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Preface

The original draft of these lecture notes was prepared for a short course at Centro de Investigaciones
de Matematica (CIMAT), Guanajuato, Mexico in May 2004. Many of the calculations arise from
joint publications with Khadiga Arwini and from her PhD thesis [6]. The course was given also in
the Departamento de Xeometra e Topoloxa, Facultade de Matemticas, Universidade de Santiago de
Compostela, Spain in February 2005.
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Chapter 1

Mathematical statistics and
information theory

There are many easily found good books on probability theory and mathematical statistics (eg [31,
32, 33, 42, 44, 45, 69]), stochastic processes (eg [11, 60]) and information theory (eg [62]); here we just
outline some topics to help make the sequel more self contained. For those who have access to the com-
puter algebra package Mathematica[73], the approach to mathematical statistics and accompanying
software in Rose and Smith [63] will be particularly helpful.

The word stochastic comes from the Greek stochastikos, meaning skillful in aiming and stochazesthai
to aim at or guess at, and stochos means target or aim. In our context, stochastic means involving
chance variations around some event—rather like the variation in positions of strikes aimed at a target.
In its turn, the later word statistics comes through eighteenth century German from the Latin root
status meaning state; originally it meant the study of political facts and figures. The noun random
was used in the sixteenth century to mean a haphazard course, from the Germanic randir to run, and
as an adjective to mean without a definite aim, rule or method, the opposite of purposive. From the
middle of the last century, the concept of a random variable has been used to describe a variable that
is a function of the result of a well-defined statistical experiment in which each possible outcome has a
definite probability of occurrence. The organization of probabilities of outcomes is achieved by means
of a probability function for discrete random variables and by means of a probability density function
for continuous random variables. The result of throwing two fair dice and summing what they show
is a discrete random variable.

Mainly, we are concerned with continuous random variables (here measurable functions defined on
some Rn) with differentiable probability density measure functions, but we do need also to mention
the Poisson distribution for the discrete case. However, since the Poisson is a limiting approximation
to the Binomial distribution which arises from the Bernoulli distribution (which everyone encountered
in school!) we mention also those examples.
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4 CHAPTER 1. MATHEMATICAL STATISTICS AND INFORMATION THEORY

1.1 Probability functions

Here we are concerned with discrete random variables so we take the domain set to be N ∪ {0}. We
may view a probability function as a subadditive measure function of unit weight on N ∪ {0}

p : N ∪ {0} → [0,∞) (nonnegativity)(1.1)
∞∑
k=0

p(k) = 1 (unit weight)(1.2)

p(A ∪B) ≤ p(A) + p(B), ∀A,B ⊂ N ∪ {0}, (subadditivity)(1.3)
with equality ⇐⇒ A ∩B = ∅.

Formally, we have a discrete measure space of total measure 1 with σ-algebra the power set and
measure function induced by p

sub(N) → [0,∞) : A 7→
∑
k∈A

p(k)

and as we have anticipated above, we usually abbreviate
∑
k∈A p(k) = p(A).

We have the following expected values of the random variable and its square

E(k) = k =
∞∑
k=0

kp(k)(1.4)

E(k2) = k2 =
∞∑
k=0

k2p(k).(1.5)

With slight but common abuse of notation, we call k the mean, k2 − (k)2 the variance, σk =

+
√
k2 − (k)2 the standard deviation and σk/k the coefficient of variation, respectively, of the random

variable k. The variance is the square of the standard deviation.

The moment generating function Ψ(t) = E(etX), t ∈ R of a distribution generates the rth moment as
the value of the rth derivative of Ψ evaluated at t = 0. Hence, in particular, the mean and variance
are given by:

E(X) = Ψ′(0)(1.6)
V ar(X) = Ψ′′(0)− (Ψ′(0))2,(1.7)

which can provide an easier method for their computation in some cases.

1.1.1 Example: Bernoulli distribution

It is said that a random variable X has a Bernoulli distribution with parameter p (0 ≤ p ≤ 1) if
X can take only the values 0 and 1 and the probabilities are

Pr(X = 1) = p(1.8)
Pr(X = 0) = 1− p(1.9)

Then the probability function of X can be written as follows:

(1.10) f(x|p) =
{
px(1− p)1−x if x = 0, 1
0 otherwise

If X has a Bernoulli distribution with parameter p, then we can find its expectation or mean value
E(X) and variance V ar(X) as follows.

E(X) = 1 · p+ 0 · (1− p) = p(1.11)
V ar(X) = E(X2)− (E(X))2 = p− p2(1.12)
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The moment generating function of X is the expectation of etX ,

(1.13) Ψ(t) = E(etX) = pet + q

which is finite for all real t.

1.1.2 Example: Binomial distribution

If n random variables X1, X2, . . . , Xn are independently identically distributed, and each has a
Bernoulli distribution with parameter p, then it is said that the variables X1, X2, . . . , Xn form n
Bernoulli trials with parameter p.

If the random variables X1, X2, . . . , Xn form n Bernoulli trials with parameter p and if X = X1 +
X2 + . . .+Xn, then X has a binomial distribution with parameters n and p.

The binomial distribution is of fundamental importance in probability and statistics because of the
following result for any experiment which can result in only either success or failure. The experiment
is performed n times independently and the probability of the success of any given performance is p.
If X denotes the total number of successes in the n performances, then X has a binomial distribution
with parameters n and p. The probability function of X is:

(1.14) P (X = r) = P (
n∑
i=1

Xi = r) =
(
n
r

)
pr(1− p)n−r

where r = 0, 1, 2, . . . , n.

We write

(1.15) f(r|p) =


(
n
r

)
pr(1− p)n−r if r=0, 1, 2, . . . , n

0 otherwise

In this distribution n must be a positive integer and p must lie in the interval 0 ≤ p ≤ 1. If X
is represented by the sum of n Bernoulli trials, then it is easy to get its expectation, variance and
moment generating function by using the properties of sums of random variables.

E(X) =
n∑
i=1

E(Xi) = np(1.16)

V ar(X) =
n∑
i=1

V ar(Xi) = np(1− p)(1.17)

Ψ(t) = E(etX) =
n∏
i=1

E(etXi) = (pet + q)n.(1.18)

1.1.3 Example: The Poisson probability function

The Poisson distribution is widely discussed in the statistical literature; one monograph devoted to it
and its applications is Haight [38]. Take t, τ ∈ (0,∞)

p : N ∪ {0} → [0,∞) : k 7→
(
t

τ

)k 1
k!
e−t/τ(1.19)

k = t/τ(1.20)
σk = t/τ.(1.21)
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This probability function is used to model the number k of random events in a region of measure t
when the mean number of events per unit region is τ. Importantly, the Poisson distribution can give
a good approximation to the binomial distribution when n is large and p is close to 0. This is easy to
see by making the correspondences:

e−pn −→ (1− (n− r)p)(1.22)
n!/(n− r)! −→ nr.(1.23)

1.2 Probability density functions

We are concerned with the case of continuous random variables defined on some Ω ⊆ Rm. For our
present purposes we may view a probability density function (pdf) on Ω ⊆ Rm as a subadditive measure
function of unit weight, namely, a nonnegative map on Ω

f : Ω → [0,∞) (nonnegativity)(1.24) ∫
Ω

f = f(Ω) = 1 (unit weight)(1.25)

f(A ∪B) ≤ f(A) + f(B), ∀A,B ⊂ Ω, (subadditivity)(1.26)
with equality ⇐⇒ A ∩B = ∅.

Formally, we have a measure space of total measure 1 with σ-algebra typically the Borel sets or the
power set and the measure function induced by f

sub(Ω) → [0,∞) : A 7→
∫
A

f

and as we have anticipated above, we usually abbreviate
∫
A
f = f(A). Given an integrable (ie mea-

surable in the σ-algebra) function u : Ω → R, the expectation or mean value of u is defined to
be

E(u) = u =
∫

Ω

uf.

We say that f is the joint pdf for the random variables x1, x2, . . . , xm, being the coordinates of points
in Ω, or that these random variables have the joint probability distribution f. If x is one of these
random variables, and in particular for the important case of a single random variable x, we have the
following

E(x) = x =
∫

Ω

xf(1.27)

E(x2) = x2 =
∫

Ω

x2f.(1.28)

Again with slight abuse of notation, we call x the mean, x2 − (x)2 the variance, σx = +
√
x2 − (x)2

the standard deviation and σx/x the coefficient of variation, respectively, of the random variable x.
The variance is the square of the standard deviation. Usually, a probability density function depends
on a set of parameters, θ1, θ2, . . . , θn and we say that we have an n-dimensional family of pdfs.

1.2.1 Example: The exponential pdf

Take λ ∈ R+; this is called the parameter of the exponential pdf

f : [0,∞) → [0,∞) : [a, b] 7→
∫

[a,b]

1
λ
e−x/λ(1.29)

x = λ(1.30)
σx = λ.(1.31)
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The parameter space of the exponential distribution is R+, so exponential distributions form a 1-
parameter family. In the sequel we shall see that quite generally we may provide a Riemannian
structure to the parameter space of a family of distributions. Sometimes we call a family of pdfs a
parametric statistical model.

Observe that, in the Poisson probability function ( 1.19), the value at zero is

p(0) = e−t/τ

and it is not difficult to show that the probability density function for the distance t between random
events on [0,∞) is an exponential pdf 1.29 given by

f : [0,∞) → [0,∞) : t 7→ 1
τ
e−t/τ

where τ is the mean number of events per unit interval.

1.3 Joint probability density functions

Let f be a pdf, defined on R2 (or some subset thereof). This is an important case since here we have
two variables, X,Y, say, and we can extract certain features of how they interact. In particular, we
define their respective mean values and their covariance, σxy :

x =
∫ ∞

−∞

∫ ∞

−∞
x f(x, y) dxdy(1.32)

y =
∫ ∞

−∞

∫ ∞

−∞
y f(x, y) dxdy(1.33)

σxy =
∫ ∞

−∞

∫ ∞

−∞
xy f(x, y) dxdy − xy.(1.34)

The marginal pdf of X is fX , obtained by integrating f over all y,

fX(x) =
∫ ∞

v=−∞
fX,Y (x, v) dv(1.35)

and similarly the marginal pdf of Y is

fY (y) =
∫ ∞

u=−∞
fX,Y (u, y) du(1.36)

The jointly distributed random variables X and Y are called independent if their marginal density
functions satisfy

fX,Y (x, y) = fX(x)fY (y) for all x, y ∈ R(1.37)

It is easily shown that if the variables are independent then their covariance ( 1.34) is zero but the
converse is not true. Feller [31] gives a simple counterexample: Let X take values −1,+1,−2,+2,
each with probability 1

4 Let Y = X2; then the covariance is zero but there is evidently a (nonlinear)
dependence.

The extent of dependence between two random variables can be measured in a normalised way by
means of the correlation coefficient: the ratio of the covariance to the product of marginal standard
deviations:

ρxy =
σxy
σxσy

.(1.38)

Note that −1 ≤ ρxy ≤ 1, whenever it exists, the limiting values corresponding to the case of linear
dependence between the variables. Intuitively, ρxy < 0 if y tends to increase as x decreases, and
ρxy > 0 if x and y tend to increase together.
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1.3.1 Example: Bivariate Gaussian distributions

The probability density function of the two-dimensional Gaussian distribution has the form:

f(x, y) =
1

2π
√
σ1 σ2 − σ12

2
e
− 1

2 (σ1 σ2−σ122) (σ2(x−µ1)
2−2 σ12 (x−µ1) (y−µ2)+σ1(y−µ2)

2)
,(1.39)

where
−∞ < x1 < x2 <∞, −∞ < µ1 < µ2 <∞, 0 < σ1, σ2 <∞.

This contains the five parameters (µ1, µ2, σ1, σ12, σ2) = (ξ1, ξ2, ξ3, ξ4, ξ5) ∈ Θ. So we have a five-
dimensional parameter space Θ.

1.4 Information theory

Jaynes [41] provided the foundation for information theoretic methods in, among other things, Bayes
hypothesis testing—as described by Tribus et al. [70, 71]; see also Shannon [64], Slepian [65] and
Roman [62].

Given a set of observed values < gα(t) > for functions gα of the random variable x, we seek a ‘least
prejudiced’ set of probability values pi satisfying

< gα(t) > =
i=n∑
i=1

pi gα(xi) for α = 1, 2, . . . , N(1.40)

1 =
i=n∑
i=1

pi(1.41)

Jaynes showed that this occurs if we choose those pi that maximize Shannon’s entropy function

(1.42) S = −
i=n∑
i=1

pi log(pi)

It turns out [71] that if we have no data on observed functions of x, (so the set of equations (1.40) is
empty) then the maximum entropy choice gives the exponential distribution. If we have estimates of
the first two moments of the distribution of x, then we obtain the (truncated) Gaussian. If we have
estimates of the mean and mean logarithm of x, then the maximum entropy choice is the gamma
distribution.

In the sequel we shall consider the particular case of the gamma distribution for several reasons:

• the exponential distributions form a subclass of gamma distributions and exponential distribu-
tions represent intervals between events in a Poisson (ie. ‘random’) process

• the sum of n independent identical exponential random variables follows a gamma distribution

• lognormal distributions may be well-approximated by gamma distributions

• products of gamma distributions are well-approximated by gamma distributions

• stochastic porous media have been modeled using gamma distributions [26].

Other parametric statistical models based on different distributions may be treated in a similar way.

Let Θ be the parameter space of a parametric statistical model, that is an n-dimensional smooth
family of probability density functions defined on some fixed event space Ω of unit measure,∫

Ω

pθ = 1 for all θ ∈ Θ.
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For each sequence X = {X1, X2, . . . , Xn}, of independent identically distributed observed values, the
likelihood function likX on Θ which measures the likelihood of the sequence arising from different
pθ ∈ S is defined by

likX : Θ → [0, 1] : θ 7→
n∏
i=1

pθ(Xi).

Statisticians use the likelihood function, or log-likelihood its logarithm l = log lik, in the evaluation of
goodness of fit of statistical models. The so-called ‘method of maximum likelihood’ is used to obtain
optimal fitting of the parameters in a distribution to observed data.

1.4.1 Example: Maximum likelihood gamma pdf

The family of gamma distributions has event space Ω = R+ and probability density functions given
by

Θ ≡ {f(x; γ, µ)|γ, µ ∈ R+}
so here Θ = R+ × R+ and the random variable is x ∈ Ω = R+ with

f(x; γ, µ) =
(
µ

γ

)µ
xµ−1

Γ(µ)
e−xµ/γ(1.43)

Then x̄ = γ and V ar(x) = γ2/µ and we see that γ controls the mean of the distribution while µ
controls its variance and hence the shape. Indeed, the property that the variance is proportional
to the square of the mean actually characterizes gamma distributions as shown recently by Hwang
and Hu [39]. They proved, for n ≥ 3 independent positive random variables x1, x2, . . . , xn with a
common continuous probability density function h, that having independence of the sample mean
and sample coefficient of variation is equivalent to h being a gamma distribution. The special case
µ = 1 corresponds to the situation of the random or Poisson process with mean inter-event interval
γ. In fact, for integer µ = 1, 2, . . . , (??) models a process that is Poisson but with intermediate events
removed to leave only every νth. Formally, the gamma distribution is the ν-fold convolution of the
exponential distribution, called also the Pearson Type III distribution. Figure 1.1 shows a family of
gamma distributions, all of unit mean, with µ = 0.5, 1, 2, 7.

Shannon’s information theoretic entropy or ‘uncertainty’ is given, up to a factor, by the negative of
the expectation of the logarithm of the probability density function (??), that is

(1.44) Sf (γ, µ) = −
∫ ∞

0

log(f(x; γ, µ)) f(x; γ, µ) dx = µ+ (1− µ)
Γ′(µ)
Γ(µ)

+ log
γ Γ(µ)
µ

At unit mean, the maximum entropy (or maximum uncertainty) occurs at µ = 1, which is the random
case, and then Sf (γ, 1) = 1 + log γ. So, a Poisson process of points on a line is such that the points
are as disorderly as possible and among all homogeneous point processes with a given density, the
Poisson process has maximum entropy. Figure 1.2 shows a plot of Sf (µ, β), for the case of unit mean
µ = 1.

We can see the role of the log-likelihood function in the case of a set X = {X1, X2, . . . , Xn} of
measurements, drawn from independent identically distributed random variables, to which we wish
to fit the maximum likelihood gamma distribution. The procedure to optimize the choice of γ, µ is
as follows. For independent events Xi, with identical distribution p(x; γ, µ), their joint probability
density is the product of the marginal densities so a measure of the ‘likelihood’ of finding such a set
of events is

likX(γ, µ) =
n∏
i=1

f(Xi; γ, µ).

We seek a choice of γ, µ to maximize this product and since the log function is monotonic increasing
it is simpler to maximize the logarithm

lX(γ, µ) = log likX(γ, µ) = log[
n∏
i=1

f(Xi; γ, µ)].
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Figure 1.1: Probability density functions, f(x; γ, µ), for gamma distributions of inter-event intervals t
with unit mean γ = 1, and µ = 0.5, 1, 2, 5. The case µ = 1 corresponds to an exponential distribution
from an underlying Poisson process; ν 6= 1 represents some organization—clustering (µ < 1) or
smoothing (µ > 1).
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Figure 1.2: Information theoretic entropy Sf (γ, µ), for gamma distributions of inter-event intervals
t with unit mean γ = 1. The maximum at µ = 1 corresponds to an exponential distribution from
an underlying Poisson process. The regime µ < 1 corresponds to clustering of events and ν > 1
corresponds to smoothing out of events, relative to a Poisson process. Note that, at constant mean,
the variance of x decays like 1/µ.
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Substitution gives us

lX(γ, µ) =
n∑
i=1

[µ(logµ− log γ) + (µ− 1) logXi −
µ

γ
Xi − log Γ(µ)]

= nµ(logµ− log γ) + (µ− 1)
n∑
i=1

logXi −
µ

γ

n∑
i=1

Xi − n log Γ(µ).

Then, solving for ∂γ lX(γ, µ) = ∂µlX(γ, µ) = 0 in terms of properties of theXi, we obtain the maximum
likelihood estimates γ̂, µ̂ of γ, µ in terms of the mean and mean logarithm of the Xi

γ̂ = X̄ =
1
n

n∑
i=1

Xi

log µ̂− Γ′(µ̂)
Γ(µ̂)

= logX − log X̄

where logX = 1
n

∑n
i=1 logXi.
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Chapter 2

Information geometry

Amari [3] and Amari and Nagaoka [4] provide modern accounts of the differential geometry that arises
from the Fisher information metric.

2.1 Fisher information metric

Let Θ be the parameter space of a parametric statistical model, that is an n-dimensional smooth
family of probability density functions defined on some fixed event space Ω of unit measure,∫

Ω

pθ = 1 for all θ ∈ Θ.

Denote by E the expectation operator (measure) for functions defined on Ω; in particular, the mean
E(x) = x̄, and variance E(x2)− x̄2 = V ar(x), which will be functions of θ. Then, at each point θ ∈ Θ,
the covariance of partial derivatives of the log-likelihood function, l = log pθ, is a matrix with entries
the expectations

(2.1) gij = E
(
∂l

∂θi
∂l

∂θj

)
= −E

(
∂2l

∂θi∂θj

)
(for coordinates (θi) about θ ∈ Θ).

This gives rise to a positive definite matrix, so inducing a Riemannian metric g on Θ using for
coordinates the parameters (θi); this metric is called the expected information metric for the family
of probability density functions; the original ideas are due to Fisher and Rao [34, 61]. Of course, the
second equality in equation (2.1) depends on certain regularity conditions but when it holds it can be
particularly convenient to use. Amari [3] and Amari and Nagaoka [4] provide modern accounts of the
differential geometry that arises from the Fisher information metric.

2.2 Exponential family

An n-dimensional parametric statistical model Θ ≡ {pθ|θ ∈ Θ}is said to be an exponential family or
of exponential type, when the density function can be expressed in terms of functions {C,F1, ..., Fn}
on Λ and a function ψ on Θ as:

p(x; θ) = e{C(x)+
P

i θi Fi(x)−ψ(θ)} ,(2.2)

then we say that (θi) are its natural or canonical parameters, and ψ is the potential function.
From the normalization condition

∫
p(x; θ) dx = 1 we obtain:

ψ(θ) = log
∫
e{C(x)+

P
i θi Fi(x)} dx .(2.3)

13
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This potential function is therefore a distinguished function of the coordinates alone and in the sequel
we make use of it for the presentation of the manifold as an immersion in Rn+1.

2.3 α-connections

Let Θ ≡ {pξ} be an n-dimensional model, and consider the function Γ(α)
ij,k which maps each point ξ to

the following value:(
Γ(α)
ij,k

)
ξ

= E

[(
∂2 log f
∂ξi∂ξj

+
1− α

2
∂ log f
∂ξi

∂ log f
∂ξj

)
∂ log f
∂ξk

]
,(2.4)

where α is some arbitrary real number. So we have an affine connection ∇(α) on Θ defined by

〈∇(α)
∂i
∂j , ∂k〉 =

(
Γ(α)
ij,k

)
ξ
,(2.5)

where g = 〈 , 〉 is the Fisher metric. We call this ∇(α) the α-connection. The α-connection is clearly
a symmetric connection. We also have

∇(α) = (1− α) ∇(0) + α∇(1) ,

=
1 + α

2
∇(1) +

1− α

2
∇(−1) .(2.6)

Proposition 2.3.1 The 0-connection is the Riemannian connection with respect to the Fisher metric.

In general, when α 6= 0, ∇(α) is not metric.

The notion of exponential family has a close relation to ∇(1). From the definition of an exponential
family given in Equation (2.2), with ∂i = ∂

∂θi
, we obtain

∂i`(x; θ) = Fi(x)− ∂iψ(θ)(2.7)

and

∂i∂j`(x; θ) = −∂i∂jψ(θ) .(2.8)

where `(x; θ) = log f(x; θ).
Hence we have Γ(1)

ij,k = −∂i∂jψEθ[∂k`θ], which is 0. In other words, we see that (θi) is a 1-affine
coordinate system, and Θ is 1-flat.

In particular, the 1-connection is said to be an exponential connection, and the (-1)-connection is said
to be a mixture connection. We say that an α-connection and the (−α)-connection are mutually dual
with respect to the Fisher metric g since the following formula holds:

Xg(Y, Z) = g(∇(α)
X Y,Z) + g(Y,∇(−α)

X Z),

where X,Y and Z are arbitrary vector fields on M .

Now, Θ is an exponential family, so a mixture coordinate system is given by a potential function, that
is,

ηi =
∂ψ

∂θi
.(2.9)

Since (θi) is a 1-affine coordinate system, (ηi) is a (−1)-affine coordinate system, and they are mutually
dual with respect to the Fisher metric. Therefore the statistical manifold has dually orthogonal
foliations (Section 3.7 in [4]).

The coordinates in (ηi) admit a potential function given by:

(2.10) λ = θi ηi − ψ(θ).
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2.4 Affine immersions

Let M be an m-dimensional manifold, f an immersion from M to Rm+1, and ξ a vector field along
f . We can ∀x ∈ Rm+1, identify TxRm+1 ≡ Rm+1. The pair {f, ξ} is said to be an affine immersion
from M to Rm+1 if, for each point p ∈M , the following formula holds:

Tf(p)R
m+1 = f∗(TpM)⊕ Span{ξp} .

We call ξ a transversal vector field.

We denote by D the standard flat affine connection of Rm+1. Identifying the covariant derivative
along f with D, we have the following decompositions:

DXf∗Y = f∗(∇XY ) + h(X,Y )ξ,
DXξ = −f∗(Sh(X)) + µ(X)ξ.

The induced objects ∇, h, Sh and µ are the induced connection, the affine fundamental form, the affine
shape operator and the transversal connection form, respectively. If the affine fundamental form h is
positive definite everywhere on M , the immersion f is said to be strictly convex. And if µ = 0, the
affine immersion {f, ξ} is said to be equiaffine. It is known that a strictly convex equiaffine immersion
induces a statistical manifold. Conversely, the condition when a statistical manifold can be realized
in an affine space has been studied. We say that an affine immersion {f, ξ} : Θ → Rm+1 is a graph
immersion if the hypersurface is a graph of ψ in Rm+1 :

f : M → Rm+1 :


θ1
.
.
θm

 7→


θ1
.
.
θm
ψ(θ)

 , ξ =


0
0
0
1

 ,

Set ∂i = ∂
∂θi

, ψij = ∂2ψ
∂θi ∂θj

. Then we have

D∂if∗∂j = ψij ξ.

This implies that the induced connection ∇ is flat and (θi) is a ∇-affine coordinate system.

Proposition 2.4.1 Let (M,h,∇,∇∗) be a simply connected dually flat space with a global coordinate
system and (θ) an affine coordinate system of ∇. Suppose that ψ is a θ-potential function. Then
(M,h,∇) can be realized in Rm+1 by a graph immersion whose potential is ψ.

2.5 Example: Gamma manifold

The family of gamma distributions has event space Ω = R+ and probability density functions given
by

S = {f(x; γ, µ)|γ, µ ∈ R+}
so here M ≡ R+ × R+ and the random variable is x ∈ Ω = R+ with

f(x; γ, µ) =
(
µ

γ

)µ
xµ−1

Γ(µ)
e−xµ/γ(2.11)

Proposition 2.5.1 Let G be the gamma manifold. Set β = µ
γ , Then (β, µ) is a natural coordinate

system of the 1-connection and

(2.12) ψ(θ) = log Γ(µ)− µ log β

is the corresponding potential function.
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Proof: Using β = µ
γ , the logarithm of gamma distributions can be written as

log p(x;β, µ) = log βµ
xµ−1

Γ(µ)
e−β x

= − log x+ (µ log x− β x)− (log Γ(µ)− µ log β)(2.13)

Hence the set of all gamma distributions is an exponential family. The coordinates (θ1, θ2) = (β, µ) is
a natural coordinate system, and ψ(θ) = log Γ(µ)− µ log β is its potential function. �

Corollary 2.5.2 Since ψ(θ) is a potential function, the Fisher metric is given by the Hessian of ψ,
that is, with respect to natural coordinates:

(2.14) [gij ] =
[
∂2ψ(θ)
∂θi∂θj

]
=
[ µ

β2 − 1
β

− 1
β ψ′′(µ)

]

2.5.1 α-Connection

For each α ∈ R, the α (or ∇(α))-connection is the torsion-free affine connection with components:

Γ(α)
ij,k =

1− α

2
∂i ∂j ∂kψ(θ) ,

where ψ(θ) is the potential function, and ∂i = ∂
∂θi
.

Since the set of gamma distributions is an exponential family, the connection ∇(1) is flat. In this case,
(β, µ) is a 1-affine coordinate system.

So the 1 and (-1)-connections on the gamma manifold are flat.

Proposition 2.5.3 The functions Γ(α)
ij,k are given by

Γ(α)
11,1 = − (1− α) µ

β3
,

Γ(α)
12,1 = Γ(α)

12,2 =
1− α

2β2
,

Γ(α)
22,2 =

(1− α) ψ′′(µ)
2

(2.15)

while the other independent components are zero. �

We have an affine connection ∇(α) defined by

〈∇(α)
∂i
∂j , ∂k〉 = Γ(α)

ij,k ,

So by solving the equations

Γ(α)
ij,k =

2∑
h=1

gkh Γh(α)
ij , (k = 1, 2).

we obtain the components of ∇(α) :
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Proposition 2.5.4 The components Γi(α)
jk of the ∇(α)-connection are given by

Γ(α)1
11 =

(α− 1) (−1 + 2µψ′(1, µ))
2β (−1 + µψ′(µ))

,

Γ(α)1
12 = − (α− 1) ψ′(1, µ)

−2 + 2µψ′(µ)
,

Γ(α)1
22 = − (α− 1) β ψ′′(µ)

−2 + 2µψ′(µ)
,

Γ(α)2
11 =

(α− 1) µ
2β2 (−1 + µψ′(µ))

,

Γ(α)2
12 =

1− α

−2β + 2β µψ′(µ)
,

Γ(α)2
22 = − (α− 1) µψ′′(µ)

−2 + 2µψ′(µ)
.(2.16)

while the other independent components are zero. �

2.5.2 α-Curvatures

Proposition 2.5.5 Direct calculation gives the α-curvature tensor of G

Rα1212 =

(
α2 − 1

)
(ψ′(µ) + µψ′′(µ))

4β2 (−1 + µψ′(µ))
,(2.17)

while the other independent components are zero.

By contraction we obtain:

α-Ricci tensor:

[R(α)
ij ] =

(
α2 − 1

)  −µ (ψ′(µ)+µψ′′(µ))
4 β2 (−1+µψ′(µ))2

(ψ′(µ)+µψ′′(µ))
4 β (−1+µψ′(µ))2

(ψ′(µ)+µψ′′(µ))
4 β (−1+µψ′(µ))2

−ψ′(µ) (ψ′(µ)+µψ′′(µ))
4 (−1+µψ′(µ))2

(2.18)

In addition, the eigenvalues and the eigenvectors for the α-Ricci tensor are given by

(
1− α2

) 
�
µ+β2 ψ′(µ)+

√
4 β2+µ2−2 β2 µψ′(µ)+β4 ψ′(µ)2

�
(ψ′(µ)+µψ′′(µ))

8 β2 (−1+µψ′(µ))2�
µ+β2 ψ′(µ)−

√
4 β2+µ2−2 β2 µψ′(µ)+β4 ψ′(µ)2

�
(ψ′(µ)+µψ′′(µ))

8 β2 (−1+µψ′(µ))2

(2.19)

 −
�
µ−β2 ψ′(µ)+

√
4 β2+µ2−2 β2 µψ′(µ)+β4 ψ′(µ)2

�

2 β 1
−µ+β2 ψ′(µ)+

√
4 β2+µ2−2 β2 µψ′(µ)+β4 ψ′(µ)2

2 β 1

(2.20)

α-Scalar curvature:

R(α) =

(
1− α2

)
(ψ′(µ) + µψ′′(µ))

2 (−1 + µψ′(µ))2
.(2.21)

We note that R(α) → (1−α2)
2 as µ→ 0. �
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2.5.3 Gamma manifold geodesics

The Fisher information metric for the gamma manifold is given in (γ, µ) coordinates by the arc length
function

ds2 =
µ

γ2
dγ2 +

(
(
Γ′(µ)
Γ(µ)

)′ − 1
µ

)
dµ2.

The Levi-Civita connection is that given by setting α = 0 in the α-connections of the previous section;
for this case we give in Figure 2.1 some examples of geodesic sprays in the vicinities of the points

(γ, µ) = (1, 0.5), (1, 1), (1, 2).

2.5.4 Mutually dual foliations

Now, G represents an exponential family of pdfs, so a mixture coordinate system is given by a potential
function. Since (β, µ) is a 1-affine coordinate system, (η1, η2) given by

η1 =
∂ψ

∂β
= −µ

β
,

η2 =
∂ψ

∂µ
= φ(µ)− log β.(2.22)

is a (−1)-affine coordinate system, and they are mutually dual with respect to the Fisher metric.
Therefore the gamma manifold has dually orthogonal foliations and potential function

(2.23) λ = −µ+ ψ(µ)− log Γ(µ).

2.5.5 Affine Immersions for Gamma Manifold

The gamma manifold has an affine immersion in R3.

Proposition 2.5.6 Let G be the gamma manifold with the Fisher metric g and the exponential con-
nection ∇(1). Denote by (β, µ) a natural coordinate system. Then G can be realized in R3 by the graph
of a potential function

f : G → R3

(
β
µ

)
7→

 β
µ

log Γ(µ)− µ log β

 , ξ =

 0
0
1

 .

The submanifold of exponential distributions is represented by the curve

(0,∞) → R3 : β 7→ {β, 1, log
1
β
}

and a tubular neighbourhood of this curve will contain all immersions for small enough perturbations
of exponential distributions. �

2.6 Example: Log-gamma distributions

The family of probability density functions for random variable N ∈ [0, 1] given by

(2.24) g(N,µ, β) =
1
N

1− β
µ (βµ )β (log 1

N )β−1

Γ(β)
for µ > 0 and β > 0 .

Some of these pdfs with central mean are shown in Figure 2.2.
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Figure 2.1: Geodesic sprays in the gamma manifold, radiating from the points with unit mean γ = 1,
and µ = 0.5, 1, 2 increasing vertically. The case µ = 1 corresponds to an exponential distribution from
an underlying Poisson process; µ < 1 corresponds to clustering and µ increasing above 1 corresponds
to the opposite process, dispersion leading to greater uniformity.
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Figure 2.2: The log-gamma family of densities with central mean < N >= 1
2 as a surface and as a

contour plot for β ≥ 1.

Proposition 2.6.1 The log-gamma family (2.24) with information metric determines a Riemannian
2-manifold L with the following properties
• it contains the uniform distribution
• it contains approximations to truncated Gaussian distributions
• it is an isometric isomorph of a the manifold G of gamma distributions.

Proof
By integration, it is easily checked that the family given by equation (2.24) consists of probability
density functions for the random variable N ∈ [0, 1]. The limiting densities are given by

lim
β→1+

g(N,µ, β) = g(N,µ, 1) =
1
µ

(
1
N

)1− 1
µ

(2.25)

lim
µ→1

g(N,µ, 1) = g(N, 1, 1) = 1 .(2.26)

The mean, < N >, standard deviation σN , and coefficient of variation cvN , of N are given by

< N > =
(

β

β + µ

)β
(2.27)

σN =

√(
β

β + 2µ

)β
−
(

β

β + µ

)2 β

(2.28)

cvN =
σN

< N >
=

√(
β

β + 2µ

)β (
β + µ

β

)2 β

− 1.(2.29)

We can obtain the family of densities having central mean in [0, 1], by solving < N >= 1
2 , which corre-

sponds to the locus µ = β(21/β − 1); some of these are shown in Figure 2.2 and Figure 2.3. Evidently,
the distributions with central mean and large β provide approximations to Gaussian distributions
truncated on [0, 1].
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Figure 2.3: Examples from the log-gamma family of probability densities with central mean < N >= 1
2 .

Left: β = 1, 1.2, 1.4, 1.6, 1.8. Right: β = 4, 6, 8, 10.

For the log-gamma densities [22, 28], the Fisher information metric [3] on the parameter space Θ =
{(µ, β) ∈ (0,∞)× [1,∞)} is given by its arc length function

(2.30) ds2L =
∑
ij

gij dx
idxj =

β

µ2
dµ2 +

(
(
Γ′(β)
Γ(β)

)′ − 1
β

)
dβ2,

In fact, (2.24) arises from the gamma family

(2.31) f(x, µ, β) =
xβ−1 (βµ )β

Γ(β)
e−

x β
µ

for the non-negative random variable x = log 1
N . It is known that the gamma family (3.11) has also

the information metric (2.30) so the identity map on the space of coordinates (µ, β) is an isometry of
Riemannian manifolds. �

2.7 Example: Gaussian distributions

The family of univariate normal or Gaussian distributions has event space Ω = R and probability
density functions given by

N ≡ {N(µ, σ2)} = {p(x;µ, σ)|µ ∈ R, σ ∈ R+}

with mean µ and variance σ2. So here N = R×R+ is the upper half -plane, and the random variable
is x ∈ Ω = R with

p(x;µ, σ) =
1√

2π σ
e−

(x−µ)2

2 σ2(2.32)

The mean µ and standard deviation σ are frequently used as a local coordinate system ξ = (ξ1, ξ2) =
(µ, σ).
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Shannon’s information theoretic entropy is given by:

(2.33) SN (µ, σ) = −
∫ ∞

−∞
log(p(t;µ, σ)) p(t;µ, σ) dt =

1
2

(1 + log(2π)) + log(σ)

At unit variance the entropy is SN = 1
2 (1 + log(2π)) .

2.7.1 Natural coordinate system and potential function

Proposition 2.7.1 Let N be the normal manifold. Set θ1 = µ
σ2 and θ2 = − 1

2σ2 . Then ( µσ2 ,− 1
2σ2 ) is

a natural coordinate system and

(2.34) ψ = − θ1
2

4 θ2
+

1
2

log(− π

θ2
) =

µ2

2σ2
+ log(

√
2π σ)

is the corresponding potential function.

Proof: Set θ1 = µ
σ2 and θ2 = − 1

2σ2 . Then the logarithm of univariate normal distributions can be
written as

log p(x; θ1, θ2) = log e(
µ

σ2 ) x+( −1
2 σ2 ) x2−

�
µ2

2 σ2 +log(
√

2π σ)
�

= θ1 x+ θ2 x
2 −

(
− θ1

2

4 θ2
+

1
2

log(− π

θ2
)
)

(2.35)

Hence the set of all univariate normal distributions is an exponential family. The coordinates (θ1, θ2)
is a natural coordinate system, and ψ = − θ1

2

4 θ2
+ 1

2 log(− π
θ2

) = µ2

2σ2 + log(
√

2π σ) is its potential
function. �

2.7.2 Fisher information metric

Proposition 2.7.2 The Fisher metric with respect to natural coordinates (θ1, θ2) is given by:

[gij ] =

[
−1
2 θ2

θ1
2 θ22

θ1
2 θ22

θ2−θ12

2 θ23

]
=
[

σ2 2µσ2

2µσ2 2σ2
(
2µ2 + σ2

) ](2.36)

Proof: Since ψ is a potential function, the Fisher metric is given by the Hessian of ψ, that is,

(2.37) gij =
∂2ψ

∂θi∂θj
.

Then, we have the Fisher metric by a straightforward calculation. �

2.7.3 Mutually dual foliations

Since N represents an exponential family, a mixture coordinate system is given by a potential function.
We have

η1 =
∂ψ

∂θ1
=
−θ1
2 θ2

= µ,

η2 =
∂ψ

∂θ2
=
θ1

2 − 2 θ2
4 θ22 = µ2 + σ2 .(2.38)
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Since (θ1, θ2) is a 1-affine coordinate system, (η1, η2) is a (−1)-affine coordinate system, and they are
mutually dual with respect to the Fisher metric. Therefore the normal manifold has dually orthogonal
foliations. The coordinates in (2.38) admit the potential function

(2.39) λ = −1
2

(
1 + log(− π

θ2
)
)

=
−1
2

(1 + log(2π) + 2 log(σ)) .

2.7.4 Affine immersions for Gaussian manifold

We show that the normal manifold can be realized in Euclidean R3 by an affine immersion.

Proposition 2.7.3 Let N be the normal manifold with the Fisher metric g and the exponential con-
nection ∇(1). Denote by (θ1, θ2) a natural coordinate system. Then M can be realized in R3 by the
graph of a potential function, namely, G can be realized by the affine immersion {f, ξ}:

f : N → R3 :
(
θ1
θ2

)
7→

 θ1
θ2
ψ

 , ξ =

 0
0
1

 .

where ψ is the potential function ψ = − θ1
2

4 θ2
+ 1

2 log(− π
θ2

) .

The submanifold of univariate normal distributions with zero mean (i.e. θ1 = 0) is represented by the
curve

(−∞, 0) → R3 : θ2 7→ {0, θ2,
1
2

log(− π

θ2
)} ,

In addition, the submanifold of univariate normal distributions with unit variance (i.e. θ2 = − 1
2) is

represented by the curve

R → R3 : θ1 7→ {θ1,−
1
2
,
θ1

2

2
+

1
2

log(2π)}.

�

2.8 Example: Bivariate Gaussian 5-manifold

Here we collect the results from Yoshiharu Sato, Kazuaki Sugawa and Michiaki Kawaguchi [66], for
comparison with bivariate gamma manifolds.

The probability density function for the two-dimensional Gaussian distribution has the form:

f(x, y) =
1

2π
√
σ1 σ2 − σ12

2
e
− 1

2 (σ1 σ2−σ122) (σ2(x−µ1)
2−2 σ12 (x−µ1) (y−µ2)+σ1(y−µ2)

2)(2.40)

where

−∞ < x1, x2 <∞, −∞ < µ1, µ2 <∞, 0 < σ1, σ2 <∞.

This contains the five parameters (µ1, µ2, σ1, σ12, σ2) ∈ R5. It is easy to show that the marginal
distributions are Gaussian with parameters (µ1, σ1) and (µ2, σ2); the covariance is σ12.
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2.8.1 Fisher information metric

The information geometry of 2.40 has been studied by Sato et al. [66]; the metric tensor takes the
following form:

G = [gij ] =



σ2
4 −σ12

4 0 0 0
−σ12

4
σ1
4 0 0 0

0 0 (σ2)
2

242 −σ12 σ2
42

(σ12)
2

242

0 0 −σ12 σ2
42

σ1 σ2+(σ12)
2

42 −σ1 σ12
42

0 0 (σ12)
2

242 −σ1 σ12
42

(σ1)
2

242

 ,(2.41)

where 4 is the determinant
4 = σ1 σ2 − (σ12)2

The inverse [gij ] of the fundamental tensor [gij ] defined by the relation

gijg
ik = δkj

is given by

G−1 = [gij ] =


σ1 σ12 0 0 0
σ12 σ2 0 0 0
0 0 2 (σ1)2 2σ1 σ12 2 (σ12)2

0 0 2σ1 σ12 σ1 σ2 + (σ12)2 2σ12 σ2

0 0 2 (σ12)2 2σ12 σ2 2 (σ2)2

 .(2.42)

2.9 Example: Freund distributions

Freund [35] introduced a bivariate exponential mixture distribution arising from the following relia-
bility considerations. Suppose that an instrument has two components A and B with lifetimes X and
Y respectively having density functions (when both components are in operation)

fX(x) = α1 e
−α1x

fY (y) = α2 e
−α2y

for (α1, α2 > 0;x, y > 0). Then X and Y are dependent in that a failure of either component changes
the parameter of the life distribution of the other component. Thus when A fails, the parameter for
Y becomes β2; when B fails, the parameter for X becomes β1. There is no other dependence. Hence
the joint density function of X and Y is

f(x, y) =
{
α1β2e

−β2y−(α1+α2−β2)x for 0 < x < y,
α2β1e

−β1x−(α1+α2−β1)y for 0 < y < x
(2.43)

where αi, βi > 0 (i = 1, 2).

Provided that α1 + α2 6= β1, the marginal density function of X is

fX(x) =
(

α2

α1 + α2 − β1

)
β1 e

−β1x +
(

α1 − β1

α1 + α2 − β1

)
(α1 + α2) e−(α1+α2)x , x ≥ 0(2.44)

and provided that α1 + α2 6= β2, The marginal density function of Y is

fY (y) =
(

α1

α1 + α2 − β2

)
β2 e

−β2y +
(

α2 − β2

α1 + α2 − β2

)
(α1 + α2) e−(α1+α2)y , y ≥ 0(2.45)

We can see that the marginal density functions are not exponential but rather mixtures of exponen-
tial distributions if αi > βi ; otherwise, they are weighted averages. For this reason, this system
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of distributions should be termed bivariate mixture exponential distributions rather than simply bi-
variate exponential distributions. The marginal density functions fX(x) and fY (y) are exponential
distributions only in the special case αi = βi (i = 1, 2).

Freund discussed the statistics of the special case when α1 + α2 = β1 = β2, and obtained the joint
density function as:

f(x, y) =
{
α1(α1 + α2)e−(α1+α2)y for 0 < x < y,
α2(α1 + α2)e−(α1+α2)x for 0 < y < x

(2.46)

with marginal density functions:

fX(x) = (α1 + α2(α1 + α2)x) e−(α1+α2)x x ≥ 0 ,(2.47)
fY (y) = (α2 + α1(α1 + α2)y) e−(α1+α2)y y ≥ 0(2.48)

The covariance and correlation coefficient of X and Y are

Cov(X,Y ) =
β1 β2 − α1 α2

β1 β2 (α1 + α2)
2 ,(2.49)

ρ(X,Y ) =
β1 β2 − α1 α2√

α2
2 + 2α1 α2 + β1

2
√
α1

2 + 2α1 α2 + β2
2

(2.50)

Note that− 1
3 < ρ(X,Y ) < 1. The correlation coefficient ρ(X,Y ) → 1 when β1, β2 → ∞, and

ρ(X,Y ) → − 1
3 when α1 = α2 and β1, β2 → 0. In many applications, βi > αi (i = 1, 2) ( i.e.,

lifetime tends to be shorter when the other component is out of action) ; in such cases the correlation
is positive.

2.9.1 Fisher information metric

Proposition 2.9.1 Let F be the set of Freund bivariate mixture exponential distributions, (2.43).
Then it becomes a 4-manifold with Fisher information metric

gij =
∫ ∞

0

∫ ∞

0

∂2 log f(x, y)
∂xi∂xj

f(x, y) dx dy

and (x1, x2, x3, x4) = (α1, β1, α2, β2).
is given by

[gij ] =
∫ ∞

0

∫ ∞

0

∂2 log f(x, y)
∂xi∂xj

f(x, y) dx dy

=


1

α12+α1 α2
0 0 0

0 α2
β1

2 (α1+α2)
0 0

0 0 1
α22+α1 α2

0
0 0 0 α1

β2
2 (α1+α2)

(2.51)

The inverse [gij ] of [gij ] is given by

[gij ] =


α1

2 + α1 α2 0 0 0
0 β1

2 (α1+α2)
α2

0 0
0 0 α2

2 + α1 α2 0
0 0 0 β2

2 (α1+α2)
α1

 .(2.52)

�
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Figure 2.4: Part of the family of McKay bivariate gamma pdfs; Observe that the McKay pdf is zero
outside the octant 0 < x < y < ∞. Here the correlation coefficient has been set to ρxy = 0.6 and
α1 = 5.

2.10 Example: Mckay bivariate gamma 3-manifold

The information geometry of the 3-manifold of McKay bivariate gamma distributions can provide a
metrization of departures from randomness and departures from independence for bivariate processes.
The curvature objects are derived, including those on three submanifolds. As in the case of bivariate
normal manifolds, we have negative scalar curvature but here it is not constant and we show how it
depends on correlation. These results have potential applications, for example, in the characterization
of stochastic materials.

Fisher information metric

The classical family of Mckay bivariate gamma distributions M, is defined on 0 < x < y < ∞ with
parameters α1, σ12, α2 > 0 and pdfs

f(x, y;α1, σ12, α2) =
( α1
σ12

)
(α1+α2)

2 xα1−1(y − x)α2−1e
−
q

α1
σ12

y

Γ(α1)Γ(α2)
.(2.53)

Here σ12 is the covariance of X and Y . One way to view this is that f(x, y) is the probability density
for the two random variables X and Y = X + Z where X and Z both have gamma distributions.

The correlation coefficient, and marginal functions, of X and Y are given by

ρ(X,Y ) =
√

α1

α1 + α2
> 0(2.54)

fX(x) =
( α1
σ12

)
α1
2 xα1−1e

−
q

α1
σ12

x

Γ(α1)
, x > 0(2.55)

fY (y) =
( α1
σ12

)
(α1+α2)

2 y(α1+α2)−1e
−
q

α1
σ12

y

Γ(α1 + α2)
, y > 0(2.56)

The marginal distributions ofX and Y are gamma with shape parameters α1 and α1+α2, respectively;
note that it is not possible to choose parameters such that both marginal functions are exponential.
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Proposition 2.10.1 Let M be the family of Mckay bivariate gamma distributions, then (α1, σ12, α2)
is a local coordinate system, and M becomes a 3-manifold. Fisher information metric

[gij ] =


−3α1+α2

4α12 + (Γ′(α1)
Γ(α1)

)′ α1−α2
4α1 σ12

− 1
2α1

α1−α2
4α1 σ12

α1+α2
4σ122

1
2σ12

− 1
2α1

1
2σ12

(Γ′(α2)
Γ(α2)

)′

(2.57)

The inverse [gij ] of [gij ] is given by:

g11 = −
(

−1 + (α1 + α2) ψ′(α2)
ψ′(α2) + ψ′(α1) (1− (α1 + α2) ψ′(α2))

)
,

g12 = g21 =
σ12 (1 + (α1 − α2) ψ′(α2))

α1 (ψ′(α2) + ψ′(α1) (1− (α1 + α2) ψ′(α2)))
,

g13 = g31 =
1

−ψ′(α2) + ψ′(α1) (−1 + (α1 + α2) ψ′(α2))
,

g22 =
σ12

2
(
−1 +

(
−3α1 + α2 + 4α1

2 ψ′(α1)
)
ψ′(α2)

)
α1

2 (−ψ′(α2) + ψ′(α1) (−1 + (α1 + α2) ψ′(α2)))
,

g23 = g32 =
σ12 (−1 + 2α1 ψ

′(α1))
α1 (ψ′(α2) + ψ′(α1) (1− (α1 + α2) ψ′(α2)))

,

g33 = −
(

−1 + (α1 + α2) ψ′(α1)
ψ′(α2) + ψ′(α1) (1− (α1 + α2) ψ′(α2))

)
,(2.58)

where we have abbreviated ψ′(α1) = (Γ′(α1)
Γ(α1)

)′. �
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Chapter 3

Universal connections and
curvature

It is common to have to consider a number of linear connections on a given statistical manifold and so it
is important to know the corresponding universal connection and curvature; then all linear connections
and their curvatures are pullbacks. An important class of statistical manifolds is that arising from
the so-called exponential families [3, 4] and one particular family is that of gamma distributions,
which we showed recently [7] to have important uniqueness properties in stochastic processes. Here
we describe the system of all linear connections on the manifold of exponential families, using the
tangent bundle or the frame bundle to give the system space. Moreover, we provide formulae for
the universal connections and curvatures and give an explicit example for the manifold of gamma
distributions.

3.1 Systems of connections and universal objects

The concept of system (or structure) of connections was introduced by Mangiarotti and Modugno [50,
57], they were concerned with finite-dimensional bundle representations of the space of all connections
on a fibred manifold. On each system of connections there exists a unique universal connection of
which every connection in the family of connections is a pullback. A similar relation holds between
the corresponding universal curvature and the curvatures of the connections of the system.

Definition 3.1.1 A system of connections on a fibred manifold p : E −→M is a fibred manifold
pc : C −→M together with a first jet-valued fibred morphism

ξ : C ×M E −→ JE

over M , such that each section Γ̃ : M −→ C determines a unique connection Γ = ξ ◦ (Γ̃ ◦ p, IE) on E.
Then C is the space of connections of the system.

In the sequel we are interested in the system of linear connections on a Riemannian manifold. The
system of all linear connections is the subject of studies in eg. [14, 15, 17, 24].

Theorem 3.1.2 ([50, 57]) Let (C, ξ) be a system of connections on a fibred manifold p : E −→ M .
Then there is a unique connection form Λ : C ×M E → J(C ×M E) On the fibred manifold π1 :
C ×M E → C which has the coordinate expression

Λ = dxλ ⊗ ∂λ + dca ⊗ ∂a + ξiλ dx
λ ⊗ ∂i.

29
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This Λ is called the universal connection because it describes all the connections of the system.

Explicitly, each Γ̃ ∈ Sec(C/M) gives an injection (Γ̃ ◦ p, IE), of E into C × E, which is a section of
π1 and Γ coincides with the restriction of Λ to this section:

Λ|(Γ̃◦p,IE)E = Γ.

A similar relation holds between its curvature Ω, called universal curvature, and the curvatures of
the connections of the system.

Ω =
1
2

[Λ,Λ] = dΛΛ : C ×M E → ∧2(T ∗C)⊗E V (E).

So the universal curvature Ω has the coordinate expression:

Ω =
1
2

(
ξjλ ∂jξ

i
µ dx

λ ∧ dxµ + 2 ∂aξiµ dx
a ∧ dxµ

)
⊗ ∂i .

3.2 Exponential family of probability density functions on R

From the definition of an exponential family, and putting ∂i = ∂
∂xi

, we may obtain

∂i`(y;x) = Fi(y)− ∂iψ(x)(3.1)

and

∂i∂j`(y;x) = −∂i∂jψ(x) .(3.2)

where `(y;x) = log p(y;x).
Hence the Fisher information metric [3, 4] on the n-dimensional space of parameters Θ ⊂ Rn, has
coordinates:

g = [gij ] = −E[∂i∂j`(y;x)] = ∂i∂jψ(x) = ψij(x) ,(3.3)

The Levi-Civita connection with respect to g is given by:

Γkij(x) =
n∑
h=1

1
2
gkh (∂igjh + ∂jgih − ∂hgij) =

n∑
h=1

1
2
gkh ∂i∂j∂hψ(x) =

n∑
h=1

1
2
ψkh(x)ψijh(x) .(3.4)

where (ψhk(x)) represents the dual metric to (ψhk(x)).

3.3 Universal connection and curvature for exponential fam-
ilies

In this section we provide explicit formulae for universal connection and curvature for an arbitrary
statistical n-dimensional exponential manifold. We do this in the two available ways: using the tangent
bundle and using the frame bundle systems of all linear connections.
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3.3.1 Tangent bundle system: CT × TM → JTM

The system of all linear connections on a manifold M has a representation on the tangent bundle

E = TM →M

with system space

CT = {α⊗ jγ ∈ T ∗M ⊗M JTM | jγ : TM → TTM projects onto ITM}

Here we view ITM as a section of T ∗M ⊗ TM , which is a subbundle of T ∗M ⊗ TTM , with local
expression dxλ ⊗ ∂λ.

The fibred morphism for this system is given by

ξT : CT ×M TM → JTM ⊂ T ∗M ⊗TM TTM ,(3.5)
(α⊗ jγ, ν) 7−→ α(ν)jγ.(3.6)

In coordinates

ξT = dxλ ⊗ (∂λ − γiλ ∂i)
= dxλ ⊗ (∂λ − yj Γijλ ∂i)

= dxλ ⊗ (∂λ − yj (
n∑
h=1

1
2
ψih ψjλh) ∂i)(3.7)

Each section of CT → M , such as Γ̃ : M → CT : (xλ) → (xλ, γµϑ); determines the unique linear
connection Γ = ξT ◦ (Γ̃ ◦ πT , ITM ) with Christoffel symbols Γλµϑ.

On the fibred manifold π1 : CT ×M TM → CT ; the universal connection is given by:

ΛT : CT ×M TM → J(CT ×M TM) ⊂ T ∗CT ⊗ T (CT ×M TM) ,
(xλ, vλµν , y

λ) 7−→ [(Xλ, V λµν) → (Xλ, V λµν , Y
µV λµνX

ν)].

briefly,

ΛT = dxλ ⊗ ∂λ + dva ⊗ ∂a + yµviµν dx
ν ⊗ ∂i

= dxλ ⊗ ∂λ + dva ⊗ ∂a + yµ (
n∑
h=1

1
2
ψih ψµνh) dxν ⊗ ∂i.(3.8)

Explicitly, each Γ̃ ∈ Sec(CT /M) gives an injection (Γ̃ ◦ πT , ITM ), of TM into CT × TM , which is a
section of π1 and Γ coincides with the restriction of ΛT to this section:

ΛT |(Γ̃◦πT ,IT M )TM = Γ.

and the universal curvature of the connection Λ is given by:

ΩT = dΛT
ΛT : CT ×M TM → ∧2(T ∗CT )⊗TM V (TM).
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So here the universal curvature ΩT has the coordinate expression:

ΩT =
1
2

(
ykvjkλ ∂jy

mvimµ dx
λ ∧ dxµ + 2 ∂aymvimµ dx

a ∧ dxµ
)
⊗ ∂i

=
1
2

(
yk(

n∑
h=1

1
2
ψjh ψkλh)∂jym(

n∑
h=1

1
2
ψih ψmµh)dxλ ∧ dxµ + 2 ∂aym(

n∑
h=1

1
2
ψih ψmµh)dxa ∧ dxµ

)
⊗ ∂i .

3.3.2 Frame bundle system: CF × FM → JFM

A linear connection is also a principal (i.e. group invariant) connection on the principal bundle of
frames FM with:

E = FM →M = FM/G

consisting of linear frames (ordered bases for tangent spaces ) with structure group the general linear
group, G = G`(n). Here the system space is

CF = JFM/G ⊂ T ∗M ⊗TM TFM/G,

consisting of G-invariant jets. The system morphism is

ξF : CF × FM → JFM ⊂ T ∗M ⊗TM TFM ,

([jsx], b) 7−→ [TxM 7−→ TbFM ].

In coordinates

ξF = dxλ ⊗ (∂λ −Xµ ∂µs
λ
ν ) ∂̃νλ

= dxλ ⊗ (∂λ −Xµ Γλµν) ∂̃νλ

= dxλ ⊗ (∂λ −Xµ
n∑
h=1

1
2
ψλh ψµνh) ∂̃νλ(3.9)

where ∂̃νλ = ∂
∂bλ

ν
is the natural base on the vertical fibre of TbFM induced by coordinates (bλν ) on FM.

Each section of CF →M that is projectable onto ITM , such as, Γ̂ : M → CF : (xλ) → (xλ, [jγx]) with
Γλµν = ∂µs

λ
ν ; determines the unique linear connection Γ = ξF ◦ (Γ̂ ◦ πF , IFM ) with Christoffel symbols

Γλµν .

On the principal G-bundle π1 : CF ×M FM → CF ; the universal connection is given by:

ΛF : CF ×M FM → J(CF ×M FM) ⊂ T ∗CF ⊗FM T (CF ×FM FM) ,
(xλ, vλµν , b

µ
ν ) 7−→ [(Xλ, Y λµν) → (Xλ, Y λµν , b

µ
νv
λ
µθX

θ)].

briefly,

ΛF = dxλ ⊗ ∂λ + dva ⊗ ∂a + bµνv
λ
µθ dx

θ ⊗ ∂̃νλ

= dxλ ⊗ ∂λ + dva ⊗ ∂a + bµν (
n∑
h=1

1
2
ψλh ψµθh) dxθ ⊗ ∂̃νλ .(3.10)

Explicitly, each Γ̃ ∈ Sec(CF /M) gives an injection (Γ̃ ◦ πF , IFM ), of FM into CF × FM , which is a
section of π1 and Γ coincides with the restriction of ΛF to this section:
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ΛF |(Γ̃◦πF ,IF M )FM = Γ.

and the universal curvature of the connection Λ is given by:

Ω = dΛF
ΛF : CF ×M FM → ∧2(T ∗CF )⊗FM V (FM).

So here the universal curvature form ΩF has the coordinate expression:

ΩF =
1
2

(
bkνv

β
kλ ∂̃νβbmω v

α
mµ dx

λ ∧ dxµ + 2 ∂abmω v
α
mµ dx

a ∧ dxµ
)
⊗ ∂̃ωα

=
1
2

(
bkν(

n∑
h=1

1
2
ψβh ψkλh)∂̃νβbmω (

n∑
h=1

1
2
ψαh ψmµh)dxλ ∧ dxµ + 2∂abmω (

n∑
h=1

1
2
ψαh ψmµh)dxa ∧ dxµ

)
⊗ ∂̃ωα .

3.4 Universal connection and curvature on the gamma mani-
fold

Here we give explicit forms for the system space and its universal connection and curvature on the
2-dimensional statistical manifold of gamma distributions.

Let G be the family of gamma probability density functions given by

(3.11) {p(x;β, µ) = βµ
xµ−1

Γ(µ)
e−β x|β, µ ∈ R+}, x ∈ R+.

So the space of parameters is topologically R+ × R+. It is an exponential family and it includes as a
special case (µ = 1) the exponential distribution itself, which complements the Poisson process on a
line. Since the set of all gamma distributions is an exponential family with natural coordinate system
(β, µ) and potential function ψ = log Γ(µ)− µ log β, [4] the Fisher metric (3.3) is given by:

[gij ] =
[ µ

β2 − 1
β

− 1
β φ′(µ)

]
(3.12)

where φ(µ) = Γ′(µ)
Γ(µ) is the logarithmic derivative of the gamma function.

The Levi-Civita connection components (3.4) are given by:

Γ1
11 =

(1− 2µφ′(µ))
2β (−1 + µφ′(µ))

,

Γ1
12 =

φ′(µ)
2 (µφ′(µ)− 1)

,

Γ1
22 =

β φ′′(µ)
2 (µφ′(µ)− 1)

,

Γ2
11 =

µ

2β2 (1− µφ′(µ))
,

Γ2
12 =

1
2β (µφ′(µ)− 1)

,

Γ2
22 =

µφ′′(µ)
2 (µφ′(µ)− 1)

(3.13)

while the other independent components are zero.
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3.4.1 Tangent bundle system

The system space is

CT = {α⊗ jγ ∈ T ∗G ⊗G JTG | jγ : TG → TTG projects onto ITG}

and the system morphism is

ξT = dxλ ⊗ (∂λ − yjΓijλ ∂i)

= dx1 ⊗
(
∂1 − (

(1− 2µφ′(µ))
2β (−1 + µφ′(µ))

y1 +
φ′(µ)

2 (µφ′(µ)− 1)
y2) ∂1

)
+ dx1 ⊗

(
∂1 − (

µ

2β2 (1− µφ′(µ))
y1 +

1
2β (µφ′(µ)− 1)

y2) ∂2

)
+ dx2 ⊗

(
φ′(µ)

2 (µφ′(µ)− 1)
y1 +

β φ′′(µ)
2 (µφ′(µ)− 1)

y2) ∂1

)
+ dx2 ⊗

(
∂2 − (

1
2β (µφ′(µ)− 1)

y1 +
µφ′′(µ)

2 (µφ′(µ)− 1)
y2) ∂2

)
.

The universal connection on the gamma manifold is given here by:

ΛT = dxλ ⊗ ∂λ + diλj ⊗ ∂iλj + yτ Γiτνdx
ν ⊗ ∂i

= dxλ ⊗ ∂λ + diλj ⊗ ∂iλj

+
(

(1− 2µφ′(µ))
2β (−1 + µφ′(µ))

y1 +
φ′(µ)

2 (µφ′(µ)− 1)
y2

)
dx1 ⊗ ∂1

+
(

µ

2β2 (1− µφ′(µ))
y1 +

1
2β (µφ′(µ)− 1)

y2

)
dx1 ⊗ ∂2

+
(

φ′(µ)
2 (µφ′(µ)− 1)

y1 +
β φ′′(µ)

2 (µφ′(µ)− 1)
y2

)
dx2 ⊗ ∂1

+
(

1
2β (µφ′(µ)− 1)

y1 +
µφ′′(µ)

2 (µφ′(µ)− 1)
y2

)
dx2 ⊗ ∂2 .
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The universal curvature on the gamma manifold is:

ΩT =
1
2

(
ykΓjkλ ∂jy

mΓimµ dx
λ ∧ dxµ + 2 ∂aymΓimµ dx

a ∧ dxµ
)
⊗ ∂i

=
1
2
[(y1Γ1

11 ∂1y
1Γi11 + y1Γ2

11 ∂2y
1Γi11 + y2Γ1

21 ∂1y
1Γi11 + y2Γ2

21 ∂2y
1Γi11

+ y1Γ1
11 ∂1y

2Γi21 + y1Γ2
11 ∂2y

2Γi21 + y2Γ1
21 ∂1y

2Γi21 + y2Γ2
21 ∂2y

2Γi21) dx
1 ∧ dx1

+ 2 ∂1(y1Γi11 + y2Γi21) dx
1 ∧ dx1]⊗ ∂1

+
1
2
[(y1Γ1

11 ∂1y
1Γi11 + y1Γ2

11 ∂2y
1Γi11 + y2Γ1

21 ∂1y
1Γi11 + y2Γ2

21 ∂2y
1Γi11

+ y1Γ1
11 ∂1y

2Γi21 + y1Γ2
11 ∂2y

2Γi21 + y2Γ1
21 ∂1y

2Γi21 + y2Γ2
21 ∂2y

2Γi21) dx
1 ∧ dx1

+ 2 ∂2(y1Γi11 + y2Γi21) dx
2 ∧ dx1]⊗ ∂i

+
1
2
[(y1Γ1

12 ∂1y
1Γi11 + y1Γ2

12 ∂2y
1Γi11 + y2Γ1

22 ∂1y
1Γi11 + y2Γ2

22 ∂2y
1Γi11

+ y1Γ1
12 ∂1y

2Γi21 + y1Γ2
12 ∂2y

2Γi21 + y2Γ1
22 ∂1y

2Γi21 + y2Γ2
22 ∂2y

2Γi21) dx
2 ∧ dx1

+ 2 ∂1(y1Γi11 + y2Γi21) dx
1 ∧ dx1]⊗ ∂i

+
1
2
[(y1Γ1

12 ∂1y
1Γi11 + y1Γ2

12 ∂2y
1Γi11 + y2Γ1

22 ∂1y
1Γi11 + y2Γ2

22 ∂2y
1Γi11

+ y1Γ1
12 ∂1y

2Γi21 + y1Γ2
12 ∂2y

2Γi21 + y2Γ1
22 ∂1y

2Γi21 + y2Γ2
22 ∂2y

2Γi21) dx
2 ∧ dx1

+ 2 ∂2(y1Γi11 + y2Γi21) dx
2 ∧ dx1]⊗ ∂i

+
1
2
[(y1Γ1

11 ∂1y
1Γi12 + y1Γ2

11 ∂2y
1Γi12 + y2Γ1

21 ∂1y
1Γi12 + y2Γ2

21 ∂2y
1Γi12

+ y1Γ1
11 ∂1y

2Γi22 + y1Γ2
11 ∂2y

2Γi22 + y2Γ1
21 ∂1y

2Γi22 + y2Γ2
21 ∂2y

2Γi22) dx
1 ∧ dx2

+ 2 ∂1(y1Γi12 + y2Γi22) dx
1 ∧ dx2]⊗ ∂1

+
1
2
[(y1Γ1

11 ∂1y
1Γi12 + y1Γ2

11 ∂2y
1Γi12 + y2Γ1

21 ∂1y
1Γi12 + y2Γ2

21 ∂2y
1Γi12

+ y1Γ1
11 ∂1y

2Γi22 + y1Γ2
11 ∂2y

2Γi22 + y2Γ1
21 ∂1y

2Γi22 + y2Γ2
21 ∂2y

2Γi22) dx
1 ∧ dx2

+ 2 ∂2(y1Γi12 + y2Γi22) dx
2 ∧ dx2]⊗ ∂i

+
1
2
[(y1Γ1

12 ∂1y
1Γi12 + y1Γ2

12 ∂2y
1Γi12 + y2Γ1

22 ∂1y
1Γi12 + y2Γ2

22 ∂2y
1Γi12

+ y1Γ1
12 ∂1y

2Γi22 + y1Γ2
12 ∂2y

2Γi22 + y2Γ1
22 ∂1y

2Γi22 + y2Γ2
22 ∂2y

2Γi22) dx
2 ∧ dx2

+ 2 ∂1(y1Γi12 + y2Γi22) dx
1 ∧ dx2]⊗ ∂i

+
1
2
[(y1Γ1

12 ∂1y
1Γi12 + y1Γ2

12 ∂2y
1Γi12 + y2Γ1

22 ∂1y
1Γi12 + y2Γ2

22 ∂2y
1Γi12

+ y1Γ1
12 ∂1y

2Γi22 + y1Γ2
12 ∂2y

2Γi22 + y2Γ1
22 ∂1y

2Γi22 + y2Γ2
22 ∂2y

2Γi22) dx
2 ∧ dx2

+ 2 ∂2(y1Γi12 + y2Γi22) dx
2 ∧ dx2]⊗ ∂i (i = 1, 2).

3.4.2 Frame bundle system

The system space is CF = JFG/G and the system morphism is

ξF = dxλ ⊗ (∂λ −Xτ Γλτν) ∂̃νλ

= dx1 ⊗
(
∂1 − (

(1− 2µφ′(µ))
2β (−1 + µφ′(µ))

X1 +
φ′(µ)

2 (µφ′(µ)− 1)
X2)

)
∂̃11

+ dx2 ⊗
(
∂2 − (

µ

2β2 (1− µφ′(µ))
X1 +

1
2β (µφ′(µ)− 1)

X2)
)
∂̃12

+ dx1 ⊗
(
∂1 − (

φ′(µ)
2 (µφ′(µ)− 1)

X1 +
β φ′′(µ)

2 (µφ′(µ)− 1)
X2)

)
∂̃21

+ dx2 ⊗
(
∂2 − (

1
2β (µφ′(µ)− 1)

X1 +
µφ′′(µ)

2 (µφ′(µ)− 1)
X2)

)
∂̃22 .
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The universal connection on the gamma manifold is:

ΛF = dxλ ⊗ ∂λ + diλj ⊗ ∂iλj + bντ Γλτθdx
θ ⊗ ∂̃νλ

= dxλ ⊗ ∂λ + diλj ⊗ ∂iλj

+
(

(1− 2µφ′(µ))
2β (−1 + µφ′(µ))

b11 +
φ′(µ)

2 (µφ′(µ)− 1)
b21

)
dx1 ⊗ ∂̃11

+
(

φ′(µ)
2 (µφ′(µ)− 1)

b11 +
β φ′′(µ)

2 (µφ′(µ)− 1)
b21

)
dx2 ⊗ ∂̃11

+
(

(1− 2µφ′(µ))
2β (−1 + µφ′(µ))

b12 +
φ′(µ)

2 (µφ′(µ)− 1)
b22

)
dx1 ⊗ ∂̃21

+
(

φ′(µ)
2 (µφ′(µ)− 1)

b12 +
β φ′′(µ)

2 (µφ′(µ)− 1)
b22

)
dx2 ⊗ ∂̃21

+
(

µ

2β2 (1− µφ′(µ))
b11 +

1
2β (µφ′(µ)− 1)

b21

)
dx1 ⊗ ∂̃12

+
(

1
2β (µφ′(µ)− 1)

b11 +
µφ′′(µ)

2 (µφ′(µ)− 1)
b21

)
dx2 ⊗ ∂̃12

+
(

µ

2β2 (1− µφ′(µ))
b12 +

1
2β (µφ′(µ)− 1)

b22

)
dx1 ⊗ ∂̃22

+
(

1
2β (µφ′(µ)− 1)

b12 +
µφ′′(µ)

2 (µφ′(µ)− 1)
b22

)
dx2 ⊗ ∂̃22 .

The universal curvature on the gamma manifold is:

ΩF =
1
2

(
bkνΓ

β
kλ ∂̃νβbmω Γαmµ dx

λ ∧ dxµ + 2 ∂abmω Γαmµ dx
a ∧ dxµ

)
⊗ ∂̃ωα

The analytic form of this is known but is rather cumbersome and omitted here.



Chapter 4

Neighbourhoods of randomness,
independence, and uniformity

We obtain some results that augment our information geometric measures for distances in spaces
of distributions, by providing explicit geometric representations of neighbourhoods for each of these
important states for stochastic processes:

• randomness,

• independence,

• uniformity.

Such results are significant theoretically because they are very general, and practically because they
are topological and so therefore stable under perturbations.

4.1 Gamma manifold G and neighbourhoods of randomness

The univariate gamma distribution is widely used to model processes involving a continuous positive
random variable. Its information geometry is known and has been applied recently to represent
and metrize departures from randomness of, for example, the processes that allocate gaps between
occurrences of each amino acid along a protein chain within the Saccharomyces cerevisiae genome,
see Cai et al [12], clustering of galaxies and communications, Dodson [21, 22, 19]. In fact, we have
made precise the statement that around every random process there is a neighbourhood of stochastic
processes subordinate to the gamma distribution, so gamma distributions can approximate any small
enough departure from randomness.

Proposition 4.1.1 Every neighbourhood of a random process contains a neighbourhood of stochastic
processes subordinate to gamma distributions.

Proof
Dodson and Matsuzoe [23] have provided an affine immersion in Euclidean R3 for G, the manifold of
gamma distributions with Fisher information metric. The coordinates (µ = α/β, α) form a natural
coordinate system (cf Amari and Nagaoka [4]) for the gamma manifold G. Then G can be realized in
Euclidean R3 as the graph of the affine immersion {h, ξ} where ξ is a transversal vector field along
h [4, 23]:

h : G → R3 :
(
µ
α

)
7→

 µ
α

log Γ(α)− α logµ

 , ξ =

 0
0
1

 .

37
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Figure 4.1: Tubular neighbourhood of all random processes. Affine immersion in natural coordinates
µ = α/β, α as a surface in R3 for the gamma manifold G; the tubular neighbourhood surrounds all
exponential distributions—these lie on the curve α = 1 in the surface. Since the log-gamma manifold L
is an isometric isomorph of G, this figure represents also a tubular neighbourhood in R3 of the uniform
distribution from the log-gamma manifold.

The submanifold of exponential distributions is represented by the curve

(0,∞) → R3 : µ 7→ {µ, 1, log
1
µ
}

and for this curve, a tubular neighbourhood in R3 such as that bounded by the surface

(4.1)

{
{µ− 0.6 cos θ√

1 + µ2
, 1− 0.6 sin θ,

−0.6µ cos θ√
1 + µ2

− logµ} θ ∈ [0, 2π)

}
will contain all immersions for small enough perturbations of exponential distributions. In Figure 4.1
this is depicted in natural coordinates µ, α. The tubular neighbourhood (4.1) intersects with the
gamma manifold immersion to yield the required neighbourhood of gamma distributions, which com-
pletes our proof. �

4.2 Log-gamma manifold L and neighbourhoods of uniformity

The family of log-gamma distributions discussed in 2.6 has probability density functions for random
variable N ∈ [0, 1] given by

(4.2) g(N,µ, β) =
1
N

1− β
µ (βµ )β (log 1

N )β−1

Γ(β)
for µ > 0 and β > 0.

It has the uniform distribution as a limit

lim
µ→1

g(N,µ, 1) = g(N, 1, 1) = 1 .
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Figure 4.2: Log-gamma probability density functions g(N ;µ, β), N ∈ [0, 1], with central mean < N >=
0.5, and β = 0.5, 1, 2, 5. The cases β < 1 correspond in gamma distributions to clustering in an
underlying spatial process; conversely, β > 1 corresponds to dispersion and greater evenness than
random.

Figure 4.2 shows some log-gamma pdfs around the uniform distribution and Figure 2.2 shows the
continuous family from which these are drawn.

The log-gamma manifold L has information metric (2.30), isometric with the gamma manifold, G by
Proposition 2.6.1. Hence, from the result of Dodson and Matsuzoe [23] the immersion of G in R3,
Figure 4.1, represents also the log-gamma manifold L. Then, since the isometry sends the exponential
distribution to the uniform distribution on [0, 1], we obtain a general deduction

Proposition 4.2.1 Every neighbourhood of the uniform distribution contains a neighbourhood of log-
gamma distributions. �

Equivalently,

Proposition 4.2.2 Every neighbourhood of a uniform stochastic process contains a neighbourhood of
stochastic processes subordinate to log-gamma distributions. �

4.3 Freund manifold F and neighbourhoods of independence

Let F be the manifold of Freund bivariate mixture exponential distributions 2.9, so with positive
parameters αi, βi,

(4.3) F ≡ {f |f(x, y;α1, β1, α2, β2) =
{
α1β2e

−β2y−(α1+α2−β2)x for 0 ≤ x < y
α2β1e

−β1x−(α1+α2−β1)y for 0 ≤ y ≤ x

}
.

4.3.1 Submanifold F2 ⊂ F : α1 = α2, β1 = β2

The distributions are of form :

f(x, y;α1, β1) =
{
α1β1 e

−β1y−(2α1−β1)x for 0 < x < y
α1β1 e

−β1x−(2α1−β1)y for 0 < y < x
(4.4)



40CHAPTER 4. NEIGHBOURHOODS OF RANDOMNESS, INDEPENDENCE, AND UNIFORMITY

with parameters α1, β1 > 0. The covariance, correlation coefficient and marginal density functions, of
X and Y are given by :

Cov(X,Y ) =
1
4

(
1
α1

2
− 1
β1

2

)
,(4.5)

ρ(X,Y ) = 1− 4α1
2

3α1
2 + β1

2 ,(4.6)

fX(x) =
(

α1

2α1 − β1

)
β1 e

−β1x +
(
α1 − β1

2α1 − β1

)
(2α1) e−2α1x , x ≥ 0 ,(4.7)

fY (y) =
(

α1

2α1 − β1

)
β1 e

−β1y +
(
α1 − β1

2α1 − β1

)
(2α1) e−2α1y , y ≥ 0 .(4.8)

Proposition 4.3.1 F2 forms an exponential family, with parameters (α1, β1) and potential function

(4.9) ψ = − log(α1 β1)

Proposition 4.3.2 Cov(X,Y ) = ρ(X,Y ) = 0 if and only if α1 = β1 and in this case the density
functions are of form

f(x, y;α1, α1) = α2
1 e

α1|y−x| = fX(x)fY (y)(4.10)

so that here we do have independence of these exponentials if and only if the covariance is zero.

Neighbourhoods of independence in F2

An important practical application of the Freund submanifold F2 is the representation of a bivariate
stochastic proces for which the marginals are identical exponentials. The next result is important
because it provides topological neighbourhoods of that subspace W in F2 consisting of the bivari-
ate processes that have zero covariance: we obtain neighbourhoods of independence for random (ie
exponentially distributed) processes.

Proposition 4.3.3 Every neighbourhood of an independent pair of identical random processes con-
tains a neighbourhood of bivariate stochastic processes subordinate to Freund distributions.

Proof
Let {F2, g,∇(1),∇(−1)} be the manifold F2 with Fisher metric g and exponential connection ∇(1).
Then F2 can be realized in Euclidean R3 by the graph of a potential function, via the affine immersion

h : G → R3 :
(
α1

β1

)
7→

 α1

β1

− log(α1 β1)

 .

In F2, the submanifold W consisting of the independent case (α1 = β1) is represented by the curve

(4.11) W : (0,∞) → R3 : (α1) 7→ (α1, α1,−2 logα1).

This is illustrated in Figure 4.3 which shows an affine embedding of F2 as a surface in R3, and an R3-
tubular neighbourhood of W , the curve α1 = β1 in the surface. This curve W represents all bivariate
distributions having identical exponential marginals and zero covariance; its tubular neighourhood
represents all small enough departures from independence. �
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Figure 4.3: Tubular neighbourhood of independent random processes. An affine immersion in natural
coordinates (α1, β1) as a surface in R3 for the Freund submanifold F2; the tubular neighbourhood
surrounds the curve (α1 = β1 in the surface) consisting of all bivariate distributions having identical
exponential marginals and zero covariance.

4.4 Neighbourhoods of independence for Gaussian processes [8]

The bivariate Gaussian distribution has the form:

f(x, y) =
1

2π
√
σ1 σ2 − σ12

2
e
− 1

2(σ1 σ2−σ122) (σ2(x−µ1)
2−2σ12(x−µ1)(y−µ2)+σ1(y−µ2)

2)
,(4.12)

defined on −∞ < x , y < ∞ with parameters (µ1, µ2, σ1, σ12, σ2); where −∞ < µ1 , µ2 < ∞,
0 < σ1 , σ2 <∞ and σ12 is the covariance of X and Y.

The marginal functions, of X and Y are univariate Gaussian distributions:

fX(x, µ1, σ1) =
1√

2π σ1
e−

(x−µ1)2

2 σ1 ,(4.13)

fY (y, µ2, σ2) =
1√

2π σ2
e−

(y−µ2)2

2 σ2 .(4.14)

The correlation coefficient is:

ρ(X,Y ) =
σ12√
σ1 σ2

Since σ12
2 < σ1 σ2 then −1 < ρ(X,Y ) < 1; so we do not have the case when Y is a linearly increasing

(or decreasing) function of X. The space of bivariate Gaussians becomes a Riemannian 5-manifold N
with Fisher information metric.
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Independence submanifold: N1 ⊂ N : σ12 = 0

The distributions are of form:

f(x, y;µ1, µ2, σ1, σ2) = fX(x, µ1, σ1).fY (y, µ2, σ2)(4.15)

This is the case for statistical independence of X and Y , so the space N1 is the direct product of two
Riemannian spaces

{fX(x, µ1, σ1), µ1 ∈ R, σ1 ∈ R+} and {fY (y, µ2, σ2), µ2 ∈ R, σ2 ∈ R+}.

Identical marginal Gaussian submanifold: N2 ⊂ N : σ1 = σ2 = σ and µ1 = µ2 = µ

The distributions are of form:

f(x, y;µ, σ, σ12) =
1

2π
√
σ2 − σ12

2
e
− 1

2(σ2−σ122) (σ(x−µ)2−2σ12(x−µ)(y−µ)+σ(y−µ)2)(4.16)

The marginal functions are fX = fY ≡ N(µ, σ), with correlation coefficient ρ(X,Y ) = σ12
σ .

Central mean submanifold: N3 ⊂ N : µ1 = µ2 = 0

The distributions are of form:

f(x, y;σ1, σ2, σ12) =
1

2π
√
σ1 σ2 − σ12

2
e
− 1

2 (σ1 σ2−σ122) (σ2x
2−2 σ12 x y+σ1y

2)(4.17)

The marginal functions are fX(x, 0, σ1) and fY (y, 0, σ2), with correlation coefficient ρ(X,Y ) = σ12√
σ1 σ2

.

By similar methods to that used for Freund distributions, the following results are obtained [8] for
the case of Gaussian marginal distributions

Proposition 4.4.1 The bivariate Gaussian 5-manifold admits a 2-dimensional submanifold through
which can be provided a neighbourhood of independence for bivariate Gaussian processes. �

Corollary 4.4.2 Via the Central Limit Theorem, by continuity the tubular neighbourhoods of the
curve of zero covariance will contain all immersions of limiting bivariate processes sufficiently close
to the independence case for all processes with marginals that converge in distribution to Gaussians.
�

Figure 4.4 shows explicitly a tubular neighbourhood for the curve of zero covariance processes (σ12 =
0,) in the submanifold of bivariate Gaussian distributions with zero means and identical standard
deviation σ.
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Figure 4.4: Continuous image, as a surface in R3 using standard coordinates, of an affine immersion
for the bivariate Gaussian distributions with zero means and identical standard deviation σ. The tubular
neighbourhood surrounds the curve of independence cases (σ12 = 0) in the surface.
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Chapter 5

Applications

Listed here with their abstracts are some recent applications.

• Khadiga Arwini, L. Del Riego and C.T.J. Dodson. Universal connection and curvature for sta-
tistical manifold geometry. Preliminary Report to American Mathematical Society and
Mexican Mathematical Society Joint Meeting Houston, 12-15 May 2004. Abstracts Amer-
ican Mathematical Society March 2004. Final version to appear in Houston Journal of Math-
ematics.

Statistical manifolds are representations of smooth families of probability density func-
tions that allow differential geometric methods to be applied to problems in stochastic
processes, mathematical statistics and information theory. It is common to have to
consider a number of linear connections on a given statistical manifold and so it is
important to know the corresponding universal connection and curvature; then all lin-
ear connections and their curvatures are pullbacks. An important class of statistical
manifolds is that arising from the exponential families and one particular family is
that of gamma distributions, which we showed recently to have important uniqueness
properties in stochastic processes. Here we provide formulae for universal connections
and curvatures on exponential families and give an explicit example for the manifold
of gamma distributions.

• Khadiga Arwini, C.T.J. Dodson and Hiroshi Matsuzoe. Alpha connections and affine embedding
of McKay bivariate gamma 3-manifold. Internat. J. Pure Appl. Math. 9, 2 (2003) 253-262.

The McKay bivariate gamma distribution has marginal gamma densities with positive
covariance and recently its information geometry as a 3-manifold has been provided.
Here we derive: natural coordinates, explicit expressions for the α-connections, mu-
tually dual foliations and an affine embedding in Euclidean R4. We compute also the
Kullback-Leibler divergence and compare it with the canonical divergence for two
McKay densities.

• Khadiga Arwini, C.T.J. Dodson, S. Felipussi and J. Scharcanski. Comparison of distance mea-
sures between bivariate gamma processes. Preprint (2003).

Yue et al.[Yue, S., Ouarda, T.B.M.J. and Bobée, B. 2001. A review of bivariate
gamma distributions for hydrological application. Journal of Hydrology, 246, 1-4,
1-18] recently reviewed various bivariate gamma distribution models and concluded
that they will be useful in hydrology. Here we contribute a detailed study of the
McKay bivariate gamma distribution and demonstrate its applicability to the joint
probability distribution of void and capillary sizes obtained from soil tomography. The
information geometry of the space of McKay bivariate gamma distributions provides

45

http://www.ma.umist.ac.uk/kd/PREPRINTS/univconexpf.pdf
http://www.ma.umist.ac.uk/kd/PREPRINTS/univconexpf.pdf
http://www.ma.umist.ac.uk/kd/PREPRINTS/affmckay.pdf
http://www.ma.umist.ac.uk/kd/PREPRINTS/affmckay.pdf
http://www.ma.umist.ac.uk/kd/PREPRINTS/hydrology.pdf
http://www.ma.umist.ac.uk/kd/PREPRINTS/hydrology.pdf
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a useful mechanism for discriminating between bivariate stochastic processes with
positive covariance and gamma marginal distributions. In most cases we found that
the information-theoretic metric is more sensitive than the classical Bhattacharyya
distance or the Kullback-Leibler divergence; this finding persisted also for data from
model porous media, and for data from simulations.

• Khadiga Arwini and C.T.J. Dodson. Information geometry of the Freund bivariate exponential
4-manifold, (2003). Mathematica Notebook version in press The Mathematica Journal.

The Freund family of distributions becomes a Riemannian 4-manifold with Fisher
information as metric; we derive the induced α-geometry, i.e., the α-curvature, α-Ricci
curvature with its eigenvales and eigenvectors, the α-scalar curvature etc. We show
that the Freund manifold has a positive constant 0-scalar curvature, so geometrically
it constitutes part of a sphere. We consider special cases as submanifolds and discuss
their geometrical structures; one submanifold yields examples of neighbourhoods of
the independent case for bivariate distributions having identical exponential marginals.
Thus, since exponential distributions complement Poisson point processes, we obtain
a means to discuss the neighbourhood of independence for random processes.

• Khadiga Arwini and C.T.J. Dodson. Information geometric neighbourhoods of randomness and
geometry of the McKay bivariate gamma 3-manifold. Sankhya: Indian Journal of Statistics,
66, 2 (2004) 211-231.

We show that gamma distributions provide models for departures from randomness
since every neighbourhood of an exponential distribution contains a neighbourhood of
gamma distributions, using an information theoretic metric topology. We derive also
the information geometry of the 3-manifold of McKay bivariate gamma distributions,
which can provide a metrization of departures from randomness and departures from
independence for bivariate processes. The curvature objects are derived, including
those on three submanifolds. As in the case of bivariate normal manifolds, we have
negative scalar curvature but here it is not constant and we show how it depends on
correlation. These results have potential applications, for example, in the characteri-
zation of stochastic materials.

• C.T.J. Dodson and Hiroshi Matsuzoe. An affine embedding of the gamma manifold. Applied
Sciences 5, 1 (2003) 1-6.

For the space of gamma distributions with Fisher metric and exponential connections,
natural coordinate systems, potential functions and an affine immersion in R3 are
provided.

• C.T.J. Dodson and H. Wang. Information geometry for bivariate distribution control. Interna-
tional Conference on Computer, Communication and Control Technologies (CCCT
’03) Orlando, USA, July 31 to August 2, 2003.

The optimal control of stochastic processes through sensor estimation of probability
density functions has a geometric setting via information theory and the information
metric. Information theory identifies the exponential distribution as the maximum
entropy distribution if only the mean is known and the gamma distribution if also
the mean logarithm is known. Previously, we used the surface representing gamma
models to provide an appropriate structure on which to represent the dynamics of a
univariate process and algorithms to control it. In this paper we extend these proce-
dures to gamma models with positive correlation, for which the information theoretic
3-manifold geometry has recently been formulated. For comparison we summarize
also the case for bivariate Gaussian processes with arbitrary correlation.

• C.T.J. Dodson and J. Scharcanski. Information Geometric Similarity Measurement for Near-
Random Stochastic Processes. IEEE Transactions SMC A, 33, 4 (2003) 435-440.

http://www.ma.umist.ac.uk/kd/PREPRINTS/freund.pdf
http://www.ma.umist.ac.uk/kd/PREPRINTS/freund.pdf
http://www.ma.umist.ac.uk/kd/PREPRINTS/gamran.pdf
http://www.ma.umist.ac.uk/kd/PREPRINTS/gamran.pdf
http://www.ma.umist.ac.uk/kd/PREPRINTS/affimm.pdf
http://www.ma.umist.ac.uk/kd/PREPRINTS/dodsonwang.pdf
http://www.ma.umist.ac.uk/kd/PREPRINTS/simmet.pdf
http://www.ma.umist.ac.uk/kd/PREPRINTS/simmet.pdf
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• Y. Cai, C.T.J. Dodson, O. Wolkenhauer and A.J. Doig. Information Theoretic Analysis of
Protein Sequences shows that Amino Acids Self Cluster. J. Theoretical Biology 218, 4
(2002) 409-418.

We analyse for each of 20 amino acids X the statistics of spacings between consecu-
tive occurrences of X within the well-characterised Saccharomyces cerevisiae genome.
The occurrences of amino acids may exhibit near random, clustered or smoothed out
behaviour, like 1-dimensional stochastic processes along the protein chain. If amino
acids are distributed randomly within a sequence then they follow a Poisson process
and a histogram of the number of observations of each gap size would asymptotically
follow a negative exponential distribution. The novelty of the present approach lies
in the use of differential geometric methods to quantify information on sequencing of
amino acids and groups of amino acids, via the sequences of intervals between their
occurrences. The differential geometry arises from an information-theoretic distance
function on the 2-dimensional space of stochastic processes subordinate to gamma
distributions—which latter include the random process as a special case. We find
that maximum-likelihood estimates of parametric statistics show that all 20 amino
acids tend to cluster, some substantially. In other words, the frequencies of short gap
lengths tends to be higher and the variance of the gap lengths is greater than expected
by chance. This may be because localising amino acids with the same properties may
favour secondary structure formation or transmembrane domains. Gap sizes of 1 or
2 are generally disfavoured, 1 strongly so. The only exceptions to this are Gln and
Ser, as a result of poly(Gln) or poly(Ser) sequences. There are preferences for gaps
of 4 and 7 that can be attributed to α-helices. In particular, a favoured gap of 7 for
Leu is found in coiled-coils. Our method contributes to the characterisation of whole
sequences by extracting and quantifying stable stochastic features.

• C.T.J. Dodson and H. Wang. Iterative approximation of statistical distributions and relation
to information geometry. J. Statistical Inference for Stochastic Processes 147, (2001)
307-318.

The optimal control of stochastic processes through sensor estimation of probabil-
ity density functions is given a geometric setting via information theory and the in-
formation metric. Information theory identifies the exponential distribution as the
maximum entropy distribution if only the mean is known and the gamma distribu-
tion if also the mean logarithm is known. The surface representing gamma models
has a natural Riemannian information metric and the exponential distributions form
a 1-dimensional subspace of the 2-dimensional space of all gamma distributions, so
we have an isometric embedding of the random model as a subspace of the gamma
models. This geometry provides an appropriate structure on which to represent the
dynamics of a process and algorithms to control it. We illustrate by showing a minimal
information-distance path between an initial and target distribution.

• C.T.J. Dodson. Geometry for stochastically inhomogeneous spacetimes. Nonlinear Analysis
47, 5 (2001) 2951-2958.

Manifolds of gamma probability density functions, which carry a Riemannian informa-
tion metric, have been used to model the evolution of the intergalactic void statistics
and corresponding galactic density statistics. This allowed representation of galaxy
clustering using a derived manifold of log-gamma distribution functions to model sto-
chastic spatial variations and provided a metric that measured departures from the
random or chaotic state. We show that this log-gamma manifold is an isometric diffeo-
morph of the gamma manifold and propose a method to approximate matter density
statistics in spacetime through a coupling of spacetime and statistical manifold geome-
tries.
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• C.T.J. Dodson and S.M. Thompson. A metric space of test distributions for DPA and SZK
proofs. Poster Session, Eurocrypt 2000, Bruges, 14-19 May 2000.

Differential Power Analysis (DPA) methods and Statistical Zero-Knowledge (SZK)
proofs depend on discrimination between noisy samples drawn from pairs of closely
similar distributions. In some cases the distributions resemble truncated Gaussians;
sometimes one distribution is uniform. A log-gamma family of probability density
functions provides a 2-dimensional metric space of distributions with compact support
on [0, 1], ranging from the uniform distribution to symmetric unimodular distributions
of arbitrarily small variance. Illustrative calculations are provided.

• C.T.J. Dodson. Spatial statistics and information geometry for parametric statistical models of
galaxy clustering. Int. J. Theor. Phys. 38, 10 (1999) 2585-2597.

Poisson spatial processes of points and of extended objects representing smoothed
clusters of galaxies are considered; some results are obtained for planar representa-
tions of random filaments, which may help interpret the findings of the Las Campanas
Redshift Survey. Based on a model for the void probability function, a family of
gamma-related distributions is investigated as a three-dimensional model for the clus-
tering of galaxies. The unclustered models in this family correspond to the random
case and to maximum information theoretic entropy. The Riemannian information
metric and Gaussian curvature are derived for the parameter space of the family of
models, which provides a background on which to write dynamics for cluster evolution.

• C.T.J. Dodson. A geometrical representation for departures from randomness of the inter-
galactic void probablity function. Workshop on Statistics of Cosmological Data Sets
NATO-ASI Isaac Newton Institute 8-13 August 1999.

A number of recent studies have estimated the inter-galactic void probability func-
tion and investigated its departure from various random models. We study a family
of parametric statistical models based on gamma distributions, which do give realis-
tic descriptions for other stochastic porous media. Gamma distributions contain as
a special case the exponential distributions, which correspond to the ‘random’ void
size probability arising from Poisson processes. The random case corresponds to the
information-theoretic maximum entropy or maximum uncertainty model. Lower en-
tropy models correspond on the one hand to more ‘clustered’ structures or ‘more
dispersed’ structures than expected at random. The space of parameters is a surface
with a natural Riemannian structure, the Fisher information metric. This surface
contains the Poisson processes as an isometric embedding and provides the geometric
setting for quantifying departures from randomness and perhaps on which may be
written evolutionary dynamics for the void size distribution. Estimates are obtained
for the two parameters of the void diameter distribution for an illustrative example of
data published by Fairall.

• C.T.J. Dodson. Information geodesics for communication clustering. J. Statistical Compu-
tation and Simulation 65, (2000) 133-146.

Recently, Akyildiz [1, 2] called for further work on non-Poisson models for commu-
nication arrivals in distributed networks such as cellular phone systems. The basic
‘random’ model for stochastic events is the Poisson process; for events on a line this re-
sults in an exponential distribution of intervals between events. Network designers and
managers need to monitor and quantify call clustering in order to optimize resource
usage; the natural reference state from which to measure departures is that arising
from a Poisson process of calls. Here we consider gamma distributions, which contain
exponential distributions as a special case. The surface representing gamma models
has a natural Riemannian information metric and we obtain some geodesic sprays
for this metric. The exponential distributions form a 1-dimensional subspace of the
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2-dimensional space of all gamma distributions, so we have an isometric embedding of
the random model as a subspace of the gamma models. This geometry may provide
an appropriate structure on which to represent clustering as quantifiable departures
from randomness and on which to impose dynamic control algorithms to optimize
traffic at receiving nodes in distributed communication networks. In practice, we may
expect correlation between call arrival times and call duration, reflecting for example
peaks of different users of internet services. This would give rise to a twisted prod-
uct of two surfaces with the twisting controlled by the correlation. Though bivariate
gamma models do exist, such as Kibble’s [43], none has tractable information geom-
etry nor sufficiently general marginal gammas, but a simulation method of approach
is suggested.
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Appendix: Mathematica Notebooks

1. C.T.J. Dodson. TRYMMA.nb

Introduction to using Mathematica.

2. C.T.J. Dodson. StatsIntro.nb

Elementary statistics with Mathematica.

3. Khadiga Arwini and C.T.J. Dodson. Neighbourhoods of randomness and information geometry
of the McKay bivariate gamma 3-manifold. In Proc. International Mathematica Sympo-
sium 2003 Imperial College Press, London 2003 pp. 247-254.

This contains the code necessary to present neighbourhoods of randomness in an
embedding of the gamma 2-manifold, and for computing the metric, connection and
curvature for the McKay bivariate gamma 3-manifold[7].

4. Khadiga Arwini and C.T.J. Dodson. Information geometry of the Freund bivariate exponential
4-manifold and neighbourhoods of independence, (2003). Mathematica Notebook to appear in
The Mathematica Journal.

This contains the code necessary to compute the metric, connection and curvature for
the Freund 4-manifold and to present neighbourhood of independence in an embedding
of a 2-dimensional submanifold of coupled random processes [35].

5. C.T.J. Dodson. Distances in the gamma manifold (2004).

Code for presenting experimental data for gamma parameters on a distance surface [27,
12].

6. C.T.J. Dodson and W.W. Sampson. McKay pdf (2004).

Plotting code with arbitrary choice of parameters for the McKay bivariate gamma
family.

7. C.T.J. Dodson and W.W. Sampson. Simulator for bivariate gamma processes (2004).

Code for simulating bivariate gamma processes and for fitting maximum likelihood
parameters for McKay distribution.
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