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The spectrum of Renyi inference processes in the discrete case is found to have
limits of Minimax at one end and CM∞ at the other. Another sequence of processes
is found to have the limit Maximin. Although Maximin is the dual of Minimax,
it is seen to have better characteristics when compared with Maximum Entropy
(ME) than those possessed by Minimax. The comparison of inference processes is
made using a list of desiderata which were shown by Paris/Vencovska to uniquely
characterise ME.

Algorithms are described for calculating Minimax and Maximin, which have the
advantage over ME of inferring belief values which are rational numbers when the
agent’s knowledge is itself expressed purely in terms of rational numbers.

Then Minimax and Maximin are viewed as examples of Partly Linear, or PL
inference processes. This yields a unique characterisation of Maximin. Another
inference process, Meanimax, compares well with Minimax and is a counterexample
of some plausible conjectures about certain properties of inference processes.
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Chapter 1

Introduction

1.1 General notation

In this section we introduce notation that will be used generally in this thesis. In

this thesis we investigate properties of inference processes on finite languages of

propositional logic. A finite language L is a finite set of propositional variables,

say p1, p2, . . . pn. The list of logical connectives we use to make sentences is

→,∧,∨,¬ (1.1)

The set of sentences of the language L is denoted by SL.

We define an atom of L to be a sentence of the form

α = pǫ1
1 ∧ (pǫ2

2 ∧ . . . pǫn

n ))) . . .) (1.2)

where ǫi = 0 or 1 for each i = 1, 2, . . . n and p1
i denotes pi while p0

i denotes ¬pi. Thus

each atom α specifies the truth or falsity of every p.v. (propositional variable) and

there are 2n atoms. When the context only demands that sentences are defined up to

logical equivalence, which is almost always the case, we write the atom above more

informally as

α =
n

∧

i=1

pǫi

i (1.3)

The set of atoms of L is denoted by AtL = {αi |1 ≤ i ≤ 2n}, and, unless we state

otherwise, J denotes |AtL|.

11



CHAPTER 1. INTRODUCTION 12

It will often be useful to have a standard enumeration of AtL. In the standard

ordering of the atoms,

α1+(
∑n

i=1 2n−i(1−ǫi)) =
n

∧

i=1

pǫi

i (1.4)

so that, for example, α1 =
∧n

i=1 pi and α2n = αJ =
∧n

i=1 ¬pi.

We let log denote the function that takes logarithms to base 2. Later in this

introduction, and in Chapter 3, we use loge to denote the natural logarithm function.

We use N to denote the set of natural numbers, where a natural number is defined

to be a strictly positive integer, so 0 /∈ N. We use Q and R to denote the sets of

rational numbers and real numbers, respectively.

Throughout this work the extent to which a rational agent believes that sentences

θ ∈ SL are true are thought of as probabilities. We sometimes say that atoms of L

have certain belief values etc. We may call these values the agent’s beliefs, beliefs

inferred, or our beliefs—the reader is credited with being a rational individual!

Belief as probability is controversial and we summarise some arguments in support

of this philosophy at the beginning of the next section. The beliefs are given by

probabilistic belief functions, called p.b. functions

Bel : SL → [0, 1] (1.5)

which by definition, as in [Par], must satisfy the axioms:

(P1) If |= θ then Bel(θ) = 1.

(P2) If |= ¬(θ ∧ φ) then Bel(θ ∨ φ) = Bel(θ) + Bel(φ).

We can now deduce, by Disjunctive Normal Form, that each Bel on the language

L is uniquely determined by its values on the atoms, Bel(αi), which we usually denote

by xi
1 . We might call xi the belief (value) of, or for αi, or the belief in αi, or the

belief given to αi by Bel. Where J = 2n, the set of p.b. functions on L is thus

1This usage of Disjunctive Normal Form to express p.b. functions in terms of their values at the
atoms of L is standard notation for work on inference processes—see [Moh], [Par] etc. However,
there exist other parameterisations for p.b. functions. In information geometry the logarithms of
the beliefs of the atoms are commonly used. In work on probabilistic networks it is common to use,
for each j = 1, . . . n, the conditional probabilities of the j’th propositional (continued on next page)
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identified with

DJ =

{

~x ∈ RJ |
J

∑

i=1

xi = 1 and every xi ≥ 0

}

(1.6)

A knowledge base K consists of a finite set of linear equations, called constraints,

which may be written in the form
{

J
∑

j=1

apjBel(θj) = bp | 1 ≤ p ≤ m

}

(1.7)

including the constraint
∑J

i=1 Bel(αi) = 1. However, where xi denotes Bel(αi) we

can also express a knowledge base as a finite set of equations of the form
{

J
∑

j=1

cpjxi = dp | 1 ≤ p ≤ m

}

(1.8)

including
∑J

i=1 xi = 1, where the language L and labelling of the atoms as α1, . . . αJ

are understood. Any knowledge base can be equivalently expressed in either form,

using the identity

Bel(θ) =
∑

αi|=θ

Bel(αi) (1.9)

We usually only consider consistent knowledge bases, i.e. those satisfied by some

p.b. function. We let CL denote the set of consistent knowledge bases over a language

L. The solution set of K is denoted by V L(K) and is the set of those non-negative

~x ∈ RJ satisfying the constraints of K; this is a set of p.b. functions viewed as vectors

in RJ , indeed in DJ .

If K is a knowledge base we always make the following assumption, due to [Par],

known as the Watts Assumption:

K is all the agent’s relevant knowledge (1.10)

We also use the more general notion of a constraint set. A constraint set K on J

co-ordinates is a set of linear constraints of the form of (1.8) on variables x1, x2, . . . xJ ,

where J is an integer at least 2 and for which the set of solutions, denoted by V (K),

variable, given that all of the truth values of the first j − 1 p.v.’s are fixed. If different param-
eterisations were used, we could define inference processes with similar definitions to MinimaxL,
MaximinL (see Chapters 3,5 resp.) etc. but they would not be the same inference processes.
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which includes just those non-negative ~x ∈ RJ satisfying the constraints of K, is

bounded. There is not necessarily an association of the xis as beliefs of atoms of a

language; indeed J might not even be a power of 2.

When our knowledge is given by some K ∈ CL, we choose a p.b. function

satisfying K by using an inference process NL which is a function

NL : CL → DJ (1.11)

such that for all consistent K, NL(K) satisfies K, i.e. NL(K) ∈ V L(K).

The set of generalised solutions of a constraint set or knowledge base K is denoted

by G(K). It is given by

G(K) = {~x ∈ RJ | ~x satisfies the constraints of K} (1.12)

so that V (K) = {~x ∈ G(K) s.t. xi ≥ 0 for each i = 1, . . . J}. Also it is useful to

define

I(K) = {i ∈ {1, 2, . . . J} s.t. xi = 0 for all ~x ∈ V (K)} (1.13)

for any constraint set K. We say a co-ordinate i is K-constant (abbreviated to

“constant” when K is clear from the context) or constant w.r.t. K iff there exists

C ∈ R such that xi = C for all ~x ∈ V (K).

Note that, if K is a knowledge base in CL, we may sometimes write G(K) and

I(K) as GL(K) and IL(K) respectively, to make L explicit.

The following definitions, together with an equivalence result, give us characteri-

sations for solution sets V (K):

We say that a subset S of RJ is line-bounded iff no infinite line is a subset of S.

A convex facet-polytope is a line-bounded set P ⊆ RJ expressible in the form:

P =
m
⋂

i=1

{

~x ∈ RJ |
J

∑

j=1

aijxj ≤ bi

}

(1.14)

where the aij’s and bi’s are real constants.
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A convex polytope is a set Q ⊆ RJ that can be expressed in the form:

Q =

{

m
∑

i=1

ai~u
(i) |ai ≥ 0 for each i = 1, . . . m and

m
∑

i=1

ai = 1

}

. (1.15)

where the ~u(i)’s are constants. We say that Q is the set of convex combinations of

the ~u(i)’s. In an expression of the form (1.15), a particular ~u(i∗) is redundant iff Q

also equals the set of convex combinations of the ~u(i)’s apart from ~u(i∗). We see that

~u(i∗) is redundant iff it can be expressed as a convex combination of the other ~u(i)’s.

If, in (1.15), none of the ~u(i)’s are redundant, the ~u(i)’s are known as the vertices of

Q w.r.t. (1.15).

The following useful technical lemma can be found in, for example, [Zie]page 29:

Lemma 1 The set of vertices of a convex polytope P w.r.t. an expression of the form

(1.15) is independent of the choice of equation; they are now known as the vertices

of P . For all J ∈ N, the collection of all convex polytopes in RJ is the same as that

of all convex facet-polytopes in RJ .

Remark By definition of a constraint set, V (K) is a convex facet-polytope for

every constraint set K. By Lemma 1, V (K) is also a convex polytope.

Now, by definition of vertices, every vertex of V (K) is on the topological boundary

of V (K) w.r.t. the subspace topology of V (K). Hence, if K is given in the form

K =

{

J
∑

j=1

cpjxi = dp for each p = 1, . . . m

}

(1.16)

such that G(K) does not merely consist of a single point 2, then every vertex of V (K)

is a solution of a constraint set of the form K ′ = K ∪ {xi = 0}, for some i = 1, . . . or

J .

The two lemmas which follow are known results about convex polytopes (see [Zie])

and we prove them here using the notation of this thesis.

2If G(K) = { ~X}, say, either K is inconsistent or ~X is non-negative and is the only vertex of
V (K).
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Lemma 2 Let P be a convex polytope such that

P =
m
⋂

i=1

{

~x ∈ RJ |
J

∑

j=1

aijxj ≤ bi

}

(1.17)

where the aij’s and bi’s are real constants. Let C = {~x ∈ RJ s.t.
∑J

j=1 a1jxj = b1}

and let Q = P ∩ C.

Then the vertices of Q are precisely those vertices of P lying in Q.

Proof We assume w.l.o.g. that Q 6= P . When we express a point in Q as a

convex combination of vertices of P , those vertices, ~u, of P which we use must lie in

Q since the value of
∑J

j=1 a1juj is less than b1 at all of the other vertices of P . Thus

every point in Q is a convex combination of the members of V ert, which denotes the

set of vertices of P which lie in Q.

Also, if some of those vertices were redundant for describing Q, they would be

expressible as a convex combination of other members of V ert. In that case, they

would be redundant for describing P . Hence there are no such redundancies and we

have proved the lemma.

¥

Lemma 3 Let P be a convex polytope as in Lemma 2. The vertices of P are all

unique solutions of sets of equations of the form

P +

{

J
∑

j=1

aikjxj = bik s.t. k = 1, . . . d

}

(1.18)

where i1, i2 . . . id ∈ {1, . . . m}.

Proof The vertices of P lie on the topological boundary of P , using the subspace

topology of the smallest affine set that contains P . Hence every vertex lies in a set

that we can describe by changing one of the inequalities of (1.17) into an equality.

Using Lemma 2, the proof follows by induction on the dimension of the smallest affine

space that contains P .

¥

The following lemma is a useful existence result which we use later in this thesis.
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Lemma 4 Suppose that L is an overlying language and that V ⊆ DJ is the intersec-

tion of an affine subset of RJ with DJ . Then there exists a knowledge base K such

that V = V L(K).

Proof Let V = DJ ∩ G, where G is affine. Now we write a basis of the vector

space of those ~x ∈ RJ such that ~x · (~g1 − ~g2) = 0 for all ~g1, ~g2 ∈ G—the vectors

perpendicular to G. Each member of this basis gives rise to a linear equation in

the xi’s and when these equations are considered together, G is precisely the set of

vectors in RJ that satisfy all of those equations. We include the equation
∑J

i=1 xi = 1

and call the equations constraints. We have now written K such that V L(K) = V ,

proving the lemma.

¥

Definition Let S be some convex subset of RJ , where J is an integer. Suppose

that a function f : S → R is such that for all distinct vectors ~a,~b in S and every

λ ∈ (0, 1),

f(λ~a + (1 − λ)~b) < λf(~a) + (1 − λ)f(~b) (1.19)

Then we say that f is convex. We describe f as concave iff −f is convex. Equivalently,

f is concave iff the condition (1.19) is always true with the inequality reversed. The

following theorem is very helpful when we show that certain inference processes are

well-defined.

Theorem 5 ([Egg]) Let S be a convex subset of DJ . Let f : S → R be continuous

and twice differentiable such that its second derivative is positive in all directions ~u

parallel to S from all ~x ∈ S. Then f is convex. If we also assume that V is a convex

subset of S, then there exists a unique ~x ∈ V such that f(~v) ≥ f(~x) for all ~v ∈ V .
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1.2 Belief as probability

The philosophy of this work is that the degree of belief a rational agent has in a

particular sentence θ being true should be viewed as the probability of θ in the

view of that agent. In Subsections 1.2.1 and 1.2.2 we discuss justifications of this

philosophy.

1.2.1 The urn model

The so-called urn problem is a probability problem in which balls are drawn at random

from an urn, in which all of the balls are known to have one of a finite number of

different colours. Given what we observe from a finite number of draws (where each

ball is replaced after being drawn), we wish to infer the proportions of the different

colours of balls in the urn. The idea dates back to the early 18th century work [Ber],

and has also been studied by De Moivre and Bayes.

The following justification for belief as probability can be found in [[Par] pp.

17-18].

Suppose that a rational agent has formed beliefs regarding a natural phenomenon

P which they have observed a large number of times, where each observation is

denoted by X. This is analogous to the evidence gained when a large number of

selections have been made from the urn. If we assume that the contents of the urn do

not change over time and that each withdrawal is independent of all of the previous

withdrawals, of which there are many, then the past frequency with which a particular

colour of ball has been withdrawn is a statistically fair estimate of the (unknown)

proportion of balls in the urn which have that colour.

If the natural phenomenon P is regarded in a similar way, i.e. we assume that

there is an underlying natural frequency with which an occurrence of P satisfies a

fixed sentence θ ∈ SL, then the agent’s belief in θ being true the next time they

observe P is the proportion of times θ has been true in the past, i.e.

|{X|X |= θ}|
|{X}| (1.20)
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Now we can prove (as in [[Par], p.19]) that this forces the agent’s beliefs to be

probabilistic. Indeed Bel(θ) is the probability that a previous occurrence of P , chosen

using the uniform distribution, satisfies θ.

Remark However, in practice, if we really have observed P a large number of

times it is unreasonable that we remember every single one clearly. However, it can

be argued that we may be subconsciously aware of all our previous memories when

assessing, for example, based on the visible clouds, how likely it is to rain in the

next hour. Also it is quite possible that the agent believes that φ is possible but

has never observed it him/herself. Some past observations might be more indirect,

such as those passed on from other observers and written in books or other media.

The urn model, however, gives all observations equal weight. We often wish to infer

beliefs about situations that have never happened before—something the urn model

does not allow.

1.2.2 Belief as willingness to bet

The ideas of this subsection arise originally from work of [Ram], [deFin1], [deFin2],

[Kem] and [Shi]. Our exposition of this argument here is inspired by

[[Par], pp.19-22]. The extent to which the agent believes that θ is true can be regarded

as the agent’s willingness to bet that θ is true. We assume that the agent will place

bets on whether sentences are true or false, before finding out for certain which atom

αreal of the overlying language L is really true. We now specify the terms of the bets.

Suppose that for every t ∈ [0, 1] and all θ ∈ SL the rational agent must choose

between

(i) Gaining (1 − t) if αreal |= θ and losing t if αreal |= ¬θ

(ii) Losing (1 − t) if αreal |= θ and gaining t if αreal |= ¬θ

We now observe that, for all θ ∈ SL, if t = 0 the agent must choose (i) as then

he/she has nothing to lose. Similarly if t = 1, the agent must choose (ii).

Let T ′, T ∈ [0, 1] such that T ′ < T .
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Claim The agent is irrational if they choose (i) when t = T and (ii) when

t = T ′, insofar as if, instead, they choose (i) when t = T ′ and (ii) when t = T they

will be better off.

Proof of claim

Case 1 αreal |= θ Choosing (i) when t = T and (ii) when t = T ′ results in a

gain of 1−T and a loss of 1−T ′ respectively. However choosing (i) when t = T ′ and

(ii) when t = T results in a gain of 1− T ′ and a loss of 1− T . The gain is now larger

and the loss smaller.

Case 2 αreal |= ¬θ Choosing (i) when t = T and (ii) when t = T ′ results in a

loss of T and a gain of T ′ respectively. However choosing (i) when t = T ′ and (ii)

when t = T gives a loss of T ′ and a gain of T .

Hence whether θ turns out to be true or false in the real world, it is irrational

to choose (i) for a larger value of t and (ii) for a smaller value. We have proved the

claim.

¥

Thus for each θ ∈ SL there exists β ∈ [0, 1] such that for all t ∈ [0, 1] s.t. t > β

the agent chooses (ii) and for all t < β their choice is (i). We now define this value

to be the extent to which the agent is prepared to bet on θ being true since for t > β

it is more attractive to place the bet that pays out when αreal |= ¬θ but if t < β the

agent prefers the bet that pays out when αreal |= θ.

Definition A Dutch Book against a belief function is a finite collection of bets

on sentences θ ∈ SL such that, according to the rational agent’s beliefs, they are

compelled to accept the bets individually, but the agent loses overall no matter which

αreal ∈ AtL represents the real world.

Definition If a rational agent forms their beliefs in terms of willingness to bet

simultaneously for all θ ∈ SL so that they cannot change their mind, these beliefs

are fair if and only if there does not exist a Dutch Book against these beliefs.

Theorem 6 A belief function Bel : SL → [0, 1] is fair if and only if it is a proba-

bilistic belief function.
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Proof This is similar to [[Par] p.21, p.23] apart from the fact that in [Par], the

author defines the bets of type (i) and (ii) with variable stakes whereas in this work

the stakes are fixed for each bet.

¥

Remark Why should a rational agent be forced to bet? Indeed the author of

[Chr] argues:

“There is, after all, no Evil Super-bookie constantly monitoring everyone’s cre-

dences, with an eye to making Dutch book against anyone who falls short of proba-

bilistic perfection. Even if there were, many people would decline to bet at “fair odds”,

due to suspiciousness, or risk aversion, or religious scruples. In short, it is pretty

clear that Dutch Book vulnerability is not, per se, a practical liability at all!”

The author also outlines a method by which a Dutch book could exist against a

rational agent, if we use a form of temporal logic and some of the sentences of the

language refer to the beliefs the agent will hold tomorrow.

Whilst the “Evil Super-Bookie” does not exist, we do bet using our beliefs in

everyday situations. For example, there is a certain “loss” incurred in carrying a

cumbersome umbrella if it does not rain and a certain “loss” if we are rained upon

because we do not carry the umbrella. Our belief in the statements “It will rain”, “It

will rain heavily” etc. determine which loss we risk incurring. If we view betting in

this loose sense, the Dutch Book argument can become more credible.

One main philosophical point of view in choosing which inference processes to use

is that we wish to maximise a measure of uncertainty to pick the point in V L(K)

which is the least informative. We pursue this as a main theme in this thesis, although

we also consider other approaches.

In the next section we introduce certain inference processes that have a great deal

of importance.
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1.3 The Maximum Entropy inference process

Definition For a language L and all K ∈ CL the Maximum Entropy inference

process, MEL, is defined by

MEL(K) = the unique ~x ∈ V L(K) for which the Shannon

measure of uncertainty, −
J

∑

i=1

xi log(xi) is maximal (1.21)

where, by convention, x log(x) = 0 when x = 0.

There are many justifications for using MEL, including that of justifying the

Shannon entropy as a measure of uncertainty. When we say that −∑J
i=1 xi log(xi) is

the measure of uncertainty of the p.b.f. ~x, Shannon and Weaver provide the following

justification in [Sha]:

We have a finite set of mutually exclusive events, one of which we know must occur,

given by α1, α2, . . . αJ where J might not equal 2n with n the number of p.v.’s—we

are just considering the outcomes so there may be any number of them. The belief

values we have assigned to them are Bel(αi) = xi which are non-negative for each

i = 1, . . . J and
∑J

i=1 xi = 1. The amount of uncertainty is denoted by H(~x) and we

think of that as the amount of information we expect to gain when we discover which

event actually occurs.

The function

H : ∪J≥1D
J → [0,∞), (1.22)

should satisfy the properties:

(a) For each J ∈ N, H⌈DJ (H restricted to DJ) is continuous.

(b) For all integers J1, J2 s.t. 0 < J1 < J2, H
(

1
J1

, . . . , 1
J1

)

< H
(

1
J2

, . . . , 1
J2

)

(c) If
∑Mi

j=1 yij = 1 and yij ≥ 0 for i = 1, 2, . . . J and ~x ∈ DJ then

H(x1y11, x1y12, . . . x1y1M1
, x2y21, x2y22, . . . xiyij . . .)

= H(~x) +
J

∑

i=1

xiH(yi1, yi2, . . . yiMi
). (1.23)
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We justify (a) because it can be expected that a small change in ~x should not

significantly change H(~x). The level of uncertainty in J equally likely outcomes

should increase as J increases, so we have (b). If you learn first which xi event happens

and then which yij event happens the formula in (c) shows the expected amount of

information gained, since it should make no difference whether the information comes

all at once or in those two steps.

Theorem 7 ([Sha]) Assume H is a function satisfying (a), (b) and (c) above. Then

there exists a positive real constant c such that for all positive integers J and all

~x ∈ DJ ,

H(x1, . . . , xJ) = −
J

∑

i=1

cxi log xi (1.24)

Proof The proof of the theorem as expressed above can be found in

[[Par], pp. 77-78].

¥

1.3.1 The “balls in boxes” justification of Maximum Entropy

The following derivation of Maximum Entropy is thought to have arisen from a

suggestion by Graham Wallis to E.T. Jaynes in 1962—see [Jay]. Firstly, we write it

in a non-rigorous form.

When trying to assign probabilities to a collection of mutually exclusive possible

outcomes, the possible worlds α1, . . . αJ , imagine that the total probability of 1 comes

as a large collection of N discrete amounts of 1/N . The balls (quanta of 1/N prob-

ability) are now allocated at random to the boxes (the atoms) with total symmetry

between the different balls and the different boxes. The balls land independently of

each other. It is deemed that the fairest allocation of probability is that which is

most likely to occur, out of those that satisfy our knowledge base.

Hand-waving “Proof” Consider the allocation of n1 balls in box 1, n2 in

box 2, . . . ni in box i for each i s.t. 1 ≤ i ≤ J so that Bel(αi) = xi = ni/N . The
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probability that the balls land in that way is

N !

n1!n2! . . . nJ !JN
= P (1.25)

When maximising P , we equivalently maximise 1
N

loge(P.JN) i.e.

1

N
loge

(

N !

n1!n2! . . . nJ !

)

(1.26)

=
1

N

(

loge(N !) −
J

∑

i=1

loge(Nxi)!

)

(1.27)

Now we use Stirling’s approximation for the factorial function:

lim
n→∞

n!√
2πn

(

n
e

)n = 1 (1.28)

We say ≈ means “approximately equals for large N” and assume that the large

N → ∞ so that (1.28) is used in the form

n! ≈
√

2πn
(n

e

)n

(1.29)

so that

loge(n!) ≈ c + (n + 1/2) loge n − n (1.30)

where c is constant. Thus maximising P becomes equivalent, as N → ∞, to max-

imising

1

N

(

(

N +
1

2

)

loge N − N −
J

∑

i=1

(

Nxi +
1

2

)

(loge N + loge xi) +
J

∑

i=1

Nxi

)

(1.31)

Expanding the above gives

1

N

(

(

N +
1

2

)

loge N − J loge N

2
− N loge N − N

J
∑

i=1

xi loge xi −
1

2

J
∑

i=1

loge xi

)

(1.32)

and the N loge N terms cancel out, leaving

loge N

(

1 − J

2N

)

−
J

∑

i=1

loge xi

(

xi +
1

2N

)

(1.33)

Terms which are constant or small as N → ∞ become immaterial in the limit, leaving

us with the problem of maximising

−
J

∑

i=1

xi loge xi (1.34)
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which is equivalent to us maximising the Shannon entropy, since log(x) = loge(x). log(e)

for all positive real values of x.

End of Hand-waving “Proof” Thus we have “proved” that we should maximise

the Shannon entropy when N becomes very large.

The above argument is not a genuine mathematical derivation: however, in

[ParVen3], the authors formulate and prove a rigorous theorem based on the same

ideas, which we state overleaf.

When we assume that the rational agent’s knowledge base arises from a large case

history of examples, the convergence to MEL can be seen to be more convincing than

the above argument suggests. We reinterpret a constraint of the form

r
∑

j=1

ajiBel(θj) = bi (1.35)

as
r

∑

j=1

aji|{X ∈ M | X satisfies θj}| = bi|M | (1.36)

where M is the large set of previous examples X from which the rational agent has

gained the knowledge. Insisting on equality above puts severe conditions on the

integer |M | = N . Hence the agent, slightly unsure of the exact numbers of previous

experiments in which the θj are true, knows that

r
∑

j=1

aji|{X ∈ M | X satisfies θj}| ≈ biN (1.37)

which we make rigorous shortly. Now all that is known about M are the constraints

of K, written in the form (1.37) and, to infer Bel(θ), we find an approximation for

|{X ∈ M |X satisfies θ}|
N

(1.38)

Considering all of the possible values of M that could have given rise to the knowledge

base, it can be shown (see [ParVen1]) that ALMOST ALL of these, when M is large

enough, infer Bel(θ) ≈ MEL(K)(θ)!

The notion of ≈ is now made more precise as a binary relation on {1, 2, . . . N}.

Where there are m constraints on sentences of n propositional variables with N fixed,
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for every x, y ∈ {1, . . . N},

|x − y| ≤ 2n
√

m ⇒ x ≈ y

x ≈ y ⇒ |x − y| ≤ ǫN (1.39)

where ǫ is a fixed, positive real number.

Lemma 8 ([ParVen1]) Fix a consistent knowledge base K. For every µ, ν > 0

there exist ǫ > 0 and a positive integer N0 such that for every N ≥ N0 and all

relations ≈ satisfying the above conditions the proportion of possible M satisfying K

for which
∣

∣

∣

∣

|{X ∈ M |X satisfies θ}|
N

− MEL(K)(θ)

∣

∣

∣

∣

≥ ν (1.40)

is less than or equal to µ.

In other words, the rational agent is compelled to take belief values closer and

closer to those inferred by Maximum Entropy when the size of previous evidence

N → ∞. In practice, even if the knowledge is obtained from historical frequencies

we would not expect N to be large enough for the convergence to seem convincing.

However, Lemma 8 is the first known rigorous version of the “Hand-waving Proof”,

justifying using MEL by the “balls in boxes” method.
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1.4 The axiomatic approach—introducing the Par-

Ven Properties

The inference processes we study in this thesis can mainly be justified by one or both

of two approaches:

1 Information theoretic The inference process is defined as minimising a measure

of information, so we justify choosing this particular measure.

2 Axiomatic We show that the inference process is the only one that satisfies all

of a certain set of desirable properties, or desiderata.

Earlier in this introduction we have seen that the information theoretic approach

can justify Maximum Entropy, using the Shannon entropy.

In [ParVen1], the authors use the axiomatic approach. They justify MEL as

the only inference process satisfying a list of properties or desiderata on a general

inference process NL. In Subsections 1.4.1-1.4.9 we define the nine Paris-Vencovska

Properties, known as the Par-Ven Properties, and explain why we can think of them

as “common-sense”.

1.4.1 Equivalence Principle

For all knowledge bases K1, K2 ∈ CL such that V L(K1) = V L(K2),

NL(K1) = NL(K2).

Definition If K1, K2 are consistent constraint sets on J co-ordinates and

V (K1) = V (K2), we say that K1 and K2 are equivalent. In this case we write

K1 ≡ K2.

We now explain why Equivalence is a desirable property. If K1 and K2 are knowl-

edge bases which impose the same conditions on p.b. functions then we should not

care exactly how their constraints are expressed, so we should favour the same solution

for both knowledge bases. The Watts Assumption helps us see that the knowledge

contents of equivalent knowledge bases are essentially the same.
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However, a possible criticism of this is that in practice it may sometimes be

difficult for us to prove that K1 and K2 are equivalent. Perhaps we should merely

insist that if we can prove in a straightforward way that V L(K1) = V L(K2), then

NL(K1) = NL(K2).

This, though, is not a problem since the author in [[Par], pp.84–85] outlines a

system of axioms and rules which can always show that K1 ≡ K2 when that is the

case. In this thesis we only discuss inference processes that satisfy Equivalence.

1.4.2 Atomic Renaming Principle

Suppose that K1, K2 ∈ CL,

K1 =

{

J
∑

j=1

ajiBel(γj) = bi | i = 1, . . . m

}

,

K2 =

{

J
∑

j=1

ajiBel(δj) = bi | i = 1, . . . m

}

,

where γ1, . . . γJ , δ1, . . . δJ are permutations of α1, . . . αJ . Then

NL(K1)(γj) = NL(K2)(δj)

for each j = 1, . . . J .

This principle is saying that the atoms of the language have equal status as possi-

ble outcomes or worlds so if we permute them in the knowledge base then the beliefs

we infer should be permuted in the corresponding way. This can be challenged on the

grounds that if it is accepted that permuting the propositional variables or revers-

ing true and false for p.v.’s should produce symmetrical permutation of the beliefs,

that of itself does not imply Atomic Renaming and so the latter principle may be

unnecessarily strong.

Atomic Renaming means that it does not matter how we have labelled the atoms

α1, . . . αJ , as long as we do this in a consistent manner. Apart from in Subsection

1.4.9, in this work we only consider inference processes that satisfy Atomic Renaming.
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1.4.3 Obstinacy Principle

Suppose K1, K2 ∈ CL and NL(K1) satisfies K2. Then NL(K1 + K2) = NL(K1).

This is justified by observing that if the NL(K1) satisfies K2 then on the basis of

K1 the inference process is telling you to infer K2. Now if we believe K2 as well as K1

before applying the inference process the same beliefs should be chosen. Notice that

Equivalence is a consequence of Obstinacy, if we are not already regarding Equivalence

as a given:

Assume that K1, K2 are equivalent and NL satisfies Obstinacy. Then NL(K1)

satisfies K1 so it satisfies K2. Hence NL(K1 + K2) = NL(K1). Similarly

NL(K2 + K1) = NL(K2). Now K1 + K2 is the same knowledge base as K2 + K1, so

NL(K1) = NL(K2) and Equivalence is satisfied.

Theorem 9 If an inference process NL is given by:

NL(K) = the unique ~x ∈ V L(K) which is minimal w.r.t. ≤̂ (1.41)

where ≤̂ is a partial ordering on DJ , NL satisfies Obstinacy.

Proof Suppose that NL takes the above form and that ~X = NL(K1) ∈ V L(K2).

Then ~X ∈ V L(K1 + K2). If there exists ~Y ∈ V L(K1 + K2) such that ~Y ≤̂ ~X, then

~Y ∈ V L(K1), which is a contradiction. Hence ~X = NL(K1 + K2), so NL satisfies

Obstinacy and we have proved the theorem.

¥

The following remark, due to [[Par], page 99], is similar to Theorem 9.

Remark An inference process NL is Obstinate if it can be defined as:

For all K ∈ CL, (NL)(K) = the unique ~x ∈ V L(K) such that F (~x) is minimal

(1.42)

where F : DJ → Q, for a totally ordered set Q.
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1.4.4 Language Invariance

Suppose we have a family of inference processes NL, one for each finite language

L. Then this family is said to be Language Invariant if whenever L1 ⊆ L2 (so that

SL1 ⊆ SL2 and CL1 ⊆ CL2) and K ∈ CL1, then NL2(K) agrees with NL1(K) on

SL1.

This is a unifying property of the family of inference processes. We justify this

by supposing that if K only refers to p1, p2, . . . pn, then, given that we are inferring

beliefs for sentences only mentioning p1, . . . pn, it should make no difference whether

pn+1 is in the overlying language or not.

1.4.5 Principle of Continuity

Intuitively it is desirable that an inference process be continuous, i.e. that a micro-

scopic change in information should not produce a macroscopic change in inferences.

It can be argued that the knowledge held by the rational agent is possibly fluctuating

a little and it would be unreasonable if these variations produced significant changes

in the beliefs inferred. The difficulty in stating this property is to find a suitable

topology on knowledge bases, to answer the question “When are knowledge bases

close to each other?”

An obvious first attempt is to say that two knowledge bases, K1 and K2, are close

iff their coefficients in the constraints are close. Let them have respective matrices A

and B of coefficients, given by A = (aji), B = (bji) and let

||A − B|| = max|aji − bji| (1.43)

However, this does not do the job as there are always knowledge bases equivalent to

K1 with a different matrix of coefficients, say C = cji, and if a knowledge base had a

matrix D close to C it wouldn’t be close to A. Thus our definition of closeness must

take knowledge content into account.

Definition The Blaschke metric measures distance between convex subsets C
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and D of DJ by

∆(C,D) = inf{δ s.t. for all ~x ∈ C there exists ~y ∈ D, s.t. |~x − ~y| ≤ δ

and for all ~y ∈ D there exists ~x ∈ C, s.t. |~x − ~y| ≤ δ} (1.44)

where |~x − ~y| is the usual Euclidean distance between vectors.

Remark Why should we use Euclidean distance between the vectors represent-

ing p.b.f.’s, instead of any other measure of distance between them?

One commonly used measure is the Kullback-Liebler divergence, which is also

known as the cross-entropy distance between two p.b.f.’s. We discuss this measure

in Subsection 1.5.2. and it is given by (1.70) in the case that ~x and ~y are p.b.f.’s

(i.e. W (~x) = W (~y) = 1, where ~x and ~y are finite discrete generalised probability

distributions the sense of (1.58)) and for each i = 1, . . . J , xi = 0 implies that yi = 0:

DK,L(~y, ~x) = I1(~y|~x) =
J

∑

i=1

yi log

(

yi

xi

)

(1.45)

where we let xi/yi = 1 if xi = yi = 0. It represents the amount of information

we gain when our observance of a phenomenon causes us to change our probabilistic

beliefs from ~x to ~y. For a full justification of this (derived from [Ren1]), see Subsection

1.5.2.. However, Kullback-Liebler divergence is unsuitable for constructing definitions

of continuity of inference processes etc.. because it is not a metric on p.b.f.’s as it is

not symmetric and does not satisfy the triangle inequality.

Definition The Blaschke topology on the set of equivalence classes of CL is

the topology induced by the Blaschke metric on the set of solution sets V L(K). In

general, we shall write ∆(K1, K2) in place of ∆(V L(K1), V
L(K2)). Thus NL satisfies

Continuity iff NL : CL → DJ is a continuous function, using the Blaschke topology

on the equivalence classes of CL and the Euclidean topology on DJ .

We can use this measure of distance to take limits of some sequences of knowledge

bases. For example, if Kǫ ∈ CL for all ǫ ∈ [0, δ] and some δ > 0, we may write

Kǫ → K0 as ǫ ց 0 (1.46)
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to mean that ∆(K0, Kǫ) → 0 as ǫ ց 0.

Definition For bounded non-empty convex sets A, B ∈ RJ define

∆A→B = inf{ǫ s.t. for all ~x ∈ A there exists ~y ∈ B s.t. |~y − ~x| ≤ ǫ}.

Lemma 10 For all such A, B, ∆(A,B) = max(∆A→B, ∆B→A).

Proof The set C = {ǫ s.t. for all ~x ∈ A there exists ~y ∈ B s.t. |~y − ~x| ≤ ǫ} is such

that, for each z ∈ R, z ∈ C ⇒ [z,∞) ⊆ C. Hence if ∆A→B ∈ C, C = [∆A→B,∞).

Otherwise for all n ∈ N there exist members of C, cn, such that

∆A→B < cn < ∆A→B + 1/n (1.47)

so, since
∞
⋃

n=1

(∆A→B + 1/n,∞) = (∆A→B,∞) ⊆ C (1.48)

C = (∆A→B,∞) in this case.

Now we consider

E = {ǫ s.t. for all ~x ∈ A there exists ~y ∈ B s.t. |~y − ~x| ≤ ǫ

and for all ~x ∈ B there exists ~y ∈ A s.t. |~y − ~x| ≤ ǫ} (1.49)

Then E is the intersection of a set with infimum ∆A→B and one with infimum ∆B→A

so its infimum is ∆(A,B) = max(∆A→B, ∆B→A) and we have proved the lemma. ¥

Notation For all ~a,~b ∈ RJ , let [~a,~b] denote the line segment which has end

points ~a, ~b.

Lemma 11 Let ~ai, ~bi be vectors in RJ , for i = 1, 2. Where ǫ is a positive real

number, if |~a1 − ~a2| < ǫ and |~b1 −~b2| < ǫ then

∆([~a1,~b1], [~a2,~b2]) < ǫ (1.50)

Proof For a general point of [~a1,~b1], say µ~a1 + (1 − µ)~b1, its distance from the

point µ~a2 + (1 − µ)~b2 is less than µǫ + (1 − µ)ǫ. Similarly, for every point in [~a2,~b2]

there exists a point in [~a1,~b1] such that the distance between them is less than ǫ.

Hence we have proved the lemma.

¥
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Theorem 12 ([Mau]) If f is a convex continuous function and K ∈ CL, then there

exists a unique ~x ∈ V L(K) such that f(~x) is minimal.

Theorem 13 ([Mau]) If we define an inference process NL by:

For all K ∈ CL, NL(K) = the unique ~x ∈ V L(K) such that f(~x) is minimal

where f is a fixed continuous convex function, then NL is well-defined and con-

tinuous.

1.4.6 Open-mindedness Principle

If K ∈ CL, θ ∈ SL and K + Bel(θ) = c is consistent for some c > 0

then NL(K)(θ) > 0

The justification for this is that if our knowledge does not force us into Bel(θ) = 0

then we should not infer that belief as that would be to unnecessarily condemn θ as

definitely not true. There is an argument against this, namely that there is a difference

between |= ¬θ and Bel(θ) = 0, particularly in a predicate context—if every rational

number between 1 and 2 is equally likely (a priori) to be chosen by a procedure we

should give every such possible outcome belief 0 but they are all logically possible.

However, in real life we may often, in practice, ignore small probabilities, such as

that of being struck by lightning. If we accept that Bel(θ) = 0 is an extreme view

then Open-mindedness is a desirable property of an inference process.

1.4.7 Principle of Independence

In the special case of L = {p1, p2, p3} and

K = {Bel(p1) = a,Bel(p2|p1) = b, Bel(p3|p1) = c} where a > 0,

NL(K)(p2 ∧ p3|p1) = bc.

The justification for this principle is that since K provides no connection between

the propositional variables p2 and p3 on the basis of p1, they should be treated as
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being statistically independent. It is possible, though, to have slightly different ideas

of independence and we can certainly question how high the status of this notion of

independence should be.

1.4.8 Relativisation Principle

Suppose that K1, K2 ∈ CL, 0 < c < 1 and

K1 = {Bel(φ) = c} +

{

r
∑

j=1

ajiBel(θj|φ) = bi | i = 1, . . . m

}

,

K2 = K1 +

{

q
∑

j=1

ejiBel(ψj|¬φ) = fi | i = 1, . . . s

}

.

Then for θ ∈ SL, NL(K1)(θ|φ) = NL(K2)(θ|φ).

This principle can seem sensible because, given that φ is true, the constraints of

K2 are no more than those of K1 for Bel(θ|φ); adding conditions on the values of

Bel(θ|¬φ) should have no effect.

1.4.9 Principle of Irrelevant Information

Suppose that K1, K2 ∈ CL, θ ∈ SL but that no propositional variable appearing in θ

or in some sentence of K1 also appears in a sentence in K2. Then

NL(K1 + K2)(θ) = NL(K1)(θ) (1.51)

This property can be attractive because the knowledge of K2 seems to be irrelevant

to K1 and θ, since it involves completely different propositional variables, so once we

know K1 our belief in θ should be the same as if we also know K2. It is proved

on page 88 of [Par] that, whenever K1 and K2 are consistent and mention totally

different propositional variables, K1 + K2 is consistent.

Remark Prior to the present work, MEL was the only inference process known

to satisfy Irrelevant Information and Atomic Renaming. The so-called Observant
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Process (see [Court]), denoted by OP , is also known to satisfy Irrelevant Information,

though it is not a single-valued function and so not an inference process. To be precise,

when K1, K2, θ, L are as in the definition of Irrelevant Information,

OP (K1 + K2)(θ) = OP (K1)(θ) (1.52)

where equality means that the sets of possible values of Bel(θ), where Bel is in the

set OP (K..) are equal. We can use Maximum Entropy on the set of p.b.f.’s given

by OP to reduce our inference to a single p.b.f.—this gives a true inference process

which satisfies Irrelevant Information but not Atomic Renaming.

The following characterisations are due to the authors in [ParVen1]:

Theorem 14 ([ParVen1]) If the only knowledge bases permitted were those using

just rational number coefficients, MEL is the only Language Invariant inference pro-

cess satisfying the principles of Equivalence, Open-mindedness, Atomic Renaming,

Obstinacy, Relativisation, Independence and Irrelevant Information.

Remark Since MEL is Language Invariant, we shall usually refer to it as ME

from now on, not mentioning the overlying language. Furthermore, using the density

of Q in R, we can remove the assumption of Open-mindedness:

Theorem 15 ([ParVen1]) ME is the only Language Invariant inference process

which is continuous and satisfies Equivalence, Atomic Renaming, Obstinacy, Rela-

tivisation, Independence and Irrelevant Information.

1.4.10 Representation dependence of inference processes

It is possible to criticise Maximum Entropy as “representation dependent” in the

sense that it fails the following desideratum. However, this view does not appear to

be coherent.

Atomicity Principle: Let θ ∈ SL2 be neither a contradiction nor a tautol-

ogy, K ∈ CL1, φ ∈ SL1, L1 ∩ L2 = ∅, L1, L2 ⊆ L. Let φθ etc. be the re-

sult of replacing a particular propositional variable p ∈ L1 everywhere by θ. Then
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NL(K)(φ) = NL(Kθ)(φθ).

This principle would be justified by supposing that propositional variables are

merely where the detail of the statement of the inference problem stops and that

nothing should change if, when we inspect the world more closely, we turn a propo-

sitional variable into a sentence composed of new p.v.’s.

Theorem 16 ([Par], p.102) No inference process satisfies the Atomicity Principle.

Although Atomicity can seem very reasonable, it is in fact contradictory! Further-

more, in [HalKol] the authors show that, even when inference processes are permitted

to select a set of solutions of the knowledge base, rather than just one solution, no

such process can be representation independent. Arguments refuting the criticism

that Maximum Entropy is representation dependent, and more, can be found in

[ParVen4].
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1.5 Introducing the Renyi Processes

A major motivation for this thesis is the comparison of other inferences processes

with Maximum Entropy in terms of the Par-Ven Properties.

The Renyi Processes are named after the mathematician Alfred Renyi, who

worked on them in the mid-20th century—see [Ren1] and [Ren2]. The author of [Uff]

shows that the axioms used by the authors in [ShoJoh] can be restated mathematically

to justify using the Renyi Processes.

In 1998 the author of [Moh] considered these inference processes, which he called

the “Renyi generalized entropies in the discrete case”.

Definition For each positive real number r such that r 6= 1 define the Renyi

Entropy with parameter r to be Hr, given by

Hr(~x) = − log(
∑J

i=1 xr
i )

r − 1
(1.53)

for all p.b.f.’s ~x over a language L s.t. |AtL| = J . The Renyi Process with parameter

r is RenL
r , given by

RenL
r (K) = the unique ~x ∈ V L(K) for which Hr(~x) is maximal (1.54)

for all K ∈ CL. Note that in [Moh], the author parameterises each Renyi Entropy

and Renyi Process using values of r that are 1 less than in the notation we will use

in this thesis, as defined above. We now reexpress the Renyi Processes in a more

concise form. If r > 1,

RenL
r (K) = the unique ~x ∈ V L(K) for which

J
∑

i=1

xr
i is minimal (1.55)

and, if 0 < r < 1,

RenL
r (K) = the unique ~x ∈ V L(K) for which

J
∑

i=1

xr
i is maximal (1.56)

As yet RenL
1 is undefined. However, the following definition implies that the RenL

r

form a continuum as r varies through the positive real numbers.
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Definition For any ~x ∈ DJ , H1(~x) = −∑J
i=1 xi log(xi), i.e. the Shannon en-

tropy. The inference process RenL
1 is defined to be Maximum Entropy.

In [Moh], the author shows that for every p.b.f. ~x, Hr(~x) is a continuous function

of r. Also, for any K ∈ CL and r0 ∈ R such that r0 > 0,

RenL
r (K) → RenL

r0
(K) as r → r0 (1.57)

It is shown in [Moh] that the Renyi Processes all satisfy Equivalence, Atomic

Renaming, Obstinacy, Language Invariance, Continuity and Relativisation. From

now on we shall usually refer to Renr without mentioning the overlying language.

Renr satisfies Open-mindedness iff r ≤ 1 and none of the Renyi Processes Renr for

which r 6= 1 satisfy Independence. It was also shown in [Moh] that none of the Renr

for which r > 1 satisfy Irrelevant Information and this property was conjectured to

fail for Renr when r < 1.

In the following two subsections we detail two arguments, by Renyi himself, that

provide justification for using the Renyi Processes. In [Ren1], the author first justi-

fies the Shannon entropy as the only uncertainty measure that satisfies a list of five

postulates that are attributed to Fadeev, see [Fad].

Notation We use different notation to Renyi, for the consistency of this thesis.

However we stick closely to the content of [Ren1].

For any J ∈ N, define

D∗J =

{

~x ∈ RJ s.t. xi ≥ 0 for each i = 1, . . . J and 0 <

J
∑

i=1

xi ≤ 1

}

(1.58)

The members of D∗J are known as finite discrete generalised probability distributions

and the weight of each ~x ∈ D∗J is denoted by W (~x), and is given by W (~x) =
∑J

i=1 xi.

1.5.1 Renyi’s five postulates and their consequences

We consider an entropy function

H :
⋃

J≥1

D∗J → R (1.59)
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and Renyi’s ([Ren1]) list of postulates is:

Postulate 1 : H(~x) is a symmetric function of the co-ordinates.

We can justify this on the same basis as Atomic Renaming.

Postulate 2 : H((p)) is a continuous function of p as p varies in (0, 1].

It can seem unreasonable if a microscopic change in p causes a macroscopic change

in H((p)).

Postulate 3 : H((1/2)) = 1.

This postulate merely normalises the function H.

Definition If ~x ∈ D∗J and ~y ∈ D∗Q then we define

(~x ⊗ ~y) = (x1y1, x1y2, . . . x1yQ, x2y1, . . . x2yQ . . . . . . xJy1, xJy2, . . . xJyQ) ∈ D∗JQ

(1.60)

and note that W (~x ⊗ ~y) = W (~x)W (~y).

Also if ~x ∈ D∗J and ~y ∈ D∗Q such that W (~x) + W (~y) ≤ 1 we define

~x ∪ ~y = (x1, x2, . . . xJ , y1, y2, . . . yQ), which is known as the union of ~x and ~y.

Postulate 4 : If ~x ∈ D∗J and ~y ∈ D∗Q then

H(~x ⊗ ~y) = H(~x) + H(~y) (1.61)

We can justify this postulate similarly to condition (c) of the Shannon/Weaver

justification for Maximum Entropy—see (1.23).

Postulate 5 : If ~x ∈ D∗J and ~y ∈ D∗Q are such that W (~x) + W (~y) ≤ 1 then

H(~x ∪ ~y) =
W (~x)H(~x) + W (~y)H(~y)

W (~x) + W (~y)
(1.62)

This postulate tells us that the entropy of the union of two distributions is the

weighted average of their entropies, with each entropy value weighted by the weight

of the original distributions.

Theorem 17 ([Ren1]) If H is a function satisfying Postulates 1,2,3,4,5 as above,

H must be the function H1 given by

H1(~x) = −
∑J

i=1 xi log xi
∑J

i=1 xi

(1.63)
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for all ~x ∈ D∗J .

Now, following [Ren1], we weaken the list of five postulates to characterise the

measures of uncertainty Hr. This is done by replacing Postulate 5 with:

Postulate 5* : There exists a strictly monotonic and continuous function

g : R+ → R+ such that if ~x ∈ D∗J and ~y ∈ D∗Q are such that W (~x)+W (~y) ≤ 1 then

H(~x ∪ ~y) = g−1

[

W (~x)g(H(~x)) + W (~y)g(H(~y))

W (~x) + W (~y)

]

(1.64)

Note that the conditions on g imply that the right hand side of (1.64) is well-

defined. One possibility for the weighting function g which is compatible with Pos-

tulate 4 is that it be an exponential function. We can let the function g be given

by

gr(x) = 2(1−r)x (1.65)

for all x, where r is a positive real number not equal to 1.

Theorem 18 ([Ren1]) If H is a function satisfying Postulates 1,2,3,4, and 5* and

r is a fixed positive real number not equal to 1 such that for Postulate 5* g = gr, (as

defined by (1.65)) then for all J ≥ 1 and ~x ∈ D∗J

H(~x) = Hr(~x) = − 1

r − 1
log

∑J
i=1 xr

i
∑J

i=1 xi

(1.66)

Remark We remark, however, that it is far from clear why we should choose g

to be an exponential function, as above, when the identity function, amongst others,

is also consistent with Postulate 4 and allows us to uniquely characterise Maximum

Entropy.

1.5.2 An alternative approach by Renyi

Renyi further improves ([Ren1]) on the justification above for the Renyi Processes

as follows:

Suppose that ~x represents the probability distribution across a selection of mu-

tually exclusive outcomes, numbered 1, . . . J , which may occur as a result of some
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experiment we carry out on a natural phenomenon. Not all of the outcomes are neces-

sarily referred to by ~x—we use generalised probability distributions, as in Subsection

1.5.1.

If we now observe the event E, which might be a relevant property of the phe-

nomenon we are investigating, the probabilities of the corresponding outcomes change

from xi to yi for each i = 1, . . . J . We assume that the information gained from the

outcome of the experiment depends only on ~x and ~y. Note that if xi = 0, then yi = 0

as long as we assume that if our belief in an outcome is zero, then that outcome is

impossible. The information we gain about the experiment’s outcome, as a result of

us observing E, is denoted by

I(~y|~x) (1.67)

As before we will let ~x, ~y be generalised probability distributions. We suppose that

for all J ∈ N and ~x, ~y ∈ D∗J such that if xi = 0 for some i = 1, . . . J , then yi = 0, the

value I(~y|~x) is defined such that the following Postulates are satisfied:

Postulate 6 : I(~y|~x) is unchanged if the same permutation is used to rearrange the

values of both ~x and ~y.

We justify this postulate by seeing that a relabelling of the outcomes does not

essentially change our knowledge.

Postulate 7 : If xi ≤ yi for each i = 1, . . . J then I(~y|~x) ≥ 0. If yi ≤ xi for each

i = 1, . . . J then I(~y|~x) ≤ 0.

It can seem reasonable that if observing the event E does not reduce any of the

probabilities of the outcomes listed by ~x, then we do not have less information than

before. Similarly, if none of the probabilities have increased, we have not gained any

information.

Postulate 8 : I((1)|(1
2
)) = 1.

This postulate merely normalises the information function.

Postulate 9 : Suppose that I(~y1| ~x1) and I(~y2| ~x2) are both defined and that

~X = ~x1 ⊗ ~x2 and ~Y = ~y1 ⊗ ~y2 such that the enumeration of the outcomes for ~X and
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~Y are as in the definition of ⊗. Then

I(~Y | ~X) = I(~y1|~x1) + I(~y2|~x2) (1.68)

We can justify this postulate by considering that ~x1 and ~y1 refer to a totally

unrelated experiment to ~x2 and ~y2 so the quantities of information gained can either be

calculated separately and then added together, or we can think of the two experiments

together as one, giving I(~Y | ~X).

Postulate 10 : There exists a continuous and strictly increasing function g defined

on all real numbers whose inverse we denote by g−1 (where it is defined) such that if

I(~y1|~x1) and I(~y2|~x2) are defined and 0 < W (~x1) + W (~x2) ≤ 1 and

0 < W (~y1) + W (~y2) ≤ 1 and the enumerations of the outcomes of ~x1 ∪ ~x2 and of

~y1 ∪ ~y2 are as in the definition of union then

I(~y1 ∪ ~y2|~x1 ∪ ~x2) = g−1

{

W (~y1)g(I(~y1|~x1)) + W (~y2)g(I(~y2|~x2))

W (~y1) + W (~y2)

}

(1.69)

Note that the above expression is a weighted average of two values taken by the

function g, so the right hand side is well-defined because g is strictly increasing.

The following theorem shows that we do not need to make an arbitrary choice for

the function g:

Theorem 19 ([Ren1]) Suppose that the quantity I(~y|~x) is defined for all J ∈ N

and all ~x, ~y ∈ D∗J such that if xi = 0 for some i = 1, . . . J , then yi = 0. Suppose

also that I satisfies Postulates 6,7,8,9 and 10. Then the function g in Postulate 10

must be either a linear or exponential function. In the first case I(~y|~x) = I1(~y|~x) for

all ~x, ~y ∈ D∗J , where

I1(~y|~x) =

∑J
i=1 yi log yi

xi
∑J

i=1 yi

(1.70)

and we define yi/xi = 1 if xi = yi = 0. In the second case I(~y|~x) = Ir(~y|~x) for all ~x,

~y ∈ D∗J and some positive real r 6= 1, where

Ir(~y|~x) =
1

r − 1
log

∑J
i=1

yr
i

xr−1
i

∑J
i=1 yi

(1.71)
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Now we can make inferences in the manner of an inference process and we can

assume that we have no initial information about the likelihood of the outcomes

1, . . . J of the experiment, which are exhaustive. Our initial probability distribution,

denoted by ~x in the above notation, is ( 1
J
, 1

J
, . . . 1

J
), by symmetry. Then we wish to

minimise the amount of information we have gained by changing to the distribution ~y

after observing event E. Substituting 1
J

for xi for each i = 1, . . . J in the Ir formulae

of the statement of Theorem 19 gives:

I1(~y|~x) =

∑J
i=1 yi log(Jyi)

∑J
i=1 yi

=
J

∑

i=1

yi log yi +
J

∑

i=1

yi log J = −H1(~y) + log J (1.72)

so if we choose the ~y ∈ V L(K) minimising this quantity we are using Maximum

Entropy.

Similarly, if r is positive, real and not equal to 1, the substitution of 1
J

for each

xi gives

Ir(~y|~x) =
1

r − 1
log

(

J
∑

i=1

(Jr−1)yr
i

)

= log J +
1

r − 1
log

J
∑

i=1

yr
i = −Hr(~y) + log J

(1.73)

so if we choose the ~y ∈ V L(K) minimising this quantity we are using Renr.

Remark The approach of this subsection can be seen to be a more convincing

justification of the Renyi Processes, compared to the previous argument. Indeed, our

choice of weighting function g for Postulate 10 turns out to be forced (by Theorem 19)

whereas, in Postulate 5, an arbitrary choice of g was made.

1.5.3 To justify Renyi Processes with integer parameter

Here is another justification for using Renr when r is an integer greater than 1.

Suppose that in a laboratory a scientist is conducting an experiment in which

the result, one of J mutually exclusive outcomes, is known to be random given fixed

initial conditions. He/she is trying to determine the natural probabilities of the

outcomes by repeating the experiment. It is reasonable to assume that the repetitions

are independent and that the scientist would find it surprising if the same outcome
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happened every time. For r trials, where r > 1, we can minimise our belief in that

occurrence, i.e. minimise
∑J

i=1 xr
i . This means that we use Renr.

1.5.4 The Minimum Distance inference process

Definition ([ParVen2]) The Minimum Distance inference process is defined by:

MDL(K) = the nearest point in V L(K) to

(

1

J
,
1

J
. . .

1

J

)

∈ DJ

using the Euclidean metric

= the unique ~x ∈ V L(K) for which
J

∑

i=1

(xi − 1/J)2 is minimal. (1.74)

We can justify using this inference process by the argument that ~X = ( 1
J
, . . . 1

J
)

is the fairest p.b. function to infer when we have no knowledge at all, by symmetry.

If, when our knowledge base is K, we choose the “closest” solution ~x to ~X, then the

agent’s knowledge is having the least possible impact on their initial beliefs. However,

although Euclidean distance is an obvious choice of metric there does not seem to be

much ideological support behind it, which would favour it over other metrics.

We can rearrange the definition of MDL, using
∑J

i=1 xi = 1 (as in [ParVen2]), to

show that

MDL(K) = the unique ~x ∈ V L(K) for which
J

∑

i=1

x2
i is minimal (1.75)

so we recognise MDL as none other than RenL
2 . From now on, we usually refer to

MDL as MD, since the Renyi Processes satisfies Language Invariance ([Moh]).

1.5.5 The Centre of Mass inference process and CM∞

Definition ([ParVen2]) The Centre of Mass inference process on a language

L, CML is defined by

CML(K) = the ~x which is the centre of mass of V L(K) (1.76)

assuming uniform density so that

CML(K)(αi) =

∫

V L(K)
xi dV

∫

V L(K)
dV

(1.77)
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where the integrals are taken over the relative dimension of V L(K) using the same

basis.

Since integration respects linear combinations, CML(K) ∈ V L(K).

The justification for CML is that the most representative solution of K is chosen

and the centre of gravity of V L(K) is the most fairly weighted estimate of the “true”

probabilities. The assumption that there is some “true” p.b.f. which the rational

agent is trying to estimate is a different approach to inference. The principle of

indifference suggests that every point in V L(K) should be equally weighted.

The main criticism of CML is that it is not Language Invariant, so adding extra

propositional variables to the overlying language affects the inferred probabilities of

sentences of the original language.

Dirichlet priors can be used instead of the uniform distribution in order to get

Language Invariance—see [LawWil]. However even in the case of the uniform distri-

bution, if the number of propositional variables in the overlying language tends to

infinity there is a limit which is a Language Invariant inference process.

Definition ([ParVen2]) The limit centre of mass inference process for L,

denoted by CML
∞, is defined thus: CML

∞(K) is the unique ~x ∈ V L(K) such that

J
∑

i=1,

i/∈IL(K)

log xi (1.78)

is maximal. This is well defined since there exist solutions of K such as ME(K) at

which every co-ordinate not in IL(K) has a strictly positive value, because Maximum

Entropy satisfies Open-mindedness.

Theorem 20 ([ParVen2]) Let K ∈ CL, θ ∈ SL. Then

lim|L′|→∞
L⊆L′

CML′

(K)(θ) = CML
∞(K)(θ) (1.79)

The function (1.78) is concave i.e. the second derivative in each direction parallel to

DJ from all points in {~x ∈ DJ |xi > 0 for all i /∈ IL(K)} is negative. However, K

can vary such that IL(K) varies so we cannot use Theorem 13 to show that CML
∞ is

continuous.
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When we compare CML
∞ with Maximum Entropy using the Par-Ven Properties

we obtain the following results, all of which are known to the authors of [ParVen2].

Theorem 21 CML
∞ satisfies Equivalence, Atomic Renaming, Obstinacy, Language

Invariance, Open-mindedness and Relativisation. However, it fails to satisfy Conti-

nuity, Independence and Irrelevant Information.

Proof Equivalence is satisfied because CML
∞(K) is defined in terms of V L(K).

Atomic Renaming is a property of CML
∞ because the definition is symmetrical

w.r.t. the atoms of L.

Obstinacy is satisfied because CML
∞ chooses ~x ∈ V L(K) to be maximal w.r.t. a

fixed partial ordering, using Theorem 9. For that ordering, we first compare vectors

by how many zeros they contain (fewer zeros give preferable vectors), then by which

has the higher value of
J

∑

i=1,xi>0

log xi (1.80)

so this ordering is independent of K.

See [[Par], page 74] for a proof that CML
∞ satisfies Language Invariance—from

now on, we usually refer to CM∞ without mentioning the overlying language.

For Open-mindedness, see the above definition.

For Relativisation, we can use a proof essentially similar to that of Theorem “7.8”

in [[Par], page 100].

The following lemmas show that Independence, Continuity and Irrelevant Infor-

mation are not satisfied by CM∞.

Lemma 22 CM∞ does not satisfy Independence.

Proof We let L = {p1, p2, p3}.

K =

{

Bel(p1) = 1, Bel(p2|p1) =
1

3
, Bel(p3|p1) =

1

3

}

(1.81)

Then if CM∞ satisfies Independence, CM∞(K)(p2 ∧p3|p1) = 1/9. When we enumer-

ate the atoms of L α1, . . . α8 in the standard ordering and let xi = Bel(αi) for each
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i = 1, . . . 8, we obtain

V L(K) =

{(

τ,
1

3
− τ,

1

3
− τ,

1

3
+ τ, 0, 0, 0, 0

)

s.t. 0 ≤ τ ≤ 1

3

}

(1.82)

To calculate CM∞(K), we need to choose τ such that log(τ)+2 log(1
3
−τ)+log(1

3
+τ)

is maximal. In other words, we need to maximise f(τ) = τ(1
3
−τ)2(1

3
+τ). If X = 1/9,

the derivative of f at τ = X is 16/6561 6= 0. Hence

CM∞(K) 6=
(

1

9
,
2

9
,
2

9
,
4

9
, 0, 0, 0, 0

)

(1.83)

so CM∞ does not satisfy Independence and we have proved the lemma.

¥

Lemma 23 CM∞ is not continuous.

Proof Let L = {p1, p2}. For all ǫ ∈ [0, 1], we let

Kǫ = {Bel(p1 ∧ ¬p2) = ǫBel(p1 ∧ p2), Bel(¬p1 ∧ ¬p2) = 0} (1.84)

We enumerate the atoms of L α1, α2, α3, α4 in the standard ordering and let

xi = Bel(αi) as usual. If Sol(ǫ) denotes V L(Kǫ), we obtain

Sol(ǫ) =

{

(τ, ǫτ, 1 − τ(1 + ǫ), 0) s.t. 0 ≤ τ ≤ 1

1 + ǫ

}

(1.85)

which is the line segment with endpoints (0, 0, 1, 0) and
(

1
1+ǫ

, ǫ
1+ǫ

, 0, 0
)

, which are

both continuous functions of ǫ. Hence, by Lemma 11, Kǫ → K0 as ǫ ց 0.

However, to calculate CM∞(Kǫ) we need to maximise

log(τ) + log(ǫτ) + log(1 − τ(1 + ǫ)) as τ varies in [0, 1/(1 + ǫ)]. Hence we need to

maximise

f(τ) = τ 2(1 − τ(1 + ǫ)) (1.86)

and, by doing the differentiation, we find that f(τ) is maximal at τ = 2
3(1+ǫ)

when

ǫ > 0. Thus, for all ǫ > 0,

CM∞(Kǫ) =

(

2

3(1 + ǫ)
,

2ǫ

3(1 + ǫ)
,
1

3
, 0

)

(1.87)
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and limǫց0CM∞(Kǫ) = (2
3
, 0, 1

3
, 0). However, we can use Atomic Renaming to show

that CM∞(K0) = (1
2
, 0, 1

2
, 0). Thus CM∞ is not continuous and we have proved the

lemma.

¥

Proof of Theorem 21 continued Since Irrelevant Information is not satisfied

by CM∞, by [[Par], page 89], we have proved the theorem.

¥



Chapter 2

Some limit theorems for the Renyi

Processes

2.1 A property of the Blaschke topology

The intuitive property of the Blaschke topology which we describe in the two theorems

below will be used to prove limit theorems for inference processes in this chapter and

also later in the thesis.

Recall from the Introduction that the Blaschke metric on convex sets induces the

Blaschke topology on the equivalence classes of CL. The following theorem states

that if a knowledge base is changed by moving one of the constants at the right hand

side of a constraint, the knowledge embodied is changing continuously.

Theorem 24 If K is a consistent knowledge base in CL then for all λ ∈ R, we

define

K(λ) = K ∪
{

J
∑

i=1

vixi = λ

}

(2.1)

where v1, . . . vJ are real constants. Let λ = λ0 be fixed. In the Blaschke topology, if

K(λ0+δ) is consistent for each δ such that 0 ≤ δ ≤ δ0, K(λ0+δ) → K(λ0) as δ ց 0.

Proof See Appendix 1.

49
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Theorem 25 Let K be a fixed consistent knowledge base in CL and define i1 . . . ik

s.t. 1 ≤ i1 < i2 . . . < ik ≤ J . For all ~λ ∈ Rk, let K(~λ) denote

K ∪{xi1 = λ1, xi2 = λ2, . . . xik = λk}. Then, if ~λ varies such that K(~λ) is consistent,

K(~λ) is a continuous function of ~λ.

Proof See Appendix 1.

2.2 On the limit as r → ∞ of the Renyi Processes

Recall from the Introduction that, for real r > 1 and every knowledge base K ∈ CL,

Renr(K) = the unique ~x ∈ ~V L(K) for which
J

∑

i=1

xr
i is minimal (2.2)

Also recall from the Introduction that we can justify using these inference pro-

cesses, for integer values of r greater than 1, by assuming that a scientist is conducting

an experiment which it is possible to repeat any number of times. If we minimise the

belief that the same outcome occurs in the first r trials, we use Renr. When r = 2

this gives the MD inference process.

Once we go beyond the two trials that are required to get an inference process,

it seems arbitrary to choose a particular number of times to do the experiment. We

should like to know what is deduced when r is arbitrarily large, if that question has

a sensible answer. In fact limr→∞Renr does exist! In the above discussion r is an

integer, i.e. the number of trials. However, in the following argument it does not

matter if r is allowed to vary among integer or real values in (1,∞).

Notation To define MinimaxL we define˜: RJ → RJ given by: ~̃x = the unique

vector ~̃x which is a permutation of ~x for which x̃1 ≥ x̃2 ≥ . . . ≥ x̃J .

Define the minimax ordering on vectors of RJ by:

~x is before ~y in the minimax ordering iff ~̃x < ~̃y lexicographically. We shall say

that ~x is minimax-better than ~y in that case.

Definition For a consistent knowledge base K,
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MinimaxL(K) = the unique ~x ∈ V L(K) which is minimax−best. When MinimaxL

is being calculated the abbreviation MmxL(∗) shall be used.

Range of notation The terms that refer to MinimaxL explicitly are defined

here for use throughout this thesis, namely the minimax ordering, minimax-better,

minimax-best.

Theorem 26 For all K ∈ CL, Renr(K) → MinimaxL(K) as r → ∞.

Remark Recalling that Renr is the inference process we use when we maximise

the measure of uncertainty Hr, it is already known (see Chapter 1 of [Kap]) that the

limit of the Renyi entropy is a function of the maximum value:

Hr(~x) = − log(
∑J

i=1 xr
i )

r − 1
→ − log(max(~x)) (2.3)

as r → ∞.

We shall prove the theorem above after we show that MinimaxL is well-defined.

Since x̃1 is the maximum value of ~x MmxL(K) has the least possible maximum of

the solutions—hence the name. Hence MmxL(K) is chosen such that ˜MmxL(K)1 is

minimised and, among the solutions with that maximum, ˜MmxL(K)2 is minimised

and so on. Among the solutions ~x with minimal maximum x̃2 is minimised, which

can be thought of as the second largest value but we must be careful: if the maximum

value occurs twice, x̃2 = x̃1. Thus x̃2 is the largest number in ~x once one occurrence

of the maximum has been removed.

Notation From this point on in the entire thesis the phrase “highest k values”

of a vector refers to the vector’s values of 1̃ ,̃ 2 . . .̃ k. Also as x̃1 is the maximum value

of a co-ordinate of ~x this will be referred to as max(~x).

We now show that MinimaxL is well-defined.

Definition In this section, we assume that K is some consistent knowledge

base in CL. In this chapter, and elsewhere if the context refers to MinimaxL,

m1,m2 . . . mJ are functions of K ∈ CL given by:

m1 = min{max1≤i≤Jxi | ~x ∈ V L(K)} (2.4)
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and then

mk+1 = min{max xi | there exist i1, i2, . . . ik distinct from i and from each other and

s.t. xi1 , xi2 . . . xik are equal to m1,m2, . . . mk respectively where ~x ∈ V L(K)}.

Then we can see that MmxL(K) is a vector in ~VL(K) which is a permutation

of (m1,m2, . . . mJ). The required minima above exist (rather than being merely

infimums) because at each stage the set of vectors being considered is closed and

bounded. Hence by the Heine-Borel Theorem it is compact. Also the function that

takes the maximum value of a vector,

max : V L(K) → R (2.5)

is continuous using the Euclidean topology so because continuous images of compact

sets are compact the “set of maximums” has a minimum.

From now on we will assume the existence of strict minima/maxima of continuous

functions on compact sets such as V (K) etc..

Lemma 27 For every k = 1, 2, . . . J , m1 ≥ m2 . . . ≥ mk and there exists ~x ∈ V L(K)

s.t. x̃1 = m1 . . . x̃k = mk. In other words, there are distinct co-ordinates i1, . . . ik such

that xip = mp for each p = 1, . . . k and no other value in ~x exceeds mk .

Proof By induction on k.

Base Case k = 1 In this case the lemma is trivial.

Inductive Step Assume (Inductive Hypothesis) that in the case k = p the lemma

is true. Since there can exist p distinct atoms with beliefs m1, . . . mp respectively,

where every other value is less than or equal to mp ≤ . . . ≤ m2 ≤ m1, the least

possible maximum of the others is not greater than mp. Then there exists solutions

of K such that the values of p+1 distinct atoms are m1, . . . mp+1 and all other values

are not greater then mp+1. Thus the sequence m1, . . . mp+1 is non-increasing and we

have proved the lemma.

¥



CHAPTER 2. RENY I LIMIT THEOREMS 53

Theorem 28 There exists a bijection σ : {1, 2, . . . J} → {1, 2, . . . J} such that for

each k = 1, 2, . . . J and all ~x ∈ V L(K) s.t. x̃1 = m1, . . . x̃k = mk then xσ(i) = mi for

all i = 1, 2, . . . k.

Definition If, given K, the identity permutation can fulfil the role of σ above,

we say that K admits the identity permutation w.r.t. Theorem 28.

As we learn that a solution of K has its largest beliefs in atoms equal to m1,m2, . . .

we know that xσ(1) = m1, xσ(2) = m2 etc. The following claim is proved by induction

on a.

Claim(a) There exist distinct σ(1), σ(2) . . . σ(a) in {1, . . . J}, such that for every

k = 1, . . . a and every solution ~x of K for which x̃1 = m1, . . . x̃k = mk, xσ(i) = mi for

each i = 1, 2, . . . k.

Proof

Base Case a = 1. We must show that if ~x ∈ V L(K) such that max(~x) = m1,

there exists a certain σ(1) such that xσ(1) = m1 for all such ~x. Now suppose for

contradiction that no such σ(1) exists, then there exists a solution of K, ~X(1), such

that max( ~X(1)) = m1 and X
(1)
1 < m1 and for the other i = 2, 3, . . . J there exists

~X(i) ∈ V L(K), s.t. max( ~X(i)) = m1 and X
(i)
i < m1.

Since V L(K) is convex,

~y =
1

J

J
∑

j=1

~X(j) (2.6)

is a solution of K.

Let i ∈ {1, . . . J}. Then Jyi =
∑J

j=1 X
(j)
i . Since every ~X(j) has maximum m1,

every term in the sum is not greater than m1. Also X
(i)
i < m1 so Jyi <

∑J
i=1 m1.

Hence yi < m1 for each i = 1, . . . J and the maximum of ~y is below the least possible

maximum of solutions of K, so we have found a contradiction.

Hence such a σ(1) can be fixed.

Inductive Step Suppose (I.H.) that Claim(t) is true so that σ(1), σ(2), . . . , σ(t)

exist as above. We now show that σ(t + 1) exists between 1 and J , distinct from

σ(1) . . . σ(t) such that if ~x is a solution of K with its highest t + 1 values equal to
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m1, . . . mt+1 then xσ(t+1) = mt+1.

For all ~x ∈ V L(K) for which x̃i = mi for i = 1, . . . t we have by the I.H. that

xσ(1) = m1, . . . xσ(t) = mt.

The largest value at the other co-ordinates is mt+1. If we suppose for contradiction

that no fixed σ(t+1) must equal mt+1 for all relevant ~x, we take an arithmetic mean

in a similar manner to the proof of the Base Case, giving a solution of K in which the

top t values are m1, . . . mt but the next highest is smaller than mt+1. This contradicts

the definition of mt+1, so the Inductive Step follows and we have proved the theorem.

¥

Corollary 29 The inference process MinimaxL is well-defined.

Proof Apply k = J to the theorem, then there exists a permutation σ of

{1, 2, . . . J} such that if ~x ∈ V L(K) is a permutation of (m1, . . . mJ) then

~x = (mσ−1(1),mσ−1(2), . . . mσ−1(J)) is forced. If ~X = MinimaxL(K) we know that

~X ∈ V L(K) is a permutation of (m1, . . . mJ) so the value of ~X is forced and we have

proved the corollary.

¥

Notation In general, let ~x(r) denote Renr(K) so that

x
(r)
i = Renr(K)(αi) = Renr(K)i and max(r) will denote max(~x(r)) = max1≤i≤Jx

(r)
i .

Proof of Theorem 26 Let K ∈ CL be fixed and we assume w.l.o.g. that K ad-

mits the identity permutation w.r.t. Theorem 28. We can do this because MinimaxL

satisfies Atomic Renaming and so do the Renr inference processes. Lemma 30 below

states that the maximum value at the co-ordinates is tending to its minimum allowed

value.

Lemma 30 As r → ∞, max(r) → m1

Proof By definition of m1, m1 ≤ max(r) for every r ∈ N, so it is sufficient to

prove that for all positive ǫ < m1

there exists N ∈ N such that for all r > N,max(r) < m1 + ǫ (2.7)
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Choose N ≥ log J

log( 1
1−ǫ

)
. Then

r > N ⇒ r log

(

1

1 − ǫ

)

> log J (2.8)

⇒ log

(

1

1 − ǫ

)

>
log J

r
(2.9)

⇒ log(1 − ǫ) < − log J

r
(2.10)

⇒ 1 − ǫ < J− 1
r (2.11)

Hence, for all x ∈ [m1, 1],

x − ǫ

x
< J− 1

r (2.12)

so raising both sides to the rth power implies that

(

x − ǫ

x

)r

< J−1 (2.13)

and so

(max(r))r > J(max(r) − ǫ)r (2.14)

by the definition of m1. Hence, for every ~y ∈ V L(K) for which max(~y) ≤ max(r) − ǫ,

J
∑

i=1

(x
(r)
i )r > J(max(r) − ǫ)r ≥

J
∑

i=1

yi
r (2.15)

If such a ~y exists, this is a contradiction due to the definition of Renr(K). Hence the

maximum of a solution of K must be greater than max(r) − ǫ, completing the proof

of Lemma 30.

¥

To prove Theorem 26, we still need to show that the beliefs inferred for individual

atoms tend to appropriate limits, not just max(Renr(K)).

Definition In this chapter only, for each integer k = 1, . . . J , define gk : CL → R

thus:

gk = min{maxk≤i≤Jxi| ~x ∈ V L(K)} (2.16)

Lemma 31 The functions gk (of which g1 is also called m1) are uniformly continuous

functions in the Blaschke topology. In fact, for each k = 1, 2, . . . J and all

K1, K2 ∈ CL, |gk(K1) − gk(K2)| ≤ ∆(K1, K2).
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Proof We use the property of the function max that for all ǫ > 0, |~x−~y| < ǫ implies

that |max(~x) − max(~y)| < ǫ. Suppose that K1, K2 ∈ CL and ∆(K1, K2) < ǫ. Let

MmxL(K1) = ~k and MmxL(K2) = ~p. Now there exists ~x ∈ V L(K1) s.t. |~x − ~p| < ǫ.

Then |max(~x) − m1(K2)| < ǫ. Similarly there exists ~y ∈ V L(K2) s.t. |~y − ~k| < ǫ so

that |max(~y) − m1(K1)| < ǫ. Then

m1(K1) ≤ max(~x) < m1(K2) + ǫ

and

m1(K2) ≤ max(~y) < m1(K1) + ǫ (2.17)

so |m1(K1) − m1(K2)| < ǫ and m1 is uniformly continuous on CL. By letting

ǫ ց ∆(K1, K2), we deduce that

|gk(K1) − gk(K2)| ≤ ∆(K1, K2) (2.18)

Similarly we can show that ∆(K1, K2) < ǫ ⇒ |gk(K1) − gk(K2)| < ǫ for each k

s.t. 1 ≤ k ≤ J and all K1, K2 ∈ CL. We have proved the lemma.

¥

Proof of Theorem 26 continued Now it is sufficient for us to show, by

induction on i, that as r → ∞, x
(r)
i → mi for each i = 1, 2, . . . J .

Base Case i = 1 To show that x
(r)
1 → m1 as r → ∞ suppose not, for contradic-

tion. Then for a fixed δ > 0 and for every N ∈ N there exists r(N) > N for which

|x(r)
1 − m1| > δ. Consider the sequence x

(r(N))
1 for N ≥ 1 . By the compactness of

[0, 1], this sequence has a convergent subsequence x
(r(i))
1 with a limit l 6= m1. Since

V L(K) is closed and bounded it is compact (Heine-Borel Theorem) so the sequence

~x(r(i)) has a convergent subsequence, say ~x(r(j)) with limit ~X. Now, by Lemma 30,

max( ~X) = m1 since max is continuous, and X1 = l 6= m1. However ~X ∈ V L(K) and

max(X) = m1 but MmxL(K) = (m1,m2, . . . mJ), and we have proved a contradic-

tion. Hence x
(r)
1 → m1 as required.

Inductive Step Suppose (I.H.) that x
(r)
1 → m1, . . . x

(n)
k → mk as r → ∞, for

some k s.t. 1 ≤ k < J .
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Case 1 mk+1 = 0. Then mk+2 = . . . = mJ = 0 and as r → ∞,

J
∑

i=k+1

x
(r)
i =

(

1 −
k

∑

i=1

x
(r)
i

)

→ 1 − m1 − m2 . . . − mk

= mk+1 + mk+2 . . . + mJ = 0 (2.19)

Now
∑J

i=k+1 x
(r)
i ≥ x

(r)
k+1 ≥ 0 so by the “Sandwich Rule” for limits x

(r)
k+1 → 0 as

r → ∞.

¥

Case 2 mk+1 > 0. Let

K(r) = K +
{

x1 = x
(r)
1 , x2 = x

(r)
2 . . . xk = x

(r)
k

}

(2.20)

and

K(∞) = K + {x1 = m1 . . . xk = mk} (2.21)

Recall that, if 1 ≤ k ≤ J , gk(K) = min{maxi=k+1...Jxi| ~x ∈ V L(K)}. By the

Inductive Hypothesis and Theorem 25, K(r) → K(∞) as r → ∞. Given ǫ, a positive

real number less than

F =
(mk+1 + . . . mJ)

J − k
(2.22)

there exists N1 ∈ N such that for every r > N1,

∆(K(r), K(∞)) < ǫ/2 =⇒ |gk(K
(r)) − gk(K

(∞))| < ǫ/2 (2.23)

(by Lemma 31) ⇒ |gk(K
(r)) − mk+1| < ǫ/2. Also since

lim
r→∞

J
∑

i=k+1

x
(r)
i = 1 −

k
∑

i=1

mi =
J

∑

i=k+1

mi (2.24)

there exists N2 > N1 ∈ N such that for every r > N2

J
∑

i=k+1

x
(r)
i > (J − k)F/2 (2.25)

so that

max(k,r) = maxJ
i=k+1x

(r)
i > F/2 > ǫ/2 (2.26)
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Now suppose that r > max
(

N2,
log J

log( 2
2−ǫ

)

)

. In the same way as (2.8) this ensures

that

1 − ǫ/2 < J− 1
r (2.27)

which implies that

x − ǫ/2

x
< J− 1

r (2.28)

where x = max(k,r). Hence

(max(k,r))r > J(max(k,r) − ǫ/2)r (2.29)

so if a solution of K, say ~y, exists for which y1 = x
(r)
1 . . . yk = x

(r)
k and its maximum

value at the other co-ordinates is at least ǫ/2 less than that of Renr(K),

J
∑

i=1

yr
i <

J
∑

i=1

x
(r)r

i and Renr(K) = Renr(K
(r)) (2.30)

by Obstinacy ([Moh]), which is a contradiction. Thus |gk(K
(r)) − max(r,k)| < ǫ/2.

Combining this with (2.23) gives

|max(k,r) − mk+1| < ǫ (2.31)

so max(k,r) → mk+1 as r → ∞.

Suppose now that x
(r)
k+1 does not tend to mk+1. Then, similarly to the Base Case,

there exists a subsequence of x
(r)
k+1 bounded away from mk+1 and by compactness a

subsequence of that converges to some limit l 6= mk+1. The corresponding sequence of

~x(r) has a convergent subsequence with limit vector ~X for which X1 = m1, . . . Xk = mk

by the I.H. and since maxJ
i=k+1xi is continuous, maxJ

i=k+1Xi = mk+1 but Xk+1 = l.

Since σ(k +1) = k +1 we deduce a contradiction. Hence x
(r)
k+1 → mk+1 as r → ∞,

completing the Inductive Step and the proof of Theorem 26.

¥
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2.3 On the limit of the Renyi Processes as r → 0

Recall from the Introduction that in [Moh] it was shown that the Renyi Processes

form a continuum of continuous inference processes Renr for r ∈ (0,∞). We have

seen in Section 2.1 that as r → ∞ the limit is MinimaxL. The corresponding result

at the opposite end of the continuum is:

Theorem 32 For all K ∈ CL, limrց0Renr(K) = CM∞(K).

Notation Recall from the Introduction that, for all r ∈ (0, 1) and each K ∈ CL,

Renr(K) = the unique ~x ∈ V L(K) for which
J

∑

i=1

xr
i is maximal (2.32)

Notation For the rest of this section, we use a fixed knowledge base K ∈ CL

and express it in dezeroed form. This means that we label the atoms of L α1, . . . αJ

in such a way that IL(K) = {i s.t. J ′ < i ≤ J} where J ′ is some integer such that

2 ≤ J ′ ≤ J .

As usual we let xi = Bel(αi) for each i = 1, . . . J . Since the inference processes we

use satisfy Atomic Renaming and Equivalence, (by [Moh], Theorem 21), we assume

w.l.o.g. that K includes constraints of the form xi = 0 for each i s.t. J ′ < i ≤ J and

that every other constraint only refers to x1, x2, . . . xJ ′ . We write solutions of K as

points in DJ ′

, ignoring the constant zeroes. Hence

Renr(K) = the unique ~x ∈ V L(K) for which
J ′

∑

i=1

xr
i is maximal (2.33)

for all r ∈ (0, 1). Also, the definition (1.78) now gives us that

CM∞(K) = the unique ~x ∈ V L(K) for which
J ′

∑

i=1

log xi is maximal (2.34)

since {1, . . . J ′} = {1 . . . J} \ IL(K). With CM∞(K), Renr(K), written as vectors in

DJ ′

, the statement of Theorem 32 does not change. We need only show that

Renr(K)i → CM∞(K)i for each i = 1, . . . J ′ (2.35)

since convergence is trivial at those co-ordinates in IL(K).
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It is now useful for us to show that the beliefs inferred for α1, . . . αJ ′ by Renyi

Processes as r ց 0 are bounded away from zero.

Lemma 33 There exists δ > 0 such that for every r ∈ (0, 1
2
) and each i = 1, . . . J ′,

Renr(K)i ≥ δ.

Proof Let ~x(r) = Renr(K) ∈ DJ ′

for all r ∈ (0, 1)—we use this notation for the

rest of Section 2.2. Also let ~X = CM∞(K) ∈ DJ ′

and define mini=1,...J ′Xi = m,

which is positive since CM∞ satisfies Open-mindedness, by Theorem 21. Now we let

δ = m3

4
and suppose for contradiction that for some i1 = 1 or . . . or J ′, and a fixed

R ∈ (0, 1
2
), x

(R)
i1

< δ. Let ~x′ denote ~x(R), so that x′
i1

< δ.

Consider the line connecting ~x′ and ~X given by

{~w(τ) = ~x′ + τ( ~X − ~x′) | τ ∈ R} (2.36)

and the polynomial function of τ

F (τ) =
J ′

∑

i=1

(wi(τ))R (2.37)

Differentiating F at τ = 0 gives

F ′(0) = R
J ′

∑

i=1

x′
i
R−1

(Xi − x′
i) (2.38)

We now show that F ′(0) is positive, to contradict the fact that ~x′ = RenR(K).

Since m < 1,

x′
i1

<
m3

4
<

m

2
< m ≤ Xi1 (2.39)

so the term of the sum (2.38) with i = i1 is positive. In general a term of the sum

(2.38) with i = i∗ is negative iff x′
i∗ > Xi∗ so let the i∗ ∈ {1, . . . J ′} for which this

holds be enumerated by q1, . . . qs.

For each j = 1, . . . s, Xqj
≥ m so x′

qj
> m and x′

i1
< δ = m3

4
so

x′

qj

x′

i1

> m/(m3

4
).

Simplifying this gives
x′

qj

x′
i1

>

(

2

m

)2

(2.40)
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Using R − 1 < −1
2
,

(

x′
qj

x′
i1

)R−1

<
m

2
(2.41)

Also δ < m
2
, so Xi1 − x′

i1
> m − δ > m

2
. Now

s
∑

j=1

(x′
qj
− Xqj

) <
s

∑

j=1

x′
qj

< 1 (2.42)

so

m

2

s
∑

j=1

x′
qj
− Xqj

Xi1 − x′
i1

<
m

2

s
∑

j=1

(

2

m

)

(x′
qj
− Xqj

) < 1 (2.43)

Applying (2.41) gives

s
∑

j=1

(

x
′R−1

qj
(x′

qj
− Xqj

)

x
′R−1

i1
(Xi1 − x′

i1
)

)

< 1

⇒ x
′R−1

i1
(Xi1 − x′

i1
) >

s
∑

j=1

x
′R−1

qj
(x′

qj
− Xqj

) (2.44)

When we multiply this by R, the left hand side is a positive term in the sum (2.38)

and the right hand side is the total positive modulus of all the negative terms.

Thus F ′(0) > 0 so there exists ǫ0 ∈ (0, 1) such that F (ǫ) > F (0) for every

ǫ ∈ (0, ǫ0). Let

~z = ~x′ +
ǫ

2
( ~X − ~x′), then

J ′

∑

i=1

zR
i >

J ′

∑

i=1

x
′R

i (2.45)

Now ~z ∈ V (K) by convexity since ~x′ and ~X are in in V (K) so this contradicts the

fact that ~x′ = RenR(K). Hence we have proved the lemma.

¥

Proof of Theorem 32 continued

Definition For all r ∈ (0, 1
2
) we let Gr, G0 : [δ, 1]J

′ → R be given by:

Gr(~x) =
J ′

∑

i=1

xr
i − 1

r
, G0(~x) =

J ′

∑

i=1

loge(xi) (2.46)

By definition of Renr, Renr(K) = the unique ~x ∈ V (K) for which Gr(~x) is

maximal. Also CM∞(K) = the unique ~x ∈ V (K) for which G0(~x) is maximal.

Intuitively we can think of the following lemma as useful in a proof of Theorem 32.

Lemma 34 As r ց 0 Gr − G0 → 0 uniformly.
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Proof of lemma Firstly we show that gr(x) = xr−1
r

uniformly converges to

g0(x) = loge(x) as r ց 0 for x ∈ [δ, 1]. Indeed

gr(x) = −
∫ 1

x

vr−1dv and g0(x) = −
∫ 1

x

v−1dv (2.47)

For all v such that δ ≤ v ≤ 1,

|vr−1 − v−1| = |v−1(vr − 1)| ≤ 1 − δr

δ
(2.48)

which tends to 0 as r ց 0 independently of v. Since the range of integration above

is bounded by 1, the modulus of the difference between the integrals is bounded

above by 1−δr

δ
as well. Hence gr uniformly converges to g0. Taking sums across

J ′ co-ordinates each in [δ, 1] preserves uniform convergence so Gr(~x) − G0(~x) → 0

uniformly as r ց 0.

¥

Proof of Theorem 32 continued Recall that ~x(r) denotes Renr(K) for all

r ∈ (0, 1
2
) and ~X denotes CM∞(K). We need to prove that ~x(r) → ~X as r ց 0 to

show Theorem 32, by (2.35). Assume for contradiction that ~x(r) doesn’t tend to ~X

as r ց 0. Then there exists ξ > 0 such that for some arbitrarily small positive values

of r, |~x(r) − ~X| > ξ. There must be a convergent subsequence of these ~x(r), indexed

by r = rp because DJ ′

is compact so

lim
rpց0

(~x(rp)) = ~b 6= ~X (2.49)

Since the ~x(rp) are in E = V (K) ∩ [δ, 1]J
′

, a closed set, ~b ∈ E. Recall that ~X has

every co-ordinate value greater than δ. Choose η > 0 such that

G0( ~X) − G0(~b) > η (2.50)

Now, by Lemma 34, we fix ρ > 0 such that for every r < ρ and all ~x ∈ E,

|G0(~x) − Gr(~x)| <
η

4
(2.51)

If rp satisfies rp < ρ and |G0(~x
(rp)) − G0(~b)| < η/4 then

Grp
( ~X) ≥ G0( ~X) − η

4
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> G0(~b) +
3η

4
≥ G0(~x

(rp)) − η

4
+

3η

4

≥ Grp
(~x(rp)) − η

4
− η

4
+

3η

4
> Grp

( ~X) (2.52)

so we have proved a contradiction. Hence limrց0(Renr(K)) = CM∞(K) and we

have proved the theorem.

¥



Chapter 3

The properties of MinimaxL

3.1 Comparing MinimaxL with Maximum Entropy

In this section, we test MinimaxL against the Par-Ven Properties defined in Subsec-

tions 1.4.1-1.4.9.

3.1.1 Equivalence

Theorem 35 MinimaxL satisfies Equivalence.

Proof This property holds for MinimaxL since the inference process is defined

in terms of V L(K).

¥

3.1.2 Atomic Renaming

Theorem 36 MinimaxL satisfies Atomic Renaming.

Proof The definition of MinimaxL is symmetrical with respect to permutations

of the atoms, so Atomic Renaming holds for MinimaxL.

¥

64
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3.1.3 Obstinacy

Theorem 37 MinimaxL satisfies Obstinacy.

Proof For any consistent knowledge base K, MmxL(K) is the optimal solu-

tion of K w.r.t. a fixed partial ordering, namely the minimax ordering. Hence, by

Theorem 9, MinimaxL satisfies Obstinacy and we have proved the theorem.

¥

Recall from the Introduction that an inference process is Obstinate if we can

define it in the manner of (1.42). To express MinimaxL in the form

for all K ∈ CL,MmxL(K) = the unique ~x ∈ V L(K) such that F (~x) is minimal

(3.1)

where F : DJ → Q and Q is a totally ordered set, we can use the natural ordering on

Q = R[ǫ] where ǫ is an infinitesimal.

However, whereas most known Obstinate inference processes can be characterised

by minimising a function taking values in R, the next theorem shows that MinimaxL

cannot be defined in this manner.

Theorem 38 When |L| > 1, no F : DJ → R exists such that MinimaxL can be

defined in the manner of (3.1).

Proof For all real p, q such that 1
2
≤ p ≤ 3

5
and q > 0, define

K(p, q) = {x1 = p + qx2, x3 = 0, x4 = 1 − x1 − x2} ∪ { xk = 0 s.t. k ∈ N, k > 4}

(3.2)

When we write solution vectors, only the first 4 co-ordinates will be listed, the sum

of the values of which must be 1. We say that xi = Bel(αi) as usual, where the atoms

of L are enumerated in the standard ordering. Hence, if |L| > 1, only 2 propositional

variables have variable beliefs and the others all have belief 1 at every solution.

We denote V L(K(p, q)) by Ans(p, q). Then

Ans(p, q) =

{

(p + qτ, τ, 0, (1 − p) − τ(1 + q)) | 0 ≤ τ ≤
(

1 − p

1 + q

)}

(3.3)
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Abbreviate MmxL(K(p, q)) to Mmx(p, q) and assume for contradiction that a func-

tion F = F0 has been fixed defining MinimaxL as above. Then if ~x = Mmx(p, q)

and ~x 6= ~y ∈ Ans(p, q), F0(~x) < F0(~y).

For all p ∈ [1
2
, 3

5
], define

upper(p) = F0((p, 0, 0, 1 − p)), lower(p) = F0

((

p,
1 − p

2
, 0,

1 − p

2

))

(3.4)

Only co-ordinates 2 and 4 do not take constant values in Ans(p, 0) and

x2 + x4 is constant so, at Mmx(p, 0), x2 = x4 by Atomic Renaming and

Mmx(p, 0) =

(

p,
1 − p

2
, 0,

1 − p

2

)

= lower(p) (3.5)

Also upper(p) ∈ Ans(p, 0), so F0(lower(p)) < F0(upper(p)) for every p ∈ [1
2
, 3

5
].

If q > 0 and τ > 0, then p+ qτ > p so the maximum of each solution of K(p, q) is

greater than p. Hence Mmx(p, q) = (p, 0, 0, 1− p) for all q > 0 and all p ∈ [1/2, 3/5].

We fix p = p0 and let δ be positive and not greater than 3
5
− p0. Then since

(

p0 + δ,
1 − (p0 + δ)

2
, 0,

1 − (p0 + δ)

2

)

∈ Ans

(

p0,
2δ

1 − (p0 + δ)

)

, (3.6)

F0(upper(p0)) < F0(lower(p0 + δ)) for all δ s.t. p0 < p0 + δ ≤ 3
5
.

Now a contradiction follows: for all p ∈ [1/2, 3/5] choose

rat(p) ∈ Q ∩ (F0(lower(p)), F0(upper(p))), which exists by the density of Q in R.

All of these rational numbers rat(p) must be different for different values of p since

when p < p′, F0(upper(p)) < F0(lower(p′)). Hence we have found an uncountably

infinite set of rational numbers, which is a contradiction, so no F can exist defining

MinimaxL in the above way and we have proved the theorem.

¥

3.1.4 Language Invariance

Theorem 39 MinimaxL is Language Invariant.

Proof Since every Renyi Process is Language Invariant (by [Moh]), then
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MmxL = limr→∞RenL
r (by Theorem 26) is also independent of L and we have proved

the theorem. ¥

From now on we will usually refer to the Minimax inference process without

mentioning the overlying language.

3.1.5 Continuity

In this subsection we use m1,m2 etc. as defined in Chapter 2—recall (2.4). Since

Minimax is a limit of continuous inference processes, it is certainly tempting to

believe that it is continuous. Recall that, by Lemma 31, m1(K) is a uniformly

continuous function in the Blaschke topology—a fact which can make continuity of

Minimax seem very reasonable.

Also when a knowledge base varies continuously in certain ways Minimax varies

continuously—we show this in Section 3.2. However, the function m2 : CL → R can

be seen not to be continuous!

Theorem 40 Minimax is not continuous.

Proof For all ǫ ∈ [0, 1], we let

Kǫ =

{

x1 = ǫx2, x2 + x3 =
1

2
, x1 + x2 + x3 + x4 = 1

}

(3.7)

where L = {p1, p2}, xi = Bel(αi) for i = 1, 2, 3, 4 and the atoms αi are labelled in

the standard ordering. We let ~s(ǫ, τ) denote (ǫτ, τ, 1
2
− τ, 1

2
− ǫτ). Let

Solǫ = V L(Kǫ) =

{

~s(ǫ, τ) s.t. 0 ≤ τ ≤ 1

2

}

(3.8)

which is the line segment connecting ~s(ǫ, 0) = (0, 0, 1
2
, 1

2
) and ~s(ǫ, 1

2
) = ( ǫ

2
, 1

2
, 0, 1−ǫ

2
).

The points ~s(ǫ, 0) and ~s(ǫ, 1
2
) are continuous functions of ǫ. Hence by Lemma 11,

Solǫ → Sol0 as ǫ ց 0. Therefore Kǫ → K0 as ǫ ց 0.

For ǫ > 0, max(~s(ǫ, τ)) = either τ or 1
2
− ǫτ . With ǫ fixed, the maximum of these

two values is minimal when they are equal, since 1
2
− ǫτ decreases as τ increases.
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Hence for the minimax-best solution of Kǫ, we require that τ = 1
2(1+ǫ)

. Thus

Mmx(Kǫ) =

(

ǫ

2(1 + ǫ)
,

1

2(1 + ǫ)
,

ǫ

2(1 + ǫ)
,

1

2(1 + ǫ)

)

(3.9)

which tends to (0, 1
2
, 0, 1

2
) as ǫ ց 0.

However, for ǫ = 0, Mmx(K0) = (0, 1
4
, 1

4
, 1

2
) so Minimax is not continuous and

we have proved the theorem.

¥

3.1.6 Open-mindedness

Theorem 41 Minimax does not satisfy Open-mindedness.

Proof Let

K =

{

x1 = 0, x3 − x2 =
1

2
, x1 + x2 + x3 + x4 = 1

}

(3.10)

where L = {p1, p2}, xi = Bel(αi) for i = 1, 2, 3, 4 and the atoms αi are labelled in

the standard ordering. Then, if ~x ∈ V L(K), max(~x) = x3 since x3 ≥ 1
2
. This is

minimised when x3 = 1
2

so

MmxL(K) =

(

0, 0,
1

2
,
1

2

)

(3.11)

However (0, 1
8
, 5

8
, 2

8
) ∈ V L(K), so x2 = 0 is not necessarily true when ~x ∈ V L(K).

Hence Minimax does not satisfy Open-mindedness and we have proved the theorem.

¥

The following technical lemma can make calculating Minimax easier and is also

useful in analysing its properties.

Lemma 42 Let C ⊂ {1, . . . J} and let ∼ be an equivalence relation on {1, . . . J} \C

such that the equivalence classes are all of equal size. Let i1, . . . iq be representatives

of the q distinct equivalence classes. For each ~x ∈ DJ s.t. xi = xj for all i, j s.t.

i ∼ j, let Simp(~x) = (xi1 , . . . xiq). Then if ~y ∈ RJ is such that yc = xc for all c ∈ C,

comparing ~x and ~y in the minimax ordering is equivalent to comparing Simp(~x) and

Simp(~y) in the minimax ordering.
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Proof Let ~x, ~y be as above and we let A denote the size of the equivalence

classes w.r.t. ∼. If Simp(~x) and Simp(~y) are permutations of each other, clearly

~y is a permutation of ~x. Otherwise suppose w.l.o.g. that ˜Simp(~x)i = ˜Simp(~y)i for

each i s.t. i ≤ k and ˜Simp(~x)k+1 < ˜Simp(~y)k+1 for some k ≥ 0. Then if there are

v of the co-ordinates in C whose values in ~x (or equivalently in ~y) are not less than

˜Simp(~y)k+1 then

x̃i = ỹi for all i ≤ v + Ak but x̃(v+Ak+1) < ỹ(v+Ak+1). (3.12)

Hence the minimax comparison of ~x and ~y matches that of Simp(~x) and Simp(~y)

as required and we have proved the lemma.

¥

Corollary 43 Suppose ~x, ~y are vectors in RJ such that xi = yi for all i ∈ C, for

some C ⊂ {1, . . . J}. W.l.o.g. let C = {1, . . . k}. We can do this by the symmetry of

the minimax ordering w.r.t. permuting the co-ordinates. Then comparing ~x and ~y

in the minimax ordering is equivalent to comparing (xk+1, . . . xJ) and (yk+1, . . . yJ).

If the same C is a subset of co-ordinates which are constant w.r.t. a knowledge base

K ∈ CL, then Minimax(K) = that ~x ∈ V L(K) for which (xk+1, . . . xJ) is minimax-

best.

Proof The first part of the corollary follows by using Lemma 42, letting

C = {1, . . . , k} and letting the relation ∼ on {k+1, . . . J} be equality. For the second

part, if there exists ~y minimax-better than ~x, (yk+1, . . . yJ) is minimax-better than

(xk+1, . . . xJ). We have proved the corollary.

¥

3.1.7 Independence

Theorem 44 Minimax does not satisfy Independence.

We contain the proof of Theorem 44 in a more general investigation of how “close”

Minimax is to satisfying Independence.
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How close does Minimax come to giving the Independent solution?

We will look later at the knowledge bases used in the definition of Independence.

For simplicity consider first a knowledge base Kb,c of the form:

Kb,c = {x1 + x2 = b, x1 + x3 = c} (3.13)

where xi = Bel(αi) for i = 1, 2, 3, 4.

Notation Let the Independent solution of Kb,c be denoted by

Ind(b, c) = ME(Kb,c) = (bc, b(1 − c), (1 − b)c, (1 − b)(1 − c)) (3.14)

for all b ∈ [0, 1] and c ∈ [0, 1]. Also we denote Minimax(Kb,c) by Mmx(b, c).

We can see that Kb,c is consistent ⇔ b ∈ [0, 1], c ∈ [0, 1]. That is because the sum

of two beliefs for different atoms must lie in [0, 1] and if b, c ∈ [0, 1] we can see that

ME(Kb,c) = Ind(b, c) is a solution. It is helpful, to avoid mentioning max(b, c) etc.,

to establish the convention that

0 ≤ b ≤ c ≤ 1

2
(3.15)

We can do this without loss of generality because if b is greater than 1
2
, the constraint

x1 + x2 = b is equivalent to x3 + x4 = 1 − b and this rearrangement will give K1−b,c

up to the renaming of atoms that swaps x3 for x1 and x2 for x4. Also 1 − b < 1
2
.

Similarly for the case c > 1
2
. Finally b ≤ c can be assumed, otherwise swapping

them and exchanging the atoms α2 and α3 will produce an essentially similar Kb,c in

the form of (3.15). None of these changes will affect the distance from Mmx(b, c) to

Ind(b, c).

Notation Sol(b, c) shall denote V L(Kb,c) in this subsection.

Sol(b, c) = {(τ, b − τ, c − τ, τ + 1 − b − c) | 0 ≤ τ ≤ b} (3.16)

That is because 1 − b − c ≥ 0 so the condition that 0 ≤ τ ≤ b, clearly required to

make the first two co-ordinate values non-negative, also guarantees non-negativity

at the other co-ordinates. The maximum of τ , b − τ, c − τ and τ + 1 − b − c is
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max(c− τ, τ +1− b− c). Let f(b, c) = 1
2
(2c+ b−1), which is the value of τ for which

c − τ = τ + 1 − b − c.

If f(b, c) ∈ [0, b] then

Mmx(b, c) = (f, b − f, c − f, f + 1 − b − c) = (f, b − f, c − f, c − f) (3.17)

because if τ < f , c − τ will be larger (and maximal) but if τ > f , τ + 1 − b − c will

exceed c − f . If f < 0, τ + 1 − b − c is the maximum of every vector in Sol(b, c) so

Mmx(b, c) = (0, b, c, 1 − b − c). Note that f ≤ b since c ≤ 1
2
. In summary

Case 1 : c ≤ 1 − b

2
⇒ Mmx(b, c) = (0, b, c, 1 − b − c)

Case 2 :
1 − b

2
≤ c ≤ 1

2
⇒ (3.18)

Mmx(b, c) =

(

2c + b − 1

2
,
b − 2c + 1

2
,
1 − b

2
,
1 − b

2

)

(3.19)

Theorem 45 For b ∈ [0, 1], c ∈ [0, 1], Mmx(b, c) = Ind(b, c) iff either b or c equal

either 0, 1
2

or 1.

Proof We begin by assuming the convention, as before, that 0 ≤ b ≤ c ≤ 1
2
.

In Case 1, bc = 0 is necessary and since b ≤ c, bc = 0 iff b = 0, c ≤ 1−b
2

.

In Case 2, it is required that 1−b
2

= (1 − c)(1 − b). In Case 2 b 6= 1 anyway so,

upon checking that c = 1
2

really does give Ind = Mmx the solutions in Case 2 are

given by c = 1
2
. Given the convention 0 ≤ b ≤ c ≤ 1

2
, Ind(b, c) = Mmx(b, c) ⇔ b = 0

or c = 1
2
.

When we allow b, c to take values throughout [0, 1], we deduce that

Ind(b, c) = Mmx(b, c) iff either b or c equal either 0, 1
2

or 1 so we have proved the

theorem.

¥

Theorem 46 If b ∈ [0, 1], c ∈ [0, 1], |Mmx(b, c)− Ind(b, c)| takes its maximal value,

2
9
, iff (b, c) =

(

1
3
, 1

3

)

,
(

1
3
, 2

3

)

,
(

2
3
, 1

3

)

or
(

2
3
, 2

3

)

.
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Remark In terms of Euclidean distance, this is in fact the answer to the ques-

tion: “In the worst scenarios, how far away is Minimax from satisfying Indepen-

dence?” We answer this question later in the case of the knowledge bases used in the

definition of Independence, but for now we use the Kb,c’s.

Proof Recall the notation of (3.16). Note that when we calculate distance be-

tween points in Sol(b, c) we obtain:

|(τ, b − τ, c − τ, τ + 1 − b − c) − (υ, b − υ, c − υ, υ + 1 − b − c)|

=
√

(τ − υ)2 + (τ − υ)2 + (τ − υ)2 + (τ − υ)2 = 2|τ − υ| (3.20)

Hence to maximise the distance just maximise the difference between the values at

the first co-ordinate.

Now we again assume that 0 ≤ b ≤ c ≤ 1
2
, splitting cases as in (3.18).

Case 1: c ≤ 1−b
2

The first co-ordinates of Mmx(b, c) and Ind(b, c) differ by bc. Let

the triangular region R1 be given by

R1 =

{

(b, c) s.t. 0 ≤ b ≤ c ≤ 1

2
and c ≤ 1 − b

2

}

(3.21)

If, from some point of R1 not on the edge c = 1
2
(1 − b), we move parallel to the

c−axis, then we increase the c co-ordinate and increase bc. On the edge given by

c = 1
2
(1 − b), 0 ≤ b ≤ 1

3
and so d

db
(bc) = 1

2
− b > 0. Hence we see that for Case 1,

b = c = 1
3

is the “worst” point.

Case 2: 1−b
2

≤ c ≤ 1
2

The first co-ordinates of Mmx(b, c) and Ind(b, c) differ by

|1
2
(2c + b − 1) − bc|. Now for general real numbers b, c,

1

2
(2c + b − 1) = bc ⇐⇒ b = 1 or c =

1

2
(3.22)

Since the function g, given by

g(b, c) = 2bc − (2c + b − 1) (3.23)

is continuous, the sign of that function cannot change in the region in which Case 2

applies, say R2, given by

R2 =

{

(b, c) s.t. 0 ≤ b ≤ c ≤ 1

2
and

1

2
≥ c ≥ 1 − b

2

}

(3.24)
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Since g is positive at (0, 0), it is positive or zero throughout R2 so the problem is to

maximise g(b, c) in the triangle R2.

It is clear that if b is fixed, g(b, c) is a monotonic decreasing function of c. Also if

c is fixed, g decreases monotonically when b varies. The search for points maximising

g is now limited to the edge of R2 given by

c =
1 − b

2
, 0 ≤ b ≤ 1

3
. (3.25)

Now this is the same as the top edge of R1 considered already, so (1
3
, 1

3
) is the unique

worst point for Case 2 as well.

Discarding the assumption that 0 ≤ b ≤ c ≤ 1/2, i.e. as we let b, c take values

throughout [0, 1], by the earlier discussion the knowledge bases Kb,c producing the

largest distances between Ind(b, c) and Mmx(b, c) are given by

(b, c) = (1
3
, 1

3
), (1

3
, 2

3
), 2

3
, 1

3
) or (2

3
, 2

3
). The largest distance |Ind(b, c) − Mmx(b, c)| = 2

9

is realised at just those points. We have proved the theorem.

¥

Remark The worst case Kbc’s provide examples of Minimax behaving very

differently from Independence. For example, if b = c = 1/3, Mmx(Kbc)1 = 0.

Remark If we consider the overlying language to be variable, does this

affect the relative distances between Ind(b, c) and Mmx(b, c)?

The answer is an emphatic “No”! Just for this remark, we let Ind(b, c) denote

the p.b. function inferred from Kb,c by an inference process satisfying Independence,

Language Invariance and Atomic Renaming. Recall (Theorem 39) that Minimax is

Language Invariant. We write IndL(b, c), MmxL(b, c) for the vectors representing

Ind(b, c), Mmx(b, c) respectively when xi = Bel(αi) and α1, . . . αJ enumerates the

atoms of L in the standard ordering.

Let dL(b, c) denote |IndL(b, c)−MmxL(b, c)|. Now, if Mmx(b, c)L = (X1, . . . XJ),

Mmx(b, c)L′

=

(

X1

2
,
X1

2
, . . . ,

XJ

2
,
XJ

2

)

(3.26)
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where L′ = L + {p}. This is because the atoms α1, . . . αJ of L have been replaced by

atoms β1, . . . β2J where

β2l−1 = αl ∧ p, β2l = αl ∧ ¬p for each l = 1, . . . J (3.27)

For each l = 1, . . . J , Mmx(b, c)(β2l−1) = Mmx(b, c)(β2l) by Atomic Renaming.

Similarly, if Ind(b, c)L = (Y1, Y2, . . . YJ), Ind(b, c)L′

=
(

Y1

2
, Y1

2
, . . . YJ

2

)

.

Then

(dL′

(b, c))2 = 2
J

∑

i=1

(

Xi − Yi

2

)2

=
1

2

J
∑

i=1

(Xi − Yi)
2

=
1

2
.(dL′

(b, c))2 (3.28)

Adding a propositional variable to L has multiplied d(b, c) by 1√
2
. Hence by induction

on the number of extra propositional variables, the choices of (b, c) which maximise

| Ind(b, c) − Mmx(b, c)| are independent of the overlying language.

The knowledge bases used in the definition of Independence

Now, for all a, b, c ∈ [0, 1] s.t. a > 0 we define

Ka,b,c = {Bel(p1) = a,Bel(p2|p1) = b, Bel(p3|p1) = c} (3.29)

which is the knowledge base, (over the language L = {p1, p2, p3}) given in the defini-

tion of Independence [[Par], page 101].

Notation The Independent solution, denoted Ind(a, b, c), is the p.b. function

inferred on Ka,b,c by an inference process satisfying Independence and Atomic Re-

naming, i.e. Ind(a, b, c) = ME(Ka,b,c). In the following theorem let Mmx(a, b, c)

denote Minimax(Ka,b,c).

Theorem 47 If Ka,b,c is consistent, |Mmx(a, b, c) − Ind(a, b, c)| takes its maximal

value, 2
9
, when a = 1 and (b, c) =

(

1
3
, 1

3

)

,
(

1
3
, 2

3

)

,
(

2
3
, 1

3

)

or
(

2
3
, 2

3

)

.



CHAPTER 3. PROPERTIES OF MINIMAX 75

Proof We use the standard ordering of the atoms of L, letting xi = Bel(αi) as

usual. The constraints of Ka,b,c are

x1 + x2 + x3 + x4 = a , x5 + x6 + x7 + x8 = 1 − a

x1 + x2 = ba , x1 + x3 = ca (3.30)

and by Atomic Renaming and Obstinacy we add, w.l.o.g.,

x5 = x6 = x7 = x8 =
1 − a

4
(3.31)

so, from now on, these are treated as constraints of Ka,b,c. Ind(a, b, c) is given by

Ind(a, b, c) =

(

bca, b(1 − c)a, (1 − b)ca, (1 − b)(1 − c)a,
1 − a

4
, . . .

1 − a

4

)

(3.32)

Let ~x4 denote (x1, x2, x3, x4). Observe that Ind(a, b, c)4 = a.Ind(b, c). Also, by

(3.31), Mmx(a, b, c)i = Ind(a, b, c)i for i = 5, 6, 7, 8 so the square distance between

Mmx(a, b, c) and Ind(a, b, c) is that between Mmx(a, b, c)4 and Ind(a, b, c)4. By a

transformation of the constraints we show the following fact:

Claim

Mmx(a, b, c)4 = a.Mmx(b, c) (3.33)

Proof of claim By Corollary 43, when we calculate Mmx(a, b, c) the constant

co-ordinates 5,6,7,8 can be ignored, treating the constraints on x1, x2, x3, x4 as a

constraint set with constant sum a. Let, for a > 0, yi = xi/a for i = 1, 2, 3, 4. Now

picking out the minimax-best (y1, y2, y3, y4) is equivalent to picking the minimax-

best (x1, x2, x3, x4). The constraints on the yi’s are now exactly Kb,c. Then taking

~x4 = a~y4 gives Mmx(a, b, c)4 = a.Mmx(b, c), and we have proved the claim.

¥

Using the claim, |Ind(a, b, c) − Mmx(a, b, c)| = a.|Ind(b, c) − Mmx(b, c)| so the

largest value of this distance, by Theorem 46, is 2
9
. This value occurs when a = 1

and (b, c) = (1
3
, 1

3
) . . .or(2

3
, 2

3
). We have proved Theorem 47.

¥

Proof of Theorem 44 This follows from Theorem 47.

¥



CHAPTER 3. PROPERTIES OF MINIMAX 76

3.1.8 Relativisation

Theorem 48 Minimax satisfies Relativisation.

Proof By [[Moh], pp.40-42], the Renyi Processes satisfy Relativisation. If

K1 = {Bel(φ) = c} +

{

s
∑

j=1

ajiBel(θj|φ) = bi | i = 1, . . . m

}

K2 = K1 +

{

q
∑

j=1

ejiBel(ψj|¬φ) = fi | i = 1, . . . t

}

, (3.34)

where 0 < c < 1 and K1, K2 are consistent, then for every θ ∈ SL, r > 1,

Renr(K1)(θ|φ) = Renr(K2)(θ|φ). Taking the limit of both sides as r → ∞ gives

Mmx(K1)(θ|φ) = Mmx(K2)(θ|φ) and we have proved the theorem.

¥

3.1.9 Irrelevant Information

Although this is a very desirable property of inference processes, it is very rarely

satisfied.

Theorem 49 Minimax does not satisfy Irrelevant Information.

Proof Let L = {p1, p2, p3} and K1 = {Bel(p1 ∧ p2) = Bel(p1 ∧¬p2) + 1
10
}. Then

define K2 = {Bel(p3) = 1
5
} and let K = K1 + K2. Clearly if Minimax satisfies

Irrelevant Information, Mmx(K)(θ) = Mmx(K1)(θ) when θ only mentions p1 and

p2.

The overlying languages used for each knowledge base are not yet fixed; by Lan-

guage Invariance (Theorem 39) this is not necessary. We now use the language

{p1, p2} to calculate Mmx(K1). The four atoms are enumerated α1, α2, α3, α4 in the

standard ordering with xi = Bel(αi) and the constraints are

x1 + x2 + x3 + x4 = 1 (3.35)

x1 − x2 =
1

10
(3.36)
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By Atomic Renaming and Obstinacy the constraint

x3 = x4 (3.37)

is also true at Mmx(K1). The solutions of K1 for which that holds are those

~x =

(

τ +
2

20
, τ,

9

20
− τ,

9

20
− τ

)

for which 0 ≤ τ ≤ 9

20
(3.38)

The solution with the least maximum is (11
40

, 7
40

, 11
40

, 11
40

), since 40τ > 7 implies that

τ + 1
10

> 11
40

, giving a larger maximum and 40τ < 7 gives 9
20

− τ > 11
40

.

To find Mmx(K) the 8 atoms of L are enumerated in the standard ordering with

xi = Bel(αi) and the equations are

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = 1 (3.39)

x1 + x3 + x5 + x7 =
1

5
(3.40)

x1 + x2 − x3 − x4 =
1

10
(3.41)

Consider the solution ~p = 1
20

(2, 4, 0, 4, 1, 4, 1, 4). Note that in general since

x2 + x4 + x6 + x8 = 16
20

the maximum of x2, x4, x6 and x8 must be at least 4
20

. Hence

~p has the least possible maximum. If the maximum of a solution of K is 4
20

then

each of those atoms not satisfying p3 must get belief 4
20

. Assuming that condition,

x1 = x3 + 2
20

so x1 ≥ 2
20

and x3 + x5 + x7 = 4
20

− x1 ≤ 2
20

so the maximum of the

other co-ordinates could be no lower than 2
20

. In that case, we must have x1 = 2
20

and x3 = 0. This leaves x5 and x7 which by Renaming can be assumed to be equal,

in which case ~p must equal Mmx(K). Hence

Mmx(K) =
1

20
(2, 4, 0, 4, 1, 4, 1, 4) (3.42)

Finally, we see that Mmx(K)(p1∧p2) = 3
10

but Mmx(K1)(p1∧p2) = 11
40

so Minimax

does not satisfy Irrelevant Information and we have proved the theorem.

¥
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3.2 Piecewise Linear Loaf Continuity of Minimax

By Theorem 40, Minimax is not continuous. In this section, circumstances are

defined in which Minimax does vary continuously. We assume some material from

Chapter 6 in this section: in particular Algorithm 94, the Minimax Calculation

Algorithm. However, there is no mathematical circularity.

Definition A loaf is a set of consistent knowledge bases K̂ = {Kλ | a ≤ λ ≤ b}

in which each slice Kλ is given by

{

J
∑

i=1

ajixi = bj + cjλ | j = 1, . . . s

}

(3.43)

for some real numbers s, a, b, aji, bj, cj, that are independent of λ. The λ-range is

[a, b]. These definitions apply to the entire thesis.

Theorem 50 If K̂ is a loaf then Kλ is a continuous function of λ in the Blaschke

topology.

Proof Essentially this proof involves making a lot of assumptions about K̂

w.l.o.g. and then using Theorem 24.

If all of the Kλ are equal, then Theorem 50 is trivial. Otherwise each knowledge

base of the loaf is of the form (3.43). Now we can reparametrise the λ and obtain a

loaf K̂ ′ which has λ-range [0, 1] and its slices given by

K ′
λ =

{

J
∑

i=1

ajixi = bj + cj(a + (b − a)λ) | j = 1, . . . s

}

(3.44)

We see that K ′
λ is equivalent to Ka+(b−a)λ and if K ′

λ is a continuous function of λ in

the Blaschke topology, so is Kλ. Hence we assume w.l.o.g. in this proof that K̂’s

λ-range is [0, 1], so a = 0, b = 1.

Also we can rearrange the constraints of K̂ so that only one of them depends on

λ. If more than one of them has a non-zero coefficient of λ, use one of them to express

λ in terms of the xi’s, i.e.

J
∑

i=1

ajixi = bj + cjλ becomes λ =
J

∑

i=1

aji

cj

xi −
bj

cj

(3.45)
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Then substitute this into all of the other constraints where λ appears, letting the new

loaf be K̂ ′. Since K ′
λ ≡ Kλ for every λ such that λ ∈ [0, 1], we now assume w.l.o.g.

for proving the theorem that a = 0, b = 1 and only one cj is non-zero, which equals

1. We can do this by dividing that constraint throughout by the cj if necessary.

Now each slice is given by

Kλ = K +
J

∑

i=1

aixi = g + λ (3.46)

where K is some fixed knowledge base.

We now have assumed enough about the form of K̂ and, by using Theorem 24,

we see that

Kλ → K0 as λ ց 0 (3.47)

To get left or right continuity at λ = λ0 consider a loaf K̂ with λ-range [0, λ0]

or [λ0, 1] and by a substitution in the constraints get a loaf K̂ ′ with λ-range [0, 1]

such that either K ′
λ ≡ K(1−λ)λ0 for every λ ∈ [0, 1], or K ′

λ ≡ Kλ0+λ(1−λ0) for every

λ ∈ [0, 1]. Then right continuity at 0 in K̂ ′ implies left or right continuity at λ0 in K̂

as required to complete the proof of the theorem.

¥

Definition An inference process NL is Piecewise Linear Loaf Continuous if for

every loaf K̂ the function NL(Kλ) : [a, b] → RJ is continuous and piecewise linear, i.e.

there exist α0 = a < α1 < α2 . . . < αt < b = αt+1 such that NL(Kλ) : [αi, αi+1] → RJ

is linear for i = 0, . . . t. This definition applies to the entire thesis.

Remark We can consider Loaf Continuity (that is, without necessarily piecewise

linear behaviour) to be a particularly desirable form of continuous behaviour of an

inference process, because the slices of a loaf are knowledge bases that only differ in

the constants on the right hand sides of the constraints.

To regard Piecewise Linear Loaf Continuity as desirable, we can regard linear

behaviour of our inferences as convenient, due to the relative perceived awkwardness

of judging the values of nonlinear functions, when we regard inference as a subcon-

scious mental process. This is similar to the remark on page 173—indeed, there
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may be a strong link between the concepts of Partial Linearity (see Chapter 7) and

Piecewise Linear Loaf Continuity. However MD is an example of a non-PL inference

process that satisfies PLLC—see Lemma 54, Theorem 142 and the fact that MD is

continuous ([Moh]).

Theorem 51 Minimax is Piecewise Linear Loaf Continuous.

Proof Consider a loaf K̂ as in (3.43). We prove that Mmx(Kλ) is a continuous

and piecewise linear function of λ. Assume w.l.o.g. that a = 0, b = 1, with essentially

the same justification as in the proof of Theorem 50. We first prove that Mmx(Kλ)

is right continuous at λ = 0 and is linear in a right-neighbourhood of 0.

We now use the Minimax Calculation Algorithm: see Algorithm 94 in Chapter 6.

When the algorithm is used with input Kλ, the rank of the constraints is independent

of λ and so are the various choices of extra constraints at Step 1. Whether a particular

set of extra constraints produces a system of rank J or not is independent of λ.

Obtaining Mmx(Kλ) involves pre-multiplying the right hand sides of the constraints

(which are linear functions of λ) by the inverses of those left hand side matrices

(indept. of λ) to get a finite set of linear functions of λ, say

~p1 + ~g1λ, ~p2 + ~g2λ, . . . ~pq + ~gqλ (3.48)

where ~pi, ~gi ∈ RJ . At Step 2 we remove those containing negative numbers, before

comparing the rest compared by least max etc, until one remains in Steps 3 and 4;

these steps are dependent on λ.

However, when we compare two numbers A(λ) = pij + gijλ and B(λ) = pde
+ gde

λ

for small positive λ

• If pij > (<)pde
, A > (<)B for all λ s.t. 0 < λ < δ for some δ.

• If pij = pde
, then for all positive λ A > (<)B ⇐⇒ gij > (<)gde

.

Since we are comparing a finite number of expressions, there exists δ > 0 such that

for all λ ∈ (0, δ) the truth of all statements of the form A(λ) ≤ B(λ) are constant.
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Hence for some i and all sufficiently small λ,

Mmx(Kλ) = ~pi + ~giλ, (3.49)

which will be now called ~p + ~gλ.

Now we return to proving that Mmx(Kλ) is right continuous at λ = 0. It is

sufficient that Mmx(K0) = ~p, shown in the lemma below. Suppose that

Mmx(K0) = ~b. Now assume that K0 admits the identity permutation w.r.t. Theo-

rem 28. Then

b1 ≥ b2 ≥ . . . ≥ bJ . (3.50)

Since Kλ → K0 as λ → 0, ~p ∈ V L(K0). Also recall that m1 : CL → R is

continuous: see Lemma 31.

Lemma 52 For each i = 1, 2, . . . J , pi = p̃i = bi.

Proof This is by induction on i.

Base Case i = 1 By continuity of m1 (= max),

max(Mmx(Kλ)) → max(Mmx(K0)) = b1 as λ → 0. The max of the limit is the

limit of the max (max is continuous) so p̃1 = b1 and, by (3.50), p1 = b1.

Inductive Step We assume (I.H.) that the lemma is true for every i not greater

than k. Suppose for contradiction that p̃k+1 6= bk+1, then p̃k+1 > bk+1 by definition

of Minimax. Since ~b − ~p is parallel to the hyperplane ~GL(K0), it is also parallel to

~GL(Kλ) for all λ since the left hand sides of the constraints are independent of λ, so

~b + λ~g ∈ ~GL(Kλ).

Now for small enough λ,

~y(λ) = ~p +
1

2
(~b − ~p) + λ~g (3.51)

is non-negative so is a solution of Kλ. To see this we consider a specific co-ordinate,

say the i’th. We see that if either gi ≥ 0 or bi ≥ pi > 0 then yi(λ) ≥ 0 for every λ.

If gi < 0 and bi < pi, then if λ < − bi

gi
we see that yi(λ) ≥ 0. Finally if bi = 0 and

gi < 0, λ < −pi

2gi
is sufficient for non-negativity. Taking the minimum of this finite list

of upper bounds (across i = 1, . . . J) gives a bound for λ below which ~y(λ) ∈ V L(Kλ).
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Hence, by convexity of V L(Kλ), for these values of λ,

~w(α, λ) = ~p + α(~b − ~p) + λ~g ∈ V L(Kλ) (3.52)

for every α s.t. 0 ≤ α ≤ 1
2
. Let ~z = ~p+λ~g = ~w(0, λ). Now by I.H. p1 = b1, . . . pk = bk

so z1 = y1, . . . zk = yk.

Since pi = bi for i = 1, 2, . . . k, observe that wi = zi for each i s.t. i ≤ k. Recall

Corollary 43: when comparing ~w and ~z in the minimax ordering we can equivalently

compare ~W = (wk+1, . . . wJ) and ~Z = (zk+1, . . . zJ).

Let λ = 0 and α = 0. Then since p̃k+1 > bk+1, Z̃1 > W̃1. By continuity of max

this remains true for small values of λ and α. However this contradicts the fact that

~z = Mmx(Kλ). Hence the assumption that p̃k+1 > bk+1 is false and we have proved

the lemma.

¥

Proof of Theorem 51 ctd. We have shown that Mmx(Kλ) is right continuous

at λ = 0 and linear in a right neighbourhood of 0. To prove that the function

Mmx(Kλ) is continuous (on the left or the right) at other points in [0,1] and linear

in left/right neighbourhoods of those points, we can use some linear transformations

of the loaf similarly to the end of the proof of Theorem 50.

Now we will show the theorem by proving that the local pieces of linear behaviour

of Mmx(Kλ) join up so that the λ-range ([0,1] w.l.o.g.) is the union of finitely many

linear segments as stated.

If there are infinitely many values of λ, λi, where the rates of change of Mmx(Kλ)

above and below λ = λi do not match then by sequential compactness of [0,1] there

exists u ∈ [0, 1] s.t. there exist λi’s 6= u arbitrarily close to it on one side (say above

u w.l.o.g.). However by linearity of Mmx(Kλ) in a right-neighbourhood of u there

exists δ > 0 such that Mmx(Kλ) = ~r + λ~s for all λ ∈ (u, u + δ).

By our assumption, there exists an λi ∈ (u, u+δ). However this is a contradiction

since the rate of change of Mmx(Kλ) is the same immediately above and below that

λi, i.e. ~s. Hence there are only finitely many λ values where the direction of Minimax
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changes, as required, and we have proved the theorem.

¥
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3.3 Is Piecewise Linear Loaf Continuity a property

of the Renyi Processes, or of CM∞?

Theorem 53 Ren2 (i.e. MD) satisfies Piecewise Linear Loaf Continuity. No other

Renyi Process Renr satisfies this property. Neither does CM∞.

Lemma 54 Ren2 satisfies Piecewise Linear Loaf Continuity.

Proof Similarly to the proof of Theorem 51, it is sufficient to prove, for every

loaf K̂ for which the λ-range is [0, 1], that Ren2(Kλ) is right continuous at 0 and is

linear in a right-neighbourhood of 0. By [Moh], we know that Ren2 is continuous.

Notation A Z-constraint is a constraint of the form (xi = 0) for some i. This

definition is used throughout the thesis.

We now introduce, just for the proof of Lemma 54, technical definitions and results

about convex polytopes.

Definition Let some subset F of a convex polytope P be expressible in the form

F = {~x ∈ P s.t. a1x1 + x2x2 + . . . + aJxJ = a0} (3.53)

where a0, a1, . . . aJ are constants and a1x1 + a2x2 + . . . + aJxJ ≥ a0 for all ~x ∈ P .

Then F is a face of P . Note that this definition is equivalent to that of “face” in

[Zie], in which the author uses ≤ instead of our ≥. Also if F 6= P , F is a proper face

of P .

Claim Every point, ~x, on a proper face of P defined by
∑J

i=1 aixi = a0 as

above, is on the topological boundary of P , using the subspace topology of P .

Proof of claim This is because there exists a point, say ~y, in P for which
∑J

i=1 aiyi > a0 so, as ǫ ց 0, ~x + ǫ(~x − ~y) → ~x and is not in P , but these points do

lie in the smallest affine set which contains P .

¥

In [Zie], on page 51, the author defines a “vertex” of a convex polytope P in a

different way to the definition in this thesis: he defines a vertex of P to be a face of

P which consists of a single point.
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The following lemma shows that we can refer to results from [Zie] in the following

proofs, without ambiguity, as the author’s definition of a vertex is equivalent to the

definition we use in this thesis.

Lemma 55 ([Zie], page 52) Let P be a convex polytope. Then the vertices of P

(as given by (1.15)) are precisely those points ~x of P for which {~x} is a face of P .

Notation For all K ∈ CL and each

{i1, . . . id} ⊆ {1, . . . J}, let F (K)(i1, i2, . . . id) denote V (K+{xis = 0 for s = 1, 2, . . . d})
1. Also let G(K)(i1, i2 . . . id) denote G(K + {xis = 0 for s = 1, 2, . . . d}).

Sublemma 56 For any K ∈ CL, the faces of V (K) are precisely the sets of the

form F (K)(i1, . . . id).

Proof Firstly we show that each set of the form F (K)(i1, . . . id) is a face of

V (K). For each i1 = 1, . . . J , V (K + xi1 = 0) is a face of V (K) since xi1 ≥ 0 for

every ~x ∈ V (K). By [[Zie], page 53], each face of a face of V (K) is a face of V (K)

so if we add a set of Z-constraints to K, the solution set of the resulting knowledge

base (which is not necessarily consistent) is a face of K.

Let F be a face of V (K). If F = V (K), let {i1, . . . id} = ∅ and we are done

(see 1). Otherwise, let F be a proper face of V (K). By the above claim, F is on

the topological boundary of V (K) so, for every ~x ∈ F , there exists a co-ordinate i

such that xi = 0 but yi > 0 for some ~y ∈ V (K). By convexity of F , there exists

a co-ordinate i1 such that xi1 = 0 for all ~x ∈ F and such that yi1 > 0 for some

~y ∈ V (K). Hence

F ⊆ F (K)(i1) = V (K + xi1 = 0) ⊆ V (K) (3.54)

Either the above is an equality, so we are done, or F is a proper face of F (K)(i1), by

[[Zie], page 53], so there exists an i2 such that

F ⊆ F (K)(i1, i2) = V (K + xi1 = 0, xi2 = 0) ⊆ F (K)(i1) ⊆ V (K) (3.55)

1If {i1, . . . id} = ∅, F (K)(..) = V (K) and G(K)(..) = G(K), where (..) denotes (i1, . . . id) in the
case d = 0.
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and so on. This process must stop since V (K + x1 = 0, x2 = 0, . . . xJ = 0) = ∅.

Hence we have proved the sublemma.

¥

Sublemma 57 V (K) is the disjoint union of the interiors of its faces, where the

subspace topology relative to each face is used to define its interior.

Proof See [[Zie], page 61].

¥

Proof of Lemma 54 continued For all λ ∈ [0, 1], ~X = MD(Kλ) lies in the

interior of exactly one face of V (Kλ), by Sublemma 57. Let this face be given by

F∗ = F (K)(i1, . . . id). We assume w.l.o.g. that G∗ = G(K)(i1, . . . id) really is the

smallest affine hyperplane containing F∗. If that is not true, choose ~y in the interior

of F∗ and extend i1, . . . id to include every co-ordinate i such that yi = 0.

Now, for each direction ~dir parallel to G∗, diri1 = 0, . . . dirid = 0 so moving a

short enough distance in this direction, from ~y, will keep every co-ordinate value

non-negative. Hence every direction parallel to G∗ is also parallel to V∗. This implies

that ~X is in the interior of V∗ relative to the topology of G∗. The derivative of
∑J

i=1 x2
i at ~X in every direction parallel to G∗ is zero so by doing the differentiation

we see that

~X · ~dir = 0 (3.56)

for all ~dir parallel to G∗, which is a linear equation in ~X.

Suppose that {i1, . . . id} is some subset of {1, . . . J}. Then if, for some λ, MD(Kλ)

is in the interior of F∗ as above and we consider the constraints of

Kλ +{xi1 = 0, xi2 = 0, . . . xid = 0}, the left hand sides are independent of λ and right

hand sides are linear functions of λ; this argument is similar to the beginning of the

proof of Theorem 51.

Hence the generalised solutions take the form

GL(Kλ + {xi1 = 0, . . . xid = 0}) =

{

~p + ~gλ +
d

∑

i=1

zi ~ui s.t. z1, z2, . . . zd ∈ R

}

(3.57)



CHAPTER 3. PROPERTIES OF MINIMAX 87

for some ~p,~g ∈ DJ , ~ui’s ∈ RJ that are independent of λ. We assume w.l.o.g. that the

closest point to ( 1
J
, . . . 1

J
) in the hyperplane is ~p+~gλ for all λ; we can do this because

the equation (3.56) is linear in ~X.

For each S = {i1, . . . id} ⊆ {1, . . . J}, we obtain ~p(S) + ~g(S)λ which is a possible

value of MD(Kλ), using the method above. For each particular value of λ, MD(Kλ)

must equal one of these possibilities; i.e. the one which is closest to ( 1
J
, 1

J
, . . . 1

J
). If

two possibilities, ~p(S) + ~g(S)λ and ~p(S ′) + ~g(S)λ are distinct, either

• For all λ ∈ R they are equally close to ( 1
J
, . . . 1

J
). In this case, neither value can

equal MD or

• They are equally close to ( 1
J
, . . . 1

J
) for at most two values of λ.

Therefore there exists ǫ > 0 such that there exists S∗ ⊆ {1, . . . J} such that

MD(Kλ) = ~p(S∗) + ~g(S∗)λ for all λ ∈ (0, ǫ). Hence we have shown linearity of

MD(Kλ) in a right-neighbourhood of λ = 0. We can now continue in a similar way

to the final part of the proof of Theorem 51 to complete the proof of Lemma 54.

¥

Lemma 58 The Renyi Processes Renr for which 0 < r < 1 do not satisfy Piecewise

Linear Loaf Continuity.

Proof We consider a particular loaf and show that Piecewise Linear Loaf Con-

tinuity must fail. For the language L = {p1, p2} we use the standard ordering of the

four atoms of L. For all λ such that 0 ≤ λ ≤ 1
3
, let

Kλ =

{

x1 = 0,
4

∑

i=1

xi = 1, x3 + 2x2 = λ

}

(3.58)

where xi = Bel(αi) for i = 1, 2, 3, 4 as usual. K̂ is the loaf consisting of the slices Kλ

as above with λ-range [0, 1/3]. Now

V L(Kλ) =

{

(0, τ, λ − 2τ, 1 − λ + τ)|0 ≤ τ ≤ λ

2

}

(3.59)
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and define ~x(λ, τ) = (0, τ, λ− 2τ, 1− λ + τ). We let r = R be a fixed real number in

(0, 1). For all λ ∈ [0, 1
3
] define X(λ) to be the value of τ such that

RenR(Kλ) = ~x(λ, τ) = (0, τ, λ − 2τ, 1 − λ + τ) (3.60)

Now X(0) = 0 since ~x(0, 0) is the only solution of K0. For all Kλ, RenR(Kλ) is

the solution for which
∑4

i=1 xR
i is maximal. It is now useful for us to look at how the

sign of the derivative w.r.t. τ of this quantity varies as τ increases from 0 to λ/2.

That derivative is

R(τR−1 − 2(λ − 2τ)R−1 + (1 − λ + τ)R−1) (3.61)

This tends to ∞ as τ → 0 and tends to −∞ as τ → λ/2. Using the fact that
∑4

i=1 xR
i

is a concave function (see [Moh]) with a negative second derivative from all points in

D4 in all directions parallel to D4, we know that for all λ ∈ (0, 1
3
), X(λ) is the unique

value of τ such that

τR−1 − 2(λ − 2τ)R−1 + (1 − λ + τ)R−1 = 0 (3.62)

lying in (0, λ/2). We denote dX
db

by X ′. If the above equation, with X(λ) in place of

τ , is differentiated implicitly w.r.t. λ we obtain

X ′XR−2 − 2(1 − 2X ′)(λ − 2X)R−2 + (X ′ − 1)(1 − λ + X)R−2 = 0 (3.63)

for all λ ∈ (0, 1/3). The coefficient of X ′ in the above equation is

XR−2 + 4(λ − 2X)R−2 + (1 − λ + X)R−2 (3.64)

which is always strictly positive, so, by (3.63), X ′ is a function of X and λ. Since

RenR is continuous (by [Moh]), X(λ) is a continuous function. Using (3.63), we see

that X(λ) is differentiable with a continuous derivative.

Assume for contradiction that RenR satisfies Piecewise Linear Loaf Continuity.

Then X(λ) is a piecewise linear continuous function and, since it is differentiable, it

must be linear. By continuity of RenR, X(λ) → 0 as λ ց 0. Therefore for some

constant c and all λ ∈ (0, 1/3), X(λ) = cλ.
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We now substitute X(λ) = cλ and X ′ = c into (3.63) to obtain

c(cλ)R−2 − 2(1 − 2c)(λ − 2cλ)R−2 + (c − 1)(1 − λ + cλ)R−2 = 0 (3.65)

for all λ ∈ (0, 1/3). This can be rearranged, giving

(

1 − c

cR−1 − 2(1 − 2c)R−1

)

=

(

λ

1 − λ + cλ

)R−2

(3.66)

Even if the left hand side is not well defined, it is independent of λ. The right hand

side definitely takes real values that are different for different values of λ so we have

a contradiction and the lemma is proved.

¥

Lemma 59 The Renyi Processes Renr for which r > 1 and r 6= 2 do not satisfy

Piecewise Linear Loaf Continuity.

Proof Similarly to the proof of Lemma 58, we let r = R be a real number greater

than 1 and not equal to 2, and define the slices of a loaf, K̂, to be

Kλ =

{

x1 = 0,
4

∑

i=1

xi = 1, x3 + 2x2 = λ

}

(3.67)

but this time the λ-range is [λ0, 1], where

λ0 =
1

1 + 2
1

R−1

(3.68)

As for Lemma 58, we define ~x(λ, τ) = (0, τ, λ − 2τ, 1 − λ + τ) and

V L(Kλ) = {~x(λ, τ) s.t. 0 ≤ τ ≤ λ/2}. For all λ ∈ [λ0, 1], we let X(λ) be the value

of τ such that RenR(Kλ) = ~x(λ, τ) and for contradiction we assume that X(λ) is a

piecewise linear function of λ.

For all λ, RenR(Kλ) is the solution of Kλ for which
∑4

i=1 xR
i is minimal. This

quantity, and its derivative w.r.t. τ , have the same formulae as before—see (3.61).

We now inspect the sign of the derivative at τ = 0 and τ = λ/2:

At τ = 0, the derivative is R(−2λR−1 +(1−λ)R−1) which is zero iff
(

1−λ
λ

)R−1
= 2

iff λ = λ0. This explains the choice of λ-range (3.68), which may otherwise seem

strange! If λ > λ0, the derivative at τ = 0 is negative.
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At τ = λ/2, the derivative is R(
(

λ
2

)R−1
+

(

1 − λ
2

)R−1
) > 0 for all λ ∈ [λ0, 1].

The second derivative of
∑4

i=1 xR
i is positive from all points in D4 along all direc-

tions parallel to D4 (it is convex, see [Moh]) so we know that X(λ0) = 0 and, for all

λ ∈ (λ0, 1], X(λ) is the unique value of τ for which

τR−1 − 2(λ − 2τ)R−1 + (1 − λ + τ)R−1 = 0 (3.69)

and τ ∈ (0, λ
2
). If we let

K = {x1 = 0, x2 + x3 + x4 = 0} (3.70)

then RenR(K) = (0, 1
3
, 1

3
, 1

3
) by Atomic Renaming. Since

K1 = K + {x3 + 2x2 = 1} is also satisfied by ~x(1, 1
3
) = (0, 1

3
, 1

3
, 1

3
),

RenR(K1) =

(

0,
1

3
,
1

3
,
1

3

)

(3.71)

by Obstinacy of RenR, so X(1) = 1
3
.

We now differentiate (3.69) implicity, as for Lemma 58, to obtain (3.63), true

for all λ ∈ (λ0, 1). By the same reasoning as before, X(λ) must be linear and, by

continuity of RenR, X → 0 as λ ց λ0 and X → 1
3

as λ ր 1. However, since X(λ0)

and X(1) are known, the constant value of X ′ = dX
dλ

must be

c =
1
3
− 0

1 − λ0

=
1

3

(

1 + 2−
1

R−1

)

(3.72)

We substitute X ′ = c and X = 1
3

+ c(λ − 1) into (3.63), giving

(

1 + 2−
1

R−1

)

[

λ

(

1

3
+

2−
1

R−1

3

)

− 2−
1

R−1

3

]R−2

(

−2 + 2
2R−3
R−1

)

[

λ

(

1

3
− 2

R−2
R−1

3

)

+
2−

R−2
R−1

3

]R−2

+
(

−2 + 2−
1

R−1

)

[

λ

(

−2

3
+

2−
1

R−1

3

)

− 2−
1

R−1

3
+ 1

]R−2

= 0 (3.73)

for all λ ∈ (λ0, 1). By continuity we can substitute λ = 1 into the above equation,

giving

(

1 + 2−
1

R−1

)

[

1

3

]R−2

+
(

−2 + 2
2R−3
R−1

)

[

1

3

]R−2

+
(

−2 + 2−
1

R−1

)

[

1

3

]R−2

= 0 (3.74)
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so that

2.2−
1

R−1 + 22R−3R − 1 − 3 = 0 (3.75)

⇒ 6.2−
1

R−1 = 3 ⇒ 2−
1

R−1 = 2−1 ⇒ R = 2 (3.76)

Since R 6= 2, by our assumption, we have deduced a contradiction and have proved

the lemma.

¥

Lemma 60 Maximum Entropy does not satisfy Piecewise Linear Loaf Continuity.

Proof We define a loaf K̂ to have slices given by

Kλ = {Bel(p1) = λ,Bel(p2) = λ} (3.77)

with λ-range [0, 1/2]. Then using the standard ordering of the atoms {α1, α2, α3, α4}

of L = {p1, p2} and xi = Bel(αi) as usual we write

Kλ =

{

4
∑

i=1

xi = 1, x1 + x2 = λ, x1 + x3 = λ

}

(3.78)

Let ~x(λ, τ) denote (τ, λ − τ, λ − τ, 1 − 2λ + τ). Then for all λ ∈
[

0, 1
2

]

,

V L(Kλ) = {~x(λ, τ) s.t. 0 ≤ τ ≤ λ} (3.79)

Now, since Maximum Entropy satisfies Independence (by [ParVen1]),

ME(Kλ) = ~x(λ, λ2) for all λ. Since λ2 is not a piecewise linear function of λ,

Maximum Entropy does not satisfy Piecewise Linear Loaf Continuity and we have

proved the lemma.

¥

Lemma 61 CM∞ does not satisfy Piecewise Linear Loaf Continuity.

Proof We use the same loaf K̂ as in the previous lemma, so that for all λ such

that 0 ≤ λ ≤ 1/2,

V L(Kλ) = {~x(λ, τ) s.t. 0 ≤ τ ≤ λ} (3.80)
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where ~x(λ, τ) denotes (τ, λ − τ, λ − τ, 1 − 2λ + τ). To calculate CM∞, we need to

maximise log(τ) + 2 log(λ − τ) + log(1 − 2λ + τ), so we maximise

f(τ) = τ(λ − τ)2(1 − 2λ + τ) (3.81)

Similarly to the previous lemmas, for all λ ∈ (0, 1/2] we let X(λ) be the unique value

τ = X such that f(τ) is maximal.

Assume for contradiction that CM∞ satisfies Piecewise Linear Loaf Continuity.

Then X(λ) is a piecewise linear function of λ. Since X(0) = 0, there exists a constant

c such that X(λ) = cλ for all sufficiently small positive values of λ, say all λ < δ.

CM∞ satisfies Open-mindedness (by Theorem 21) so

X(λ) 6= 0, X(λ) 6= λ (3.82)

for all λ > 0.

Hence, where f ′ denotes df/dτ , f ′(X(λ)) = 0 for all λ ∈ (0, δ). When we do the

algebra, this implies that

λ2 − 2λ3 + 10cλ3 − 4cλ2 + 3c2λ2 − 12c2λ3 + 4c3λ3 = 0 (3.83)

if λ ∈ (0, δ) so

3c2 − 4c + 1 + λ(4c3 − 12c2 + 10c − 2) = 0 (3.84)

which must mean that 3c2 − 4c + 1 = 4c3 − 12c2 + 10c − 2 = 0. We now know that

c = 1. By (3.82), we have deduced a contradiction so CM∞ does not satisfy Piecewise

Linear Loaf Continuity and we have proved the lemma.

¥

Proof of Theorem 53 Together Lemmas 54, 58, 59, 60 and 61 give the

theorem.

¥



Chapter 4

The dual of Minimax as a limit of

inference processes

The inference process Minimax arises (Chapter 2) from considering the repetition

of an experiment whose possible result is one of J mutually exclusive outcomes, the

atoms of a language L, which have belief values ~x = (x1, . . . xJ). Recall that we

suppose that when the experiment is carried out r times we wish to minimise the

probability that the same outcome occurs every time. Hence we justify using the

Renyi Process Renr, and by taking the limit as r → ∞, we arrive at Minimax.

4.1 Justifying the EveryL
n inference processes

Consider instead the following scenario. The experiment is repeated n times but

now the philosophy is that each outcome should have as much chance as possible of

occurrence, rather than that no outcome should dominate.

In the work “Theodicee” by Leibniz (1710), the author argued that the universe

should contain every possible phenomenon. This fitted into Leibniz’ overall view of

the universe being, within certain bounds, the best possible universe God could have

created. Other philosophers, including Arthur Lovejoy ([Lov]), have also supported

the “Plenitude Principle”: that everything that can exist, does exist.

We assume that the starting conditions of the experiment are repeatable, from this

93
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point of view we should maximise the probability that after r trials every outcome

has occurred at least once. We regard each outcome αi for which the knowledge base

forces Bel(αi) = 0 as impossible, in a probabilistic sense. There are some issues to

clear up before this can be made a well-defined inference process:

• If some α ∈ AtL are s.t. Bel(α) = 0, the probability of every outcome occurring

in the r trials is zero.

• There may not be enough trials to allow every outcome to occur.

• Is the optimal ~x ∈ V L(K) unique?

Notation We ignore the outcomes which we know to be impossible and suppose

that our knowledge base is K ∈ CL. Hence we use the notation from Section 2.3 and

write K in dezeroed form. We assume w.l.o.g. that the atoms of L are enumerated

α1, . . . αJ , such that

IL(K) = {i s.t. J ′ < i ≤ J} (4.1)

for some integer J ′ such that 2 ≤ J ′ ≤ J . We can do this since our work is symmetrical

w.r.t. the labelling of the atoms. As usual we let xi = Bel(αi) for each i = 1, . . . J .

Since all of our work respects equivalence of knowledge bases, we assume (as in

Section 2.3) w.l.o.g. that K includes constraints of the form xi = 0 for each i s.t.

J ′ < i ≤ J and that every other constraint only refers to x1, x2, . . . xJ ′ . Solutions of

K are written as points in DJ ′

, ignoring the constant zeros.

We let All(~x, r) denote the probability that in r identical trials of the experiment,

for which the possible outcomes of a trial have probabilities x1, . . . xJ ′ , every outcome

happens at least once. We use the multinomial expansion of (x1 + . . . + xJ ′)r to

deduce that

All(~x, r) =
J

∑

~p∈NJ′
,

∑J′

i=1 pi=r, and all pi>0

∏

xpi

i

r!

p1! . . . pJ ′ !
(4.2)

Definition We define the inference process EveryL
r by

EveryL
r (K) = the unique ~x ∈ V L(K) such that All(~x, r) is maximal (4.3)
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when such an ~x is unique, otherwise EveryL
r (K) is undefined.

We now tackle the question: “Given that K is fixed, which r make EveryL
r (K)

well-defined?”

When r ≥ J ′ there are enough repetitions of the experiment to make the proba-

bility All(~x, r) > 0 for some ~x ∈ V L(K) since, by the convexity of V L(K), there is a

solution of K giving strictly positive belief to each α1, . . . αJ ′—see [[Par], page 74].

Theorem 62 If r = J ′ or r = J ′ + 1, Everyr
L(K) = CM∞(K).

Proof For r = J ′ the only ~p in the formula is (1, 1, 1, . . . 1) so, since

{1, . . . J} \ IL(K) = {1, . . . J ′},

All(~x, J ′) =
J ′

∏

i=1

xi
J ′!

1! . . . 1!
= J ′! 2(

∑J′

i=1 log(xi)) (4.4)

Hence maximising this is equivalent to maximising
∑J ′

i=1 log(xi), which gives CM∞(K)

by (1.78).

When r = J ′ + 1 the J ′ possible values of ~p’s in the formula for Everyr are a 2

and J ′ − 1 1’s in every possible order.

2 All(~x, J ′ + 1)

J ′ + 1 !

= (x2
1x2x3 . . . xJ ′ + x1x

2
2x3x4 . . . xJ ′ + x1x2x

2
3 . . . xJ ′ + . . . + x1x2x3 . . . x2

J ′)

= (x1 + x2 + . . . + xJ ′)(x1x2 . . . xJ ′) = constant ×
J ′

∏

i=1

xi (4.5)

since
∑J ′

i=1 xi = 1. Hence EveryJ ′+1 is well-defined and also equals CM∞.

¥

Remark Recall Theorem 12, which implies that if All(~x, r) is concave, there

exists a unique ~x ∈ V L(K) for which All(~x, r) is maximal. However All(~x, r) is

not necessarily concave when r ≥ J ′. For example consider J ′ = 3, r = 6 and let

~x = (0.8, 0.1, 0.1), ~a = (0.802, 0.099, 0.099) and ~b = (0.798, 0.101, 0.101). We see that

~x = 1
2
(~a +~b). Calculating from (4.2) gives

All(~a, 6) = 0.196054855, All(~b, 6) = 0.202354747 (4.6)
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so 1
2
(All(~a, 6)+All(~b, 6)) = 0.1992048 to 7 significant figures but All(~x, 6) = 0.1992000

to 7 s.f., contradicting concavity.

Notation From here on (in this chapter) it is more convenient to use the quantity

Nall, given by

Nall(~x, r) = 1 − All(~x, r)

= the probability that in r trials some outcome fails to occur. (4.7)

In the light of Theorem 12, we desire that Nall be convex so that there is a unique

point minimising it within V (K). By Theorem 5, this is true if Nall has a positive

second derivative everywhere in DJ ′

; in the statement of Theorem 5, we are using

S = DJ ′

= ~x ∈ DJ s.t. xi = 0 for all i > J ′. We use V = V L(K) ⊆ DJ ′

. Our dezeroed

notation means that we are really considering taking the second derivative of Nall

in each direction through DJ which preserves xi = 0 for all i ∈ IL(K).

Although the above remark shows that these derivatives are not always positive,

Lemma 63 below shows that Nall(~x, r) is convex, provided that each xi is bounded

away from zero and r is large enough.

By using the Inclusion-Exclusion principle, we deduce that

Nall(~x, r) =
∑

∅6=S⊂{1,...J ′}
(−1)|S|+1

(

1 −
∑

i∈S

xi

)r

(4.8)

where each term is the probability that every outcome in S fails to occur and we

assume that S 6= {1, . . . J ′} since the term given by S = {1, . . . J ′} contributes zero.

Lemma 63 For all ǫ > 0 there exists N ∈ N such that for all r > N , Nall(~x, r) is

convex when restricted to {~x ∈ DJ ′ |xi > ǫ for i = 1, . . . J ′}.

Proof We can assume w.l.o.g. that ǫ < 1/J ′. We must show that the second

derivative at such ~x is positive in every direction that preserves
∑J ′

i=1 xi = 1 (and

that preserves xi = 0 for all i ∈ IL(K)), i.e. in directions ~s s.t.
∑J ′

i=1 si = 0. The
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second derivative in such a direction ~s is given by (see e.g. [[Egg], p 51])

Nall
′′

(~x,~s) =
1

r(r − 1)

J ′

∑

i=1

J ′

∑

j=1

∂2(Nall)

∂xi∂xj

sisj (4.9)

Without loss of generality, a typical term of (4.8) is (−1)k+1(1−x1 −x2 . . .−xk)
r

and, upon being differentiated w.r.t. first xi and then w.r.t. xj, the result is

r(r − 1)(−1)k+1(1 − x1 − x2 . . . − xk)
r−2 (4.10)

if {i, j} ⊆ {1, 2, . . . k}, 0 otherwise. Now the coefficient of (−1)k+1(1−x1−. . .−xk)
r−2

in Nall
′′

is
k

∑

i=1

k
∑

j=1

sisj =

(

k
∑

i=1

si

)2

(4.11)

and similarly for other subsets S of {1, 2, . . . J ′} s.t. |S| = k so

Nall
′′

(~x,~s) =
∑

∅6=S⊂{1,...J ′}
(−1)|S|+1

(

1 −
∑

i∈S

xi

)r−2 (

∑

i∈S

si

)2

(4.12)

The following claim is sufficient to complete the proof of Lemma 63.

Claim Let N ≥ 2 + (J ′+2)

log( 1
1−ǫ

)
. Let ~x ∈ DJ ′

be s.t. xi > ǫ for every i ≤ J ′ and let

~s ∈ RJ ′

be s.t.
∑J ′

i=1 si = 0. Then for every r > N , Nall
′′

(~x,~s) > 0.

Proof of claim Let N be as above, and r > N . Let r′ = r − 2 so that

r′ > log(4.2J′

)

log( 1
1−ǫ

)
. Since log

(

x
x−ǫ

)

is a decreasing function of x for x ∈ (ǫ, 1], if ǫ < a ≤ 1,

then

r′ >
log(4.2J ′

)

log(a) − log(a − ǫ)

=⇒ r′ log(a) > r′ log(a − ǫ) + log(4.2J ′

) (4.13)

=⇒ ar′ > 4.2J ′

(a − ǫ)r′ (4.14)

Now there are less than 2J ′

terms in (4.12). It is enough to show that for the largest

negative term there is a positive one with modulus more than 2J ′

times bigger, so

that it outweighs all of the negative terms. Consider w.l.o.g. the term

−(1 − x1 − x2 . . . − xk)
r′(s1 + s2 . . . + sk)

2 (4.15)

where k is even. We now show that one of the positive terms
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(1 − ∑k
i=2 xi)

r′(
∑k

i=2 si)
2, (1 − ∑k

i=1,6=2 xi)
r′(

∑k
i=1,6=2 si)

2, . . .

(1 − ∑k
i=1,6=k xi)

r′(
∑k

i=1,6=k sk)
2 is at least 2J ′

times bigger.

If X = 1 − x1 − . . . − xk and P = s1 + . . . + sk the positive terms are given by

(X +x1)
r′(P −s1)

2, (X +x2)
r′(P −s2)

2, . . . (X +xk)
r′(P −sk)

2 and the negative term

is −Xr′P 2.

Note that X > 0 (since S 6= {1, . . . J ′}) and recall our assumption that every

xi > ǫ. For each i = 1, 2, . . . k, by (4.14) and since ǫ < X + ǫ < 1,

(X + xi)
r′ > (X + ǫ)r′ > 4.2J ′

.Xr′ (4.16)

Since
∑k

i=1(P − si) = (k−1).P at least one of the P − si’s has modulus not less than

(k−1)|P |
k

, so at least |P |
2

. Squaring gives (P − si)
2 ≥ P 2

4
. This identifies a positive term

above larger than

P 2.4.2J ′

.Xr′

4
= 2J ′

P 2Xr′ (4.17)

outweighing all of the negative terms and proving the claim.

Hence the lemma is proved.

¥

Notation In the following section we write down knowledge bases without using

dezeroed notation. However, dezeroed notation returns in Section 4.3.
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4.2 Defining MaximinL

Definition The inference process MaximinL is defined analogously to MinimaxL.

Let ~̃x = the unique vector ~̃x which is a permutation of ~x for which x̃1 ≤ x̃2 ≤ . . . ≤ x̃J .

It should be clear from the context whether ˜ is being used in this sense, or in its

previous usage from Chapter 2, referring to Minimax. We define the maximin

ordering on vectors in RJ by: ~x is before ~y in the maximin ordering iff ~̃x > ~̃y

lexicographically. We shall say that ~x is maximin-better in that case.

For any consistent knowledge base K,

MaximinL(K) = the unique ~x ∈ V L(K) for which ~̃x is maximal lexicographically

= that ~x ∈ V L(K) which is maximin-best. (4.18)

In other words, ˜MaximinL(K)1 is maximised and subject to that condition

˜MaximinL(K)2 is maximised and so on.

When we calculate MaximinL we may use the abbreviation MxmnL(∗).

Range of notation The terms that refer to MaximinL explicitly are defined

here for use throughout this thesis, namely the maximin ordering, maximin-better,

maximin-best.

In Section 4.3 we shall prove the central theorem of this chapter:

Theorem 64 Given K ∈ CL, there exists N such that for all r > N , EveryL
r (K) is

well-defined and limr→∞EveryL
r (K) = MxmnL(K).

Thus, assuming the philosophical basis for the EveryL
r “inference processes”, we

find that they are well defined in the limit as r tends to infinity and we can justify

using the inference process MaximinL. We now prove that MaximinL is well-defined,

by a similar method to that by which we have shown in Chapter 2 that MinimaxL

is well-defined.

Definition In this chapter, and elsewhere if the context refers to MaximinL,

m1,m2 . . . mJ are functions of K ∈ CL given by:

m1 = max{min1≤i≤Jxi | ~x ∈ V L(K)} (4.19)
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and then

mk+1 = max{min xi | there exist i1, i2, . . . ik distinct from i and from each other

and s.t. xi1 , xi2 , . . . xik are equal to m1,m2, . . . mk respectively where ~x ∈ V L(K)}.

Then we can see that MxmnL(K) is a vector in ~VL(K) which is a permutation of

(m1,m2, . . . mJ).

Lemma 65 For every k = 1, 2, . . . J , m1 ≤ m2 . . . ≤ mk and there exists ~x ∈ V L(K)

s.t. x̃1 = m1, . . . x̃k = mk. In other words, there are distinct co-ordinates i1, . . . ik

such that xip = mp for each p = 1, . . . k and no other value in ~x is less than mk.

Theorem 66 There exists a bijection σ : {1, 2, . . . J} → {1, 2, . . . J} such that for

each k = 1, 2, . . . J and all ~x ∈ V L(K) s.t. x̃1 = m1, . . . x̃k = mk then xσ(i) = mi for

all i = 1, 2, . . . k.

Definition If, given K, the identity permutation can fulfil the role of σ above, K

is said to admit the identity permutation w.r.t. Theorem 66.

Corollary 67 The inference process MaximinL is well-defined.

Proofs We can prove Lemma 65, Theorem 66 and Corollary 67 by reversing

some inequalities in the proofs of Lemma 27, Theorem 28 and Corollary 29 respec-

tively.

¥
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4.3 Showing that limn→∞EveryL
n (K) = MaximinL(K)

Theorem 64 Given K ∈ CL, there exists N such that for all r > N , EveryL
r (K) is

well-defined and limr→∞EveryL
r (K) = MxmnL(K).

Notation Throughout this section, we assume that K ∈ CL is a fixed knowledge

base and we assume w.l.o.g. that we write it in dezeroed form, just as in Section 4.1.

We enumerate the atoms of L, α1, . . . αJ in such a way that

IL(K) = {i s.t. J ′ < i ≤ J} (4.20)

w.l.o.g. since EveryL
n and MxmnL are defined in a manner symmetrical w.r.t. the

labelling of the atoms. Also, w.l.o.g., K includes constraints of the form xi = 0 for

each i s.t. J ′ < i ≤ J and every other constraint of K only refers to x1, x2, . . . xJ ′ .

We write solutions of K as points in DJ ′

, ignoring the constant zeros.

Recall that

EveryL
r (K) = the unique ~x ∈ V L(K) such that All(~x, r) is maximal (4.21)

if such an ~x is unique, otherwise it is not defined. We further assume w.l.o.g.

that, not using dezeroed notation,

MxmnL(K) = (mJ−J ′+1,mJ−J ′+2, . . . mJ ,m1,m2, . . . mJ−J ′) (4.22)

and we can do this by an appropriate enumeration of the atoms of L, because the

smallest J − J ′ values of (4.22) must all be 0 and occur, by (4.20), at the last J − J ′

co-ordinates. Following the definition of MaximinL, of those solutions of K for

which the smallest J − J ′ values are all zero (i.e. all solutions of K), mJ−J ′+1 is the

largest possible mini=1...J ′xi etc.. We see that (mJ−J ′+1, . . . mJ) is the maximin-best

(x1, . . . xJ ′) for which ~x ∈ V L(K). In dezeroed notation, we rewrite (4.22) thus:

MxmnL(K) = (M1,M2, . . . MJ ′) (4.23)

where 0 < M1 < M2 < . . . < MJ ′ (since MaximinL satisfies Open-mindedness

(Theorem 78)).
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During the proof below other knowledge bases K(r) etc. are introduced for which

IL(K) ⊆ IL(K(r)) etc., but the notation remains dezeroed in the sense that we ignore

the co-ordinates in IL(K), rather than all of those in IL(K(r)). From now on in this

section, “minimum” and the function min refer to mini=1...J ′ . The second smallest

value, etc. is also calculated after ignoring the co-ordinates in IL(K).

M1 is the largest possible minimum of a solution of K and, of those ~x ∈ V L(K)

for which min(~x) = M1, M2 is the largest possible second smallest value, and so on.

By Theorem 65, for each 1 ≤ k ≤ J ′, if the smallest k values of ~x are M1, . . . Mk and

~x ∈ V L(K), then xi = Mi for all k = 1, . . . J ′. In other words, by our assumptions, K

“after ignoring co-ordinates in IL(K), admits the identity permutation w.r.t. Theo-

rem 66”.

Proof of Theorem 64 To start with, even though points minimising Nall(~x, r)

might not be unique they do exist because Nall(~x, r) is continuous and V L(K) is

closed. Define

Êveryr

L
(K) = {~x ∈ V L(K)| for all ~y ∈ V L(K), Nall(~x, r) ≤ Nall(~y, r)} (4.24)

which is also closed and non-empty so

min(Êveryr

L
(K)) = min{min(~x) | ~x ∈ Êveryr

L
(K)} is well-defined.

Lemma 68 As r → ∞, min(Êveryr(K)) → M1

Proof Given positive ǫ less than 1
2
, choose N > log J ′

log( 1
1−ǫ

)
and, just as for (2.13) in

the proof of Lemma 30, we see that

xr > J ′(x − ǫ)r (4.25)

for all x ∈ (ǫ, 1) and each r > N . Now suppose for contradiction that there exists

~x ∈ V L(K) such that Nall(~x, r) is minimal but min(~x) = xi∗ < M1 − ǫ. Let

~y ∈ V L(K) be such that min(~y) = M1 ≤ 1
2
. Also

ǫ <
1

2
=⇒ 1 − xi∗ − ǫ > 1 − M1 > 0 (4.26)
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Then, looking at the definition of Nall(~y, r) as a probability,

Nall(~y, r) ≤ (1 − y1)
r + (1 − y2)

r + . . . + (1 − yJ ′)r

≤ J ′(1 − m1)
r ≤ J ′(1 − xi∗ − ǫ)r

< (1 − xi∗)
r by (4.25)

≤ Nall(~x, r) (4.27)

contradicting minimality of Nall(~x, r). Hence every minimum of a vector in

Êveryr

L
(K) is at least M1 − ǫ so we have proved the lemma.

¥

Proof of Theorem 64 Recall that M1 > 0. By Lemma 68 for some N1 ∈ N

and every r > N1, every ~x for which Nall(~x, r) is minimal satisfies the condition that

min(~x) > M1/2.

Using Lemma 63 let N2 be such that for every r > N2 Nall(~x, r) is convex in

DJ ′

>M1/2 , which we define thus:

DJ ′

>M1/2 = {~x ∈ DJ ′

s.t. xi > M1/2 for i = 1, . . . J ′} (4.28)

so if there exist distinct ~X, ~Y in V L(K) where the value of Nall(~x, r) is minimal for

some r > max(N1, N2) they are both in DJ
>M1/2. By strict convexity of Nall, and

of V L(K), 1
2
( ~X + ~Y ) has a smaller value of Nall, which is a contradiction. Thus, if

r > max(N1, N2), Everyr(K) is well-defined.

Notation In this section, we let x
(r)
i denote Everyr(K)i and let

min(r) = minJ ′

i=1x
(r)
i .

Given that we have shown that for large enough r, Everyr(K) is well-defined, we

can now restate the remaining content of Theorem 64 as:

For each i = 1, 2, . . . J ′, x
(r)
i → Mi as r → ∞

which we prove by strong induction on i.

Base Case Lemma 68 implies that min(Everyr(K)) → M1 as r → ∞. In a

similar way to the Base Case of the proof of Theorem 26, using selected subsequences

and compactness, we can show that x
(r)
1 → M1 as r → ∞.
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Inductive Step Suppose (I.H.) that x
(r)
1 → M1, . . . x

(r)
k → Mk as r → ∞, for

some k such that 1 ≤ k < J ′.

Definition For each integer k = 1, . . . J ′, define the function gk as follows, where

the input K ′ ∈ CL is such that IL(K) ⊆ IL(K ′):

gk = max{mink≤i≤J ′xi | ~x ∈ V L(K ′)} (4.29)

Lemma 69 The functions gk are uniformly continuous in the Blaschke topology. In

fact, for each k = 1, . . . J ′ and all K1, K2 ∈ CL for which IL(K) ⊆ IL(K1) and

IL(K) ⊆ IL(K2), | gk(K1) − gk(K2)| ≤ ∆(K1, K2).

The proof is similar to that of Lemma 31 with inequalities reversed.

¥

Proof of Theorem 64 (Inductive Step) continued If ǫ is given s.t.

ǫ ∈ (0,M1/2), let

K(r) = K +
{

x1 = x
(r)
1 , x2 = x

(r)
2 , . . . xk = x

(r)
k

}

(4.30)

and

K(∞) = K + {x1 = M1, . . . xk = Mk} (4.31)

We note that K(r), K(∞) include the constraints xi = 0 for J ′ < i ≤ J and we write

solutions of these knowledge bases as points in DJ ′

. Since K(r) → K(∞) as r → ∞,

(by Theorem 25) there exists N3 ∈ N such that for r > N3, ∆(K(r), K(∞)) < ǫ/2 so

| gk(K
(r)) − gk(K

(∞))| = | gk(K
(r)) − Mk+1| < ǫ/2 (4.32)

by Lemma 69. Now there exists N4 ∈ N s.t. if r > N4 and i ≤ k then x
(r)
i > M1/2

since the x
(r)
i are tending to limits Mi ≥ M1 > 0 and gk(K

(r)) > M1/2. Suppose that

r > N̂ = max

(

N1, N2, N3, N4,
log 2J ′

log( 2
2−ǫ

)

)

(4.33)

and let min(k,r) denote mini=k+1,...J ′x
(r)
i . Note that Everyr is well-defined on K(r)

when it is well-defined on K and in this case Everyr(K
(r)) = Everyr(K).
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We now assume for contradiction that for some fixed r = r0 > N̂ ,

|gk(K
(r0)) − min(k,r0)| > ǫ/2 so that min(k,r0) < gk(K

(r0)) − ǫ/2.

Notation Let ~X = ~x(r0) and let i = i0 be fixed such that i0 > k and

Xi0 = min(k,r0). Let ~Y ∈ V (K(r0)) s.t. mini=k+1...J ′Yi = gk(K
(r0)).

Definition Define the function Somefail(~x) = Probability that in r0 trials of

the p.b. function ~x, at least one of the atoms α1, . . . αk fails to occur. We see that

Somefail( ~X) = Somefail(~Y ), say = Sf . Now

r0 >
log 2J ′

log( 2
2−ǫ

)
(4.34)

ensuring that if x ∈ [ǫ/2, 1],

xr0 > 2J ′(x − ǫ/2)r0 (4.35)

in a similar way to (4.25). Then using the Inclusion-Exclusion Principle leads to

Nall(~Y , r0) ≤ Sf + the probability that in r0 trials outcome k + 1 or ..., or J ′

fails

≤ Sf +
J ′

∑

w=k+1

(1 − Yw)r0 ≤ Sf + (J ′ − k)(1 − gk(K
(r0)))r0

< Sf +
1

2
(1 − gk(K

(r0)) + ǫ/2)r0 (4.36)

using (4.35). Now for all ~x ∈ V L(K), let F (~x) be the probability that at least one

of the first k atoms or the i0’th fail to occur in r0 trials. By the Inclusion-Exclusion

Principle,

F ( ~X) ≥ Sf + the probability that the i0’th outcome fails

minus the probability that the i0’th and one of the first k outcomes fail

≥ Sf + (1 − Xi0)
r0 − (1 − X1 − Xi0)

r0 − (1 − X2 − Xi0)
r0 . . . − (1 − Xk − Xi0)

r0

≥ Sf + (1 − Xi0)
r0 − J ′(1 − m1/2 − Xi0)

r0

≥ Sf +
1

2
(1 − Xi0)

r0 (4.37)

since X1, . . . Xk are all not less than M1/2 and, using ǫ
2

< M1

2
and (4.34),

r0 >
log 2J ′

log( 2
2−M1

)
(4.38)
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We combine this with (4.36) to give

Nall(~Y , r0) < Sf +
1

2
(1 − gk(K

(r0)) + ǫ/2)r0

≤ Sf +
1

2
(1 − Xi)

r0 ≤ F ( ~X) ≤ Nall( ~X, r0) (4.39)

(by inspecting the definitions), contradicting the definition of ~X. Hence the assump-

tion that min(k,r0) < gk(K
(r0)) − ǫ/2 is false so |min(k,r) − gk(K

(r))| < ǫ/2 for all

r > N̂ .

Finally, using (4.32) gives |min(k,r) − Mk+1| < ǫ, so min(k,r) → Mk+1 as

r → ∞. Then using compactness and subsequences again leads to x
(r)
k+1 → Mk+1 so

we have proved the Inductive Step and Theorem 64.

¥



Chapter 5

The properties of MaximinL

compared with MinimaxL

5.1 Comparing MaximinL with MinimaxL and MEL

We carry out a similar comparison to that of Chapter 3 and test MaximinL against

the Par-Ven Properties—those properties of inference processes used in [ParVen1] to

uniquely characterise Maximum Entropy. Due to the dual nature of MinimaxL and

MaximinL they share many properties but there are also some significant differences

in their behaviour.

5.1.1 Equivalence

Theorem 70 MaximinL satisfies Equivalence.

Proof The definition of MaximinL(K) is given in terms of V L(K) so Equivalence

is satisfied by MaximinL.

¥

5.1.2 Atomic Renaming

Theorem 71 MaximinL satisfies Atomic Renaming.

107
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Proof The definition of MaximinL is symmetrical w.r.t. permutations of the

atoms so Atomic Renaming holds for MaximinL.

¥

5.1.3 Obstinacy

Theorem 72 MaximinL satisfies Obstinacy.

Proof For any consistent knowledge base K, MxmnL(K) is the optimal solution

of K w.r.t. a fixed partial ordering, namely the maximin ordering. Hence, by

Theorem 9, MaximinL satisfies Obstinacy and we have proved the theorem.

¥

Remark Note that MaximinL cannot be expressed as minimising a real-valued

function over V L(K) for essentially the same reason as MinimaxL:

see Theorem 38.

5.1.4 Language Invariance

Theorem 73 MaximinL is Language Invariant.

Proof The following lemma will be useful in proving that MaximinL has certain

properties:

Lemma 74 Let C ⊂ {1, . . . J} and let ∼ be an equivalence relation on {1, . . . J} \C

such that the equivalence classes are all of equal size. Let i1, . . . iq be representatives

of the q distinct equivalence classes. For each ~x ∈ DJ s.t. xi = xj for all i, j s.t.

i ∼ j, let Simp(~x) = (xi1 , . . . xiq). Then if ~y ∈ RJ is such that yc = xc for all c ∈ C,

comparing ~x and ~y in the maximin ordering is equivalent to comparing Simp(~x) and

Simp(~y) in the maximin ordering.

Corollary 75 Suppose ~x, ~y are vectors in RJ such that xi = yi for all i ∈ C, for

some C ⊂ {1, . . . J}. W.l.o.g. let C = {1, . . . k}. We can do this by the symmetry of

the maximin ordering w.r.t. permuting the co-ordinates. Then comparing ~x and ~y
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in the maximin ordering is equivalent to comparing (xk+1, . . . xJ) and (yk+1, . . . yJ).

If the same C is a subset of co-ordinates which are constant w.r.t. a knowledge

base K ∈ CL, then MaximinL(K) = that ~x ∈ V L(K) for which (xk+1, . . . xJ) is

maximin-best.

Proofs of Lemma 74, Corollary 75 These are essentially the same as the

proofs of Lemma 42 and Corollary 43 respectively, with some inequalities reversed.

¥

Proof of Theorem 73 If MaximinL agrees with MaximinL′

in the cases for

which L′ = L + {p′}, for some p′ /∈ L, then it satisfies Language Invariance since we

can modify any language into any other by a step-by-step process, adding or removing

one p.v. at each step.

We assume for a contradiction that AtL = {α1, . . . αJ} and that there exists

K ∈ CL s.t. MxmnL′

(K)(αi) 6= MxmnL(K)(αi) for some i = 1, . . . J , where L′ is

a language of the form L′ = L + {p′} and p′ /∈ L. For each α ∈ AtL, there exist 2

atoms of L′, β, such that β |= α.

We label the atoms of L′ thus, up to logical equivalence:

AtL
′

= {β(1,+), β(1,−), β(2,+), β(2,−) . . . β(J,+), β(J,−)} (5.1)

where β(i,+) = αi ∧ p′ and β(i,−) = αi ∧ ¬p′. By Atomic Renaming, as K does not

mention p′, MxmnL′

(K) = ~W ∈ D2J gives the same belief value to β(i,+) and β(i,−)

for each i. Let ~y = MxmnL(K) and define wi = MxmnL′

(K)(αi) for i = 1, . . . J ,

so that ~w, ~y ∈ V L(K). By uniqueness of MaximinL(K) and our assumption, ~y is

maximin-better than ~w.

Now we let Simp be as in Lemma 74, where ∼ is the equivalence relation on the

co-ordinates i,± such that ∼ has J equivalence classes of the form {(i,−), (i, +)} for

i = 1, . . . J . C is empty and 2 is the size of all the equivalence classes. We know

that ~y/2 = Simp(~Y ) is maximin-better than ~w/2 = Simp( ~W ). Also ~Y ∈ V L′

(K)

since it is a way of splitting up the belief values given by ~y between the atoms of L′.
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By Lemma 74, ~Y is maximin-better than ~W ∈ V L′

(K), contradicting the fact that

~W = MxmnL′

(K). Hence MaximinL is Language Invariant and we have proved the

theorem.

¥

From this point on we will usually refer to Maximin without mentioning the

overlying language.

5.1.5 Continuity

Definition The function m1 is defined on all consistent knowledge bases: if K ∈ CL

then m1(K) = max~x∈V L(K)mini=1...Jxi.

Lemma 76 The function m1 is uniformly continuous in the Blaschke topology. In

fact, for every K1, K2 ∈ CL, |m1(K1) − m1(K2)| ≤ ∆(K1, K2).

The proof is just as for Lemma 31 with inequalities reversed.

¥

By Lemma 76, the function m1 (as defined by (4.19)) is uniformly continuous in

the Blaschke topology. However, like Minimax, Maximin fails to satisfy Continuity.

Theorem 77 Maximin is not continuous.

Proof We define Kǫ, Solǫ, ~s(ǫ, τ) in exactly the same way as the proof of

Theorem 40 and see that Kǫ → K0 as ǫ ց 0.

For ǫ > 0, min(~s(ǫ, τ)) = either ǫτ or 1
2
− τ . With ǫ fixed, the minimum of these

two values is maximal when they are equal, since 1
2
− τ decreases as ǫτ increases.

Hence for the maximin-best solution of Kǫ, we require that τ = 1
2(1+ǫ)

and

Mxmn(Kǫ) =

(

ǫ

2(1 + ǫ)
,

1

2(1 + ǫ)
,

ǫ

2(1 + ǫ)
,

1

2(1 + ǫ)

)

(5.2)

which tends to (0, 1
2
, 0, 1

2
) as ǫ ց 0.

However, for ǫ = 0, Mxmn(K0) = (0, 1
4
, 1

4
, 1

2
) so Maximin is not continuous and

we have proved the theorem. ¥
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5.1.6 Open-mindedness

Theorem 78 Maximin satisfies Open-mindedness.

Proof Let |IL(K)| = num. We use m1, . . . mJ as defined close to (4.19). Then

m1 = m2 = . . . = mnum = 0. By [[Par],page 74], there exists ~x ∈ V L(K) such that

xi > 0 for each i /∈ IL(K). Hence mnum+1 > 0, by definition. Since the mi’s are

an increasing sequence (Lemma 65) and Mxmn(K) is a permutation of (m1, . . . mJ),

Mxmn(K)i > 0 for all i /∈ IL(K) and we have proved that Maximin satisfies Open-

mindedness.

¥

5.1.7 Independence

Theorem 79 Maximin does not satisfy Independence.

Remark Since Maximin is the dual of Minimax, this result should not be surpris-

ing. However, the largest distance between Maximin and the Independent solution

is significantly smaller than in the case of Minimax!

We contain the proof of Theorem 79 within an investigation of how close Maximin

comes to satisfying Independence which follows the same methods as Subsection 3.1.7.

How close does Maximin come to giving the Independent solution?

We will look later at the knowledge bases used in the definition of Independence.

For simplicity consider first a knowledge base Kb,c of the form:

Kb,c = {x1 + x2 = b, x1 + x3 = c} (5.3)

where xi = Bel(αi) for i = 1, 2, 3, 4.

Notation Let the Independent solution of Kb,c be denoted by

Ind(b, c) = ME(Kb,c) = (bc, b(1 − c), (1 − b)c, (1 − b)(1 − c)) (5.4)

for all b ∈ [0, 1] and c ∈ [0, 1]. Also we denote Maximin(Kb,c) by Mxmn(b, c).
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Recall from Subsection 3.1.7 that Kb,c is consistent iff b ∈ [0, 1] and c ∈ [0, 1].

Just as for Minimax we assume w.l.o.g. that 0 ≤ b ≤ c ≤ 1
2
.

Notation We denote V L(Kb,c) by Sol(b, c). Recall that

Sol(b, c) = {(τ, b − τ, c − τ, 1 − b − c + τ) | 0 ≤ τ ≤ b} (5.5)

The minimum of a vector of the above form is either τ or b − τ since b ≤ c and

b + c ≤ 1. The minimum is maximised when τ = b/2 so

Mxmn(b, c) = Mxmn(Kb,c) =
1

2
(b, b, 2c − b, 2 − b − 2c)

Also, |Mxmn(b, c) − Ind(b, c)| = |2bc − b| (5.6)

This is due to (3.20); the difference between the values at the first co-ordinate is

|bc − b
2
|.

Hence, assuming the convention that 0 ≤ b ≤ c ≤ 1
2
, Mxmn(b, c) = Ind(b, c) iff

c = 1
2

or b = 0.

Theorem 80 For b ∈ [0, 1], c ∈ [0, 1], Mxmn(b, c) = Ind(b, c) iff either b or c equal

either 0, 1
2

or 1.

Proof This is similar to the proof of Theorem 45.

¥

Remark So far, apart from the fact that we have not needed to split cases as in

(3.18), Maximin has performed just as well as Minimax. However in the following

theorem Maximin shows a significant improvement on Minimax.

Theorem 81 If b ∈ [0, 1], c ∈ [0, 1], |Mxmn(b, c) − Ind(b, c)| takes its maximal

value, 1
8
, iff (b, c) =

(

1
4
, 1

4

)

,
(

1
4
, 3

4

)

,
(

3
4
, 1

4

)

or
(

3
4
, 3

4

)

.

Proof We again assume that 0 ≤ b ≤ c ≤ 1/2.

The largest value of |Mxmn(b, c) − Ind(b, c)| occurs iff |2bc − b| = b(1 − 2c) is

maximised. Let the triangular region R3 of the b, c plane be given by

R3 =

{

(b, c) s.t. 0 ≤ b ≤ c ≤ 1

2

}

(5.7)
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Consider a point in R3. If it is not on the edge given by b = c then, if we increase b

and keep c constant, b(1 − 2c) increases. All of the “worst” points lie on the edge of

R3 given by

b = c, 0 ≤ b ≤ 1/2 (5.8)

Given these conditions, b − 2b2 is maximal at b = 1
4

so b = c = 1
4

gives the biggest

value of |Ind(b, c) − Mxmn(b, c)|.

Discarding the assumption that 0 ≤ b ≤ c ≤ 1/2, i.e. as we let b, c take values

throughout [0, 1], the knowledge bases Kb,c producing the largest distances between

Ind(b, c) and Mxmn(b, c) are given by (b, c) = (1
4
, 1

4
), (1

4
, 3

4
), (3

4
, 1

4
) and (3

4
, 3

4
). In these

cases |Ind(b, c) − Mxmn(b, c)| = 2(1
8
− 1

16
) = 1

8
so we have proved the theorem.

¥

The knowledge bases used in the definition of Independence

Now, for each a, b, c ∈ [0, 1] s.t. a > 0 we define

Ka,b,c = {Bel(p1) = a,Bel(p2|p1) = b, Bel(p3|p1) = c} (5.9)

as in [[Par], page 101]. The Independent solution is defined by Ind(a, b, c) = ME(Ka,b,c)

as in Subsection 3.1.7.

In the following theorem, Mxmn(a, b, c) denotes Maximin(Ka,b,c).

Theorem 82 If Ka,b,c is consistent, |Mxmn(a, b, c)− Ind(a, b, c)| takes its maximal

value, 1
8
, when a = 1 and (b, c) =

(

1
4
, 1

4

)

,
(

1
4
, 3

4

)

,
(

3
4
, 1

4

)

or
(

3
4
, 3

4

)

.

Proof We can proceed as in the proof of Theorem 47, apart from a few modifications.

As far as the Claim at 3.33 we need only replace Mmx by Mxmn.

Claim

Mxmn(a, b, c)4 = a.Mxmn(b, c) (5.10)

Proof of claim We use Corollary 75 instead of Corollary 43, replacing Mmx

by Mxmn etc. in the proof of the claim at (3.33).

¥
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Theorem 82 now follows similarly to Theorem 47. ¥

Proof of Theorem 79 This follows from Theorem 82.

¥

5.1.8 Relativisation

Theorem 83 Maximin satisfies Relativisation.

Proof We fix a language L and a sentence φ as in the definition of Relativisation,

in section 1.4.8. Let K1 be a knowledge base given by

K1 = {Bel(φ) = c} ∪
{

s
∑

j=1

ajiBel(θj|φ) = bi | i = 1, . . . m

}

(5.11)

for some constants c, s, aji, bi and sentences θi.

We choose, w.l.o.g. (by Theorem 71), to enumerate the atoms of L, αi, such that

{α1, α2, . . . αk} = {αi ∈ AtL s.t. αi |= φ} (5.12)

Now suppose that

K2 = K1 +

{

t
∑

j=1

cjiBel(θj|¬φ) = di | i = 1, . . . p

}

(5.13)

When we write xi = Bel(αi) for each i = 1, . . . J , K1 takes the form

K1 =

{

k
∑

i=1

xi = c,

J
∑

i=k+1

xi = 1 − c

}

∪
{

k
∑

i=1

fijxi = gj | j = 1, . . . m

}

(5.14)

for some constants c, fij, gj. Similarly,

K2 = K1 +

{

J
∑

i=k+1

fijxi = gj | j = m + 1, . . . m + p

}

(5.15)

Let Mxmn(K1) = ~X and Mxmn(K2) = ~Y . For any ~x ∈ DJ , let ~xk denote

(x1, . . . xk). Then we suppose for contradiction that

~Xk 6= ~Yk (5.16)

Define XtoY = (X1, . . . Xk, Yk+1, . . . YJ) and Y toX = (Y1, . . . Yk, Xk+1, . . . XJ). We

see that XtoY ∈ V L(K2) and Y toX ∈ V L(K1). This is because the constraints of K1
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only mention x1, . . . xk, apart from
∑J

k+1 xi = 1− c and the additional constraints in

K2 only mention xk+1, . . . xJ .

Since ~Y 6= XtoY ∈ V L(K2), ~Y is maximin-better than XtoY . Using Corol-

lary 75, with C = {k + 1, . . . J}, we deduce that ~Yk is maximin-better than ~Xk.

Since ~X 6= Y toX ∈ V L(K1), ~X is maximin-better than Y toX. Using Corol-

lary 75, with C = {k + 1, . . . J}, we deduce that ~Xk is maximin-better than ~Yk,

contradicting the fact that ~Yk is maximin-better than ~Xk.

Hence our assumption (5.16) is false so Maximin satisfies Relativisation and we

have proved the theorem.

¥

5.1.9 Irrelevant Information

Theorem 84 Maximin satisfies Irrelevant Information.

The fact that Irrelevant Information is a property of Maximin is the most striking

advantage Maximin has over Minimax, when we compare the properties of these

inference processes with the list of desiderata which uniquely specify Maximum

Entropy. Maximum Entropy is not as lonely in satisfying Irrelevant Information

and Atomic Renaming as was previously thought!

Notation The following notation applies to this subsection.

Suppose that K1 ∈ CL1, K2 ∈ CL2, L1 ∩ L2 = ∅ and L1 ∪ L2 = L. Let J denote

the number of atoms αi in AtL1 and let Q denote the number of atoms βj in AtL2 .

Note that

AtL = {αi ∧ βj s.t. αi ∈ AtL1 , βj ∈ AtL2} (5.17)

up to logical equivalence.

Now we express each solution of K1 + K2 over L in the form of an array zij for

which 1 ≤ i ≤ J, 1 ≤ j ≤ Q, where for each such i, j, zij = Bel(αi ∧ βj). We shall

refer to

{(i, j) s.t. 1 ≤ i ≤ J, 1 ≤ j ≤ Q} (5.18)
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as the J × Q grid.

Also, where [z] represents the matrix of values of the p.b.f. Bel, then

Bel(αi) =
∑Q

j=1 zij, which we denote by xi for each i = 1, . . . J . We say that [z]|L1 = ~x

which is [z] restricted to L1. We say that row i of [z] sums to xi. Similarly

Bel(βj) =
∑J

i=1 zij, which we denote by yj for j = 1, . . . Q. We say that column

j of [z] sums to yj. [z]|L2 = ~y is [z] restricted to L2. Note that ~x ∈ V L1(K1) and

~y ∈ V L2(K2).

The Maximin solutions We let ~X = Mxmn(K1) ∈ DJ and

~Y = Mxmn(K2) ∈ DQ. Without loss of generality we assume that K1 and K2, with

the enumerations of the atoms of L1 and L2 respectively, both admit the identity

permutation w.r.t. Theorem 66 so that X1 ≤ . . . ≤ XJ and Y1 ≤ . . . ≤ YQ.

Definition We now define recursively a specific array [Z] of values Zij for

1 ≤ i ≤ J, 1 ≤ j ≤ Q, in a sequence of Stages, as follows, given by Stage 1, . . .

Stage kend. We also define sequences of integers, given by g(1), g(2) . . . g(kend) and

h(1), . . . h(kend), a sequence of real numbers N1, . . . Nkend
and a sequence S1, . . . Skend

of pairwise disjoint subsets of the J × Q grid.

For each k = 1, . . . kend we note that for all (i, j) in the J×Q grid, we have not yet

defined Zij at the start of Stage k iff i ≥ g(k) and j ≥ h(k). Then, during Stage k,

we define a real number Nk and a set Sk before defining Zij = Nk for all (i, j) ∈ Sk.

When the union of the Sk’s defined so far is the J × Q grid, [Z] is fully defined

and we have completed Stage kend; this process stops.

Stage 1 At the beginning of Stage 1, the set of values of (i, j) for which Zij is

not yet defined is the J × Q grid so we let g(1) = h(1) = 1.

If X1/Q ≤ Y1/J , define Z1j = X1/Q for j = 1, 2, . . . Q, N1 = X1/Q and let

S1 = {(1, j) | 1 ≤ j ≤ Q}. Otherwise let Zi1 = Y1/J for i = 1, 2, . . . J and define

N1 = Y1/J and S1 = {(i, 1) | 1 ≤ i ≤ J}, completing Stage 1.

After Stage k, if
⋃k

p=1 Sp is the J × Q grid, the process stops and we define
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kend = k. Otherwise we continue with:

Stage k + 1 The set of values of (i, j) for which Zij is not yet defined is a

rectangle of the form

{(i, j) s.t. G ≤ i ≤ J, H ≤ j ≤ Q} (5.19)

for some (G,H) in the J × Q grid. We define g(k + 1) = G and h(k + 1) = H. Also

we can see that k + 1 = g(k + 1) + h(k + 1) − 1. We suppress the dependence of

g, h on the Stage number for the rest of this definition. The rectangle given by (5.19)

equals

{(i, j) | 1 ≤ i ≤ J, 1 ≤ j ≤ Q} \
k

⋃

p=1

Sp (5.20)

Let

Rowfin =
(Xg −

∑h−1
j=1 Zgj)

Q − h + 1
and Columnfin =

(

Yh −
∑g−1

i=1 Zih

)

J − g + 1
(5.21)

Then if Rowfin ≤ Columnfin, define

Sk+1 = {(g, j) s.t. h ≤ j ≤ Q} (5.22)

let Nk+1 = Rowfin and define Zij = Nk+1 for all (i, j) ∈ Sk+1. Otherwise define

Sk+1 = {(i, h) s.t. g ≤ i ≤ J} (5.23)

let Nk+1 = Columnfin and define Zij = Nk+1 for all (i, j) ∈ Sk+1. This completes

Stage k + 1.

After Stage kend, the disjoint union of all the Sk’s is the J × Q grid.

Proof of Theorem 84 To do this, we show that [Z]|L1 = Mxmn(K1),

[Z]|L2 = Mxmn(K2) and [Z] = Mxmn(K1 + K2). Firstly we establish certain facts

about [Z] which can be easily illustrated by numerical examples.

Lemma 85 If 1 ≤ k < kend, Nk ≤ Nk+1.

Proof We fix k = k0 such that 1 ≤ k0 < kend. Let G = g(k0), H = h(k0) so that

k0 = G + H − 1. We now compare Nk0 and Nk0+1.
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Case 1(a) During Stage k0, Rowfin ≤ Columnfin so Sk0 = {(G, j) |H ≤ j ≤ Q}.

During Stage k0 + 1, Rowfin ≤ Columnfin so Sk0+1 = {(G + 1, j) |H ≤ j ≤ Q}.

Then

Nk0+1 =

(

XG+1 −
∑H−1

j=1 Z(G+1)j

)

Q − H + 1
(5.24)

Consider some ZGj for which 1 ≤ j ≤ H − 1. Now there exists k′ < k0 such that

ZGj = Nk′ and the corresponding Sk′ must be a final interval of that row or that

column. If it is the row then Sk0+1 ⊆ Sk′ , so we have a contradiction as the Sk sets

are disjoint. Hence, if (G, j) ∈ Sk′ , we see that (G + 1, j) ∈ Sk′ so ZGj = Z(G+1)j.

Hence

(Q−H +1)Nk0+1 = XG+1−
H−1
∑

j=1

Z(G,j) ≥ XG−
H−1
∑

j=1

Z(G,j) = (Q−H +1)Nk0 (5.25)

since XG+1 ≥ XG so in this case the lemma is true.

Case 1(b) During Stage k0, Rowfin ≤ Columnfin so Sk0 = {(G, j) |H ≤ j ≤ Q}.

During Stage k0 + 1, Rowfin > Columnfin so Sk0+1 = {(i,H) |G + 1 ≤ i ≤ J}.

Suppose for contradiction that Nk0+1 < Nk0 . Then

Nk0+1 =

(

YH − ∑G
i=1 ZiH

)

J − G
(5.26)

When the values of Zij for (i, j) in Sk0 were defined at Stage k0, that was because

ZGH = Nk0 ≤ (YH − ∑G−1
i=1 ZiH)/(J − G + 1). Hence

ZGH(J − G + 1) ≤ YH − Z1H − . . . − Z(G−1)H (5.27)

but also

YH − Z1H − . . . − ZGH

J − G
< ZGH (5.28)

so it follows that YH −Z1H − . . .−Z(G−1)H < (J−G+1)ZGH , which is a contradiction

so Nk0+1 ≥ Nk0 as required.

Case 2(a) During Stage k0, Rowfin > Columnfin so Sk0 = {(i,H) |G ≤ i ≤ J}.

During Stage k0 + 1, Rowfin ≤ Columnfin so Sk0+1 = {(G, j) |H + 1 ≤ j ≤ Q}.
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Case 2(b) During Stage k0, Rowfin > Columnfin so Sk0 = {(i,H) |G ≤ i ≤ J}.

During Stage k0 + 1, Rowfin > Columnfin so Sk0+1 = {(i,H + 1) |G ≤ i ≤ J}.

Cases 2(a) and 2(b) are exactly similar to Cases 1(a) and 1(b). We have proved

the lemma.

¥

Corollary 86 [Z] is non-negative.

Proof For every (i, j) in the J × Q grid, there exists k such that Zij = Nk. By

Lemma 85, N1 ≤ N2 ≤ . . . Nk and, by definition, N1 ≥ 0. Hence all Zij ≥ 0 and we

have proved the corollary.

¥

Lemma 87 [Z]|L1 = Mxmn(K1) and [Z]|L2 = Mxmn(K2).

Proof We need to show that row i of [Z] sums to Xi and column j to Yj for

each i = 1, . . . J, j = 1, . . . Q. The set Sk of those (i, j) for which Zij is defined during

Stage k is either a final interval of row g(k) or of column h(k). The row or column

completed is given the correct sum (Xg(k) or Yh(k) respectively) and, apart from at

the final Stage, Stage kend, no other row or column is being completed.

Hence we need only check that at Stage kend, every row and column being com-

pleted has the correct sum.

Let g(kend) = G and h(kend) = H.

Case 1

During Stage kend, Rowfin ≤ Columnfin so that Skend
= {(J,H), . . . (J,Q)}.

Then

Nkend
=

(

XJ − ∑H−1
j=1 ZJj

)

Q − H + 1
(5.29)

Now for each c s.t. H ≤ c ≤ Q and all i < J , ZiH = Zic because (i, c) belongs to the

same Sk′ as (i,H) : if it doesn’t the Sk′ containing (i, c) contains (J, c) but (J, c) is

in Skend
; this is a contradiction since the Sk’s are disjoint.
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Now let

T =
J−1
∑

i=1

ZiH =
J−1
∑

i=1

Zic (5.30)

for each c s.t. H ≤ c ≤ Q.

Since at Stage kend, Rowfin ≤ Columnfin, we see that

Nkend
≤ YH − T ≤ Yc − T for each c s.t. H ≤ c ≤ Q (5.31)

as ~Y is increasing.

Hence, for each c = H,H + 1, . . . Q,

J
∑

i=1

Zic ≤ Yc (5.32)

Also since the Sk’s that intersect column H must be final intervals of rows, every

row of [Z] has the correct sum so the sum of all Zij is 1 =
∑J

i=1 Xi. Columns

1, . . . H − 1 sum correctly since if j < H, (J, j) is in an Sk′ which is a final interval of

a column; otherwise that Sk′ would intersect Skend
, a contradiction since the Sk’s are

disjoint. Hence if there exists an integer c s.t. H + 1 ≤ c ≤ Q and column c sums

to less than Yc, the sum of all Zij is less than
∑Q

j=1 Yj i.e. less than 1, so we have a

contradiction. Hence, by (5.32), each column of [Z] must sum correctly.

Case 2

During Stage kend, Rowfin > Columnfin so that Skend
= {(G,Q), . . . (J,Q)}.

Case 2 is symmetrically similar to Case 1 and this completes the proof of the

lemma.

¥

Proof of Theorem 84 continued It remains to prove:

Let [W ] = Mxmn(K1 + K2). Then for each k s.t. 1 ≤ k ≤ kend, Wij = Nk for

each (i, j) ∈ Sk.

We do this by induction on k.

Base Case We show that Wij = N1 for all (i, j) ∈ S1.

Case 1 At Stage 1, Rowfin ≤ Columnfin so that S1 = {(1, j) | 1 ≤ j ≤ Q}

and N1 = X1/Q.
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Since [Z] ∈ V L(K1+K2) (by Lemma 87) and min([Z]) = N1, min([W ]) ≥ N1 but

if Wij > N1 for all (i, j) in the J × Q grid every row of [W ] sums to more than X1,

i.e. min([W ]|L1) > X1, even though [W ]|L1 ∈ V L1(K1). Since ~X = MxmnL1(K1),

we have a contradiction. Hence min([W ]) = N1, and every value of [W ] in some row

must be N1 so that the row sums to only X1. Now

min([W ]|L1) = X1 =⇒ ([W ]|L11) = X1 (5.33)

by our assumptions on page 116 just after “The Maximin solutions”. Hence all of

the W1j = N1 as required.

Case 2 At Stage 1, Rowfin > Columnfin so that S1 = {(i, 1) | 1 ≤ i ≤ J} and

N1 = W1/J . This case is similar to Case 1, so we have completed the Base Case.

Inductive Step Assume (I.H.) that [W ] agrees with [Z] on S1, . . . Sk, for some

k s.t. 1 ≤ k < kend. [W ] is either equal to or maximin-better than [Z], so by

ignoring the common values at co-ordinates in S1, . . . Sk (which we know we can do,

by Corollary 75), if we let

R = {(i, j) | 1 ≤ i ≤ J, 1 ≤ j ≤ Q} \
k

⋃

p=1

Sp (5.34)

then min(i,j)∈RWij ≥ Nk+1.

Case 1 At Stage k + 1, Rowfin ≤ Columnfin.

Let G = g(k + 1) and H = h(k + 1). Also

Nk+1 =

(

XG − ∑H−1
j=1 ZGj

)

Q − H + 1
and Sk+1 = {(G,H) . . . (G,Q)} (5.35)

Let T =
∑H−1

j=1 ZGj =
∑H−1

j=1 Zcj for each c s.t. c ≥ G. Suppose for contradiction

that

min(i,j)∈RWij > Nk+1 (5.36)

Then for each i = G, . . . J ,

[W ]|L1 i > T + (Q − H + 1)Nk+1 > XG (5.37)
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For each i less than G,

(i, j) ∈
q

⋃

k=1

Sk (5.38)

and Wij = Zij for those i and by Lemma 87, [W ]|L1 i = Xi. Hence [W ]|L1 is a solution

of K1 with the smallest G − 1 values equal to those of ~X = Mxmn(K1) but the

minimum of the others larger than XG, which is a contradiction of our assumptions

on page 116 just after “The Maximin solutions”.

Thus min(i,j)∈RWij = Nk+1 and some row i of [W ] for which i ≥ G must sum to

exactly XG = T + (Q − H + 1)Nk+1 or the above contradiction returns. Since

[W ]|L1 ∈ V L1(K1), [W ]|L1G = XG (5.39)

so WGj = Nk+1 for each j = H, . . . Q.

Case 2 At Stage k + 1, Rowfin > Columnfin.

In this case Sk+1 = {(G,H), . . . (J,H)} and the proof is symmetrically similar to

that in Case 1, so this completes the Inductive Step and the proof of Theorem 84.

¥
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5.2 Piecewise Linear Loaf Continuity of Maximin

Theorem 88 Maximin is Piecewise Linear Loaf Continuous.

Proof This can be proved just as Theorem 51, reversing some inequalities.

¥

5.3 Where are the discontinuities of Maximin?

Theorem 89 For all K ∈ CL, Maximin is continuous at K (in the Blaschke topol-

ogy) ⇔ Mxmn(K) is the only solution of K with the maximal minimum.

Notation In this section, we use the notation m1 as given by (4.19).

We know that m1 is a uniformly continuous function on CL by Lemma 76.

Proof (⇐) Let K ∈ CL be fixed. We assume that ~X = Mxmn(K) is the only

solution of K with minimum m1(K) = M1.

Claim Given fixed ǫ > 0, there exists δ > 0 such that for every ~y ∈ V L(K)

such that min(~y) > m1(K) − δ, |~y − ~X| < ǫ/2.

Proof of claim Suppose for contradiction that for some fixed positive ǫ and

every δ > 0 there exists ~y ∈ V L(K) such that ỹ1 = min(~y) is within δ of M1 and

| ~X − ~y| ≥ ǫ/2.

For all n ∈ N, let ~y(n) be such a ~y for δ = 1/n. By the compactness of V L(K),

there exists a convergent subsequence of the ~y(n)’s whose limit, a solution of K, must

have minimum M1, by continuity of min. Hence that limit is ~X even though the

sequence is bounded away from ~X, which is a contradiction, so we have proved the

claim.

¥

Now for each ǫ > 0, let δ > 0 be as in the above claim. Let K ′ ∈ CL be such that

∆(K,K ′) < min

(

δ

2
,
ǫ

2

)

(5.40)
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Then, by Lemma 76, |m1(K
′) − M1| ≤ ∆(K,K ′) < δ/2 and there exists ~z ∈ V L(K)

s.t. |~z − Mxmn(K ′)| < min( δ
2
, ǫ

2
) so

|min(~z) − M1| ≤ |min(~z) − m1(K
′)| + |m1(K

′) − M1| < δ (5.41)

Hence by the claim, |~z − ~X| < ǫ/2. Also |~z − Mxmn(K ′)| < ǫ/2 and so

|Mxmn(K ′) − ~X| < ǫ. We have proved Theorem 89 in the direction (⇐).

(⇒). Let K ∈ CL be fixed such that Mxmn(K) is not the only solution of K

with minimum m1(K) = M1. We use the notation m1,m2, . . . mJ and˜as in

Chapter 3 and let mi(K) = Mi for each i = 1, . . . J .

Case 1 IL(K) = ∅. The following procedure finds knowledge bases arbitrarily

close to K, whose Maximin values are bounded away from Mxmn(K). Let

~X = Mxmn(K) = (M1,M1, . . . M1,Mp+1, . . . MJ) (5.42)

w.l.o.g., where M1 > 0, which we can do by Theorem 78. Suppose that K admits the

identity permutation w.r.t. Theorem 66. Assume also that in (5.42) Mp+1 > M1.

Lemma 90 Let ~x ∈ V L(K) such that min(~x) = M1. Then xi = M1 for each

i = 1, . . . p.

Proof Assume that min(~x) = x̃1 = M1 and ~x ∈ V L(K). Then x1 = M1.

Suppose for contradiction that k = 1, 2 or . . . or p − 1 exists such that

x̃1 = x1 = x̃2 = . . . = x̃k = M1 = Mk (5.43)

but that x̃k+1 6= M1. Since x̃k+1 ≥ x̃k, x̃k+1 > M1. Hence x1 = x2 = . . . = xk = M1.

The largest possible x̃k+1 ≥ x̃k = M1 is mk+1 = M1, so we have found a contradiction

and no such k exists. Hence x̃i = M1 for each i = 1, . . . p so xi = M1 for those i and

we have proved the lemma.

¥

Proof of (⇒) Case 1 ctd Now, for small positive ǫ, we find knowledge bases

K ′ such that ∆(K,K ′) < ǫ but with Mxmn(K ′) bounded away from Mxmn(K) as

ǫ ց 0.
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Let ~Y be a fixed solution of K such that ~Y 6= ~X and Ỹ1 = M1 so, by Lemma 90,

Y1 = . . . = Yp = M1. Let the vector space

D = {λ(~z − ~X) |λ ∈ R, ~z ∈ V L(K)} (5.44)

be generated by the orthonormal basis ~u(1), . . . ~u(d) where d = dim(D) and ~u(1) is par-

allel to ~Y − ~X, so u
(1)
1 = u

(1)
2 = . . . = u

(1)
p = 0. We extend this to ~u(1), . . . ~u(d), . . . ~u(J),

an orthonormal basis for RJ .

If ǫ is small such that ǫ > 0 let ~U (1) be a unit vector in RJ − D chosen such that

U
(1)
1 , U

(1)
2 , . . . U

(1)
p are all positive,

∑J
i=1 U

(1)
i = 0 and the angle between ~u(1) and ~U (1)

is smaller than ǫ.

Claim There exists a vector ~U (1) satisfying the above conditions.

Proof of claim Note that p < J−1, otherwise K would have only one solution

~x such that x1 = x2 = . . . = xp = M1. Note also that if U
(1)
1 , U

(1)
2 , . . . U

(1)
p are all

positive, it follows that ~U (1) /∈ D since if ~U (1) ∈ D, ~X + δ~U (1) is a solution of K for

a small enough positive value of δ, but we have a contradiction since

min( ~X + δ~U (1)) > M1 and ~X = Mxmn(K).

We now show that the values of u
(1)
i for which p < i ≤ J are not all equal.

Suppose for contradiction that u
(1)
p+1 = u

(1)
i for all i such that p < i ≤ J . Then, since

∑J
i=1 u

(1)
i = 0 and u

(1)
i = 0 for each i ≤ p, we deduce that ~u(1) = ~0, so we have a

contradiction.

Hence w.l.o.g. we assume that u
(1)
p+1 < u

(1)
p+2. We now show that ~U (1) exists

satisfying the above conditions such that for small enough δ > 0, U
(1)
1 = δ = U

(1)
i for

all i ≤ p, and U
(1)
i = u

(1)
i for all i such that p + 3 ≤ i ≤ J . In other words, we can

move from ~u(1) to ~U (1) by increasing all of the initial zeros by a small enough amount

and only changing two of the other co-ordinate values.

Let u
(1)
p+1 = v and u

(1)
p+2 = w, where v < w. Where δ is small and positive, we wish

to determine values of U
(1)
p+1 and U

(1)
p+2 such that

U
(1)
p+1 + U

(1)
p+2 = v + w − pδ and U

(1)2

p+1 + U
(1)2

p+2 = v2 + w2 − pδ2 (5.45)

so that ~U (1) is a unit vector and
∑J

i=1 U
(1)
i = 0. Now, in general, if we know that σ, τ
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are real such that σ ≤ τ, σ + τ = S and σ2 + τ 2 = T , where S and T are known real

numbers, we can calculate σ and τ by

σ =
S

2
−

√

T

2
− S2

4
, τ =

S

2
+

√

T

2
− S2

4
(5.46)

We can see that if S = v + w and T = v2 + w2 then the expression T
2
− S2

4
, of which

we take the square root to use the above formula, is strictly positive (since v 6= w).

Hence if δ is small enough, say less than δmax,
T−pδ2

2
− (S−pδ)2

4
is also strictly positive.

If we define functions V and W of δ for all δ ∈ [0, δmax], given by

V (δ) =
v + w − pδ

2
−

√

v2 + w2 − pδ2

2
− (v + w − pδ)2

4
, and

W (δ) =
v + w − pδ

2
+

√

v2 + w2 − pδ2

2
− (v + w − pδ)2

4
(5.47)

these are continuous, so for small enough δ, V (δ) and W (δ) are as close as we

need to v = V (0) and w = W (0) respectively. For such a value of δ, say δ = δ0, we

let

~U (1) = (δ0, δ0, δ0 . . . , V (δ0),W (δ0), u
(1)
p+3, . . . u

(1)
J ) (5.48)

which is close to ~u(1). This satisfies the required properties, so we have proved the

claim.

¥

Proof of (⇒) Case 1 ctd For each j = 2, . . . J define ~U (j) to be a rotation

of ~u(j) through the same angle as for j = 1 such that the ~U (j)’s for j = 1, . . . d also

form an orthonormal basis of a different vector space D(ǫ) and ~U (1), . . . ~U (J) is also

an orthonormal basis of RJ . We assume w.l.o.g. that

K = {(~x − ~X) · ~u(j) = 0 for j = d + 1, d + 2, . . . J} (5.49)

since Maximin satisfies Equivalence (Theorem 70). We define

K ′(ǫ) = {(~x − ~X) · ~U (j) = 0 for j = d + 1, d + 2, . . . J} (5.50)

Lemma 91 ~X ∈ V L(K ′(ǫ)), D(ǫ) = {λ(~z − ~X) |λ ∈ R, ~z ∈ V L(K ′(ǫ))} and as

ǫ ց 0, K ′(ǫ) → K.
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Proof ~X ∈ V L(K ′(ǫ)) from the definition.

Also we see that D(ǫ) = {λ(~z − ~X) |λ ∈ R, ~z ∈ V L(K ′(ǫ))}.

Sublemma 92 ([Court]) Let K ∈ CL and ǫ > 0. Then there exists δ > 0 such

that if K ′ ∈ CL and the matrices of coefficients of K and K ′ have the same number

of rows and the same rank and the largest modulus difference between corresponding

coefficients is less than δ and IL(K) = IL(K ′) then ∆(K,K ′) < ǫ.

Proof See [[Par], pp 92-94]. ¥

Proof of Lemma 91 continued As ǫ → 0, ~U (j) − ~u(j) → 0 for each j > d so

the matrix of coefficients of K ′(ǫ) tends to that of K. Also IL(K ′(ǫ)) = IL(K) = ∅

because ~X is strictly positive and a solution of both K ′(ǫ) and K. By definition,

rank(K) = rank(K ′(ǫ)). Lemma 91 now follows, using Sublemma 92.

¥

To show that Mxmn(K ′(ǫ)) is bounded away from Mxmn(K) we require the

following geometric result:

Sublemma 93 Suppose that ~v ∈ DJ such that, for some dist > 0 and some

p = 1, . . . or J − 1,

dist ≤ vj − vi (5.51)

for all i = 1, . . . p, j = p + 1, . . . J . If ~w ∈ DJ satisfies |~w − ~v| < dist√
2

then wi < wj

for all i = 1, . . . p, j = p + 1, . . . J .

Proof Suppose for contradiction that ~v, ~w satisfy the hypotheses of the sub-

lemma but that wi ≥ wj for some i = 1, . . . p, j = p + 1, . . . J . We assume w.l.o.g.

that w1 ≥ wJ . We know that

|~w − ~v| <
dist√

2
(5.52)

Thus, just considering the total square difference between the values at co-ordinates

1 and J ,

|(w1, wJ) − (v1, vJ)| <
dist√

2
(5.53)
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However, in the x1, xJ plane, straight lines for which x1 + xJ is constant are per-

pendicular to the line x1 = xJ . By dropping a perpendicular from v′ = (v1, vJ), the

nearest point to v′, say w′ = (w1, wJ), for which w1 ≥ wJ is given by

w′ =

(

v1 + vJ

2
,
v1 + vJ

2

)

(5.54)

and its distance from v′ is

vJ − v1√
2

≥ dist√
2

(5.55)

so we have reached a contradiction and proved the sublemma.

¥

Proof of Theorem 89 continued For small enough ǫ, Mxmn(K ′(ǫ)) is not

near Mxmn(K). Suppose for contradiction that ~y = Mxmn(K ′(ǫ)) and

|~y − ~X| <
Mp+1 − M1√

2
(5.56)

Then, by Sublemma 93, y1, y2, . . . yp are all less than yp+1, . . . yJ . Moving from ~y in

the direction ~U (1) would increase all of the first p co-ordinate values, increasing the

minimum, so we have reached a contradiction.

However, by Lemma 91, K ′(ǫ) → K as ǫ ց 0. Hence Maximin is not continuous

at K and we have proved the theorem in direction (⇒) in Case 1.

(⇒) Case 2 IL(K) 6= ∅. We assume w.l.o.g. that IL(K) = {1, 2, . . . p} so that

Mxmn(K) = (0, 0, . . . 0,Mp+1 . . . MJ) where Mp+1 > 0, and we can do this by Theo-

rem 78. Thus xi = 0 for all ~x ∈ V L(K), i = 1, . . . p. We also write, w.l.o.g.,

V L(K) = {~x = (0, 0, . . . 0, λ1, λ2 . . . λd, F1, F2, . . . FJ−p−d) |~λ ∈ Λ, } (5.57)

where for each h = 1, . . . J − p − d,

Fh =
d

∑

i=1

Fhiλi + ch (5.58)

is a linear function of the parameters λ1, . . . λd, d ≥ 1 and Λ is the set of values of

(λ1, . . . λd) such that ~x, as in (5.57), is non-negative. We assume w.l.o.g. that λ1 is

not constant in Λ.
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Let ǫ be small and positive; then we may, by Lemma 4, define Kǫ such that

V L(Kǫ) = {~x = (ǫλ1, 0, . . . 0, λ1(1 − ǫ), λ2, . . . λd, F1, F2 . . . FJ−p−d) |~λ ∈ Λ} (5.59)

We can see that in the above expression for ~x, ~x is non-negative iff (λ1, . . . λd) ∈ Λ.

Now ∆(K,Kǫ) ≤ 2ǫ since the distance between an ~x as in (5.59) and ~x as in (5.57)

using the same (λ1, . . . λd) for each, is not more than 2ǫ.

Suppose for contradiction that

Mxmn(Kǫ) = ~y and |~y − ~X| <
Mp+1√

2
(5.60)

Then, by Sublemma 93, y1 is less than each of yp+1, . . . yJ but if we replace the

(λ1, . . . λd) ∈ Λ that gives ~y in (5.59) with (λ′
1, . . . λ

′
d) ∈ Λ such that λ′

1 > λ1, we have

a solution of Kǫ with a larger minimum than min(~y) - this is a contradiction. Hence

Mxmn(Kǫ) is bounded away from Mxmn(K) and we have proved the theorem.

¥



Chapter 6

Algorithms for calculating

Minimax and Maximin

In this chapter K will usually be a consistent constraint set on J co-ordinates. Recall

from the definition in the Introduction that, although
∑J

i=1 xi = 1 need not be a con-

straint of K, the set of non-negative solutions V (K) must be bounded. Minimax(K)

and Maximin(K) are well-defined with almost exactly the same proofs as before:

Lemma 27, Theorem 28 and Corollary 29 for Minimax and Lemma 65, Theorem 66

and Corollary 67 for Maximin go through for constraint sets. We also use Theo-

rem 37, Theorem 78 and Theorem 72 with constraint sets in general.

We extend the Blaschke metric and definitions of a loaf and Piecewise Linear Loaf

Continuity to constraint sets in the obvious way. Lemma 76 generalises similarly, so

Theorem 88 carries over to this general case.

Notation If J , d are integers such that 0 ≤ d ≤ J and J ≥ 2, we let Cd
J denote

the set of consistent constraint sets K on J co-ordinates such that rank(K) = J − d

(so dim(G(K)) = d). We use this definition for the rest of this thesis.

Notation An E-constraint is a constraint of the form (xi = xj) for some i, j

and we denote it by Eij. Recall from Chapter 3 that a Z-constraint is a constraint

of the form (xi = 0). A constraint is an EZ-constraint if it is either an E-constraint

or a Z-constraint. This applies for the rest of this thesis.

130
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Recall from the Introduction the definition of the generalised solutions of K, G(K)

where K is a constraint set. Note that G(K) is not a function of V (K) since the

constraint sets {x1 = 0, x2 = 0} and {x1 + x2 = 0} have the same solutions but not

the same generalised solutions.

In this chapter we shall consider affine subsets of RJ , i.e. sets of the form:
{

~a +
d

∑

τ=1

τi
~dir(i) s.t. τi ∈ R for i = 1 . . . d

}

(6.1)

for some ~a, ~dir(1), ~dir(2) . . . ~dir(d) and we denote (6.1) by (~a + < ~dir(1), . . . ~dir(d) >).

If K ∈ Cd
J , G(K) is an affine hyperplane of dimension d, which can be characterised

by

G(K) = (~a + <~u(1), . . . ~u(d) >) (6.2)

where the ~u(n) are fixed linearly independent real vectors in RJ .

For K ∈ Cd
J , let D(K) be the linear subspace of DJ given by

D(K) = {~y − ~x| ~x, ~y ∈ G(K)} (6.3)

Hence, if G(K) takes the form (6.2), the vectors ~u(n) for n = 1, . . . d together form

a linear basis for D(K) and we say that members of D(K) are parallel to G(K).

6.1 Calculating Minimax

In this section of this chapter, where we write m1,m2, . . . mJ and ∗̃, we are using the

notation in the sense of Chapter 2.

Algorithm 94 (Minimax Calculation Algorithm)

Input: Some K ∈ Cd
J .

Output: Mmx(K).

• (1) For every constraint set of the form

K + d EZ-constraints (6.4)

which has rank J , calculate its unique generalised solution and collect these

solutions into a set called Candidates.
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• (2) Delete from Candidates all vectors which have negative values.

• (3) Now find min{(max(~x)) s.t. ~x ∈ Candidates}. Cast out anything from

Candidates with greater maximum than this.

• (4) Repeat Step 3, but now retaining only those members of Candidates with

the smallest i’th largest value, where at each iteration i increases by 1 through

the values 2,3, . . . until just one vector remains in Candidates.

• (5) Output that vector and stop.

Proof We first prove a result in a similar spirit to Lemma 42 which can help in

calculating Minimax.

In general, a constraint set K might have some constant co-ordinates, and/or

force certain distinct co-ordinates to take the same value. Here it is assumed that K

has more than one solution.

When calculating Minimax these constants and equivalences can be ignored in

the following precise sense:

Let the K-constant co-ordinates be c1 . . . ck. For each i = 1, . . . k, we define Ci

such that xci
= Ci for all ~x ∈ V (K) and let C =

∑k
i=1 Ci.

Definition The equivalence relation K-equivalence on

{1, 2, . . . J} \ {K-constant co-ordinates}, denoted by ∼K , is given by

i ∼K j ⇐⇒ xi = xj for all ~x ∈ V (K) (6.5)

where the equivalence classes w.r.t. ∼K are given by [e1], . . . [eQ] and Q ≥ 2 since K

has more than one solution.

We now define the equality-constant simplification of K, written ECS(K), as

follows:

In the constraints of K, for every c1 . . . ck we substitute Ci for appearances of xci
,

and substitute yp for appearances of xq when q ∼K ep. The resulting set of equations

is ECS(K). The notation y is chosen just so as to be distinct from x.
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Now we define

ecsK : V (K) → V (ECS(K)) by ecsK(~x) = (xe1 , . . . xeQ
) (6.6)

Lemma 95 ecsK : V (K) → V (ECS(K)) is well-defined and is a bijection whose

inverse we denote by ecs−1
K .

Proof If ~x satisfies K, by checking the constraints individually we see that

ecsK(~x) satisfies ECS(K). Non-negativity of ecsK(~x) is also clear. Given

~y ∈ V (ECS(K)), we can find a unique ~X such that ecsK( ~X) = ~y. Consider each

co-ordinate 1, . . . J in turn. If i is K-constant then Xci
= Ci is forced. Otherwise

there exists a unique p = 1, . . . Q such that i ∼K ep. This forces Xi = yp. There is

no choice at any step in this procedure, which does find such an ~X. Hence ecsK is a

bijection and we know how to calculate its inverse. We have proved the lemma.

¥

We see that the operation ECS respects equivalence, i.e.

K ≡ K ′ implies ECS(K) ≡ ECS(K ′) (6.7)

where it is understood that the equivalence classes of variables of K ′ may have dif-

ferent representatives from those of K, but that this just gives us different labels of

the variables yi. We use constraint sets in this chapter since even if K is a knowledge

base, K ′ has Q variables which might not sum to one at every solution, and Q is

possibly not a power of 2.

Lemma 96 ecsK(Mmx(K)) = Mmx(ECS(K))

Proof Let ~X = Mmx(K) ∈ RJ and let ~Y = Mmx(ECS(K)) ∈ RQ, where

~a = ecsK( ~X) ∈ RQ and ~b = ecs−1
K (~Y ) ∈ RJ . We assume w.l.o.g. that ECS(K)

admits the identity permutation w.r.t. Theorem 28.

We show by induction on p for p ≤ Q that

Claim(p) ã1 = Ỹ1 . . . ãp = Ỹp so that Y1 = a1 . . . Yp = ap.

Base Case p = 0 In this case the claim is trivial.
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Inductive Step Assuming (I.H.) that the largest p values in ~a match the largest

p values in ~Y , then X̃k = b̃k for each k not greater than

FIX =

(

p
∑

i=1

|[ei]|
)

+ |{j |Cj ≥ ap}| (6.8)

Suppose for contradiction that Ỹp+1 6= ãp+1. Then Ỹp+1 < ãp+1 by definition of

Minimax and X̃FIX+1 is larger than b̃FIX+1, but this contradicts the definition of

~X. Hence Ỹp+1 = ãp+1 so Yp+1 = ap+1 and the Inductive Step is proved, completing

the claim and the proof of the lemma.

¥

Remarks Note that although we can define Renr(ECS(K)) and ME(ECS(K))

in similar ways, the statements corresponding to Lemma 96 are not true.

Actually the function ecsK does NOT preserve the minimax ordering. However

the fact that the co-ordinates where the top p values occur match (due to the fixing

of the σ(1), σ(2)..) between ~Y and ~a plays a crucial role, since then the “bunches

of equivalent atoms” (if K is a knowledge base) in the original setting will be of

matching size.

Proof of Algorithm 94 continued The following lemma suggests that it is

indeed useful for us to add EZ-constraints to a constraint set K in order to calculate

Mmx(K).

Lemma 97 Let K be a consistent constraint set which does not have any constant

co-ordinates and whose relation ∼K is equality. Either

mJ(K) = 0 or

m1(K) = m2(K).

Proof We can assume, w.l.o.g., that K admits the identity permutation w.r.t.

Theorem 28, so that Mmx(K) = (m1,m2 . . . mJ). We will suppress the dependence

of the mi’s on K in this proof.

Suppose for contradiction that neither mJ = 0 nor m1 = m2. Then

m1 > m2 ≥ . . . ≥ mJ > 0 (6.9)
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Since the co-ordinate 1 is not K-constant, there exists ~u in D(K) such that u1 6= 0.

Otherwise the 1st co-ordinate would have value m1 everywhere in G(K), contradicting

our assumptions. Now we define P by

P = {~x ∈ RJ s.t. x1 > xj for all j = 2, . . . J} (6.10)

Since

(Mmx(K) + <~u>) ⊆ G(K) (6.11)

and Mmx(K) is strictly positive, then

{Mmx(K) + δ~u | δ ∈ (−ǫ, ǫ)} ⊆ V (K) ∩ P (6.12)

for sufficiently small ǫ > 0. This is because the set of strictly positive vectors is open,

as is P . Without loss of generality u1 < 0. Then Mmx(K) + ǫ
2
~u is a solution of K

with the 1st co-ordinate value maximal but smaller than m1, which is a contradiction.

We have proved the lemma.

¥

Lemma 98 For any constraint set K with more than one solution, there does not

exist a ECS(K)-constant co-ordinate, nor do there exist distinct i, j such that yi = yj

for all ~y ∈ V (ECS(K)).

If K is a set of constraints on x1, . . . xJ and ECS(K) a set of constraints on

y1, . . . yQ then if a co-ordinate is ECS(K)-constant, say 1 w.l.o.g., then every co-

ordinate i ∈ [e1] is K-constant but only the non-constant co-ordinates of K are

affected by ∼K , so we have a contradiction. Similarly if, w.l.o.g., y1 = y2 for every

~y ∈ V (ECS(K)) then the two corresponding equivalence classes of co-ordinates of

K [e1], [e2], must be s.t. xe1 = xe2 for every ~x ∈ V (K), so actually e1 ∼K e2, again

giving a contradiction so we have proved the lemma.

¥

The following theorem takes us closer to proving Algorithm 94.
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Theorem 99 Let K be a constraint set with more than one solution. Then either

Mmx(K)i = 0 for all co-ordinates i in some equivalence class of non-constant co-

ordinates, or there exist co-ordinates a, b such that Mmx(K)a = Mmx(K)b but not

a ∼K b.

Proof Mmx(ECS(K)) = ecsK(Mmx(K)) by Lemma 96. ECS(K) has no con-

stant co-ordinates or distinct co-ordinates forced to be equal by Lemma 98 so, by

Lemma 97, either m1(ECS(K)) = m2(ECS(K)) or mJ(ECS(K)) = 0. Using the

fact that Mmx(K) = ecs−1
K Mmx(ECS(K)) completes the proof of the theorem.

¥

Proof of Algorithm 94 continued Firstly observe that as long as

Mmx(K) ∈ Candidates at Step 1, then it will be the output. This is because

once the partly negative vectors are ignored, Candidates is a subset of V (K) and

Mmx(K) is the minimax-best vector in V (K). Hence it does not matter what else

is in Candidates.

Lemma 100 For each q = 0, 1, . . . d, there exist EZ-constraints con1, . . . conq such

that Mmx(K) is a solution of

K + {con1, con2, . . . conq} (6.13)

and the rank of (6.13) is J − d + q.

Proof We do this by induction on q ≤ d.

Base Case q = 0 In this case the lemma is trivial.

Inductive Step Suppose (I.H.) that the lemma is true in the case q = m such

that m < d. For the case q = m + 1 one extra EZ-constraint will be added. Given

that

Km = K + {coni | 1 ≤ i ≤ m} (6.14)

is the constraint set corresponding to (6.13) when q = m, there are two cases:

Case 1 V (Km) has more than one member.

By the Inductive Hypothesis and Obstinacy (Theorem 37 for constraint sets)

Mmx(K) = Mmx(Km). Not every co-ordinate is Km-constant so, by Theorem 99,
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there exists an EZ-constraint, say conm+1, which is satisfied by Mmx(K) but which

is not satisfied by every solution of Km. Let Km+1 = Km + conm+1. Then G(Km+1)

is a strict subset of G(Km). We increase the rank of the constraint set by 1 when we

add conm+1 to Km and the Inductive Step is proven in this case.

Case 2 V (Km) = {Mmx(K)}.

Since m < d the rank of the constraint set Km is less than J so G(Km) is an affine

hyperplane with strictly positive dimension. Then:

Claim There exists a co-ordinate with value zero at Mmx(K) which is not zero

throughout G(Km).

Proof of claim Suppose for contradiction that the claim does not hold. We

fix a direction vector ~u ∈ D(Km), i.e. parallel to G(Km), such that for all i, if

Mmx(K)i = 0, ui = 0. Since the other values at Mmx(K) are strictly positive,

Mmx(K) + ǫ~u (6.15)

is non-negative if ǫ ∈ R is small enough. This is similar to the proof of Lemma 97.

Hence there exist non-negative solutions of Km apart from Mmx(K), so we have

proved a contradiction and the claim follows.

¥

Hence we can choose a Z-constraint, say conm+1 such that when we let

Km+1 = Km + conm+1 (6.16)

then V (Km+1) = {Mmx(K)} and rank(Km+1) = rank(Km)+1. We have completed

the proof of this case and of the Inductive Step, so the lemma is proved.

¥

Finally, to complete the proof of Algorithm 94

By Lemma 100, setting q = d, Mmx(K) ∈ Candidates at Step 1, so the sorting

process that follows in Steps 2-5 leads to the algorithm terminating and outputting

Mmx(K). We have proved the algorithm.

¥
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6.2 Calculating Maximin

In this section, when we write m1, . . . mJ and ∗̃ we are using the notation in the sense

of Chapter 4. We find algorithms that calculate Maximin just as fast, indeed a little

faster, than Algorithm 94 calculates Minimax. We use the notion of ECS(K), the

equality-constant simplification of K, defined in Section 6.1.

Algorithm 101 (Maximin Calculation Algorithm Prototype)

Input: Some K ∈ Cd
J .

Output: Mxmn(K).

• (1) For every constraint set of the form

K + d EZ-constraints (6.17)

which has rank J , calculate its unique generalised solution and collect these

solutions into a set called Candidates.

• (2) Cast out from Candidates all vectors which have negative values.

• (3) Now find max{min(~x) s.t. ~x ∈ Candidates}. Cast out anything from

Candidates with smaller minimum than this.

• (4) Repeat Step 3, but now retaining only those members of Candidates with

the largest i’th smallest value, where at each iteration i increases by 1 through

the values 2,3, . . . until just one vector remains in Candidates.

• (5) Output that vector and stop.

Proof This proof is similar to that of Algorithm 94.

Lemma 102 ecsK(Mxmn(K)) = Mxmn(ECS(K)).

Proof We can prove this exactly as we proved Lemma 96 but with some inequal-

ities reversed.

¥
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Lemma 103 If K is a constraint set which does not have any constant co-ordinates

and whose relation ∼K is equality, then m1 = m2.

Proof If not then m1 < m2. Suppose w.l.o.g. that K admits the identity

permutation w.r.t. Theorem 66. Now I(K) = ∅ so we can write

Mxmn(K) = (m1,m2, . . . mJ) (6.18)

where 0 < m1 ≤ . . . ≤ mJ , by Open-mindedness (Theorem 78 for constraint sets).

Since the co-ordinate 1 is not K-constant there exists a direction parallel to G(K),

~u, s.t. u1 6= 0, say u1 > 0 w.l.o.g.. Then for small enough ǫ > 0, ~y = Mxmn(K) + ǫ~u

is strictly positive (as Mxmn(K) is) and its minimum y1 is greater than m1. This is

a contradiction since ~y ∈ V (K), so the lemma is proved.

¥

Theorem 104 Let K be a constraint set with more than one solution. Then there

exist co-ordinates a, b such that Mxmn(K)a = Mxmn(K)b but not a ∼K b.

Proof We state below the result for Maximin which is the analogue of Theorem

99:

Let K be a constraint set with more than one solution. Then either

Mxmn(K)i = 0 for all co-ordinates i in some equivalence class of non-constant co-

ordinates, or there exist co-ordinates a, b such that Mxmn(K)a = Mxmn(K)b but

not a ∼K b.

We can prove this by following the methods of Section 6.1, reversing some inequal-

ities. However, Theorem 104 then follows, since Maximin satisfies Open-mindedness

(Theorem 78 for constraint sets) so Mxmn(K)i > 0 if i is not a K-constant co-

ordinate.

¥

Proof of Algorithm 101 The rest of the proof is similar to that of Algorithm 94

with some inequalities reversed.

¥
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Remark The Maximin Calculation Algorithm Prototype is merely the result of

reversing some inequalities in the steps of the Minimax Calculation Algorithm. As

the name suggests we can somewhat refine this. We do this in the following section.

6.3 Improving the Prototype Algorithm

Notation In this section and the rest of the chapter, we look at algorithms which

calculate Maximin and prove some theorems which tell us ways of deciding whether

~X = Mxmn(K). It is useful for us to characterise Maximin as follows:

For all K ∈ Cd
J , Mxmn(K) is the unique ~x ∈ G(K) which is maximin-best (6.19)

since the generalised solutions of K which are not solutions of K have negative minima

anyway.

Where an affine set S = (~a + < ~dir(1), . . . ~dir(d) >) is such that there exists a

unique point in S, say ~x, which is maximin-best, we can write

~x = Mxmn(~a + < ~dir(1), . . . ~dir(d) >) (6.20)

In particular, if S = G(K) for some K ∈ Cd
J , then ~x = Mxmn(K) = Mxmn(S).

From now on in this chapter, we often use G(K) instead of V (K) to take advantage

of (6.19). In light of this, we make the following definitions.

Definition For any K1, K2 ∈ Cd
J , we say that K1 is gen-equivalent to K2 iff

G(K1) = G(K2). In this case, we write

K1 ≡G K2 (6.21)

Recall that K1 ≡ K2 iff V (K1) = V (K2). We say that K1 gen-implies K2 iff

G(K1) ⊆ G(K2) (iff K1 + K2 ≡G K1). This is denoted by

K1 ⇒ K2 (6.22)

Otherwise K1 ; K2. In particular, if for some E-constraint Eij, K1 ; Eij this

implies that, if K1 + Eij is consistent, rank(K1 + Eij) = rank(K1) + 1 and Eij is

linearly independent of K1.
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Notation In practice, when we use this notation, there is usually a specific

vector which satisfies both K,K1 etc. and the E-constraints added to it, so we do

not state consistency explicitly.

Back to improving on the Maximin Calculation Algorithm Prototype

We first note that, in Algorithm 101, Step 2 isn’t necessary since we can char-

acterise Maximin by (6.19); if a vector has negative values it is cast out at Step 3

anyway. Suppose that K ∈ Cd
J . For each i = 1, . . . J ,

Mxmn(K)i = 0 =⇒ i ∈ I(K) (6.23)

by Theorem 78 (for constraint sets), so it seems unnecessary for the algorithm to

add Z-constraints to K at Step 1. When we inspect the proof of Algorithm 101, we

find that Z-constraints come in only because after m E-constraints are added it is

possible that V (Km) = {Mxmn(K)} but the dimension of G(Km) is still at least 1.

However, even in that scenario, we can still show that there exists an E-constraint

which is satisfied by Mxmn(K) = Mxmn(Km) but is linearly independent of Km.

Thus we can simplify Step 1.

Notation If ~a, ~dir ∈ RJ , lev ∈ R, ~dir has sign conflict at lev w.r.t. ~a means

that there exist distinct i, j s.t. ai = aj = lev, diri, dirj are non-zero and of opposite

sign to each other and for each k such that ak < lev, dirk = 0.

In other words, as we move from ~a in the direction ~dir, of the co-ordinates of least

value that are moving, some go up and others down.

Lemma 105 Let ~a, ~dir ∈ RJ such that ~dir 6= ~0. Let lev ∈ R be the minimal value

ai such that diri 6= 0. Then the following are equivalent:

(i) Mxmn(~a + < ~dir>) exists and equals ~a.

(ii) ~dir has sign conflict at lev w.r.t. ~a.

Proof (⇐) Suppose that ~dir has sign conflict at lev w.r.t. ~a, then we can

assume w.l.o.g. that

~a = (a1, a2, . . . ak = lev = ak+1 = . . . ap, ap+1 . . . aJ) (6.24)
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where a1 ≤ a2 . . . ≤ aJ , dirk < 0, dirk+1 > 0 and ai = lev ⇔ k ≤ i ≤ p. Also diri = 0

for each i s.t. i < k.

To obtain Mxmn(~a + < ~dir >) we can use Corollary 75 to see that we can ignore

the co-ordinates i, s.t. i is less than k, since they are constant in value along the

line. Every ~a+ τ~b for which τ 6= 0 has smaller minimum than lev, that of ~a, as either

co-ordinate k or k + 1 has a smaller value (depending on sign of τ).

(⇒): Suppose that ~a = Mxmn(~a + < ~dir >). Then if every diri such that

ai = lev has the same sign, a small non-zero τ exists such that for some integer

q < J , ~a + τ ~dir has the same q smallest values as ~a but all other values greater than

lev so ~a 6= Mxmn(~a + < ~dir >), which is a contradiction. Hence we have proved the

lemma.

¥

Notation Suppose that ~a, ~dir ∈ RJ are such that ~a 6= Mxmn(~a + < ~dir>). Let

lev ∈ R be the minimal value ai such that diri 6= 0. By Lemma 105, all diri such

that ai = lev have the same sign or equal zero. If they are all non-negative,

~a + ǫ ~dir (6.25)

is maximin-better than ~a if ǫ is small enough and positive. We say that ~dir produces

maximin-improvement from ~a. Otherwise the diri such that ai = lev are all non-

positive, and − ~dir produces maximin-improvement from ~a. We use this notation in

the rest of this thesis.

Lemma 106 Suppose that ~b = Mxmn(Li), where ~b ∈ RJ and Li = (~b + < ~dir>) for

some ~dir ∈ RJ . Then if ~a, ~c ∈ Li are such that ~a is a convex combination of ~b and

~c, ~a is maximin-better than ~c.

Remark This lemma says that as we approach the maximin-best point of a

line from a particular direction, our location becomes maximin-better.
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Proof We may assume w.l.o.g., by Lemma 105, that ~dir produces maximin-

improvement from ~a, and that

~a = (a1, a2, . . . ak = lev = ak+1 = . . . ap, ap+1 . . . aJ) (6.26)

where a1 ≤ a2 . . . ≤ aJ , ai = lev ⇔ k ≤ i ≤ p, dirk > 0 and diri ≥ 0 for each i s.t.

k ≤ i ≤ p. For all τ ∈ R, we define

~x(τ) = ~a + τ ~dir (6.27)

which describes every point on Li exactly once.

If τ < 0, the values of some of the xi(τ) such that ai = lev are less than lev. Since

co-ordinates 1, . . . k − 1 are constant in value on Li, by Corollary 75, we see that ~a is

maximin-better than ~x(τ) for all negative τ .

Now ~b is maximin-better than ~a, by definition. Hence, when we write ~b = ~x(τb),

τb > 0, otherwise we would have a contradiction. However, by our assumptions,

~c is on the other side of ~a so ~c = ~x(τc), where τc < 0 and we deduce that ~a is

maximin-better than ~c, as required. We have proved the lemma.

¥

Theorem 107 Run Maximin Calculation Algorithm Prototype with input K ∈ Cd
J .

Then if only E-constraints are allowed at Step 1, the output is still Mxmn(K).

Proof By the discussion on page 141, we assume that K ∈ Cd
J and Km is of the

form

Km = K + {coni | 1 ≤ i ≤ m} (6.28)

where the coni are E-constraints, Mxmn(Km) = Mxmn(K) = ~X and

V (Km) = { ~X}. We need only show that there exists an E-constraint, say Eij,

satisfied by ~X such that Km ; Eij. Let ~dir ∈ D(Km). Then

~X = Mxmn( ~X + < ~dir>) (6.29)

and by Lemma 105 ~dir has sign conflict at lev w.r.t. ~X, for some lev ∈ R. Hence we

can fix co-ordinates i∗, j∗ such that Xi∗ = Xj∗ = lev and diri∗ > 0, dirj∗ < 0. Hence
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~X is the only point on the line ( ~X + < ~dir>) that satisfies the E-constraint:

xi∗ = xj∗ (6.30)

which completes the proof of the theorem.

¥

Algorithm 108 (Maximin Calculation Algorithm 1)

Input: Some K ∈ Cd
J .

Output: Mxmn(K).

• (1) For every constraint set of the form

K + d E-constraints (6.31)

which has rank J , calculate its unique generalised solution and collect these

solutions into a set called Candidates.

• (2) Now find max{min(~x) s.t. ~x ∈ Candidates}. Cast out anything from

Candidates with smaller minimum than this.

• (3) Repeat Step 2, but now retaining only those members of Candidates with

the largest i’th smallest value, where at each iteration i increases by 1 through

the values 2,3, . . . until just one vector remains in Candidates.

• (4) Output that vector and stop.

Proof of algorithm This follows from the remarks after the proof of Algo-

rithm 101 and from Theorem 107.

¥
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6.4 Calculating Maximin faster and using Princi-

pal Sightings

Remarks Algorithm 108 could be regarded as rather primitive since the results of

all possible ways of adding E-constraints to the constraint set K are compared in the

maximin ordering. Surely we can calculate Maximin by testing fewer sets of extra

constraints!

One improvement is suggested by the observation that, having looked at

K + {x1 = x2, x1 = x3} (6.32)

we do not need to inspect

K + {x1 = x2, x2 = x3} or K + {x1 = x2, x2 = x3, x1 = x3} (6.33)

This suggests that we look at the possible equivalence relations being added to K,

not at lists of separate constraints. If we run Algorithm 108 with input K ∈ Cd
J , we

add d E-constraints to K, say E = {Ei1 j1 . . . Eid jd
} to get a system of rank J . Thus

rank(E) = d.

Notation For a set of E-constraints E , we define ∼E to be the minimal equiva-

lence relation on {1, 2, . . . J} for which i ∼ j for each Eij ∈ E .

Theorem 109 For each d = 0, 1, . . . J and all sets E of E-constraints on {x1, . . . xJ},

rank(E) = d ⇐⇒∼E has J − d equivalence classes.

Proof For any such E , the set S of vectors ~x ∈ RJ which satisfy ∼E is the same as

the set of vectors that satisfy E which is an affine set. The number of dimensions

of S is the number of equivalence classes of ∼E , which must equal J − rank(E). We

have proved the theorem.

¥

Notation It is convenient for us to abuse notation slightly and let E represent

either a set of E-constraints or the equivalence relation they force so we will not use ∼E
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etc. unless writing E would cause confusion. Unless otherwise stated, all equivalence

relations are on co-ordinates {1, . . . J}. We also do not distinguish between the

E-constraint Eij and the set {Eij}.

Remark It follows that, if K ∈ Cd
J , in order to calculate Mxmn(K) we should

add equivalence relations on {x1, . . . xJ} which have J − d equivalence classes.

Lemma 110 If K ∈ Cd
J , either d = 0 or for some j such that 2 ≤ j ≤ J ,

K ′ = K + E1j is consistent and K ; E1j.

Proof Suppose that no such E1j is independent of K. Then for every j = 2, . . . J ,

x1 = xj is either true for every ~x ∈ G(K) or for no such ~x. Hence, for every j, there

exists a constant cj such that xj = x1 + cj for every ~x ∈ G(K). Now

~x ∈ G(K) ⇒ ~x = (x1, x1 + c2, . . . , x1 + cJ) (6.34)

for some x1 ∈ R. If d > 0, then G(K) = {(τ, τ +c2, . . . τ +cJ) s.t. τ ∈ R}. However,

this contradicts the definition of a constraint set since V (K) would not be bounded.

We have proved the lemma.

¥

Definition Let ~x ∈ RJ and E be an equivalence relation. We say that ~x satisfies

E iff for all i, j such that i ∼E j, xi = xj.

In the statement and proof of the following algorithm we use the existence of an

algorithm LIST (~x,m) for which the input is ~x ∈ RJ together with an integer m and

the output, denoted by Equiv1, . . . Equivn(~x), is a listing of the equivalence relations

of rank m (i.e. with J − m equivalence classes) that are satisfied by ~x.
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Algorithm 111 (Maximin Calculation Algorithm 2)

Input: Some K ∈ Cd
J .

Output: Mxmn(K).

1 Let Start = K and let Kdir be the result of taking the constraints of K and

substituting zero for all of the constants on the right hand side of each constraint

and substituting the variable ui for xi for each i = 1, . . . J .1

2 For each j = 2, . . . J in turn, add E1j to Start whenever doing so increases

rank(Start) and keeps it consistent, stopping when rank(Start) = J . Let E be

the set of E-constraints that have been added at this stage. Then let ~x be the

unique solution of Start.

3 Run LIST (~x, d − 1) to get output Equiv1, . . . Equivn(~x). Let counter = 0

4 Let i be minimal such that n(~x) ≥ i > counter and rank(K + Equivi) = J − 1

unless no such i exists, in which case output ~x = Mxmn(K) and stop.

Let counter = i, E ′ = Equivi.

5 Find a non-zero solution ~u of Kdir +E ′. This is the direction parallel to the line

G(K +E ′). If ~u has sign conflict at lev w.r.t. ~x for some lev, go back to Step 4.

Otherwise, the ui for which xi = lev all have the same sign. If that sign is

minus, let ~u = −~u.

6 Run the subroutine Opt(~x, ~u) as defined below to obtain a new ~x with new E ,

then go back to Step 3.

The subroutine Opt(~x, ~u) is given by:

1 For every inc, dec in {1, . . . J} s.t. xinc < xdec and uinc > 0, udec < 0 calculate

A(inc, dec) = xinc +
uinc(xdec − xinc)

uinc − udec

(6.35)

and define (Inc,Dec) to be the some value of (inc, dec) for which A is minimal.

1Kdir is a set of equations in variables u1, . . . uJ . It is NOT a constraint set—indeed, if it has a
non-negative non-zero solution, we can multiply that solution by large positive numbers to obtain
arbitrarily large non-negative solutions.
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2 Let new E = E ′ +EInc,Dec, define ~x to be the unique solution of K +E and stop

this subroutine.

Proof The algorithm starts by finding a ~x ∈ G(K) which is the only solution

of K + a set of d independent E1j’s. We can see that this is possible by using

Lemma 110 repeatedly. Then the value of ~x is always the only solution of K + E

where E is some set of d independent E-constraints. At Step 5, we go back to Step 4

iff ~x = Mxmn(K + E ′), by Lemma 105.

Otherwise we use the subroutine Opt and, by Lemma 112 below, this results in us

setting ~x = Mxmn(K + E ′). Hence ~x continually improves in the maximin ordering

so the algorithm must terminate, say when ~x = ~X. Then it remains for us to show

that ~X = Mxmn(K).

Lemma 112 When we run Opt(~x, ~u) in Algorithm 111, the new

~x = Mxmn(~x + <~u>) = Mxmn(K + E ′) = the only solution of K + (new)E.

Proof : We now show that the subroutine Opt calculates Maximin of the line

Li = G(K +E ′). The least xi for which ui 6= 0 are all such that ui > 0, possibly after

using the step “let ~u = −~u ”. Hence

Mxmn(Li) = ~x + τ~u (6.36)

for some τ > 0, by Lemma 106. By Lemma 105, if Mxmn(Li) = ~y = ~x + τ0~u,

co-ordinates i s.t. yi is minimal s.t. ui 6= 0 include j, k such that ujuk < 0 so in

choosing an E-constraint Eij to add to E ′ to find ~y, we need only consider Einc dec for

which xinc < xdec, uinc > 0 and udec < 0. Let A be the common value of co-ordinates

inc, dec at the unique point, ~z, in Li that satisfies Einc dec. We will now show that

choosing some inc, dec for which this A is minimal will give ~z = ~y.

In fact, if co-ordinates up, down are chosen such that uup > 0, udown < 0 without

imposing any other conditions, then there exists a unique value of τ , say χ, such

that ~x + χ~u is the point on Li satisfying Eup down for those (up, down) minimising

A(up, down).
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Suppose for contradiction that there exist τ1 < τ2 for which the points ~x + τj~u

for j = 1, 2 are the unique points on Li satisfying Eupj downj
for j = 1, 2 such that

A = Amin = A(upj, downj) for j = 1, 2.

Now as τ increases from τ = τ1, the value at co-ordinate down1 decreases from

A and, from the same starting point, xup2 increases past A, so at some τ ∈ (τ1, τ2)

there exists a lower meeting value than A using co-ordinates down1 and up2, so we

deduce a contradiction and the required value of τ must be unique.

We now see that ~y = ~x + χ~u = Mxmn(K + E ′) since yup = ydown are minimal

among those yi s.t. ui 6= 0 since if not, a lower yi s.t. ui > 0 gives a lower meeting

value than A (with co-ordinate down) at some τ > χ and if a lower yi is s.t. ui < 0 a

similar contradiction arises. Hence the lowest meeting value overall is given by τ = χ

such that ~x + χ~u = Mxmn(Li) by Lemma 105. Also χ > 0 so Opt finds Maximin

by searching those up and down co-ordinates that meet at a point given by a positive

value of τ , (i.e. xup < xdown). We have proved the lemma.

¥

Notation Recall that we have extended the definitions of a loaf, the Blaschke

metric and Piecewise Linear Loaf Continuity to constraint sets. Let K ∈ Cd
J . For

all ~c ∈ RJ s.t.
∑J

i=1 ci = 0, let K + ~c be the result of replacing every occurrence

of xi by (xi − ci) in the constraints of K. Note that
∑J

i=1 xi = 1 is replaced by
∑J

i=1(xi − ci) = 1, which is equivalent. Now

G(K + ~c) = {~x + ~c s.t. ~x ∈ G(K)} (6.37)

and {K + λ~c s.t. 0 ≤ λ ≤ 1} is a loaf (recall (3.43) for constraint sets) as long as

K+~c is consistent. This should not be confused with K+K ′ where K ′ is a constraint

set and + means union in that context.

Definition For any K ∈ Cd
J , let ~x = K + E be shorthand for {~x} = G(K + E),

where E is an equivalence relation of rank d. In such a case we say that ~x is visible

(w.r.t. K) and E is a sighting of ~x (w.r.t. K). Let ~x be visible and let E ′ be an
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equivalence relation of rank d − 1 such that if K ′ = K + E ′, K ′ ∈ C1
J . Then if

G(K ′) = (~x + <~e′>) (6.38)

we say that G(K ′) is a line of sight (l.o.s.) for ~x (in direction ~e′).

The following lemma is helpful for us to show that Algorithm 111 can only ter-

minate at Mxmn(K).

Lemma 113 For all K ∈ Cd
J , if ~X is visible w.r.t. K and ~X = Mxmn(Li) for every

l.o.s. Li for ~X, ~X = Mxmn(K).

Proof We do this by induction on d.

Base Cases In the case d = 0, G(K) = { ~X}, so the lemma is trivial. When

d = 1 and we use E ′ to obtain a line of sight for ~x, rank(E ′) = 0 so E ′ is the identity

equivalence relation. Thus ~X = Mxmn(K).

Inductive Step Assume (I.H.) that the lemma holds for each d such that d ≤ k,

where 1 ≤ k < J . Let K be a fixed consistent constraint set such that d = k + 1.

Suppose that, for contradiction,

Mxmn(K) = ~y 6= ~X (6.39)

There must exist an Eij which is independent of K, and is satisfied by ~X, such

that yi < yj, say. Let Kaug = K + Eij. Then dim(G(Kaug)) = k and by I.H.

~X = Mxmn(Kaug) since otherwise there would be an equivalence relation F such

that G(Kaug + F) is a l.o.s. for ~X such that ~X 6= Mxmn(Kaug + F) so we would

have found a contradiction.

Consider the loaf K̂aug which has slices given by

Kaug(λ) = Kaug + λ~c (6.40)

and λ-range [0, 1], where ~c = ~y − ~X. For all λ ∈ [0, 1], let

~z(λ) = ~X + λ(~y − ~X) ∈ G(Kaug(λ)) ⊂ G(K) (6.41)

Since ~y = Mxmn(K), ~z(λ) is maximin-better than ~z(µ) iff 1 ≥ λ > µ ≥ 0, by

Lemma 106, so ~Y (λ) = Mxmn(Kaug(λ)) is maximin-better than ~X for all λ ∈ (0, 1].
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For all λ ∈ [0, 1], ~Y (λ) can be expressed in the form ~Y = Kaug(λ) + E for some

non-trivial equivalence relation E such that rank(E) = k and K ; Evw for each

Evw ∈ E . Now Piecewise Linear Loaf Continuity of Maximin holds for constraint

sets (due to Theorem 88 for constraint sets), so for small enough positive values of ǫ

Yv′(ǫ) = Yw′(ǫ) ⇒ Xv′ = Xw′ (6.42)

for such a (v, w) = (v′, w′).

Since K ; Ev′w′ , we can see that ~X = Mxmn(K + Ev′w′) by a similar argument

to that used to show that ~X = Mxmn(Kaug), but ~Y (ǫ) ∈ G(K + Ev′w′) is maximin-

better than ~X, giving a contradiction. We have proved the lemma.

¥

Completing the proof of Algorithm 111 Recall that the algorithm termi-

nates at ~x = ~X. This occurs because we have used Steps 4 and 5 to check each line

of sight for ~X which is the solution set of K + Equivi and have found, in every case,

that ~X = Mxmn(K +Equivi). By Lemma 113, ~X = Mxmn(K) and we have proved

the algorithm.

¥

Remark This algorithm can still seem a little disappointing. Do we really have

to check every l.o.s. for ~X to be sure that ~X = Mxmn(K)? Although we can refine

the above, it is certainly NOT enough just to check d linearly independent such lines,

as the following example shows:

K =

{

8
∑

i=1

xi = 1, x7 = 0, x8 = 0, x1 =
5

12
− x4, x2 =

7

12
− 2x4, x5 = x3 + x4 − 1/4

}

(6.43)

and ~X = 1
12

(3, 3, 2, 2, 1, 1, 0, 0).

In this example, d = dim(G(K)) = 2 and { ~X} = G(K + E12 + E34).

S12 = G(K + E12) and S34 = G(K + E34) are two l.o.s. for ~X which span G(K).

Indeed (0, 0, 1, 0, 1,−2, 0, 0) is parallel to S12 and the co-ordinates of lowest value

in ~X which have non-zero rate of change along S12 are X5 = X6 = 1/12 and their

change is of opposite sign so Mxmn(K+E12) = ~X. Similarly (1, 2,−1,−1,−2, 1, 0, 0)
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is parallel to S34 and similar inspection shows that ~X = (Mxmn(K +E34)). However

S56 = G(K + E56) is a l.o.s. for ~X, in direction (1, 2, 0,−1,−1,−1, 0, 0), and

1

36
(7, 5, 6, 8, 5, 5, 0, 0) = Mxmn(K + E56) 6= ~X (6.44)

Intuitively we could believe that checking that ~X = Mxmn(K +E56) seems more

important because X5 = X6 < X3 = X4 < X1 = X2 so E56 is the “minimal non-

trivial E-constraint satisfied by ~X”, an idea that will now be formalised.

Notation If E ′, E are equivalence relations such that rank(E ′) = d − 1,

rank(E) = d and

i ∼E j =⇒ i ∼E ′ j (6.45)

for all co-ordinates i, j, we write E ′ <1 E . Thus E may be thought of as being

obtained by gluing together a certain pair of equivalence classes of E ′. If, for a fixed

sighting E of ~x w.r.t. K ∈ Cd
J , ~x = Mxmn(K + E ′) for every E ′ such that E ′ <1 E , we

say that ~x is Pseudo-Maximin of K w.r.t. E , abbreviated to PsMxmn(K) w.r.t. E .

Remark We can see, from the example of (6.43), that if ~x is PsMxmn(K)

w.r.t. E , then it is not necessarily true that ~x = Mxmn(K). Nevertheless, as we

show in Theorem 114 below, there is an important connection between the concepts

Maximin and Pseudo-Maximin.

Notation If ~x is visible w.r.t. K ∈ Cd
J and e is the least value appearing in

~x such that there exist i, j s.t. xi = xj = e and K ; Eij, then those Eij are the

principal equalities of ~x w.r.t. K.

The principal sightings of a (visible) ~x w.r.t. K are defined recursively w.r.t. d as

follows. If d = 1 a principal sighting of ~x w.r.t. K is a principal equality of ~x w.r.t.

K.

In general a sighting E of ~x w.r.t. K ∈ Cd
J is principal iff it can be expressed in

the form E = E ′ + Eij (E ′ <1 E), where Eij is principal and E ′ is a principal sighting

of ~x w.r.t. (K + Eij) ∈ Cd−1
J .

In other words, choose a “minimal non-trivial E-constraint Eij satisfied by ~x ” and
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add that to K before choosing another minimal non-trivial equality (w.r.t. K +Eij),

and so on, and this process will stop with a principal sighting.

We use these concepts throughout this chapter.

Theorem 114 Let K ∈ Cd
J . The following are equivalent:

(i) ~x = Mxmn(K).

(ii) ~x is visible w.r.t. K and for every principal sighting E of ~x w.r.t. K,

~x = PsMxmn(K) w.r.t. E.

Proof(i) ⇒ (ii) This follows directly from the definition of PsMxmn.

Remark For the example K given in (6.43) we can see that E12+E34, E12+ E56,

E34 + E56 are the sightings of ~x, of which only the last one is principal so, by Theo-

rem 114, we need only check whether ~X = Mxmn(K + E34) and

~X = Mxmn(K + E56). Since ~X 6= Mxmn(K + E56), we can see a little quicker that

~X 6= Mxmn(K), by not checking that ~X = Mxmn(K + E12).

Thus, in general, sometimes the theorem above may make it easier for us to check

whether ~x = Mxmn(K).

Notation This notation applies to rest of this subsection. We suppose that

K ∈ Cd
J , where d > 0. Then, if ~x = ~X is visible w.r.t. K, a finite sequence of

consistent constraint sets K1, K2 . . . Kp, a sequence of real numbers e1, e2, . . . ep and

of integers r1, r2, . . . rp are defined as follows. By convention, we define K0 = K and

r0 = 0.

Let e1 be minimal such that for some co-ordinates i, j, Xi = Xj = e1 and K ; Eij.

Then let

K1 = K + {Eij |Xi = Xj = e1} (6.46)

and let rank(K1) = J − d + r1, where r1 > 0. If Kk has been defined s.t.

rank(Kk) = J − d + rk 6= J we let ek+1 be minimal such that for some i, j,

Xi = Xj = ek+1 and Kk ; Eij, then

Kk+1 = Kk + {Eij |Xi = Xj = ek+1} (6.47)
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By considering ~X as K + E for some sighting E , if rank(Kk) < J , the E-constraints

added so far to K do not, in the presence of K, gen-imply E ; so further E-constraints

can continue to be added until some Kk is s.t. rank(Kk) = J . In this case, we define

p = k. Then { ~X} = G(Kp) and

rp = d > rp−1 > . . . > r1 (6.48)

If d = 0, a sighting of ~x w.r.t. K must be the trivial equivalence relation—in this

case p = 0 and there are no ei’s, ri’s or Ki’s defined. This concludes the definitions

of the ei’s, ri’s, Ki’s and p, which depend on K and ~X; we suppress that dependence

wherever this does not cause confusion.

The following lemma helps us to characterise the principal sightings of ~X w.r.t.

K ∈ Cd
J and ultimately to prove Theorem 114 in the direction ((ii) ⇒ (i)).

Lemma 115 Let ~x ∈ RJ be visible w.r.t. K ∈ Cd
J . A sighting E of ~x w.r.t. K,

written as a list of d E-constraints, is principal iff, for each g = 1, . . . p, rg − rg−1 of

them are of the form Eij s.t. xi = xj = eg.

Proof (⇒) Fix a principal sighting E of such an ~x w.r.t. K, say ~x = ~X. By

definition of a principal sighting, we fix a sequence Ei1j1 , Ei2j2 , . . . Eidjd
for which

Eik+1jk+1
is a principal equality of ~X w.r.t. K+Ei1j1+. . .+Eikjk

for each k = 0, . . . d−1.

We show that

Xi1 = . . . = Xir1
= e1, Xi(r1+1)

= . . . = Xir2
= e2, . . . Xi(ru)

= eu (6.49)

by induction on u, which varies from 0 up to p.

Base Case u = 0 In this case the lemma is trivial.

Inductive Step Assume (I.H.) that the result holds for u = k < p. Then, by

definition of a principal sighting, the next E-constraint, Ei(rk+1)j(rk+1)
, is a principal

equality of ~X w.r.t.

K(k) = K + Ei1j1 + . . . + Eirk
jrk

(6.50)

Claim K(k) ≡G Kk.
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Proof of claim We observe that if ~x ∈ G(Kk), every pair of co-ordinates which

are equal in value in ~X with common value less than or equal to ek are equal in ~x, so

~x ∈ G(Kk) ⇒ ~x ∈ G(K(k)) (6.51)

However by the Inductive Hypothesis,

rank(Kk) = rank(K(k)) = J − d + rk (6.52)

forcing Kk and K(k) to be gen-equivalent and we have proved the claim.

Suppose that, for contradiction, v is a positive integer such that v ≤ rk+1 − rk,

and is minimal such that Xi(rk+v)
6= ek+1.

Let

Kv
(k) = K(k) + Ei(rk+1)j(rk+1)

+ . . . + Ei(rk+v)j(rk+v)
(6.53)

If Xi = Xj = c and c < ek+1 then Kk ⇒ Eij, so Kv
(k) ⇒ Eij and hence

Xi(rk+v)
≥ ek+1. Now v ≤ rk+1 − rk and Xi(rk+v)

> ek+1 so

K(k) + Ei(rk+1)j(rk+1)
. . . + Ei(rk+v−1)j(rk+v−1)

⇒ {Eij |Xi = Xj = ek+1} (6.54)

and, consequently, the rank of the LHS is at least rk+1, which is a contradiction

as there are not enough constraints. Hence we deduce that no such v exists. This

completes the Inductive Step and the proof of (⇒).

(⇐): We express a sighting E as a sequence of Eij’s where the first r1 are of

the form Eij’s s.t. Xi = Xj = e1 and the next r2 − r1 are of the form Eij’s s.t.

Xi = Xj = e2, etc.. Ei1j1 is a principal equality of ~X w.r.t. K so it is sufficient to

show that each Ei(k+1)j(k+1)
is a principal equality of ~X w.r.t. K ′ = K+Ei1j1 . . .+Eikjk

.

We consider two cases:

Case 1 Xi(k+1)
= Xik(= some eq) Suppose for contradiction that Ei(k+1)j(k+1)

is

not a principal equality of ~X w.r.t. K ′. Then there exist i, j s.t. Xi = Xj = c < eq

and K ′ ; Eij so K∗ = K + Ei1j1 + . . . + Ei(k−1)j(k−1)
; Eij. However then Eikjk

is

not a principal equality of ~X w.r.t. K∗, contradicting the defining property of Eikjk
.

Hence we have proved (⇐) in this case.
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Case 2 Xik = eq, Xi(k+1)
= eq+1. Since K ′ = K+ E-constraints of the form Eij

for which Xi = e1, e2, . . . or eq and rank(K ′) = J −d+ rq then K ′ ≡G Kq as in (6.52)

and the principal equalities of ~X w.r.t. K ′ are all of the form Eij s.t. Xi = eq+1 by

the definition of eq+1. We have proved (⇐) in this case.

We have proved the lemma.

¥

Notation In the following proofs, we shall write expressions of the form

~a +
∑d

i=1 <~u(i) > as shorthand for (~a + <~u(1), . . . ~u(d) >).

The following theorem, which helps us prove Theorem 114, is an exercise in linear

algebra.

Theorem 116 Suppose that S ∈ Cg
J . Assume that A1, A2, . . . Ag are linearly inde-

pendent constraints such that S+{A1, . . . Ag} has a unique solution ~x. For i = 1, . . . g

we define the constraint set Augi(S) by S + {Aj | j 6= i} and let ~b(i) be fixed such that

G(Augi(S)) = ~x + <~b(i) > (6.55)

Then G(S) = ~x +
∑g

i=1 <~b(i) >.

Proof We do this by induction on g, letting the unique solution of the constraint

set S + {A1, . . . Ag} be given by ~x = ~X.

Base Case g = 1 In this case, S + A1 has a unique solution ~X and the solution

set of Aug1(S) = S is ~X + < ~b1 > so in this case the theorem is trivial.

Inductive Step Assume (I.H.) that the theorem holds when g ≤ k and suppose

that the hypotheses of the theorem apply for the case g = k + 1. Then let

S∗ = S + Ak+1 ∈ Ck
J , since S ; Ak+1. For each i = 1, . . . k, we now define

Augi(S∗) = S∗ + {Aj | 1 ≤ j ≤ k and j 6= i} (6.56)

Now Aug1(S) ≡G Aug1(S∗), . . . Augk(S) ≡G Augk(S∗) have solution sets ~X + <~b(i) >

respectively and by the I.H.

G(S∗) = ~X +
k

∑

i=1

< ~b(i) > (6.57)
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which is a k-dimensional affine subset of G(S). Suppose for contradiction that every

generalised solution of Augk+1(S) satisfies S∗. Then Augk+1(S) ⇒ Ak+1 so

S + A1 + . . . + Ak ⇒ Ak+1, which is a contradiction.

Hence the line ~X + <~b(k+1) > does not lie in ~X +
∑k

i=1 <~b(i) > and so

~X +
∑k+1

i=1 <~b(i) > is a (k + 1)-dimensional affine subset of G(S); hence it must be

G(S), completing the Inductive Step and the proof of the theorem.

¥

Remark In particular, Theorem 116 implies that if E∗ = Ei1j1 +Ei2j2 . . .+Eidjd

is a specific principal sighting of ~x w.r.t. K as in the hypotheses of Theorem 114, the

lines of sight Liq given by

Liq = G(K + E∗\Eiqjq
) = ~x + < ~dir

(q)
> (6.58)

for q = 1, . . . d, produce the set { ~diri|1 ≤ i ≤ d} as a basis for D(K) since

G(K) = ~x +
∑d

i=1 < ~diri >.

The lemma that follows helps us to see how to identify principal sightings.

Lemma 117 Let Eij be an E-constraint appearing in at least one principal sighting

of ~x w.r.t. K ∈ Cd
J , where d > 0. Then ~x is visible w.r.t. K∗ = K + Eij, and every

principal sighting E ′ of ~x w.r.t. K∗ is such that E ′ + Eij is a principal sighting of ~x

w.r.t K.

Proof We require the following sublemma.

Sublemma 118 Let Ei′j′ be an E-constraint such that Ei′j′ ∈ E0, where E0 is a

principal sighting of ~X w.r.t. K ∈ Cd
J , and d > 0. Then ~X is visible w.r.t. K + Ei′j′

and E0\{Ei′j′} is a principal sighting of ~X w.r.t. K + Ei′j′.

Proof Assume the hypotheses of the sublemma. Let K ′ = K + Ei′j′ . It is trivial

that ~X is visible w.r.t. K ′ by observing that ~X = K + E0 = K + Ei′j′ + E0\{Ei′j′}.

Now we fix a way of writing E0 as a sequence {Ei1j1 , Ei2j2 , . . . Eidjd
}, such that

Ei1j1 is a principal equality of ~X w.r.t. K and, for each t = 2, . . . d, Eitjt
is a principal

equality of ~X w.r.t. K + {Ei1j1 , . . . Ei(t−1)j(t−1)
}. Suppose that Ei′j′ = Eiqjq

.
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Claim:

• For all t = 1, . . . q − 1, Eitjt
is a principal equality of ~X w.r.t.

K ′ + {Ei1j1 , . . . Ei(t−1)j(t−1)
}.

• For all t = q + 1, . . . d, Eitjt
is a principal equality of ~X w.r.t.

K ′ + {Ei1j1 , . . . Ei(q−1)j(q−1)
, Ei(q+1)j(q+1)

, . . . Ei(t−1)j(t−1)
}.

Proof of claim: Suppose that t is an integer less than q. Since

rank(K + E0) = J , rank(K) = J − d and there are d Eikjk
’s,

K ′ + {Ei1j1 , . . . Ei(t−1)j(t−1)
} ≡G K + {Ei1j1 , . . . Ei(t−1)j(t−1)

, Eiqjq
} ; Eitjt

.

Suppose for contradiction that there exists Eij which is satisfied by ~X, and that

Xi = Xj < Xit , and K ′ + {Ei1j1 , . . . Ei(t−1)j(t−1)
} ; Eij. Then

K + {Ei1j1 , . . . Ei(t−1)j(t−1)
} ; Eij (6.59)

so Eitjt
is not a principal equality of ~X w.r.t. K +{Ei1j1 , . . . Ei(t−1)j(t−1)

} and we have

reached a contradiction, proving the first part of the claim.

For the second part of the claim,

K ′ + {Ei1j1 , . . . Ei(q−1)j(q−1)
, Ei(q+1)j(q+1)

, . . . Ei(t−1)j(t−1)
} ≡G K + {Ei1j1 , . . . Ei(t−1)j(t−1)

}

(6.60)

and Eitjt
is a principal equality of ~X w.r.t. K + {Ei1j1 , . . . Ei(t−1)j(t−1)

}. We have

proved the claim.

¥

Proof of Sublemma 118 continued: Using the claim and the definition of

a principal sighting, we deduce that E0\{Ei′j′} is a principal sighting of ~X w.r.t. K ′

and we have proved the sublemma.

¥

Proof of Lemma 117 continued: Let ~x = ~X be visible w.r.t. K ∈ Cd
J , where

d > 0. Let Ei′j′ be a specific E-constraint which appears in a principal sighting, E0,

of ~X w.r.t. K. Suppose that K ′ = K + Ei′j′ .
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By Sublemma 118, E0\{Ei′j′} is a principal sighting of ~X w.r.t. K ′.

Let E be some principal sighting of ~X w.r.t. K ′. Then, by Lemma 115, when

we write E or E0 \ {Ei′j′} as a list of d − 1 E-constraints we find that, for each

g = 1, . . . p(K ′), rg − rg−1 of them are of the form Eij s.t. xi = xj = eg(K
′). Hence,

for all e ∈ R, E + Ei′j′ and E0 contain the same number of E-constraints Eij such

that Xi = Xj = e. Since E0 is a principal sighting of ~X w.r.t. K, we use Lemma 115

again to deduce that E + Ei′j′ is also a principal sighting of ~X w.r.t. K. We have

proved the lemma.

¥

Lemma 119 Let ~X be visible w.r.t. K ∈ Cd
J , such that ~X = PsMxmn(K) w.r.t.

every principal sighting of ~X w.r.t. K. Also assume that for all K ′ ∈ Cd′

J s.t. d′ < d,

and each ~x visible w.r.t. K ′, Theorem 114 is true.

Let E be a fixed principal sighting of ~X w.r.t. K. In the manner of (6.58) let

Augq = K +E\Eiqjq
for each q = 1, . . . d and let Li1, . . . Lid be the lines of sight given

by

Liq = G(Augq) = ~x + < ~dir
(q)

> (6.61)

so that, by Theorem 116, the set { ~dir
(1)

, . . . ~dir
(d)} is a basis for D(K).

Then for all Eij which appear in a principal sighting of ~X w.r.t. K,

~X = Mxmn(K + Eij).

Also, if q′ is such that rm−1 < q′ ≤ rm, then dir
(q′)
i = 0 for all i s.t. Xi < em, and

of the values of dir
(q′)
i for which Xi = em, some are positive and some are negative.

Proof Since ~X = PsMxmn(K) w.r.t. every principal sighting of ~X w.r.t. K, we

use Lemma 117 to deduce that for each Eij which appears in a principal sighting of

~X w.r.t. K, ~X = PsMxmn(K ′) w.r.t. every principal sighting of ~X w.r.t. K ′, where

K ′ = K + Eij. For every such K ′, dim(G(K ′)) < dim(G(K)), so Theorem 114 holds

for these K ′ and ~X = Mxmn(K + Eij) for every Eij which appears in a principal

sighting of ~X w.r.t. K.
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Since Maximin satisfies Obstinacy (Theorem 72 for constraint sets), then for

every q = 1, . . . d,

~X = Mxmn(Augq) = Mxmn( ~X + < ~dir
(q)

>) (6.62)

Using q = q′ as in the statement of the lemma, Augq′ ⇒ Km−1 but Augq′ ; Km

(using Lemma 115) so em is minimal such that there exists an E-constraint Ei′j′ such

that Xi′ = Xj′ = em but Lq′ ; Ei′j′ . By Lemma 105, ~dir
(q′)

has sign conflict at some

lev and the following claim is now sufficient to prove the lemma.

Claim lev = em.

Proof of claim If lev < em, there exist i∗, j∗ s.t.

Xi∗ = Xj∗ = lev and dir
(q′)
i∗ dir

(q′)
j∗ < 0 (6.63)

so dir
(q′)
i∗ 6= dir

(q′)
q∗ and Augq′ ; Ei∗j∗ although Ei∗j∗ is satisfied by ~X, giving a

contradiction.

If lev > em, dir
(q′)
i = 0 for each i s.t. Xi ≤ em but in that case Augq ⇒ Km, also

causing a contradiction. Hence lev = em and we have proved the claim.

We have proved the lemma.

¥

In the final run-up to proving Theorem 114, we assume for contradiction that

~X 6= Mxmn(K).

Lemma 120 Assume that K, ~X are as in the first paragraph of the statement of

Lemma 119. We also assume that ~X 6= Mxmn(K). Then there exists a non-zero

direction ~z ∈ D(K) s.t. ~X 6= Mxmn( ~X + < ~z >) and the least y for which there

exists i s.t. Xi = y and zi 6= 0 is e1.

Proof Let ~z = (Mxmn(K) − ~X) 6= ~0 ∈ D(K), then by Obstinacy of Maximin

(Theorem 72 for constraint sets),

Mxmn(K) = Mxmn( ~X + <~z>) (6.64)
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Now suppose for contradiction that the least y for which there exists i s.t. xi = y

and zi non-zero, say y = Y , is greater than e1. Then for any principal equality Eij of

~X w.r.t. K,

Xi = Xj = e1 so zi = zj = 0 (6.65)

and the line ( ~X + <~z>) lies in G(K + Eij) but then by Obstinacy

Mxmn(K) = Mxmn(K + Eij) and ~X 6= Mxmn(K + Eij) (6.66)

contradicting Lemma 119.

Now we suppose for contradiction that Y < e1. We know that ~z ∈ ∑d
q=1 < ~dir

(q)
>

and for each i s.t. Xi < e1 and every q = 1, . . . d, dir
(q)
i = 0 so we have reached a

contradiction.

Hence Y = e1 and we have proved the lemma.

¥

Proof of Theorem 114 (ii) ⇒ (i) We continue to assume the conditions of

Lemmas 119 and 120 including the assumption, for contradiction, that

~X 6= Mxmn(K).

Since ~X 6= Mxmn( ~X + <~z>) we use Lemma 105 and Lemma 120 to see that for

all i ∈ C, where C is given by

C = {i | 1 ≤ i ≤ J and Xi = e1} (6.67)

the non-zero zi have the same sign, and w.l.o.g. these values of zi are all non-negative

as replacing ~z by −~z does not prevent it satisfying the conditions required in the

statement of Lemma 120.

There exists an integer q′ = 1, 2, . . . or d and k ∈ C such that dir
(q′)
k 6= 0 and

zk > 0 since ~z is a linear combination of the ~dir
(q)

’s. By Lemma 119, dir
(q′)
i = 0 for

all i such that Xi < e1 and, of those dir
(q′)
i for which i ∈ C, some values are positive

and others negative. Consider the points (all in D(K)) given by

push(τ) = ~z + τ ~dir
(q′)

(6.68)
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where τ ∈ R. For any τ and any i such that Xi < e1, push(τ)i = 0, by Lemma 119.

Since for every i ∈ C, the zi are non-negative and not all zero and there exist i, j ∈ C

such that dir
(q′)
i dir

(q′)
j < 0, we deduce that for all τ ∈ R there exists i ∈ C s.t.

push(τ)i 6= 0.

Thus when τ is fixed it is always possible, using Lemma 105, to see whether

~X = Mxmn( ~X + <push(τ)>) (6.69)

by looking for whether there are both positive and negative push(τ)i for the i ∈ C.

There exists a fixed real interval [v, w] s.t. v ≤ 0 ≤ w and

push(τ)i ≥ 0 for all i ∈ C (6.70)

if and only if τ ∈ [v, w]. Hence for some i1 ∈ C, push(v)i1 = 0 and dir
(q′)
i1

> 0 and for

some i2 ∈ C, push(w)i2 = 0 and dir
(q′)
i2

< 0. Hence there exists

τ0 ∈ [v, w] s.t. push(τ0)i1 = push(τ)i2 but ~X 6= Mxmn( ~X + <push(τ0)>) (6.71)

and Ei1i2 is a principal equality of K, contradicting the fact that

~X = Mxmn(K + Ei1i2) from Lemma 119. Hence our assumptions are contradictory

and we have proved the theorem.

¥
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6.5 Maximin Calculation Algorithm 3

Algorithm 121 (Maximin Calculation Algorithm 3)

Input: Some K ∈ Cd
J .

Output: Mxmn(K).

1 Let Kdir be the result of taking the constraints of K and substituting zero for

all of the constants on the right hand side of each constraint and substituting

the variable ui for xi for each i = 1, . . . J .

2 Fix an initial value for ~x ∈ G(K) by adding E-constraints of the form E1j to

K until a system K∗ of rank J is reached, just as in Step 2 of MCA 2. Let ~x

be the unique point in G(K∗). If d = 0, output ~x and stop.

3 Add d − 1 equations of the form ui = 0 to Kdir in every possible way and

for those resulting systems with rank J − 1 retain a non-zero solution and its

negation. These vectors are the members of V , given by

V = {±~v(1), . . . ± ~v(s)}. Let stable = {i = 1 . . . J s.t. vi = 0 for all i ∈ V }.

4 Let minmobile =

{i = 1, . . . J not in stable such that xi = min({xi s.t. i /∈ stable)}}.

5 Let ~trydir be the sum of those ~v ∈ V such that vi ≥ 0 for all i ∈ minmobile.

6 Let newstable be the set of those i ∈ minmobile such that trydiri = 0. If

newstable = ∅, go to Step 9.

7 Delete from V all ~v ∈ V for which, for some i, vi 6= 0 and i ∈ newstable;

then let stable = stable ∪ newstable. If V is empty, output ~x and stop. If

newstable = minmobile, go to Step 4.

8 Let

minmobile = {i = 1 . . . J not in stable such that xi = min({xi s.t. i /∈ stable)}.
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9 Let Ktry = Kdir ∪ {(ui = 0) for every i ∈ stable} ∪ {(ui = 1) for every

i ∈ minmobile}. If Ktry has real solutions, let ~U denote a specific solution, and

set ~trydir = ~U .

10 Fix some ~y = ~x + λ ~trydir such that λ is positive and is minimal such that one

of the co-ordinates in minmobile is equal to some co-ordinate j not in stable.

Let ~x = ~y and go to Step 4.

Remark Step 10 does not necessarily do ~x = Mxmn(~x + < ~trydir >) but it does

make ~x maximin−better. Note that D(K) is the set of solutions of the equations

Kdir.

To prove the algorithm works, we first clarify what the initial list V is for:

Lemma 122 Let K be the input for MCA3 and let the initial value of V be V0. Then

for each disjoint S, T ⊆ {1, 2, . . . J}, each direction ~w ∈ D(K) for which wi ≥ 0 for

each i ∈ S and wj = 0 for all j ∈ T is of the form

λ1~v
(i1) + λ2~v

(i2) + . . . + λn~v
(in) (6.72)

where ~v(i1) . . . ~v(in) lists the ~v ∈ V0 such that vi ≥ 0 for every i ∈ S and vj = 0 for all

j ∈ T and all of the λj are non-negative.

Proof Let K be fixed. D(K) is a linear subspace of dimension d in RJ . Let

~w = ~w′ ∈ D(K) satisfy the conditions of the lemma. We define DSigns, given by

DSigns = {~u ∈ D(K) |ui = 0 for every i ∈ T, ui ≥ 0 for every i for which

w′
i > 0, ui ≤ 0 for every i for which w′

i < 0 and
J

∑

i=1

|ui| = 1} (6.73)

In the presence of the conditions for non-negativity and non-positivity of co-

ordinates,
∑J

i=1 |ui| = 1 simply means
∑J

i=1(−1)sigiui = 1 for some fixed

~sig ∈ {0, 1}J . By definition, DSigns is a convex polytope.

Hence, by Lemma 3, the vertices of DSigns are unique solutions of sets of equations

of the form

Kdir +

(

J
∑

i=1

(−1)sigiui = 1

)

+ d − 1 equations of the form ui = 0 (6.74)
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i.e. a positive constant × some ~v ∈ V0. We assume that S, T are as in the lemma and

that w′
i ≥ 0 for every i ∈ S and w′

j = 0 for every j ∈ T . Then for each i = 1, . . . J ,

w′
i ≥ 0 ⇔ sigi = 0, so, if we define

~w∗ = ~w′/
J

∑

i=1

|w′
i| (6.75)

then ~w∗ is a linear combination of the required form, so we have proved the lemma.

¥

Lemma 123 Let Mxmn(K) = ~X, with ~x, stable etc. variables in the running of

MCA3 with input K. Then at Step 4, Xi = xi for every i ∈ stable and

V = {~v ∈ V0 | vi = 0 for all i ∈ stable} which equals the initial value of V if the input

of the algorithm is K + {(xi = Xi)|i ∈ stable} instead of K.

Proof We show that this is true at the m’th use of Step 4, by induction on m.

Base Case m = 0 The i ∈ stable are K-constant co-ordinates so xi = Xi and

V = V0.

Inductive Step Assume that the lemma holds at the previous use of Step 4.

The i ∈ minmobile are those i, of those not in stable, for which xi is minimal. Hence

~trydir produces maximin-improvement from ~x.

If possible, at Step 9, we use ~U such that those co-ordinates increase in value

at the same rate, keeping them equal. Those i ∈ minmobile for which trydiri = 0

cannot be increased unless some of the members of minmobile decrease from their

~x values. Hence Xi = xi because no direction giving maximin-improvement from ~x

can change those co-ordinates’ values so the set of them is denoted newstable and

they become members of stable. Also the directions ~v ∈ V that change them in value

are removed. Thus, should the algorithm not terminate, the conditions of the lemma

are true the next time Step 4 is reached and we have proved the Inductive Step and

the lemma.

¥
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Lemma 124 From any point in the running of MCA3, after a finite number of steps

either stable increases or the algorithm terminates.

Every time we use Step 4 we determine which non-stable co-ordinates have least

value in ~x, i.e. those in minmobile and whilst not decreasing any of them, we increase

in value all that we can. Those that don’t increase become members of stable and of

those that do we check in Step 9 if there exists a “~U” i.e. if it is possible to increase

them at the same rate.

Suppose for contradiction that the algorithm did not terminate with stable con-

stant, and newstable = ∅. Let Min be one of the sets of largest cardinality which is

a value of minmobile infinitely many times in the running of the algorithm.

Since there exist distinct values of y such that there are solutions of K such that

every co-ordinate in Min takes the value y, there exists a direction in D(K), ~U , such

that Ui = 1 for all i ∈ Min.

Hence if minmobile = Min, we find at Step 9 that Ktry does have a real solution,

say ~U , and at Step 10 we move from ~x in the direction ~U , so that at the new value

of ~x, it is still true that xi = xj for all i, j ∈ Min. Thus the next value of minmobile

must be a superset of Min.

However, there are only a finite number of possibilities for such a superset, so

some Min′ ⊃ Min occurs an infinite number of times as the value of minmobile and

has larger cardinality than Min, so we have found a contradiction. We have proved

the lemma.

¥

Proof of Algorithm 121 By Lemma 124, MCA 3 terminates at some ~Y since

stable cannot increase more than J times. By Lemma 123, ~Y satisfies

K ′ = K + {xi = Xi | i ∈ stable} and if there exist other solutions of K ′, V 6= ∅ by

Lemma 122 so ~Y = ~X = Mxmn(K). We have proved the algorithm.

¥
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6.6 Maximin Calculation Algorithm 4

Definition A co-ordinate i of a constraint set K is gen-constant (w.r.t. K) iff for

some c ∈ R and all ~x ∈ G(K), xi = c.

Algorithm 125 (Maximin Calculation Algorithm 4)

Input: Some K ∈ Cd
J .

Output: Mxmn(K).

1 Let K∗ = K, let d∗ = d and define allowed = {1, 2, . . . J}.

2 By row-reducing the constraints of K∗, find all of the q ∈ allowed which are

gen-constant w.r.t. K∗ and cast them out from allowed. If d∗ = 0, output the

unique generalised solution of K∗, Mxmn(K), and stop.

3 Let Possible be the set of all vectors ~x which satisfy the following condition:

~x is the unique generalised solution of a constraint set of the form

K∗ + {xi1 = xi2 = xi3 = . . . = xid∗+1
s.t. all ip ∈ allowed} (6.76)

such that xi1 ≤ xr for all r ∈ allowed.

4 Then let Best = {~x ∈ Possible s.t. mini∈allowedxi is maximal}.

5 If Best is a singleton, output its member = Mxmn(K) and stop.

6 Let n1, n2, . . . nf be those co-ordinates in allowed which have the same value at

every ~x ∈ Best, say with values V1, . . . Vf respectively. Let

K∗ = K∗ + {xn1 = V1, xn2 = V2, . . . xnf
= Vf} (6.77)

delete n1, . . . nf from allowed and let d∗ = dim(G(K∗)). Return to Step 2.

Proof We show that the variables above maintain certain properties using the

following lemma.
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Lemma 126 Suppose that we run MCA 4 with input K ∈ Cd
J and that, at the end

of Step 2, allowed = {i s.t. i = 1, . . . J and i is not gen-constant w.r.t. K∗}. Then

Mxmn(K∗) is a convex combination of the members of Best at the end of the next

usage of Step 4.

Proof Without loss of generality, let

Mxmn(K∗) = (m1,m2,m3, . . . mf , c1, c2, . . . ccon) (6.78)

where the gen-constant co-ordinates w.r.t. K∗ are those listed with values c1, . . . ccon

above and allowed = {1, . . . f}. We also let p be such that m1 = m2 = m3 = . . . =

mp < mp+1 ≤ mp+2 ≤ . . . ≤ mf . Let

K
′

∗ = K∗ ∪ {x1 = m1, x2 = m1, . . . xp = m1} (6.79)

so that Mxmn(K∗) = Mxmn(K
′

∗) since Maximin satisfies Obstinacy (on constraint

sets).

Consider the set

Pref = {~x ∈ V (K
′

∗) s.t. xi ≥ m1 for i = 1, 2, . . . f} (6.80)

which is a convex polytope. By Lemma 3, each vertex of Pref can be expressed as

the unique solution of a constraint set of the form

K
′

∗ ∪ {xi1 = m1, xi2 = m1, . . . xig = m1} (6.81)

where i1, . . . ig are such that p + 1 ≤ i1 < i2 . . . < ig ≤ f . However,

K
′

∗ ≡ K ∪ {x1 = x2 = . . . = xp} (6.82)

since if there exists ~X ∈ V (K∗) s.t. X1 = . . . = Xp = λ 6= m1 there exists a direction

~dir parallel to G(K∗) in which all of those co-ordinates have positive change so ~dir

produces maximin-improvement from Mxmn(K∗), which is a contradiction. Hence

the constraint sets of the form (6.81) can be given equivalently by

K∗ ∪ {x1 = x2 = x3 = . . . = xp = xi1 = . . . = xig} (6.83)
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Now Mxmn(K∗) ∈ P so to prove the lemma we need to see that each system (6.83)

with a unique solution for which m1 is the minimum value of the co-ordinates that are

not gen-constant is in the final value of Best. This follows from carrying out Step 4,

so Mxmn(K∗) ∈ P is a convex combination of those unique solutions as required and

we have proved the lemma.

¥

Proof of Algorithm 125 continued Let K be as in the input of MCA4.

During the running of MCA4 at Step 2 it is always true that

Mxmn(K) = Mxmn(K∗) (6.84)

and allowed is the set of co-ordinates of K∗ that are not gen-constant w.r.t. K∗.

Then by Lemma 126, after Step 4, Mxmn(K) is a convex combination of the mem-

bers of Best, which all have the largest possible minimum of the non-gen-constants

w.r.t. K∗, m1. Thus Mxmn(K∗) = Mxmn(K) at Step 6, since Mxmn(K) remains

a solution of K∗. Now those co-ordinates with value m1 at Mxmn(K) are now

gen-constant w.r.t. K∗ but they weren’t before, so every time we complete Step 2

some co-ordinates have been deleted from allowed and d∗ = dim(K∗) has decreased

since our last usage of Step 2. This forces the algorithm to terminate and output

Mxmn(K).

¥
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6.7 Computational complexity

In this work we do not carry out a rigorous study of the computational complexity

of the different algorithms mentioned in this chapter. However, below we make a few

general remarks which can be the starting point of further research.

For the Minimax Calculation Algorithm, let the input be K ∈ Cd
J . There are

J2+J
2

EZ-constraints that can be added to K. Thus the number of constraint sets

considered at Step 2 is bounded by





J2+J
2

d



.

Definition Let n and k be positive integers such that k ≤ n. The Stirling

number of the second kind, denoted by S(n, k), is the number of equivalence relations

on the set {1, 2, . . . n} which have exactly k equivalence classes, and it is given by

S(n, k) =
1

k!

k
∑

i=0

(−1)i





k

i



 (k − i)n (6.85)

If we modified the algorithm (as suggested half way down page 145) by using a

list of all the possible equivalence relations on {0} ∪ { co-ordinates 1, 2 . . . J} which

can be expressed by the collections of added EZ-constraints, the number of such

equivalence relations we would use is bounded by S(J + 1, d + 1).

In terms of computational complexity, the Maximin Calculation Algorithm Pro-

totype is essentially similar to the Minimax Calculation Algorithm.

The Maximin Calculation Algorithm 1 seems to be a slight improvement on the

Prototype. Instead of adding





J2+J
2

d



 sets of EZ-constraints, we use





J2−J
2

d



 sets

of E-constraints. If, similarly to the above, we modified the algorithm so that the

equivalence relations on { co-ordinates 1, 2, . . . J} were considered, the number of

relations we would use is bounded by S(J, d + 1).

Maximin Calculation Algorithm 2 traverses from an initial point, eventually

reaching the Maximin solution. In practice, it can sometimes be very fast, if only
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because we can “get lucky” and only have a small number of loops of the algorithm

to traverse.

When experiments are carried out in using MCA3 with different inputs, our

progress to the Maximin solution can be thought of as curiously fast.

Finally, MCA4 uses equivalence relations for which all but one of the equivalence

classes are singletons. At the first usage of Step 3, the number of constraint sets

considered is bounded by





J

J/2



. With each repetition of step 6, the cardinality of

allowed is reduced. Hence, where J = 2Q, the total number of equivalence relations

used in the algorithm is bounded by

Bound =





2Q

Q



 +





2Q − 1

Q



 +





2Q − 2

Q − 1



 + . . . +





2

1



 (6.86)

and, since





2Q − 1

Q



 = 1
2





2Q

Q



,

2

3
Bound ≤

Q
∑

i=1





2i

i



 (6.87)

Now it can be seen that





2Q − 2

Q − 1



 = Q
4Q−2





2Q

Q



 so that the term of (6.87) given

by i = k is bounded by one half of the term given by i = k + 1 and, consequently,

Bound ≤ 3





2Q

Q



. Hence the number of equivalence relations used at Step 3 during

an entire execution of MCA 4 is bounded by O(





J

J/2



).



Chapter 7

Partly Linear inference processes

7.1 What is a PL inference process?

In [ParVen1], the authors outline desirable properties possessed by Maximum Entropy,

before proving that ME is the only inference process satisfying all of them. However

ME is not an easy inference process to calculate exactly, as the point minimising
∑J

i=1 xi log(xi) must be found, which gives us algebraic answers when the constraints

use just rational coefficients. One advantage possessed by Maximin is that, by the

Maximin Calculation Algorithm (Algorithm 101), it gives rational values to the in-

ferred beliefs when the knowledge is expressed purely in terms of rational coefficients,

so that it is “simpler” for us to write down exact answers.

By Chapter 5, Maximin also satisfies Atomic Renaming, Equivalence, Obstinacy,

Relativisation, Open-mindedness, Irrelevant Information, Language Invariance and

Piecewise Linear Loaf Continuity. We might therefore hope to be able to express

Maximin as the unique inference process that satisfies all of the properties on a

slightly different list from the list of those satisfied by ME.

The type of algorithm used to calculate Maximin is generalised by the following

definition:

Definition If K ∈ CL, dim(V L(K)) denotes the number of dimensions of the

172
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smallest affine space in RJ which contains V L(K). We use the letter d in this chapter

to denote dim(V L(K)), as opposed to dim(G(K)) in Chapter 6.

Definition A partly linear (PL) inference process NL over a language L is one

for which there exist distinct t1, t2, . . . tp s.t. for each k = 1, . . . p,

tk =

{

~x ∈ DJ s.t.
J

∑

i=1

akixi = bk

}

6= DJ (7.1)

for constants aki, bk, and for every consistent knowledge base K such that

dim(V L(K)) = d > 0, there exist distinct ti1 , . . . tid with 1 ≤ i1, i2, . . . id ≤ p such

that

{NL(K)} = V L(K) ∩
d

⋂

j=1

tij (7.2)

(see 1 below). In such a case we say that T = {t1, . . . tp} is a toolbox which allows

(us to calculate) NL and the ti’s are tools. Tools may be denoted by constraints whose

solution set they are, on the understanding that J is known and that, for example,

(x1 = x2) is the same as (2x2 = 2x1) since both expressions are abbreviations for the

tool
{

~x ∈ DJ s.t. x1 = x2

}

(7.3)

If, for K ∈ CL, NL(K) is characterised by an equation such as (7.2), we say that

the tools ti1 , . . . tid pick out NL(K). We use these terms in Chapters 7 and 8 of this

thesis.

Remark Linear functions can be thought of as having the advantage of being

easier to calculate, and it can be argued that this makes PL inference processes

more natural, in that if a rational agent is subconsciously making calculations, they

may solve a series of linear equations before comparing the possible answers in some

“simple” way, rather than choosing to minimise a non-linear function in a region of

DJ .

Definition For any overlying language L, we define the toolbox

TL
0 = {(xi = xj) s.t. 1 ≤ i < j ≤ J} (7.4)

1If dim(V L(K)) = 0, V L(K) is a singleton, so {NL(K)} = V L(K) must hold for any inference
process NL.
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and let the toolbox TL
0+ be given by

TL
0+ = TL

0 ∪ {(xi = 0) s.t. 1 ≤ i ≤ J} (7.5)

Theorem 127 For all overlying languages L, MinimaxL and MaximinL are partly

linear. TL
0+ is a toolbox allowing MinimaxL and TL

0 allows MaximinL.

Proof We consider a specific K ∈ CL such that d = dim(V L(K)). By the

Minimax Calculation Algorithm (Algorithm 94), {Mmx(K)} is the unique gener-

alised solution of a constraint set of the form

K + con1, con2, . . . condim(GL(K)) (7.6)

where the coni are E-Z constraints. Now the set of p.b.f.’s satisfying any particular

E-Z constraint is a tool in TL
0+. If we fix S ⊆ {con1, . . . condim(GL(K))} to be of

minimal cardinality such that

{Mmx(K)} = V L(K + {coni s.t. i ∈ S}) (7.7)

then S has d members and the corresponding set of tools pick out Mmx(K). Thus

MinimaxL is partly linear and TL
0+ allows MinimaxL.

Similarly, by the Maximin Calculation Algorithm 1(Algorithm 108), we see that

MaximinL is partly linear and TL
0 allows MaximinL.

¥

Notation Since
∑J

i=1 xi = 1 is true throughout DJ , the tool

(
∑J

i=1 aixi = c) can be written in the form

(

J
∑

i=1

(ai − c)xi = 0

)

(7.8)

and we shall do this to ease notation. However, some tools do not have a unique

expression of this form.

Hence in calculating a PL inference process using a given toolbox there is a finite

list of extra constraints to choose from, and when enough are added to K the possible

unique solutions include NL(K). In general one or more of the tk’s could be redundant
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i.e. the toolbox T ′ = T \tk might also allow NL. It is natural however to consider

toolboxes which have no redundancies. A strong form of such minimality is given by

the following definition.

Definition We say that a toolbox T is uniquely minimal for the PL inference

process NL iff T is a toolbox that allows NL and for any toolbox T ′ allowing NL,

T ⊆ T ′.

A PL inference process may fail to have a uniquely minimal toolbox T but any

PL inference process has at most one uniquely minimal toolbox.

Remark The same toolbox can allow many useful inference processes. For ex-

ample, for any language L, TL
0+ allows both MaximinL and MinimaxL, by Theorem

127. To calculate NL, we need to know how to choose NL(K) from the possible

unique solutions after adding the d constraints. Also a Language Invariant family

of inference processes is often referred to as a single inference process and, though

the toolboxes are finite for each overlying language, there might not necessarily be a

natural way of naming them all simultaneously.

We now introduce the properties of Irrelevant Certainty and Homogeneity so that

we can prove uniqueness results for Maximin.

Definition A language invariant family of inference processes N satisfies

Irrelevant Certainty iff for all K ∈ CL, if K ′ = K + (Bel(p′) = 0), where p′ /∈ L,

N(K)(α) = N(K ′)(α) for every α ∈ AtL. We refer to this weakening of Irrelevant

Information in Chapters 7 and 8.

Theorem 128 Let N be a Language Invariant family of inference processes satisfying

Atomic Renaming and Equivalence. Then N satisfies Irrelevant Certainty iff for all

languages L (where J = |AtL| as usual) and each K ∈ CL, if N(K) = ~X and K ′ is

given by the constraints of K on x1, . . . xJ together with

xJ+1 = xJ+2 = . . . = x2J = 0, then N(K ′) = (X1, . . . XJ , 0, 0, . . . 0) (7.9)
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Proof (⇒): Suppose that N is a Language Invariant family of inference pro-

cesses satisfying Atomic Renaming, Equivalence and Irrelevant Certainty. For some

language L, we let AtL = {α1, . . . αJ} and xi = Bel(αi) as usual. For some K ∈ CL,

let K ′ = K + {xJ+1 = 0, xJ+2 = 0 . . . x2J = 0}. The 2J atoms βi of L′ = L + p′

(where p′ is not in L) can be labelled

βi = αi ∧ ¬p′, βJ+i = αi ∧ p′ for i = 1, . . . J (7.10)

w.l.o.g., since N satisfies Atomic Renaming. Now K ′ can be equivalently expressed

as K ′′ which is the result of including
∑J

i=1 xJ+i = 0 and the constraints of K with,

for every i = 1, . . . J , every occurrence of xi replaced by xi + xJ+i. However

xi + xJ+i = Bel(α ∧ ¬p′) + Bel(α ∧ p′) = Bel(α) (7.11)

so K ′′ is equivalent to K + Bel(p′) = 0. We let

N(K ′) = N(K ′′) = ~w ∈ D2J (7.12)

By Irrelevant Certainty, N(K ′′)(α) = N(K)(α) for any α ∈ AtL so wi + wJ+i = Xi

and, as wJ+i = 0, wi = Xi for every i = 1, . . . J as required.

(⇐): We can follow the steps of the above proof in reverse order. Suppose that N

is an inference process satisfying the conditions of the hypotheses and the condition

(7.9) is always satisfied, where α1, . . . αJ enumerates the atoms of some language L.

If K ∈ CL and p′ /∈ L, let K ′ = K + {Bel(p′) = 0}. For all i = 1, . . . J , we can

label βJ+i = αi ∧ p′ and βi = αi ∧¬p′ w.l.o.g., by Atomic Renaming. Then β1, . . . β2J

enumerates the atoms of L + p′. We can rewrite K ′, up to equivalence, in the form

K ′ = K + {Bel(p′) = 0} (7.13)

so the fact that (7.9) holds shows that Irrelevant Certainty is satisfied. We have

proved the theorem.

¥
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Theorem 129 Suppose that N is a Language Invariant family of inference processes

which satisfy Equivalence and Atomic Renaming. For all languages L, let NL be given

by

NL(K) = the unique ~x for which
J

∑

i=1

f(xi) is minimal (7.14)

where the function f : [0, 1] → R is independent of J , where J = |AtL|.

Then N satisfies Irrelevant Certainty. Hence all Renyi Processes satisfy Irrelevant

Certainty.

Also, for other reasons, CM∞, Minimax, and Maximin satisfy this property.

Proof By inspecting the definitions of the form (7.14) or the definition of CM∞,

we see that the condition (7.9) holds for these inference processes so Theorem 128

shows that Irrelevant Certainty is satisfied. Also for Minimax and Maximin we can

see that (7.9) is always true, so we have proved the theorem.

¥

Definition An inference process NL is Homogeneous if whenever φ, θji ∈ SL

and constants aji, bj are fixed such that the knowledge bases

Kλ = {Bel(φ) = λ} ∪
{

s
∑

i=1

ajiBel(θji|φ) = bj for j = 1, . . . d

}

(7.15)

are consistent for all λ such that 0 ≤ λ ≤ 1 (see 2 below), then

NL(Kλ)(θ|φ) = NL(K1)(θ|φ) = NL(K)(θ) (7.16)

where K denotes K1, for all λ ∈ [0, 1] and all θ ∈ SL. We refer to this property in

Chapters 7 and 8.

Theorem 130 If N is a family of Language Invariant inference processes satisfying

Atomic Renaming, Obstinacy, Equivalence, Irrelevant Certainty, Relativisation and

Piecewise Linear Loaf Continuity, then N is Homogeneous.

Proof We assume that N is a family of inference processes satisfying the hy-

potheses of the theorem and that we have fixed a set of knowledge bases Kλ as in the

2We assume that Bel(θ|φ) = b is shorthand for Bel(θ ∧φ) = bBel(φ), so that K0 is well-defined.
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definition of Homogeneity which we write in the form

Kλ =

{

q
∑

i=1

xi = λ,

J
∑

i=1

xi = 1

}

∪
{

q
∑

i=1

ajixi = λbj for j = 1, . . . d

}

(7.17)

with a specific overlying language L. We let K = K1. As usual xi denotes Bel(αi)

for each i = 1, . . . J , where AtL = {α1, . . . αJ}. For NL to satisfy Homogeneity we

require that N(Kλ)i = λN(K)i for each i = 1, . . . q.

Without loss of generality, we may assume that J ≥ 2q. For if not consider K ′
λ

given by adding the extra variables xJ+1, . . . x2J and the constraints

xJ+1 = xJ+2 = . . . = x2J = 0 (7.18)

to Kλ. Then by Theorem 128 N(K ′
λ)i = N(Kλ)i for each i s.t. 1 ≤ i ≤ J . Hence if

Homogeneity fails for the Kλ it also fails for the K ′
λ.

Lemma 131 For each i = 1, . . . q and any λ ∈ [0, 1],

N(Kλ/2)i =
1

2
N(Kλ)i (7.19)

Proof For this proof we assume that λ = λ0. For Kλ0 , Kλ0/2 as above, define

K∗ by

K∗ = Kλ0/2 ∪
{

2q
∑

i=q+1

xi = λ0/2

}

∪
{

2q
∑

i=q+1

ajixi = bjλ0/2 for j = 1, . . . d

}

(7.20)

that is, Kλ0/2 together with a copy of those constraints on xq+1, . . . x2q. For each i such

that 1 ≤ i ≤ q, N(K∗)i = N(K∗)q+i by Atomic Renaming and N(K∗)i = N(Kλ0/2)i

by Relativisation. Define

K+ =

{

q
∑

i=1

(xi + xq+i) = λ0

}

∪
{

q
∑

i=1

aji(xi + xq+i) = λ0bj for j = 1, . . . d

}

(7.21)

Then by Atomic Renaming, N(K+)i = N(K+)q+i for i = 1, . . . q so using Obstinacy,

N(K+) = N(K+ ∪ {xi = xq+i s.t. i = 1, . . . q}) (7.22)

but we see that

V (K+ ∪ {xi = xq+i s.t. i = 1, . . . q}) ⊆ V (K∗) (7.23)
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and N(K∗) is a solution of K+ so by Obstinacy N(K+) = N(K∗). The atoms of

L are such that xi denotes Bel(αi) for each i, according to the chosen enumeration

of the atoms αi. By Atomic Renaming, if we change that enumeration, the inferred

beliefs are permuted in the corresponding way.

Choose p′ ∈ L and assume w.l.o.g. that the atoms of L\p′ are enumerated such

that β1, β2, . . . βq ∈ AtL\p′ . We label xi = Bel(βi ∧ p′) and xq+i = Bel(βi ∧ ¬p′) for

i = 1, . . . q. Then we rewrite K+:

K+ =

{

q
∑

i=1

Bel(βi) = λ0

}

∪
{

q
∑

i=1

ajiBel(βi) = λ0bj for j = 1, . . . d

}

(7.24)

Now, using the overlying language L\p′, we let yi = Bel(βi) for all i = 1, . . . J
2

and

we can now rewrite K+ as

{

q
∑

i=1

yi = λ0

}

∪
{

q
∑

i=1

ajiyi = λ0bj s.t. 1 ≤ j ≤ d

}

(7.25)

so by Theorem 128 N(K+)(βi) = N(Kλ0)(αi) for each i s.t. i ≤ q. Now

N(K+)(βi) = N(K∗)(αi ∨ αq+i) = 2N(Kλ0/2)i (7.26)

for each i = 1, . . . q so N(Kλ0/2)i = 1/2N(Kλ0)i for those values of i and we have

proved the lemma.

¥

Proof of Theorem 130 continued

Now we let the loaf K̂ (recall (3.43)) be given by

K̂ = {Kλ | 0 ≤ λ ≤ 1} (7.27)

with slices Kλ and λ-range [0, 1]. By assumption, N is Piecewise Linear Loaf Con-

tinuous so for some δ = 2−k, where k ∈ N, and some ~X ∈ V L(K0) and ~u ∈ RJ ,

N(Kλ) = ~X + λ~u (7.28)

for all λ ∈ [0, δ]. Since x1 + x2 . . . + xq = 0 is a constraint of K0, X1 = . . . = Xq = 0.

Hence for each i = 1, . . . q, and all λ such that λ ≤ δ, N(Kλ)i = λui.
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Claim(w) For each i = 1, . . . q N(Kλ)i = λui for every λ s.t. 0 ≤ λ ≤ 2w−k.

Proof of claim We prove this by induction on w = 0, . . . k, using Lemma 131.

Base Case w = 0 Since δ = 2−k, N(Kλ)i = λui for any λ ≤ 20−k and for each

i = 1, . . . q.

Inductive Step Assume that (Inductive Hypothesis) N(Kλ)i = λui for all

i = 1, . . . q and λ ∈ [0, 2w−k]. If

λ ∈ [0, 2w+1−k], λ/2 ∈ [0, 2w−k] (7.29)

so N(Kλ/2)i = uiλ/2 and by Lemma 131, 2N(Kλ/2)i = λui = N(Kλ)i, completing

the Inductive Step. The linear formula for N(Kλ)i holds for λ ∈ [0, 2w+1−k].

Hence for all λ ∈ [0, 1] and every i = 1, . . . q, N(Kλ)i = λui, proving the claim.

Thus N is Homogenous and we have proved the theorem.

¥

Corollary 132 Minimax and Maximin satisfy Homogeneity.

Proof Due to various results proved in Chapter 3 and Chapter 5, Minimax and

Maximin satisfy the hypotheses of Theorem 130. Hence the corollary follows.

¥

Theorem 133 All of the Renyi Processes satisfy Homogeneity.

Remark Since the Renr processes for which r 6= 2 do not satisfy Piecewise

Linear Loaf Continuity, we cannot use Theorem 130 to deduce Homogeneity for these

inference processes.

Proof We first consider the case of RenR, where R is a fixed real number and

R > 1.

We fix a set of knowledge bases Kλ as in the definition of Homogeneity which we

write, as in (7.17), in the form

Kλ =

{

q
∑

i=1

xi = λ,

J
∑

i=1

xi = 1

}

∪
{

q
∑

i=1

ajixi = λbj for j = 1, . . . d

}

(7.30)
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with a specific overlying language L, and we define K to be K1. As usual xi denotes

Bel(αi) for each i = 1, . . . J , where AtL = {α1, . . . αJ}. We need to prove that

RenR(Kλ)i = λRenR(K)i for all λ ∈ [0, 1] and each i = 1, . . . q. The case λ = 0 is

trivial.

Notation In general, let (~a,~b, c, d, ...) be shorthand for the vector

(a1, a2, . . . am, b1, . . . bn, c, d, ...) (7.31)

where ~a ∈ Rm,~b ∈ Rn etc.. We use this in Chapters 7 and 8.

By definition of the Kλ, if

V L(K) = {~x = (~z, 0, 0, 0, . . . 0) s.t. ~x ∈ DJ and ~z ∈ P} (7.32)

where P is a convex polytope which is a subset of Dq, then for all Kλ,

V L(Kλ) = {~x = (λ~z, xq+1, . . . xJ) s.t. ~x ∈ DJ and ~z ∈ P} (7.33)

In particular, xq+1 + . . .+xJ = 1−λ is implied by the above condition and RenR will

make these xi all equal to 1−λ
J−q

by Atomic Renaming. Let RenR(K) = (~Z, 0, 0, 0 . . . , 0),

where ~Z ∈ P .

Suppose for contradiction that, for some λ0 ∈ (0, 1] and some ~Z ′ ∈ P not equal

to ~Z,

RenR(Kλ0) =

(

λ ~Z ′,
1 − λ

J − q
, . . .

1 − λ

J − q

)

(7.34)

Since RenR(K) = (~Z, 0, . . . 0) and ( ~Z ′, 0 . . . , 0) ∈ V L(K),

q
∑

i=1

ZR
i <

q
∑

i=1

Z ′R
i (7.35)

However, multiplying (7.35) by λR
0 and adding (J − q)

(

1−λ0

J−q

)R

shows that

(

λ0
~Z,

1 − λ

J − q
, . . .

1 − λ

J − q

)

(7.36)

has a smaller value of
∑J

i=1 xR
i than RenR(Kλ0), which is a contradiction. Hence the

Renr for which r > 1 satisfy Homogeneity. By a very similar argument we see that

the Renr for which 0 < r < 1 also satisfy this property.
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Thus for every r s.t. 0 < r < 1 and all λ ∈ [0, 1],

Renr(Kλ)(θ|φ) = Renr(K1)(θ|φ) (7.37)

for all θ ∈ SL, where φ =
∧q

i=1 αi as in (7.17). Taking limits as r ր 1 gives

ME(Kλ)(θ|φ) = ME(K1)(θ|φ) (7.38)

by [Moh]. Hence Maximum Entropy satisfies Homogeneity and we have proved the

theorem.

¥

Theorem 134 CM∞ satisfies Homogeneity.

Proof We fix a set of knowledge bases Kλ as in the proof of Theorem 133. If we

now take limits of (7.37) as r ց 0 we obtain

CM∞(Kλ)(θ|φ) = CM∞(K1)(θ|φ) (7.39)

by Theorem 32, so CM∞ also satisfies Homogeneity and we have proved the theorem.

¥
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7.2 Showing that some PL inference processes have

uniquely minimal toolboxes

For some PL inference processes NL there may not exist a uniquely minimal toolbox.

However in this section we show that uniquely minimal toolboxes exist for MinimaxL

and MaximinL, for all overlying languages L. When we calculate an inference process

NL that satisfies Obstinacy and Atomic Renaming it is useful to observe symmetries

in the knowledge base K and if, for example, interchanging x1 and x2 in the con-

straints of K does not change V L(K), then x1 = x2 is true at NL(K). Hence it

should not surprise us that the tools (xi = xj) can be found in toolboxes which allow

NL but, as the following theorem shows, it is impossible to avoid using them!

Theorem 135 If NL, allowed by a toolbox T , is a PL inference process satisfying

Obstinacy, Equivalence and Atomic Renaming, (xi = xj) ∈ T for all i, j s.t.

1 ≤ i < j ≤ J .

Proof To prove this we consider a selection of knowledge bases at which we can

find the value of NL just by assuming the properties of NL given by the hypotheses

of the theorem. We let Λ be given by

Λ =

{

~λ ∈ RJ−2 s.t. ~λ is non-negative and λ =
J−2
∑

i=1

λi < 1

}

(7.40)

and define, for all ~λ ∈ Λ,

K~λ =

{

x1 = λ1, x2 = λ2, . . . xJ−2 = λJ−2,
J

∑

i=1

xi = 1

}

(7.41)

which is a function of the variable ~λ.

Notation Let (~a · ~x = 0) denote the tool (
∑J

i=1 aixi = 0), where ~a ∈ RJ . Then

V L(K~λ) =

{

(~λ, c − τ, c + τ), where c =
1

2
(1 − λ) and − c ≤ τ ≤ c

}

(7.42)

and by symmetry between xJ−1 and xJ , NL(K~λ) = (~λ, c, c). Since NL is partly linear,

one tool from T , say (~a
~λ ·~x = 0), dependant on ~λ, is added to K~λ to pick out NL(K~λ).
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Now

λ1a
~λ
1 + λ2a

~λ
2 + . . . + λJ−2a

~λ
J−2 +

1

2
(1 − λ1 − . . . − λJ−2)(a

~λ
J−1 + a

~λ
J) = 0 (7.43)

Rearranging (7.43) gives

λ1(2a
~λ
1−a

~λ
J−1−a

~λ
J)+λ2(2a

~λ
2−a

~λ
J−1−a

~λ
J)+. . .+λJ−2(2a

~λ
J−2−a

~λ
J−1−a

~λ
J)+a

~λ
J−1+a

~λ
J = 0

(7.44)

For every ~λ ∈ Λ, some ~a
~λ for which (~a

~λ · ~x = 0) ∈ T satisfies (7.44) because T allows

NL. Suppose for contradiction that the set of ~λ values covered by each tool in T

(in the sense of (7.44)) can be contained in the intersection of a (J − 3)-dimensional

affine set and Λ. Then Λ is covered by a finite union of (J − 3)-dimensional affine

sets, so we have a contradiction. Hence for some ~a = ~A, (~a · ~x = 0) ∈ T must satisfy

(7.44) for a (J − 2)-dimensional affine space of values of ~λ ∈ RJ−2 and hence for all

~λ ∈ RJ−2. By inspecting the cases of ~λ = (1, 0, 0, . . . 0), ~λ = (0, 1, 0, . . . 0) etc. we see

that

AJ−1 + AJ = A1 = A2 = A3 = . . . = AJ−2 = 0 (7.45)

so the tool used for these knowledge bases is (xJ−1 = xJ) ∈ T . Similarly, by symme-

try, (xi = xj) must be in the toolbox for every i, j s.t. 1 ≤ i < j ≤ J and we have

proved the theorem.

¥

Corollary 136 For any overlying language L, TL
0 is a uniquely minimal toolbox for

MaximinL.

Proof By Theorem 127, TL
0 allows MaximinL. Since MaximinL satisfies Ob-

stinacy, Equivalence and Atomic Renaming (Chapter 5) every (xi = xj) must be in

all toolboxes that allow it, by Theorem 135. We have proved the corollary.

¥

Theorem 137 If L is a language such that |L| > 1, TL
0+ is a uniquely minimal

toolbox for MinimaxL.
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Proof Let T be a fixed toolbox that allows MinimaxL, for some language L s.t.

|L| > 1. Since MinimaxL satisfies Obstinacy, Equivalence and Atomic Renaming

(Chapter 3) all tools of the form (xi = xj) must be in T by Theorem 135. Now we

let M denote the set of non-negative ~µ ∈ RJ−1 s.t. µ1 > µ2 > 0 and
∑J−1

i=1 µi = 1.

For all ~µ ∈ M , we define

K~µ =

{

x1 = xJ + µ1, x3 = µ3, x4 = µ4, . . . xJ−1 = µJ−1,
J

∑

i=1

xi = 1

}

(7.46)

Then

V L(K~µ) = {(τ + µ1, µ2 − 2τ, µ3, . . . µJ−1, τ) s.t. 0 ≤ τ ≤ µ2/2} (7.47)

= {(~µ, 0) + (τ,−2τ, 0, 0, . . . 0, τ) s.t. 0 ≤ τ ≤ µ2/2} (7.48)

using the notation from the proof of Theorem 135. We can calculate Minimax by

ignoring the K~µ-constant co-ordinates (Corollary 43) and the maximum value of the

others is x1, which is minimal when τ = 0 so

Mmx(K~µ) = (~µ, 0) (7.49)

T allows MmxL so for all ~µ ∈ M , there exists ~a~µ for which (~a · ~x = 0) ∈ T and

a~µ
1µ1 + a~µ

2µ2 + . . . + a~µ
J−1µJ−1 = 0 (7.50)

We follow a similar argument to the proof of Theorem 135. Now M is

(J − 2)-dimensional and cannot be covered by a finite union of (J − 3)-dimensional

affine spaces. Thus, since T is finite, for some ~a = ~A, the fixed tool ( ~A · ~x = 0) must

satisfy (7.50) for a (J − 2)-dimensional set of the ~µ so that it picks out MmxL(K~µ).

Hence it satisfies (7.50) for all ~µ ∈ RJ−1 s.t.
∑J−1

i=1 µi = 1. By inspecting the cases of

~µ = (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0) . . . and (0, 0, . . . , 1) respectively,

A1 = A2 = . . . = AJ−1 = 0 (7.51)

Hence the tool that picks out MmxL for these knowledge bases is (xJ = 0). By

symmetry, (xi = 0) ∈ T for every i such that 1 ≤ i ≤ J when T allows MinimaxL.

By Theorem 127, TL
0+ allows MinimaxL so we have proved the theorem.

¥
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7.3 Some uniqueness results for Maximin

Since every Obstinate PL inference process satisfying Atomic Renaming must have

all possible tools (xi = xj) in its toolbox it is natural for us to define the simplest

class of Partly Linear inference processes as follows:

Definition Given an overlying language L, a PL0 inference process is one allowed

by the toolbox TL
0 = {(xi = xj) s.t. 1 ≤ i < j ≤ J}.

Theorem 138 Maximin is the only Language Invariant family of PL0 inference

processes satisfying Obstinacy, Equivalence, Atomic Renaming, Piecewise Linear Loaf

Continuity, Irrelevant Certainty and Homogeneity.

Proof By the results of Chapter 5 and Theorem 130, Maximin satisfies the

properties listed above. Now it remains for us to prove that Maximin is uniquely

characterised by those properties.

We fix N to be a Language Invariant family of PL0 inference processes satisfying

the above properties. Suppose for contradiction that for some overlying language L

and K ′ ∈ CL, N(K ′) = ~a 6= ~b = Mxmn(K ′) and let

V = {~x = ~a + τ(~b − ~a) | τ ∈ R and ~x is non-negative } (7.52)

We now consider a knowledge base K ∈ CL for which V = V L(K). We know that

we can do this by Lemma 4. Then since N and Maximin satisfy Obstinacy and

K ′ + K ≡ K, N(K + K ′) = N(K) = N(K ′) and Mxmn(K) = Mxmn(K ′) so

N(K) 6= Mxmn(K).

Suppose that, for some language L, there exists K ∈ CL s.t. N(K) 6= Mxmn(K)

and V L(K) is 1-dimensional, i.e. it is a line segment. The following two claims show

that we can, w.l.o.g., assume certain things about K in order to prove Theorem 138.

Claim Without loss of generality, we can assume that IL(K) 6= ∅.

Proof of claim Let L′ = L + p′ for some p′ /∈ L and let K∗ be the constraints

of K together with the extra co-ordinates J + 1, . . . 2J and constraints

xJ+1 = xJ+2 = . . . = x2J = 0 (7.53)
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Now MaximinL′

and NL′

satisfy Irrelevant Certainty so invoking Theorem 128, we

see that

MxmnL′

(K∗)i = MxmnL(K)i and NL′

(K∗)i = NL(K)i (7.54)

for each i = 1, . . . J so Mxmn(K ′) 6= N(K ′). Also |IL′

(K∗)| ≥ J and

V L′

(K∗) = {(~x, 0, 0, . . . 0)|~x ∈ V L(K)}, which is 1-dimensional.

¥

Claim If K has a constant co-ordinate, say J w.l.o.g., with constant value 1−c

then {N(K)} = V L(K) ∩ (xi = xj) for some i 6= J, j 6= J .

Proof of claim Let V L(K) = { non-negative (c(~v + τ ~w), 1 − c) s.t. τ ∈ R}

where ~w is some fixed direction vector and N(K) = (c~v, 1 − c). We assume w.l.o.g.

that K includes the constraint
∑J−1

i=1 xi = c and that none of the other constraints of

K refer to xJ . We assume w.l.o.g. (by Atomic Renaming) that

K =

{

J−1
∑

i=1

xi = c,

J
∑

i=1

xi = 1

}

∪
{

J−1
∑

i=1

ajixi = cbj for j = 1, . . . d

}

(7.55)

where the aji’s and bj’s are real constants. Define, for all µ ∈ [0, 1],

Kµ =

{

J−1
∑

i=1

xi = µ,
J

∑

i=1

xi = 1

}

∪
{

J−1
∑

i=1

ajixi = µbj for j = 1. . . . d

}

(7.56)

Now by inspecting the constraints we see that

V L(Kµ) = {non-negative (µ(~v + τ ~w), 1 − µ)} (7.57)

so that Kc ≡ K and by the Homogeneity of N ,

N(Kµ) = (µ~v, 1 − µ) (7.58)

for all µ such that 0 ≤ µ ≤ 1. If the tool used to pick out N(Kµ) is (xi = xJ) for

some i s.t. 1 ≤ i < J then

µvi = (1 − µ) (7.59)

Hence such a tool can only pick out N(Kµ) for one value of µ. There are infinitely

many values of µ and each must have a tool in the finite toolbox TL
0 to pick out

N(Kµ). Hence some tool (xi = xj) for which neither i nor j equal J must work for
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some value of µ, say µ = µ′. However then µ′vi = µ′vj so that condition must hold

for all µ. Thus we can always use a tool of the form (xi = xj) s.t. neither i nor j are

K-constant, to pick out NL(K). Hence we have proved the claim.

¥

Proof of Theorem 138 continued For the rest of this proof, we assume

w.l.o.g. that K and L are fixed such that V L(K) is 1-dimensional, IL(K) 6= 0,

N(K) 6= Mxmn(K) and a tool of the form (xi = xj) picks out N(K), where i and j

are not K-constant co-ordinates.

Using Atomic Renaming, we can write w.l.o.g.,

V L(K) = {~x = (p1 + q1τ, p2 + q2τ, . . . pl−1 + ql−1τ, τ, t1, t2, . . . tr, 0)}

∩{~x ∈ RJ s.t. xi ≥ 0 for every i = 1, 2, . . . J} (7.60)

where ti, pi, qi are constants and the q′is are non-zero. Now for all real, non-negative

λ, define

Kλ =
{

x1 = p1 + (q1 − 1)
xJ

l
+ q1xl, x2 = p2 + (q2 − 1)

xJ

l
+ q2xl, . . .

xl−1 = pl−1 + (ql−1 − 1)
xJ

l
+ ql−1xl, xl+1 = t1, xl+2 = t2, . . . xl+r = tr, xJ = λ

}

(7.61)

Let h be maximal such that Kh is consistent, then {Kλ| 0 ≤ λ ≤ h} is a loaf and

K0 ≡ K. To write a solution of Kλ in a format similar to (7.61), let the parameter

τ be given by τ = xl + λ
l
. Then

Vλ = V L(Kλ) =
{

~x ∈ RJ |xi ≥ 0 for i = 1, . . . J and

~x =

(

p1 −
λ

l
+ q1τ, p2 −

λ

l
+ q2τ, . . . pl−1 −

λ

l
+ ql−1τ, τ − λ

l
, t1, . . . tr, λ

)}

(7.62)

Each solution of Kλ, ~x is uniquely specified by the values of λ and τ as in (7.62).

At ~a = N(Kλ), as at ~b = Mxmn(Kλ) two of the non-constant co-ordinates 1, . . . l

are equal in value which are not equal throughout Vλ as long as Vλ is infinite; this is

because of the claim above, and the fact that N and Mxmn are both PL0. Let

Gλ = GL(Kλ) (7.63)
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If we fix i = i′, j = j′ such that 1 ≤ i′ < j′ ≤ l either xi′ = xj′ for every ~x ∈ Gλ (so

for all λ, τ), xi′ 6= xj′ in every case, or xi′ = xj′ iff

τ = mi′j′ =
pi′ − pj′

qj′ − qi′
(7.64)

(where for xl, define pl = 0, ql = 1) for every λ. Now given λ the range of values

of τ for which ~x is non-negative is governed by the non-constant co-ordinates. As λ

increases the lower bounds given by those i for which qi > 0 increase and the upper

bounds given by the cases qi < 0 decrease until when λ = h there exists a unique

solution of Kh for which τ = X, say.

By Piecewise Linear Loaf Continuity of N and of Maximin the choices of mij ,

say respectively N(λ) and Mxmn(λ), must be continuous functions of λ. As there

are finitely many mij’s, N(λ) and Mxmn(λ) are constant functions. As λ → h,

N(λ) → X and Mxmn(λ) → X (7.65)

by the sandwich rule for limits but this is not possible unless N = Maximin at K0,

contradicting the initial assumption. Hence N = Maximin and we have proved the

theorem.

¥

Remark Surprisingly, the above proof, in effect, proves a uniqueness theorem for

the listed properties of Maximin which does not refer to the definition of Maximin

at all. Also, as we proved in Chapter 5, the inference process uniquely characterised

by the theorem, i.e. Maximin, turns out to satisfy Irrelevant Information and Open-

mindedness as well.

Corollary 139 Maximin is the only Language Invariant family of PL0 inference

processes satisfying Obstinacy, Equivalence, Atomic Renaming, Piecewise Linear Loaf

Continuity, Relativisation, Open-mindedness and Irrelevant Information.

Proof By the results of Chapter 5, we know that Maximin satisfies each of the

properties listed in the corollary. If some other family of Language Invariant inference
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processes exists, say N , satisfying these properties, then by Theorem 130 N satisfies

Homogeneity. Also Irrelevant Information implies Irrelevant Certainty so N gives us

a contradiction, in light of Theorem 138. Hence we have proved the corollary.

¥

Remark Maximin also has another attractive feature. When calculating a

general PL inference process NL there might not be a simple algorithm which, when

we input K ∈ CL, determines the tools that pick out NL(K), but for Maximin we

need only compare numbers in size. Thus Maximin can justifiably claim to be the

“best simple PL inference process there is”.

Definition A PL1 inference process is a partly linear inference process allowed

by a toolbox containing only tools of the form (a1x1 + a2x2 + . . . + aJxJ = 0) for

which
∑J

i=1 ai = 0.

The following theorem provides a slight strengthening of Theorem 138.

Theorem 140 Maximin is the only Language Invariant family of PL1 inference

processes satisfying Obstinacy, Equivalence, Atomic Renaming, Piecewise Linear Loaf

Continuity, Irrelevant Certainty and Homogeneity.

Proof This can be proved similarly to Theorem 138. Any tool used for a PL1

inference process N is applied without involving a constant co-ordinate for essentially

the same reason. Also the tools, like (xi = xj), can be seen to contain a point ~x of

the form (7.62) or not, independently of λ. Then Piecewise Linear Loaf Continuity

guarantees that N and Mxmn keep the same value of τ as λ varies, leading to the

same contradiction as before if N(K) 6= Mxmn(K).

¥
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7.4 The properties not satisfied by Maximin

We have found (see Chapter 5) that Maximin satisfies all nine of the Par-Ven Prop-

erties apart from Independence and Continuity. The following theorems confirm that,

among PL inference processes, Maximin is the closest it can be to ME in terms of

that list of desiderata.

Remark We should not find the following theorem surprising since for an infer-

ence process NL to give the right answers to satisfy Independence requires it to show

non-linear behaviour.

Theorem 141 If L = {p1, p2, p3}, no PL inference process NL satisfies

Independence.

Proof Suppose that NL is a PL inference process and satisfies Independence.

Then for all knowledge bases of the form

K1,b,c = {Bel(p1) = 1, Bel(p2|p1) = b, Bel(p3|p1) = c} (7.66)

for which 0 ≤ b ≤ c ≤ 1/2,

NL(K1,b,c)(p1 ∧ p2 ∧ p3) = bc (7.67)

The standard ordering on the atoms of L leads to the expression

K1,b,c = {x5 = x6 = x7 = x8 = 0, x1 + x2 + x3 + x4 = 1, x1 + x2 = b, x1 + x3 = c}

(7.68)

and, when we let V (b, c) denote V L(K1,b,c),

V (b, c) = {(τ, b − τ, c − τ, 1 + τ − b − c, 0, 0, 0, 0) s.t. 0 ≤ τ ≤ b} (7.69)

Let T be a toolbox which allows NL and suppose that (~a · ~x = 0) is the tool in

T which picks out NL(K1,b,c), denoted by Ind(b, c), which is the solution given by

τ = bc. Then

a1bc + a2b(1 − c) + a3c(1 − b) + a4(1 − c)(1 − b) = 0 (7.70)
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and ai are not all zero for i = 1, 2, 3, 4, since if they are (~a · ~x = 0) is not a tool.

Given ~a, the set of values of b, c which satisfy satisfy (7.70) is a quadratic curve.

For every tool t in the toolbox allowing NL, the set of values (b, c) for which t

picks out NL(K1bc) = Ind(b, c) is a quadratic curve. However the toolbox is finite,

and the set of values (b, c) for which 0 ≤ b ≤ c ≤ 1/2 cannot be covered by a union of

finitely many quadratic curves, so we have deduced a contradiction and proved the

theorem.

¥

Theorem 142 If NL is a PL inference process satisfying Equivalence and |L| ≥ 2,

NL is not continuous.

Remark In this thesis we only consider inference processes that satisfy Equiv-

alence and Continuity makes no sense without it since the Blaschke distance

∆(K,K ′) = 0 when K ≡ K ′.

Proof Suppose for contradiction that NL is a PL inference process satisfying

Equivalence and Continuity and that |L| ≥ 2. We introduce some notation just for

this proof.

Notation Let Tri be the triangle with vertices

(1, 0, 0, 0, 0, . . . 0), (0, 1, 0, 0, . . . 0), (0, 0, 1, 0, 0, . . . 0) (7.71)

If ~y and ~z are distinct points on the boundary of Tri with vertices which do not

lie on the same edge of Tri, we can, by Lemma 4 write a knowledge base which we

denote by K~y,~z, determined up to Equivalence, for which V L(K~y,~z) is the line segment

connecting ~y and ~z.

For any such K~y,~z, every co-ordinate apart from the first 3 is constant with value

zero. The tools that pick out NL(K~y,~z), of the form (~a · ~x = 0), are identified in this

proof purely by a1, a2, a3, without loss of generality. From now on the p.b. functions

are given by ~x ∈ D3, so the co-ordinates 4, . . . J are ignored since

x4 = x5 = . . . = xJ = 0 for every p.b. function ~x we consider until the end of this

proof.
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Definition If ~X ∈ D3 is strictly positive and θ ∈ R, let

Line( ~X, θ) = {~x = ~X + λ(cosθ, sinθ, (−cosθ − sinθ)) s.t. ~x ∈ D3} (7.72)

θ is the angle in the x1-x2 plane of the direction parallel to the line segment Line( ~X, θ)

with the rate of change of x3 chosen to be such that x1 + x2 + x3 is constant, so that

the end points of Line( ~X, θ) are on the boundary of D3. Thus every line segment con-

taining ~X which is the intersection of D3 and an infinite line is of the form Line( ~X, θ).

Lemma 143 If ~X is constant, Line( ~X, θ) is a continuous function of θ in the

Blaschke topology.

Proof Let θ → θ0 ∈ R. Now sin, cos are continuous and by inspecting (7.72),

we see that for all θ,
∑3

i=1 xi = 1 for every ~x ∈ Line( ~X, θ). Hence the set of values

of λ for which the ~x in (7.72) are non-negative is the interval

[λlower(θ), λupper(θ)] (7.73)

where λlower and λupper are continuous functions of θ bounded away from zero. As

θ → θ0 the corresponding end points of Line( ~X, θ) tend to those of Line( ~X, θ0). By

Lemma 11, we complete the proof of this lemma.

¥

Proof of Theorem 142 continued

Case 1 For every K = K~y,~z, NL(K)i = 0 for some i = 1, 2 or 3.

In this case, for every K~y,~z, NL(K~y,~z) = ~y or ~z. Consider those K~y,~z for which

~X = (1/3, 1/3, 1/3) is a solution. The solution sets of these K~y,~z are of the form

Line( ~X, θ), with θ taking all real values. The inference process is choosing an end

point from each solution set, i.e. choosing λ = λlower or λ = λupper as in (7.72). If,

when θ = 0, the upper limit of λ, λupper(0) = 1/3, is chosen, then

NL

(

x2 =
1

3
, x1 + x3 =

2

3

)

=

(

2

3
,
1

3
, 0

)

(7.74)

However, when θ = π, λ = λlower(0) = −1/3 must be chosen to get the same answer

from the same knowledge base. We now see that this contradicts the continuity of
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NL. Indeed λupper and λlower vary continuously and are bounded away from zero as

θ varies from 0 to π and λupper is positive, λlower negative. Since the choice of value

of λ must vary continuously (using Lemma 143 and continuity of NL), λ = 0 must

be chosen at some point, i.e. NL(K~y,~z) = ~X, which is a contradiction.

Similarly a contradiction arises if when θ = 0, λlower(0) is chosen.

Case 2 For some K = K~y,~z, NL(K) is strictly positive, i.e. in the interior of D3.

In this case, let K0 be such a K and w.l.o.g., we may assume that there is only

one tool t such that

V L(K) ∩ t = {NL(K)} (7.75)

If not, note that there are only finitely many points where different tools intersect.

Thus by choosing ~y′ and ~z′ close enough to ~y, ~z respectively, V L(K~y′,~z′) is as close

as we want to V L(K~y,~z) such that none of those intersections lie on it. Since NL is

continuous, we may assume that NL(K~y′,~z′) is strictly positive.

Now we look at V L(K0) in the form Line( ~X, θ0) of (7.72) where X = NL(K0) is

fixed and θ takes the value θ = θ0. We assume that t is the only tool in the toolbox

allowing NL for which

t ∩ Line( ~X, θ0) = { ~X} (7.76)

so every other tool is bounded away from ~X, say at least δ away.

We let a function of real-valued θ be given by

Nrotate(θ) = NL(K( ~X, θ)) (7.77)

where K( ~X, θ) is a knowledge base with solution set Line( ~X, θ). By Lemma 143 this

is a continuous function and Nrotate(θ0) = ~X. However the quantity

|Nrotate(θ) − ~X| (7.78)

also varies continuously, always taking the value zero or at least δ. By the Inter-

mediate Value Theorem it must be constant at zero. Hence NL(t) = ~X, which is a

contradiction since t is the only tool passing through ~X.
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We have proved the theorem in both cases.

¥



Chapter 8

Introducing MeanimaxL, an

interesting counterexample

In the book [Par] many Language Invariant inference processes are mentioned of the

form

N(K) = the unique ~x for which
J

∑

i=1

f(xi) is minimal (8.1)

where the function f : [0, 1] → R is independent of J .

Theorem 144 If N satisfies the conditions above, N satisfies Atomic Renaming,

Obstinacy, Relativisation and Irrelevant Certainty.

Proof Atomic Renaming is a property of N because the definition is symmetrical

w.r.t. any permutation of the variables xi.

Obstinacy holds because, when the overlying language is fixed, the inference pro-

cess chooses the solution of the knowledge base which is minimal w.r.t. a fixed partial

ordering - recall Theorem 9.

We may generalise the proof of that used in [Par] to prove that Maximum

Entropy satisfies Relativisation, to show that Relativisation is satisfied by all

inference processes N of the form (8.1). For Irrelevant Certainty, we are done by

Theorem 129. We have proved the theorem.

¥

196
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Remark It might then seem reasonable for us to suppose that Irrelevant Cer-

tainty is always a consequence of Language Invariance, Atomic Renaming, Obstinacy

and Relativisation.

However the inference process MeanimaxL which we define in this chapter pro-

vides a counterexample to any such conjecture, even if we limit our attention to

Piecewise Linear Loaf Continuous processes.

Notation We shall consider the overlying language L to be fixed, so J is known.

Then dis(x) denotes |x − 1
J
| for all real numbers x.

Definition For all ~x ∈ RJ define ~̃x to be the unique vector ~̃x which is a permu-

tation of (dis(x1), . . . dis(xJ)) such that x̃1 ≥ x̃2 . . . ≥ x̃J . Then the inference process

MeanimaxL (where J = |AtL|) is given by:

MeanimaxL(K) = the unique ~̃x which is minimal

in the lexicographic ordering (8.2)

and it is abbreviated to MeanxL. We will show below that this is well-defined. Just

as we did for the cases of Minimax and Maximin, we define the meanimax ordering

to be the partial ordering of vectors in RJ such that ~x is meanimax-better than ~y iff

~̃x is before ~̃y lexicographically. Thus MeanxL(K) is the meanimax-best solution of

K.

Definition In this chapter, d1, d2 . . . dJ are functions of K ∈ CL given by:

d1 = min{max1≤i≤Jdis(xi) | ~x ∈ V L(K)} (8.3)

and then

dk+1 = min{max dis(xi) | there exist i1, i2, . . . ik distinct from i and from each other

and s.t. dis(xi1), dis(xi2) . . . dis(xik) are equal to d1, d2, . . . dk respectively where

~x ∈ V L(K)}.

Then we can see that MeanxL(K) is a vector ~X in ~VL(K) such that

(dis(X1), dis(X2), . . . dis(XJ)) is a permutation of (d1, d2, . . . dJ). In other words,

˜MeanxL(K) = (d1, d2, . . . dJ) (8.4)
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In this chapter, we use the notation ˜ in the MeanimaxL sense, unless otherwise

stated.

MeanimaxL minimises the maximum distance of an atomic belief from the av-

erage, 1/J , and then minimises the maximum distance of the others from 1/J etc..

As with Minimax, Maximin etc. the minima required exist at every stage because

V L(K) is a compact subset of DJ . Now d1 ≥ d2 ≥ . . . ≥ dJ and we can see this in

a similar way to the proof of Lemma 27. d1 is the smallest possible largest value of

dis(xi) when ~x ∈ V L(K) and then if such an ~x satisfies x̃1 = d1, the smallest possible

largest value of dis(xi), when one occurrence of d1 is ignored, is d2 so d1 ≥ d2 etc..

Theorem 145 Given K ∈ CL, there exists a bijection σ : {1, 2, . . . J} → {1, 2, . . . J}

and ~side ∈ {0, 1}J such that for each k = 1, 2, . . . J and all ~x ∈ V L(K) s.t.

x̃1 = d1, . . . x̃k = dk,

xσ(i) =
1

J
+ (−1)sideidi (8.5)

for each i = 1, 2, . . . k.

Definition If, given K, the identity permutation can fulfil the role of σ above,

we say that K admits the identity permutation w.r.t. Theorem 145.

Remark Although we shall specify w.l.o.g. that σ is the identity permutation,

as we have done in the cases of Maximin and Minimax, we do not specify w.l.o.g.

a particular value of ~side.

Essentially given that the furthest k atomic beliefs from 1
J

(allowing for duplicates

in the same sense as “k largest” was used for Minimax) are d1, d2, . . . dk away not

only can we fix k distinct co-ordinates whose values must be 1
J
± di but also whether

their values are above or below 1
J
.

Proof of Theorem 145 We do this by induction on k = 1, . . . J .

Base Case k = 1 Suppose that no such pair (σ(1), side1) exists. Then for every

i = 1, . . . J and s = 0 or 1, there exists ~X(i,s) ∈ V L(K) s.t. X̃
(i,s)
1 = d1 and

X
(i,s)
i 6= 1

J
+ (−1)sd1 (8.6)
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otherwise σ(1) = i, side1 = s would work. Now, in a similar way to the proof of

Theorem 28, taking the average gives a contradiction, indeed if

~y =
1

2J

J
∑

i=1

( ~X(i,0) + ~X(i,1)) (8.7)

then by convexity of V L(K), ~y ∈ V L(K). Since every X̃
(i,s)
1 = d1,

X
(i,s)
j ∈ I1 =

[

1

J
− d1,

1

J
+ d1

]

(8.8)

for every i, j ∈ {1, . . . J}, for s = 0 and s = 1. By convexity of I1, all of the values of

~y are in I1, so ỹ1 ≤ d1. Since d1 is the minimum possible value of x̃1 when ~x ∈ V L(K),

ỹ1 = d1 so for some j′ such that 1 ≤ j′ ≤ J and s′ = 0 or 1, yj′ = 1
J

+ (−1)s′d1.

Suppose that s′ = 0. Then

2Jyj′ =
J

∑

i=1

X
(i,0)
j′ +

J
∑

i=1

X
(i,1)
j′ ≤ X

(j′,0)
j′ + (2J − 1)

(

1

J
+ d1

)

(8.9)

but X
(j′,0)
j′ < 1

J
+ d1 by definition so 2Jyj′ < 2J

(

1
J

+ d1

)

and yj′ < ( 1
J

+ d1), which is

a contradiction. We get a similar contradiction if s′ = 1, completing the Base Case.

Inductive Step We assume (I.H.) that we have fixed distinct σ(1) . . . σ(k) and

side1 . . . sidek such that for all solutions ~x of K s.t. x̃i = di for each i = 1, . . . k,

xσ(i) =
1

J
+ (−1)sideidi (8.10)

for those values of i.

Assume for contradiction that there do not exist σ(k+1) distinct from σ(1) . . . σ(k),

together with sidek+1 ∈ {0, 1} such that for every ~x ∈ V L(K) s.t. x̃1 = d1 . . . . . .

x̃k+1 = dk+1, xσ(i) = 1
J

+ (−1)sideidi for every i s.t. i ≤ k + 1. Let

Others = {1 . . . J} \ {σ(1), . . . σ(k)} (8.11)

Then we let ~x ∈ V L(K) be s.t. xσ(i) = 1
J

+ (−1)sideidi for every i = 1 . . . k and

suppose that the largest dis(xg) for which g ∈ Others is dk+1. Just as for the Base

Case, for every g ∈ Others ~X(g,s) exist whose values at all c’th co-ordinates, where

c ∈ Others, are in the interval

Ik+1 =

[

1

J
− dk+1,

1

J
+ dk+1

]

(8.12)
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If ~y is the average of these ~X(g,s), then yσ(i) = 1
J

+ (−1)sideidi for i = 1, . . . k; but if

the next furthest value yj′ from 1
J

is 1
J

+(−1)s′dk+1 then a contradiction follows since

X
(j′,0)
j′ < 1

J
+ dk+1 if s′ = 0, while X

(j′,1)
j′ > 1

J
− dk+1 implies a contradiction when

s′ = 1. Thus we have proved the Inductive Step and the theorem.

¥

Corollary 146 MeanimaxL is well-defined.

Proof The case k = J in the above theorem implies the existence of a permuta-

tion σ : {1, . . . J} → {1, . . . J} together with ~side ∈ {0, 1}J such that if ~x ∈ V L(K)

and ~̃x = (d1, . . . dJ),

xi =
1

J
+ (−1)side

σ−1(i)dσ−1(i) (8.13)

for i = 1, . . . J . If ~X = MeanimaxL(K) we know that ~X ∈ V L(K) and

~̃X = (d1, . . . dJ) so the value of ~X is forced and we have proved the corollary.

¥

Lemma 147 MeanimaxL satisfies Equivalence, Atomic Renaming and Obstinacy.

Proof Equivalence is satisfied because the definition is given in terms of V L(K).

Atomic Renaming is trivial because the definition is symmetrical w.r.t. the co-

ordinates 1, . . . J . Obstinacy is satisfied because MeanimaxL chooses the optimal

~x w.r.t. a fixed partial ordering. Hence, by Theorem 9, we have proved the lemma.

¥

The following lemma will be useful for us to prove that MeanimaxL satisfies both

Language Invariance and Relativisation.

Lemma 148 Let C ⊂ {1, . . . J} and let ∼ be an equivalence relation on {1 . . . J}\C

such that the equivalence classes are all of equal size. Let i1, . . . iq be representatives

of the q distinct equivalence classes. For each ~x ∈ DJ s.t. xi = xj for all i, j such

that i ∼ j, let Simp(~x) = (xi1 . . . xiq). Then if ~y ∈ RJ is s.t. yc = xc for all c ∈ C,

comparing ~x and ~y in the meanimax ordering is equivalent to comparing Simp(~x)

and Simp(~y) in the meanimax ordering.
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Corollary 149 Suppose ~x, ~y are vectors in RJ such that xi = yi for all i ∈ C, for

some C ⊂ {1, . . . J}. W.l.o.g. let C = {1, . . . k}. We can do this by the symmetry of

the meanimax ordering w.r.t. permuting the co-ordinates. Then comparing ~x and ~y

in the meanimax ordering is equivalent to comparing (xk+1, . . . xJ) and (yk+1, . . . yJ).

If the same C is a subset of co-ordinates which are constant w.r.t. a knowledge

base K ∈ CL, then MeanimaxL(K) = that ~x ∈ V L(K) for which (xk+1, . . . xJ) is

meanimax-best.

Proof of Lemma 148 Comparing ~x and ~y in the meanimax ordering is equiv-

alent to comparing dis(~x) and dis(~y) in the minimax ordering, where

dis(~x) = (dis(x1), dis(x2), . . . dis(xJ)) (8.14)

by definition, for all ~x. Thus, for every ~x,

dis(Simp(~x)) =

(∣

∣

∣

∣

xi1 −
1

J

∣

∣

∣

∣

,

∣

∣

∣

∣

xi2 −
1

J

∣

∣

∣

∣

, . . .

∣

∣

∣

∣

xiq −
1

J

∣

∣

∣

∣

)

= Simp(dis(~x)) (8.15)

Hence for ~x, ~y as in the lemma, ~x is meanimax-better than ~y

⇔ dis(~x) is minimax-better than dis(~y)

⇐⇒ Simp(dis(~x)) is minimax-better than Simp(dis(~y)) (see Lemma 42)

⇐⇒ dis(Simp(~x)) is minimax-better than dis(Simp(~y))

⇐⇒ Simp(~x) is meanimax-better than Simp(~y).

Hence we have proved the lemma.

¥

Proof of Corollary 149 This is essentially the same as the proof of Corol-

lary 43.

¥

Lemma 150 MeanimaxL is Language Invariant.

Proof This proof is much the same as the corresponding proof for Maximin -

see Theorem 73. Indeed suppose that AtL = {α1, . . . αJ} and there exists K ∈ CL

s.t. MeanxL′

(K)(αi) 6= MeanxL(K)(αi) for some i = 1, . . . , J and L′ = L + {p′},
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where p′ /∈ L. For each αi ∈ AtL, we let β(i,+) = αi ∧ p′ and β(i,−) = αi ∧ ¬p′. By

Atomic Renaming

~W ∈ D2J = MeanxL′

(K) (8.16)

gives the same belief value to β(i,+) and to β(i,−) for each j = 1 . . . J . The proof now

continues as for Maximin to get a contradiction but using meanimax comparisons

and Lemma 148. We have proved the lemma.

¥

From now on we usually write Meanimax, Meanx(K) etc. without mentioning the

overlying language.

Lemma 151 Meanimax satisfies Relativisation.

Proof To prove this we can use exactly the same method as in the proof of

Theorem 83, but exchanging Maximin and maximin for Meanimax and meanimax

respectively and using Corollary 149 instead of Corollary 75.

¥

Definition For any language L, we let

TL
Mean =

{

(xi = xj), (xi = 0),

(

xi + xj =
2

J

)

s.t. 1 ≤ i < j ≤ J

}

(8.17)

and we say that an EZM -constraint is any constraint which is either an EZ-constraint

or is of the form xi + xj = 2
J
.

Theorem 152 Meanimax is PL, and for every language L, MeanimaxL is allowed

by the toolbox TL
Mean.

Notation In the following proof we use constraint sets instead of knowledge

bases, in a manner similar to Sections 6.1 and 6.2. The work so far in this chapter

goes through for constraint sets, apart from the fact that the number of co-ordinates of

a constraint set does not necessarily equal the J which is the number of co-ordinates of

vectors in the meanimax ordering we are using, the values of dis, EZM-constraints

etc. Where necessary, we denote the number of co-ordinates of a constraint set K
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by JK . However, J always denotes the number of co-ordinates of vectors in the

meanimax ordering we use.

Proof We start by defining the following operation on constraint sets:

Definition Let K ∈ Cd
JK

, s.t. K has two distinct solutions. The equivalence

relation K-mean equivalence on {1, 2, . . . JK}\{K-constant co-ordinates}, denoted by

∼K , is given by

i ∼K j ⇐⇒
(

xi = xj or xi + xj =
2

J

)

for all ~x ∈ V (K) (8.18)

where the equivalence classes w.r.t. ∼K are given by [e1], . . . [eQ] and Q ≥ 2 since K

has more than one solution.

Note that if, for non-constant co-ordinates i, j, xi = xj or xi + xj = 2
J

for every

~x ∈ V (K) then either xi = xj for every solution or xi + xj = 2
J

for every solution

since otherwise there exists a solution ~X(1) s.t. X
(1)
i = X

(1)
j but X

(1)
i + X

(1)
j 6= 2

J
and

a solution ~X(2) s.t. X
(2)
i 6= X

(2)
j and X

(2)
i + X

(2)
j = 2

J
. The average

~z =
~X(1) + ~X(2)

2
, for which zi 6= zj, zi + zj 6=

2

J
(8.19)

is also a solution, contradicting our assumptions.

For every K-constant co-ordinate ci, let Ci be the value such that xci
= Ci for all

~x ∈ V (K).

Definition We now define the Meanimax-simplification of K, denoted by

MeanS(K), as follows:

If ci is a constant co-ordinate, we substitute Ci for each appearance of xci
in the

constraints of K. We now consider, in turn, each non-constant co-ordinate q. If, for

some p = 1, . . . Q, q ∼K ep, and xep
= xq for every ~x ∈ V (K), we substitute yp for

each appearance of xq in K. However, if q ∼K ep and xep
+ xq = 2

J
for all ~x ∈ V (K)

we substitute 2
J
− yp for each appearance of xq in K. The resulting set of equations

on y1, . . . yQ is MeanS(K). The notation y is chosen just so as to be distinct from x.

Define

MeanSK : V (K) → V (MeanS(K)) given by MeanSK(~x) = (xe1 , . . . xeQ
) (8.20)
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Lemma 153 MeanSK : V (K) → V (MeanS(K)) is well-defined and is a bijection

whose inverse we denote by MeanS−1
K .

Proof If ~x satisfies K, by checking the constraints individually we see that

MeanSK(~x) satisfies MeanS(K). Non-negativity of MeanSK(~x) is also clear.

If ~y satisfies MeanS(K), we can find a unique ~X such that MeanSK( ~X) = ~y

as follows: Consider each co-ordinate i = 1, . . . JK in turn. If i is K−constant then

i = cj for some j so we are forced to let Xi = Cj. Otherwise, there exists a unique

p = 1 . . . Q such that i ∼K ep. If xep
= xi for all ~x ∈ V (K) we must let Xi = yp.

Otherwise, xep
= 2

J
− xi for all ~x ∈ V (K) so we must let Xi = 2

J
− yp. There is no

choice at any step in this procedure, which does find such an ~X.

Hence MeanSK is a bijection and we know how to calculate its inverse. We have

proved the lemma.

¥

Lemma 154 If K ∈ Cd
JK

, K has more than one solution and ∼K, e1 . . . eQ etc. as

above, MeanSK(Meanx(K)) = Meanx(MeanS(K)).

Let Meanx(K) = ~X and Meanx(MeanS(K)) = ~Y , where

~a = MeanSK( ~X) ∈ RQ and ~b = MeanS−1
K (~Y ). We assume w.l.o.g. that MeanS(K)

admits the identity permutation w.r.t. Theorem 145.

We show by induction on p that

Claim(p) ã1 = Ỹ1 . . . ãp = Ỹp, so that Y1 = a1 . . . Yp = ap.

Base Case p = 0 In this case the claim is trivial.

Inductive Step Given that the largest p values in dis(~a) match the largest p

values in dis(~Y ), X̃k = b̃k for each k not greater than

FIX =

(

p
∑

i=1

|[ei]|
)

+ |{j |Cj ≥ ap}| (8.21)

by the procedure for calculating MeanS−1
K . Suppose for contradiction that

Ỹp+1 6= ãp+1. Then, in a similar way to the proof of Lemma 96, b̃FIX+1 < X̃FIX+1, con-

tradicting the fact that ~X = Meanx(K). We have proved the lemma. ¥
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Lemma 155 Let K ∈ Cd
JK

such that K has no constant co-ordinates and the relation

∼K is equality. Then if ~X = Meanx(K), either Xi = 0 for some i or Xi = Xj or

Xi + Xj = 2
J

for some i, j s.t. i 6= j.

Proof Suppose that K is some constraint set satisfying the hypotheses of the

lemma but that all three possible conclusions above fail. Then, assuming w.l.o.g.

that K admits the identity permutation w.r.t. Theorem 145, we have that

dis(X1) > dis(X2) > . . . > dis(XJK
) (8.22)

since dis(Xi) = dis(Xj) implies that Xi = Xj or Xi + Xj = 2
J
. The rest of this proof

is similar to that of Lemma 97. Since the co-ordinate 1 is not K-constant, there

exists ~u ∈ RJK parallel to G(K) such that u1 > 0 and

{~z = ~X + y~u | y ∈ R, ~z strictly positive, and dis(z1) > dis(zi) for i = 2 . . . JK}

(8.23)

is an open set so there exists such a ~z s.t. z̃1 = dis(z1) < dis(X1) = d1, which is a

contradiction. We have proved the lemma.

¥

Lemma 156 For any K ∈ Cd
JK

with more than one solution, there does not exist a

MeanS(K)-constant co-ordinate, nor do there exist distinct i, j such that yi = yj for

all ~y ∈ V (MeanS(K)). There do not exist distinct i, j such that yi + yj = 2
J

for all

~y ∈ V (MeanS(K)).

Proof This is very similar to the proof of Lemma 98.

¥

Lemma 157 If K ∈ Cd
JK

and K has more than 1 solution, Meanx(K) satisfies an

EZM-constraint, which is not true throughout V (K).

Proof This is very similar to the proof of Lemma 99.

¥

Proof of Theorem 152 The following lemma is essentially similar to Lemma 100.
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Lemma 158 Let K ∈ Cd
JK

. Then for each q = 0, . . . d there exist q distinct

EZM-constraints E1, . . . Eq, s.t. if K+ denotes K + E1 + . . . + Eq then

Meanx(K) = Meanx(K+) (8.24)

and rank(K+) = JK − d + q.

Proof We do this by induction on q.

Base Case q = 0 In this case the lemma is vacuous.

Inductive Step We assume (I.H.) that for some q = k < d, there exist

EZM -constraints E1, . . . Ek such that if we let

K+ = K + E1 + . . . + Ek, then rank(K+) = JK − d + k (8.25)

and Meanx(K) = Meanx(K+) = ~X. If K+ has a unique solution but

rank(K+) < JK then adding the constraint (xi = 0) for some i works in the same

way as in the proof of Lemma 100. Otherwise Lemma 157 implies that we can fix an

EZM -constraint Ek+1 which is not true in all of V L(K+), but which is satisfied by

~X. Then, if

K̂+ = K+ + Ek+1 (8.26)

rank(K̂+) = JK − d + k + 1 and Meanx(K̂+) is a solution of (K+) so by Obstinacy

(Lemma 147 for constraint sets), ~X = Meanx(K̂+), completing the Inductive Step

and the proof of the lemma.

¥

Proof of Theorem 152 If we let q = d in Lemma 158, then we have proved

the theorem.

¥

Remark Thus we can use an algorithm which is an analogue of Algorithm 94

to calculate Meanimax, say the Meanimax Calculation Algorithm. It differs from

Algorithm 94 only insofar as the constraints we add at Step 2 are EZM -constraints,

and in Steps 4 and 5 we sort the members of Candidates using the meanimax

ordering instead of the minimax ordering.
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Notation For the remainder of this chapter we refer to knowledge bases, rather

than constraint sets in general, so the notation JK is not required.

Theorem 159 Meanimax is Piecewise Linear Loaf Continuous.

Proof This is very similar to the corresponding proof for Minimax - see Theo-

rem 51. As before we prove w.l.o.g., for a loaf of the form

K̂ = {Kλ |λ ∈ [0, 1]} (8.27)

that Meanx(Kλ) → 0 as λ ց 0.

Lemma 160 The function d1 : CL → R given by

d1(K) = min~x∈V L(K)max1≤i≤Jdis(xi) = ˜Meanx(K)1 (8.28)

is uniformly continuous (using the Blaschke topology).

Proof Suppose K1, K2 ∈ CL and ∆(K1, K2) < ǫ, where ǫ > 0.

Then if ~x = Meanx(K1) there exists ~y ∈ V L(K2) s.t. |~x − ~y| < ǫ, so |x̃1 − ỹ1| < ǫ,

and as x̃1 = d1(K1) we see that

ỹ1 < d1(K1) + ǫ so d1(K2) < d1(K1) + ǫ (8.29)

Similarly d1(K1) < d1(K2) + ǫ so d1 is uniformly continuous.

¥

Proof of Theorem 159 The rest of this closely follows the proof of Theorem 51.

Thus it is true that when we use the Meanimax Calculation Algorithm (as discussed

above) instead of Algorithm 94, we obtain constraint sets, the left hand sides of

which are independent of λ. Whether these constraint sets have unique solutions or

not is independent of λ. We then obtain a finite list of linear functions of λ, as in

(3.48), such that for all λ ∈ [0, 1], Meanx(Kλ) must equal one of those functions.

Comparing these possible values in the meanimax ordering gives the same linear

formula for small enough positive λ, so

Meanx(Kλ) = ~p + λ~g (8.30)
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for those small λ > 0, where ~p ∈ V L(K0).

We suppose for contradiction of continuity at λ = 0 that Meanx(K0) = ~b 6= ~p and

assume w.l.o.g. that K0 admits the identity permutation w.r.t. Theorem 145 with

some ~side fixed to go with it so that dis(b1) ≥ dis(b2) . . . ≥ dis(bJ). The following

lemma gives us the required contradiction.

Lemma 161 For each i = 1 . . . J , p̃i = dis(bi) and pi = bi.

Proof We do this by induction on i.

Base Case i = 1 Now limλ→0
˜(~p + λ~g)1 = p̃1, since 1̃ = max(dis) is a continuous

function and that limit equals b̃1 because d1 is continuous. Hence p̃1 = dis(b1) so

p1 = b1 because the choice between 1
J
± dis(b1) is fixed by side1.

Inductive Step Assume (I.H.) that the lemma holds for i = 1, . . . k. Suppose

for contradiction that p̃k+1 6= b̃k+1, then

p̃k+1 > b̃k+1 = dk+1 (8.31)

Similarly to the proof of Lemma 52, since all of the GL(Kλ) are parallel,

~b + λ~g ∈ GL(Kλ) for λ ∈ [0, 1] and, for small enough non-negative λ,

~y(λ) = ~p +
1

2
(~b − ~p) + λ~g (8.32)

is non-negative and so in V L(Kλ). Then

~w(α, λ) = ~p + α(~b − ~p) + λ~g ∈ V L(Kλ) (8.33)

for those small λ and every α ∈ [0, 1/2]. Let ~z = ~p + λ~g. Then for each i = 1, . . . k,

wi = zi. Now ~w is meanimax-better than ~z iff dis(~w) is minimax-better than dis(~z)

iff dis( ~W ) is minimax-better than dis(~Z), where

~W = (Wk+1,Wk+2 . . . WJ) and ~Z = (Zk+1, . . . ZJ) (8.34)

by Corollary 43. Hence ~w is meanimax-better than ~z iff ~W is meanimax-better than

~Z.
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If λ = 0 and α = 0, Z̃1 > W̃1 but by continuity of the function 1̃ this remains

true for small values of λ and α, contradicting the known fact that ~z = Meanx(Kλ).

Hence

p̃k+1 = b̃k+1 = dk+1 (8.35)

and by using σ, sidek+1, (by Lemma 145) we see that pk+1 = bk+1, completing the

Inductive Step. We have proved the lemma.

¥

Proof of Theorem 159 continued The theorem now follows in just the same

way as for Theorem 51.

¥

Theorem 162 Meanimax does not satisfy Irrelevant Certainty.

Remark Intuitively this is because when we add an extra propositional variable p′

and the constraint Bel(p′) = 0, although the constraints look the same on x1, . . . xJ

with constraints xJ+1 = . . . = x2J = 0 added, the largest value of |xi− 1
2J
| is minimised

instead of the maximal value of |xi − 1
J
|.

Proof Let

K1 = {Bel(p1 ∧ ¬p2) = 2Bel(p1 ∧ p2), Bel(p2 ∧ ¬p1) = 3Bel(p1 ∧ p2)} (8.36)

Then, using the standard ordering of the atoms

V L(K) = {(τ, 2τ, 3τ, 1 − 6τ) s.t. 0 ≤ τ ≤ 1/6} (8.37)

We let ~X = Meanx(K) and show that ~X =
(

1
8
, 2

8
, 3

8
, 2

8

)

. X̃1 = 1/8 since if τ < 1/8,

x̃1 > 1/8 for the resulting solution ~x but τ > 1/8 gives x3 > 3/8 so x̃1 > 1/8. Let

K2 = K1 + Bel(p′) = 0 (8.38)

then using the standard ordering of the atoms of L′ = L + p′,

V L′

(K2) = {(τ, 2τ, 3τ, 1 − 6τ, 0, 0, 0, 0) s.t. 0 ≤ τ ≤ 1/6} (8.39)
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We let Meanx(K2) = ~Y and show that ~Y =
(

1
9
, 2

9
, 3

9
, 3

9
, 0, 0, 0, 0

)

. Ỹ1 = 5/24 since

τ < 1/9 implies that x4 > 1/3 for the resulting solution ~x but τ > 1/9 gives x3 > 1/3

so either way x̃1 is greater than 5/24.

Thus Irrelevant Certainty fails since Meanx(K1)(p1) = 3/8 but

Meanx(K2)(p1) = 1/3 so we have proved the theorem.

¥

Theorem 163 Meanimax does not satisfy Homogeneity.

Proof For all λ ∈ (0, 1], let Kλ be given by

Kλ =

{

Bel(p1 ∨ p2) = λ,Bel(¬p2|p1) =
2

3

}

(8.40)

When we use the overlying language L = {p1, p2} and the standard ordering of the

atoms of L,

V L(Kλ) = {(τ, 2τ, λ − 3τ, 1 − λ) s.t. 0 ≤ τ ≤ λ/3} (8.41)

Let ~X = Meanx(K1). We show that ~X =
(

1
5
, 2

5
, 2

5
, 0

)

. Now

maxi=1,2,3,4|Xi − 1/4| = 3/20 since τ > 1/5 gives 2τ > 2/5 and τ < 1/5 gives

1 − 3τ > 2/5.

If Homogeneity is a property of Meanimax,

Meanx(Kλ) =

(

λ

5
,
2λ

5
,
2λ

5
, 1 − λ

)

(8.42)

for all λ ∈ (0, 1] but we now show that Meanx(K1/10) =
(

1
40

, 2
40

, 1
40

, 36
40

)

. For each

solution of K1/10, ~x, x̃1 = 26/40 since x4 = 36/40. Also if x̃2 < 9
40

then x1 > 1
40

and

x3 > 1
40

. However τ > 1
40

gives 1
10

− 3τ < 1
40

. Hence, since X̃2 = 9
40

,

Meanx(K1/10) =
(

1
40

, 2
40

, 1
40

, 36
40

)

and we have found a contradiction, so we have proved

the theorem.

¥

Remark This means that in Theorem 130 if Irrelevant Certainty is removed

from the hypotheses, we cannot deduce Homogeneity.

We now, for completeness, examine how Meanimax fares when tested against all

of the Par-Ven Properties.
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Theorem 164 Meanimax satisfies Equivalence, Atomic Renaming, Obstinacy, Lan-

guage Invariance and Relativisation. However, it fails to satisfy Continuity, Open-

mindedness, Independence and Irrelevant Information.

Proof Lemmas 147, 150 and 151 give us the five Par-Ven properties that Meanimax

satisfies. Since Meanimax is Partly Linear (by Theorem 152) we use Theorem 141

to see that Meanimax does not satisfy Independence, and Theorem 142 to show

that it is not continuous. By Lemma 162, Meanimax does not satisfy Irrelevant

Information. The following lemma is now sufficient to establish the theorem:

Lemma 165 Meanimax does not satisfy Open-mindedness.

Proof To prove this we define K just as in the proof of Theorem 41, so J = 4.

We see that

MeanxL(K) =

(

0, 0,
1

2
,
1

2

)

(8.43)

This is because x3 = x2 +1/2 for all ~x ∈ V L(K), so dis(x3) ≥ 1/4. The only possible

way that ~x ∈ V L(K) and

maxi=1,2,3,4dis(xi) = 1/4 (8.44)

is if dis(x3) = 1/4. This implies that x3 = 1/2 so x2 = 0, forcing (8.43).

However, similarly to the proof of Theorem 41, x2 = 0 is not necessarily true

when ~x ∈ V L(K). Hence Meanimax does not satisfy Open-mindedness and we have

proved the lemma and Theorem 164.

¥



Chapter 9

Conclusions

We have found that the inference process Minimax is the upper limit of the Renyi

Processes and discovered its properties, tabulated below. We have also justified

Maximin as the limit of another sequence of inference processes. We have found

that Maximin compares favourably with Minimax when we consider the set of

properties known as the Par-Ven Properties, due to [ParVen1], which allow us to

uniquely characterise Maximum Entropy. Indeed, if judged by the set of desirable

properties which it satisfies, the table overleaf shows that Maximin is perhaps the

inference process which is the closest rival to Maximum Entropy which has hitherto

been discovered.

In the table below, the properties abbreviated in the leftmost column are:

Equivalence, Atomic Renaming, Obstinacy, Language Invariance, Continuity,

Open-mindedness, Independence, Relativisation, Irrelevant Information, Piecewise

Linear Loaf Continuity, Partial Linearity, Irrelevant Certainty and Homogeneity.

In the table, ∗ means the result is due to [ParVen1]. † means the result is due to

[Moh]. If a result is subscripted with a number, that is the number of the lemma or

theorem in this work of which it is a direct consequence. Anything in brackets is a

conjecture.

212
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Renyi Processes Renr (r > 0)
CM∞ r < 1 r = 1 r > 1, r = 2 Mmx Mxmn Meanx

(ME) r 6= 2 (MD)

Equiv X21 X† X∗ X† X† X35 X70 X164

At Ren X21 X† X∗ X† X† X36 X71 X164

Obs X21 X† X∗ X† X† X37 X72 X164

Lan Inv X21 X† X∗ X† X† X39 X73 X164

Cont ×21 X† X∗ X† X† ×40 ×77 ×164

Open-min X21 X† X∗ ×† ×† ×41 X78 ×164

Indep ×21 ×† X∗ ×† ×† ×44 ×79 ×164

Relat X21 X† X∗ X† X† X48 X83 X164

Irrel Inf ×21 (×†) X∗ ×† ×† ×49 X84 ×164

PLLC ×53 ×53 ×53 ×53 X54 X51 X88 X159

PL (×) ×142 ×142 ×142 ×142 X127 X127 X152

Irrel Cer X129 X129 X129 X129 X129 X129 X129 ×162

Homog X134 X133 X133 X133 X133 X132 X132 ×163

9.1 Unanswered questions for further study

There are many questions which arise naturally from the work in this thesis but which

have not been explored.

• Are there other “natural” inference processes, apart from MD, which satisfy

Piecewise Linear Loaf Continuity but which are not Partly Linear?

• Do there exist K ∈ CL and n ∈ N such that n is not less than the number of

possible outcomes consistent with K but EveryL
n (K) is undefined?

• Just how bad are the worst cases when we run Maximin Calculation

Algorithm 3?

• Are there any useful weakenings of Irrelevant Information apart from Irrelevant

Certainty?

• To what extent can the algorithms for calculating Maximin be adapted for

calculating Minimax?

• Is Maximin the only PL inference process that can be uniquely characterised

by a list of desiderata—what is the best possible strengthening of Theorem 138?
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• Given a language invariant family N of PL inference processes and an infinite

series of toolboxes T1, T2, . . . which allow the inference processes NL1 , NL2 , . . .

respectively, where Li = {p1, . . . pi} for each i ∈ N, precisely what kind of

“natural” way should there be of naming all of the toolboxes simultaneously 1?

• Does there exist a useful PL inference process which does not have a uniquely

minimal toolbox?

1This was raised on page 175



Bibliography

[Ber] Jacob Bernoulli Ars Conjectandi, Basileae : impensis Thurnisiorum fratrum,

1713.

[Chr] D Christensen Clever Bookies and Coherent Beliefs, The Philosophical Review,

1991.

[Court] Paul Courtney PhD Thesis, Manchester University, 1992.

[Egg] H.G. Egglestone Convexity, Cambridge University Press, Cambridge, 1969.

[Fad] D.K. Fadeev Zum Begriff der Entropie ciner endlichen Wahrscheinlichkeitss-

chemas, Arbeiten zur Informationstheorie I, Berlin, Deutscher Verlag der Wis-

senschaften, 1957, pp 85–90.

[deFin1] B. de Finetti Sul significato soggetivo della probabilità, Fundamenta Math-
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Appendix A

A property of the Blaschke

topology

Theorem 24 If K is a consistent knowledge base in CL then for all λ ∈ R, we define

K(λ) = K ∪
{

J
∑

i=1

vixi = λ

}

where v1, . . . vJ are real constants. Let λ = λ0 be fixed. In the Blaschke topology, if

K(λ0+δ) is consistent for each δ such that 0 ≤ δ ≤ δ0, K(λ0+δ) → K(λ0) as δ ց 0.

Proof Recall from the Introduction that V L(K) is a convex polytope. We ex-

press it in the form of (1.15) such that ~u(1), ~u(2) . . . ~u(m) are its vertices.

Definition Let Sumv be the function Sumv : DJ → R, given by

Sumv(~x) =
J

∑

i=1

vixi (A.1)

for all ~x ∈ DJ .

Now for each t = 1, . . . m we let Ut denote Sumv(~u(t)). We assume w.l.o.g. that

δ0 is a small enough real number such that none of U1, U2 . . . Uj are in the interval

(λ0, λ0 + δ0).

Notation For all λ ∈ R, let Sol(λ) denote V L(K(λ)).

Lemma 166 If ~z ∈ Sol(λ0 + δ), where δ is positive and δ < δ0, there exists

218



APPENDIX A. A PROPERTY OF THE BLASCHKE TOPOLOGY 219

~x ∈ Sol(λ0) and ~y ∈ Sol(λ0 + δ0) such that

~z − ~x =
δ

δ0

(~y − ~x) (A.2)

Remark In other words, every solution ~z of K such that
∑J

i=1 vizi is between λ0

and λ0 +δ0 is on a line segment joining a point in Sol(λ0) and a point in Sol(λ0 +δ0).

Proof Let ~top
(1)

, ~top
(2)

. . . ~top
(k)

enumerate the vertices of V L(K) at which the

value of Sumv is not less than λ0+δ0 and let the other vertices (where Sumv is at most

λ0) be denoted by ~bot
(1)

, . . . ~bot
(q)

. Fix some ~z ∈ V L(K) s.t. Sumv(~z) ∈ (λ0, λ0 + δ0).

Hence

~z =
k

∑

i=1

ai
~top

(i)
+

q
∑

j=1

cj
~bot

(j)
(A.3)

where all ai’s and cj’s are non-negative real numbers and
∑k

i=1 ai +
∑q

j=1 cj = 1.

Claim Both
∑k

i=1 ai
~top

(i)
and

∑q
j=1 cj

~bot
(j)

must be non-zero. Thus k > 0, q > 0

and there exists an ai > 0 and a cj > 0.

Proof of claim Suppose for contradiction that ~z =
∑k

i=1 ai
~top

(i)
. Working out

Sumv gives

J
∑

i=1

vizi =
J

∑

i=1

vi

k
∑

p=1

aptop
(p)
i =

k
∑

p=1

ap

J
∑

i=1

vitop
(p)
i =

k
∑

p=1

apSumv( ~top
(p)

) (A.4)

≥
k

∑

p=1

ai(λ0 + δ0) ≥ (λ0 + δ0)

since
∑k

i=1 ai = 1, so we have found a contradiction.

The case of ~z =
∑q

j=1 cj
~bot

(j)
is similar. We have proved the claim.

¥

Now we can split ~z into its top (where Sumv is at least λ0 + δ0) and bottom

(where Sumv is at most λ0) components.

Let

~z↑ =

∑k
i=1 ai

~top
(i)

∑k
i=1 ai

and

~z↓ =

∑q
j=1 cj

~bot
(j)

∑q
j=1 cj

(A.5)
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which are well-defined by the previous claim. Since they are convex combinations of

the vertices of V L(K), ~z↑ and ~z↓ are solutions of K. Now

~z =

(

k
∑

i=1

ai

)

~z↑ +

(

q
∑

j=1

cj

)

~z↓ (A.6)

so ~z is on a line segment connecting two points, one where the value of Sumv is

Sumv(z↑) ≥ (λ0 + δ0) and another where the value of Sumv is Sumv(z↓) ≤ λ0.

Finally, the points where Sumv equals λ0, λ0 +δ0 which lie on this same line segment

are

~y = ~z↓ +
λ0 + δ0 − Sumv(z↓)

Sumv(z↑) − Sumv(z↓)
(~z↑ − ~z↓)

and

~x = ~z↓ +
λ0 − Sumv(z↓)

Sumv(z↑) − Sumv(z↓)
(~z↑ − ~z↓) (A.7)

respectively, which contain ~z between them as in (A.2). By definition, ~x and ~y are

convex combinations of ~z↑ and ~z↓, which are solutions of K. Hence ~x and ~y are also

solutions of K, by convexity of V L(K). We have proved Lemma 166.

¥

Proof of Theorem 24 continued By Lemma 10, it is now sufficient for

proving the theorem that

∆Sol(λ0)→Sol(λ0+δ) → 0 and ∆Sol(λ0+δ)→Sol(λ0) → 0 as δ ց 0 (A.8)

For all ~x, ~y ∈ DJ , |~x−~y| ≤ J so for any convex polytopes A,B in DJ , ∆(A,B) ≤ J .

For all ~x ∈ Sol(λ0) we fix some ~y ∈ Sol(λ0 + δ0). If we let

~z = ~x +
δ

δ0

(~y − ~x) (A.9)

then ~z ∈ Sol(λ0 + δ). That is because V L(K) is convex, so ~z ∈ V L(K) and the

linearity of Sumv ensures that Sumv(~z) = λ0 + δ. Since ~z − ~x = δ
δ0

(~y − ~x), then

|~z − ~x| ≤ J δ
δ0

. As ~x was arbitrary,

∆Sol(λ0)→Sol(λ0+δ) ≤ J
δ

δ0

so ∆Sol(λ0)→Sol(λ0+δ) → 0 as δ ց 0 (A.10)

We now fix ~z such that ~z ∈ Sol(λ0 + δ). By Lemma 166, there exist
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~x ∈ Sol(λ0), ~y ∈ Sol(λ0 + δ0) such that ~z is a convex combination of ~x and ~y, so that

~z − ~x =
δ

δ0

(~y − ~x) (A.11)

Thus |~x− ~z| ≤ J δ
δ0

and, since our choice of ~z was arbitrary, ∆Sol(λ0+δ)→Sol(λ0) → 0 as

δ ց 0. Hence we have proved Theorem 24.

¥

Theorem 25 Let K be a fixed consistent knowledge base in CL and define i1, . . . ik

s.t. 1 ≤ i1 < i2 . . . < ik ≤ J . For all ~λ ∈ Rk, let K(~λ) denote

K ∪{xi1 = λ1, xi2 = λ2, . . . xik = λk}. Then, if ~λ varies such that K(~λ) is consistent,

K(~λ) is a continuous function of ~λ.

Proof We assume w.l.o.g. that i1 = 1, i2 = 2, . . . ik = k. Let ~λ = ~λ(0) be such

that K(~λ(0)) is consistent. We now show that as ~λ → ~λ(0), K(~λ) → K(~λ(0)). Consider

the set

Sector = {~x ∈ V L(K) |x1 ≥ λ
(0)
1 and x1 − λ

(0)
1 ≥ |xp − λ(0)

p | for each p = 2, . . . k}

(A.12)

which is a convex polytope containing V L(K(~λ(0))). We now fix a δ0 > 0 such that

none of the vertices ~u of Sector are such that λ
(0)
1 < u1 < λ

(0)
1 + δ0.

Claim Suppose that ~λ, δ, satisfy λ1 = λ
(0)
1 + δ, δ ∈ [0, δ0] and

λ1 − λ
(0)
1 ≥ |λp − λ

(0)
p | for each p = 2, . . . k. If K(~λ) is consistent, then

∆(K(~λ(0)), K(~λ)) ≤ J δ
δ0

.

Proof of claim If ~λ, δ satisfy the conditions of the claim then

V L(K(~λ)) ⊆ Sector∗ where Sector∗ = {~x ∈ Sector s.t. x1 ∈ [λ
(0)
1 , λ

(0)
1 + δ0]}.

We observe that each solution ~x of V L(K(~λ)) is a convex combination of the

vertices of Sector - some of which have the 1st co-ordinate value equal to λ
(0)
1 and

the others have it not less than λ
(0)
1 + δ0. By the definitions of Sector and Sector∗,

we note that the vertices of Sector whose 1st co-ordinate values are equal to λ
(0)
1

are solutions of K(~λ(0)). In a similar way to the proof of Lemma 166, we can show

that every ~x ∈ V L(K~λ(0)) is a convex combination of a solution of K(~λ(0)) and some
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solution of a K(~b) for which b1 = λ
(0)
1 + δ0.

These conditions uniquely specify~b independently of ~x. Indeed~b is the only vector

on the line connecting ~λ(0) and ~λ at which the 1st co-ordinate has value λ
(0)
1 + δ0.

Hence every solution of K(~λ) is a convex combination of a solution of K(~λ(0)) and a

solution of K(~b), where ~b is independent of the choice of ~x.

Proof of Theorem 25 Now the argument proceeds as it did for Theorem 24

to deduce that

∆V L(K(~λ(0)))→V L(K(~λ)) and ∆V L(K(~λ))→V L(K(~λ(0))) (A.13)

are bounded by J δ
δ0

. This proves that the function K(λ1, . . . λk) is continuous at

~λ(0) in the region of those ~λ whose first co-ordinate value is greater than λ
(0)
1 and

such that no other λp is further from λ
(0)
p . That region is, in terms of the argument

above, similar to the other 2k − 1 regions making up the set of all ~λ that make K(~λ)

consistent: namely pick a co-ordinate value of ~λ most different to its value in ~λ(0)

and state whether that difference is positive or negative.

Since continuity of K(λ) at ~λ(0) is true in a finite number of regions covering

the neighbourhood around ~λ(0), the function is continuous at ~λ(0) in the complete

neighbourhood of that point. Thus we have proved the theorem.

¥


