac{\left(n^{2}-1\right)\left(s^{2}-1\right)}{24}
$$

Krichever-Novikov continuous basis

Def.

$$
\psi(x, y ;[\gamma]):=\exp \left\{-\int_{[\gamma]}\left\langle A^{*}\left(\left(x^{\prime}, y^{\prime}\right),\left[\gamma^{\prime}\right]\right), \mathrm{d} A\left(x^{\prime}, y^{\prime}\right)\right\rangle\right\}
$$

$\psi(x, y ;[\gamma])$ is the unique entire function $W \rightarrow \mathbb{C}$ with:
(1) Single essentially singular point $\infty \in V$

$$
\psi \sim \xi^{g}(1+O(\xi)) .
$$

(2) No zeros and poles in $V \backslash \infty$.
ξ is local parameter at $\infty, \operatorname{deg} \xi=-1$.
Def.

$$
\Psi(u,(x, y)):=\frac{\sigma(A(x, y ;[\gamma])-u)}{\psi(x, y ;[\gamma]) \sigma(u)} \exp ^{-\left\langle A^{*}(x, y ;[\gamma]), u\right\rangle}
$$

Ψ is single-valued function $\mathbb{C}^{g} \times V \rightarrow \mathbb{C}$.
If $g=1, \quad \psi\left(u,\left(\wp(\xi), \wp^{\prime}(\xi)\right)\right)=\frac{\sigma(\xi-u)}{\sigma(\xi) \sigma(u)} \exp \{u \zeta(\xi)\}$.
gives a solution of Lamè equation
$\partial_{u}^{2} \Psi(u,(x, y))-2 \wp(u) \psi(u,(x, y))=x \psi(u,(x, y))$

Fix $u \in \mathbb{C}^{g}$. Then $\Psi(u,(x, y))$ is the unique single-valued function on V with:
(1) g zeros on V at $A^{-1}(u)$.
(2) Single essentially singular point $\infty \in V$

$$
\Psi \sim \xi^{-g} \exp \left\{p\left(\xi^{-1} ; u, \lambda\right)\right\}(1+O(\xi)),
$$

where $p(t ; u, \lambda)=p_{1}(u, \lambda) t+\cdots+p_{2 g-1}(u, \lambda) t^{2 g-1}$ is fixed by the choice of $f(x, y, \lambda)$.
$p_{k}(u, \lambda)$ is homogeneous polynomial deg $p_{k}(u, \lambda)=$ $-k$. In general case

$$
\begin{aligned}
& p_{1}\left(u_{1}, 0, \ldots, 0, \lambda\right)=u_{1}, \\
& p_{j}\left(u_{1}, 0, \ldots, 0, \lambda\right)=0, \quad j>1 .
\end{aligned}
$$

Note: $\Psi(u,(x, y))$ is the Baker-Akhiezer Function corresponding to the degenerate set of Krichever data.

Example. For hyperelliptic curves

$$
\begin{aligned}
& p(t ; u, 0)=\sum_{i=1}^{g} u_{2 i-1} t^{2 i-1} \\
& g=1, \quad p(t ; u, \lambda)=u_{1} t \\
& g=2, \quad p(t ; u, \lambda)=u_{1} t+u_{3} t^{3} \\
& g=3, \quad p(t ; u, \lambda)=\left(u_{1}+\frac{1}{2} \lambda_{4} u_{5}\right) t+u_{3} t^{3}+u_{5} t^{5}
\end{aligned}
$$

Also, the equation

$$
\partial_{u_{1}}^{2} \Phi-2 \wp_{1,1}(u) \Phi=x \Phi
$$

where

$$
\wp_{1,1}(u)=-\frac{\partial^{2}}{\partial u_{1}^{2}} \log \sigma(u)
$$

has solutions

$$
\begin{aligned}
& \Phi_{ \pm}=\Psi(\pm u,(x, y)) \\
& \qquad\left|\begin{array}{rr}
\partial_{u_{1}} \Phi_{+} & \partial_{u_{1}} \Phi_{-} \\
\Phi_{+} & \Phi_{-}
\end{array}\right|=2 y
\end{aligned}
$$

In our notation the " $\psi(P, t)$ " of Grinevich and Novikov is $\Psi\left(t \mathrm{e}_{1},(x, y)\right)$, where e_{1} is the 1 -st ort in \mathbb{C}^{g}.

The relation defining the multiplicative structure of the base $\left\{\Psi\left(t e_{1},(x, y)\right)\right\}$ is a particular case of the relation

$$
\Psi(u,(x, y)) \Psi(v,(x, y))=\left.L \Psi(w,(x, y))\right|_{w=u+v}
$$

where $u, v \in \mathbb{C}^{g}$ and

$$
L=\sum_{j=0}^{g} a_{j}(u, v, w) \frac{\partial^{g-i}}{\partial w_{1}^{g-i}}, \quad \operatorname{deg} L=g .
$$

We define the family of functions on V with parameter $w \in \mathbb{C}^{g}$

$$
G_{k}^{(w)}(x, y)=\frac{\partial_{w_{1}}^{k} \Psi(w,(x, y))}{\Psi(w,(x, y))}, \quad k=0,1, \ldots
$$

Each $G_{k}^{(w)}(x, y)$ is rational function on V.
It has $g+k$ poles in $\left\{k \infty, A^{-1}(w)\right\}$.
Its coefficients are Abelian functions on the Jacobi variety of V.

$$
\begin{aligned}
& G_{0}^{(w)}(x, y)=1, \\
& G_{1}^{(w)}(x, y)=-\left(\zeta_{1}(A(x, y ;[\gamma])-w)+\zeta_{1}(w)+\right. \\
&
\end{aligned}
$$

where $\zeta_{1}(w)=\partial_{w_{1}} \log \sigma(w)$.
For $k>1$ we have the recurrence
$G_{k+1}^{(w)}(x, y)=\partial_{w_{1}} G_{k}^{(w)}(x, y)+G_{1}^{(w)}(x, y) G_{k}^{(w)}(x, y)$.
We express $G_{k+1}^{(w)}(x, y)$ as rational functions of (x, y).

Example. In the hyperelliptic case

$$
\begin{aligned}
& G_{1}^{(w)}(x, y)=\frac{1}{2} \frac{2 y+\sum_{i=1}^{g} \wp_{1,1,(g-i)}(w) x^{g-i}}{x^{g}-\sum_{i=1}^{g} \wp_{1, i}(w) x^{g-i}}, \\
& G_{2}^{(w)}(x, y)=x+2 \wp_{1,1}(w)
\end{aligned}
$$

from the recurrence we have for $k>2$

$$
\begin{aligned}
& G_{k}^{(w)}(x, y)=a_{k}+b_{k} G_{1}^{(w)}(x, y) \\
& a_{k+1}=\partial_{w_{1}} a_{k}+(x+2 \wp 1,1(w)) b_{k}, \\
& b_{k+1}=\partial_{w_{1}} b_{k}+a_{k},
\end{aligned}
$$

Clearly, a_{k} and b_{k} are polynomials in x.

$$
\begin{aligned}
\wp_{i, j}(w) & =-\frac{\partial^{2} \log \sigma(w)}{\partial w_{i} \partial w_{j}}, \\
\wp_{i, j, k}(w) & =-\frac{\partial^{3} \log \sigma(w)}{\partial w_{i} \partial w_{j} \partial w_{k}}
\end{aligned}
$$

where i, j, k are any odd integers between 0 and $2 g$.

We prove that for all $u, v, w \in \mathbb{C}^{g}$

$$
\begin{gathered}
\Psi(u,(x, y)) \Psi(v,(x, y)) \Psi(-u-v,(x, y))=R_{3 g}^{(u, v)}(x, y) \\
\Psi(w,(x, y)) \Psi(-w,(x, y))=R_{2 g}^{(w)}(x, y)
\end{gathered}
$$

As function on V
$R_{3 g}^{(u, v)}(x, y)$ has
$3 g$-tuple pole at ∞ and $3 g$ zeros at
$\left\{A^{-1}(u), A^{-1}(v), A^{-1}(-u-v)\right\}$.
$R_{2 g}^{(w)}(x, y)$ has
$2 g$-tuple pole at ∞ and $2 g$ zeros at $\left\{A^{-1}(w), A^{-1}(-w)\right\}$.

The functions $R_{3 g}^{(u, v)}(x, y)$ and $R_{2 g}^{(w)}(x, y)$ define addition and inverse operations on Sym $^{g}(V)$.

Theorem. The operator L is defined by the equality

$$
\frac{R_{3 g}^{(u, v)}(x, y)}{R_{2 g}^{(u+v)}(x, y)}=\sum_{i=0}^{g} a_{i}(u, v, u+v) G_{i}^{(u+v)}(x, y)
$$

This reduces the problem to comparing the coefficient at monomials, after cancelation of the common
denominator on both sides.

Example. For hyperelliptic curves we have

$$
\begin{aligned}
\alpha_{0}(u, v, w) & =1, \\
\alpha_{1}(u, v, w) & =-\zeta_{1}(u)-\zeta_{1}(v)+\zeta_{1}(w), \\
2 \alpha_{2}(u, v, w) & =-\wp_{1,1}(u)-\wp_{1,1}(v)-3 \wp_{1,1}(w)+ \\
& \left.+\alpha_{1}(u, v, w)^{2}\right), \quad \text { etc. }
\end{aligned}
$$

