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Abstract

Associated with an n × n matrix polynomial of degree ℓ, P (λ) =
∑ℓ

j=0 λjAj , are the
eigenvalue problem P (λ)x = 0 and the linear system problem P (ω)x = b, where in the
latter case x is to be computed for many values of the parameter ω. Both problems can
be solved by conversion to an equivalent problem L(λ)z = 0 or L(ω)z = c that is linear
in the parameter λ or ω. This linearization process has received much attention in recent
years for the eigenvalue problem, but it is less well understood for the linear system
problem. We develop a framework in which more general versions of both problems can
be analyzed, based on one-sided factorizations connecting a general nonlinear matrix
function N(λ) to a simpler function M(λ), typically a polynomial of degree 1 or 2. Our
analysis relates the solutions of the original and linearized problems and in the linear
system case indicates how to choose c and recover x from z. For the eigenvalue problem
this framework includes many special cases studied in the literature, including the vector
spaces of pencils L1(P ) and L2(P ) recently introduced by Mackey, Mackey, Mehl, and
Mehrmann and a class of rational problems. We use the framework to investigate the
conditioning and stability of the parametrized linear system P (ω)x = b and thereby study
the effect of scaling, both of the original polynomial and of the pencil L. Our results
identify situations in which scaling can potentially greatly improve the conditioning and
stability and our numerical results show that dramatic improvements can be achieved in
practice.
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1. Introduction

Consider the matrix polynomial of degree ℓ ≥ 2,

P (λ) =

ℓ∑

j=0

λjAj , Aj ∈ C
n×n, Aℓ 6= 0. (1.1)

Associated with P are two important problems with many practical applications.

• Polynomial eigenvalue problem (PEP): find scalars λ and nonzero vectors x and y
satisfying

P (λ)x = 0, y∗P (λ) = 0; (1.2)

x and y are right and left eigenvectors corresponding to the eigenvalue λ.

• Parameter-dependent linear system: find the solution x to

P (ω)x = b, b ∈ C
n, (1.3)

for many values of the scalar ω, where ω is usually either real or pure imaginary
with |ω| ∈ [ωl, ωh], ωl ≪ ωh.

It is common in practice to reformulate these two problems into the two equivalent
problems

generalized eigenvalue problem: L(λ)z = 0, w∗L(λ) = 0, (1.4)

augmented system: L(ω)z = c, (1.5)

where L(t) = tX + Y is now linear in the parameter t. In the case of (1.4) this allows
standard numerical methods (e.g., the QZ algorithm or Krylov subspace methods) to
be applied, whereas (1.5) opens up the possibility of employing various techniques that
allow substantial savings when solving for many different ω [21], [27], [29].

While the eigenvalue problem (1.2) and its linear equivalent are the subject of a large
literature [8], [22], [32], the linear system (1.3) has received much less attention from
mathematicians. The purpose of this paper is to show that the linear problems (1.4)
and (1.5) can be studied in a common framework based on one-sided factorizations that
relate P and L. In fact, our analysis is phrased in more general terms that make it
applicable in a wide variety of situations: we replace P and L by arbitrary nonlinear
matrix functions N and M , respectively, with just the restriction that M is of dimension
at least as large as N . The generality of these conditions on N and M and the one-sided
factorizations themselves means that the results we prove apply to many special cases,
including linearization of matrix polynomials, the newer concept of quadratization of
matrix polynomials [1], [20], and solution of rational eigenproblems via an appropriate
form of linearization [30].

As an example, consider the quadratic Q(ω) = ω2A+ωB +C and the associated first
companion pencil

C1(ω) = ω

[
A 0
0 I

]
+

[
B C
−I 0

]
. (1.6)
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The solution to Q(ω)x = b can be obtained from the solution to the augmented system
C1(ω)z = c, where c = [bT 0]T . Indeed, z = [ωxT xT ]T , so x can be recovered from the
first n components of z, if ω 6= 0, or the last n components. We will show how one-sided
factorizations enable a systematic generalization of this example to different degrees and
different pencils L and that the factorizations permit comparisons to be made between
sensitivities and backward errors for the original and augmented systems.

The plan of the paper is as follows. In Section 2 we introduce the left- and right-
sided factorizations on which our analysis is based and give a variety of examples of
such factorizations. In Section 3 we explain the implications of the factorizations for the
eigenvalue problem, thereby generalizing recent results in the literature. We turn to the
linear system problem in Section 4, where we use the factorizations to derive relations
between the solutions of the original system and the augmented system and also to obtain
a formula for P (ω)−1 in terms of L(ω)−1. In the rest of the paper we apply our results
to linear systems P (ω)x = b. Section 5 treats perturbation theory and compares the
conditioning of the original and augmented systems, while Section 6 gives an analogous
treatment of the backward error. In both cases, a block scaling of the companion forms
and a scaling of the original P are found to be potentially very beneficial. Numerical
experiments in Section 7 confirm the value of the analysis and Section 8 contains some
concluding remarks.

Finally, we define the notation used throughout this paper. By “matrix function”
we mean a rectangular matrix whose elements are a (generally nonlinear) function of a
scalar indeterminate, λ. Matrix functions are designated as follows.

• M(λ) and N(λ) are matrix functions of size r × r and n × n, respectively, with
r ≥ n.

• P (λ) is an n × n matrix polynomial of degree ℓ, as in (1.1).

• L(λ) is an r × r linear matrix polynomial (matrix pencil).

• Q(λ) is an n × n quadratic matrix polynomial.

• R(λ) is an n × n rational matrix function of the form

R(λ) = P (λ) +
k∑

j=1

sj(λ)

qj(λ)
Rj , (1.7)

where sj(λ) and qj(λ) are scalar polynomials and Rj ∈ C
n×n for all j.

2. One-sided factorizations

Suppose that the r × r and n × n matrix functions M(λ) and N(λ) satisfy one or
both of the one-sided factorizations of the form

right-sided factorization M(λ)F (λ) = G(λ)N(λ), (2.1)

left-sided factorization E(λ)M(λ) = N(λ)H(λ), (2.2)

where G(λ), H(λ)T , F (λ) and E(λ)T are r × n matrix functions. In the following two
subsections we show that the conditions (2.1) and (2.2) cover a wide variety of situations
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and provide a convenient framework for proving relations between the nonlinear eigen-
problem or parametrized problem for N(λ) and the corresponding problem for M(λ).
We are particularly interested in the situation where N(λ) is a matrix polynomial or
matrix rational function and M(λ) is a linear or quadratic matrix polynomial.

2.1. Matrix polynomials

In most practical applications, N is a matrix polynomial P of degree ℓ as in (1.1) and
M = L is a pencil. A two-sided factorization relating L and P arises in the definition of a
linearization of a matrix polynomial. An ℓn× ℓn pencil L(λ) = λX +Y is a linearization
of P if

EL(λ)L(λ)FL(λ) =

[
P (λ) 0

0 I(ℓ−1)n

]
(2.3)

for some unimodular ℓn × ℓn matrix polynomials EL(λ) and FL(λ) [8, Sec. 7.2], where
a unimodular polynomial is one with constant, nonzero determinant. This factorization
implies that α det(L(λ)) = det(P (λ)) for some nonzero constant α, so that L(λ) and
P (λ) are (non)singular for precisely the same values of λ. It is easy to show that the
two-sided factorization (2.3) implies the existence of the one-sided factorizations (2.1)
and (2.2). Indeed if (2.3) holds then

L(λ)F (λ) ≡ L(λ) · FL(λ)

[
In

0

]
= EL(λ)−1

[
In

0

]
· P (λ) ≡ G(λ)P (λ),

where G(λ) is a matrix polynomial since det(EL(λ)) is a constant. Similarly,

E(λ)L(λ) ≡ [ In 0 ]EL(λ) · L(λ) = P (λ) · [ In 0 ]FL(λ)−1 ≡ P (λ)H(λ),

where H(λ) is a matrix polynomial. However, the one-sided factorizations (2.1) or (2.2)
may hold without L being a linearization, as Examples 2.5 and 2.6 below show.

The idea of using one-sided factorizations such as (2.1) and (2.2) originates with
Higham, Li, and Tisseur [13], who use the conditions (2.4) in their analysis of how
backward errors for L relate to those for P in the eigenvalue problem.

While the notion of linearization is of great importance, the two-sided factorization
(2.3) itself is of limited use because the matrix polynomials EL(λ) and FL(λ) are rarely
known explicitly. An advantage of the one-sided factorizations (2.1) and (2.2) is that
they are often explicitly known and of a simple form. Moreover, most of the results in
this paper require (2.1) and (2.2) to hold at a single point only and do not require that
L be a linearization.

The one-sided factorizations typically hold in the more specialized forms

L(λ)F (λ) = g ⊗ P (λ), g ∈ C
m, (2.4a)

E(λ)L(λ) = hT ⊗ P (λ), h ∈ C
m, (2.4b)

where ⊗ denotes the Kronecker product [24, Sec. 12.1]. These forms are special cases of
(2.1) and (2.2), as can be seen from

g ⊗ P (λ) =




g1P (λ)
...

gmP (λ)


 =




g1In
...

gmIn


P (λ) = (g ⊗ In)P (λ) ≡ G(λ)P (λ), (2.5)

hT ⊗ P (λ) = [h1P . . . hmP ] = P [h1In . . . hmIn ] = P (hT ⊗ In) ≡ PH(λ). (2.6)
4



In the rest of this section we show that the factorizations (2.1) and (2.2) hold as
identities in λ for many pencils L(λ) that appear in the literature when solving P (λ)x = 0
or P (ω)x = b.

Example 2.1 (companion forms) Associated with P are two ℓn×ℓn companion form
pencils, C1(λ) = λX1 +Y1 and C2(λ) = λX2 +Y2, called the first and second companion
forms [24, Sec. 14.1], respectively, where

X1 = X2 = diag(Aℓ, In, . . . , In), (2.7a)

Y1 =




Aℓ−1 Aℓ−2 . . . A0

−In 0 . . . 0
...

. . .
. . .

...
0 . . . −In 0


 , Y2 =




Aℓ−1 −In . . . 0

Aℓ−2 0
. . .

...
...

...
. . . −In

A0 0 . . . 0


 . (2.7b)

These two companion forms are always linearizations of P . Note that C2(λ) = C1(λ)B,
where AB denotes the block transpose of A: if A = (Aij) is a block k × ℓ matrix with
m × n blocks Aij , the block transpose of A is the block ℓ × k matrix AB with m × n
blocks defined by (AB)ij = Aji. With the notation

Λ(λ) = Λ = [λℓ−1, λℓ−2, . . . , 1]T , (2.8)

it is easily checked that C1 satisfies a right-sided factorization of the form (2.4a) [26],

C1(λ)(Λ ⊗ In) = e1 ⊗ P (λ). (2.9)

Block transposing this equation yields a left-sided factorization of the form (2.4b) for C2,

(ΛT ⊗ In)C2(λ) = eT
1 ⊗ P (λ). (2.10)

Moreover, C1 also satisfies a left-sided factorization (2.4b). For ℓ = 3, for example, we
have 


λ2In −(A0 + λA1) −λA0

λIn λA2 + λ2A3 −A0

In A2 + λA3 A1 + λA2 + λ2A3


C1(λ) = I3 ⊗ P (λ), (2.11)

whose block rows yields three different such factorizations. The corresponding relation
for general ℓ, and for C2, is given in Lemma 5.4 below.

Example 2.2 (vector spaces L1(P ) and L2(P )) Two important vector spaces of pen-
cils that generalize the first and second companion forms have been studied by Mackey,
Mackey, Mehl, and Mehrmann [26]. These vector spaces are defined by

L1(P ) =
{

L(λ) : L(λ)(Λ ⊗ In) = v ⊗ P (λ), v ∈ C
ℓ
}
, (2.12)

L2(P ) =
{

L(λ) : (ΛT ⊗ In)L(λ) = ṽT ⊗ P (λ), ṽ ∈ C
ℓ
}
, (2.13)

with Λ as in (2.8). From (2.9) and (2.10) we have that C1 ∈ L1(P ) and C2 ∈ L2(P ).
Almost all pencils in L1(P ) and L2(P ) are linearizations of P [26, Prop. 3.2, Prop. 3.12,
Thm. 4.7] and if L(λ) ∈ L1(P ) with vector v then L(λ)B ∈ L2(P ) with vector ṽ = v [14,
Thm. 2.2]. From the definition of these spaces we have that (2.4a) and (2.4b) hold for
all pencils in L1(P ) and L2(P ), respectively.
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Example 2.3 (linearizations of Antoniou and Vologiannidis) With the notation

M0 = diag(−In(ℓ−1), A0), Mℓ = diag(Aℓ, I(ℓ−1)n),

Mj = diag

(
In(j−1),

[
−Aℓ−j In

In 0

]
, I(ℓ−j−1)

)
, j = 1: ℓ − 1

and any four ordered sets of indices Ik = {ik,1, ik,2, . . . , ik,nk
}, k = 1: 4, such that

Ii ∩Ij = ∅ for i 6= j and ∪4
k=1Ik = {1, 2, . . . , ℓ−1}, Antoniou and Vologiannidis [3] show

that the matrix pencil

L(λ) = λM−1
I1

MℓM
−1
I2

+ MI3
M0MI4

(2.14)

is a linearization of P , where MIk
= Mik,1

Mik,2
. . . Mik,nk

for Ik 6= ∅. The first and
second companion forms of P are included as special cases:

Ii = ∅, i = 1, 2, 4, I3 = {ℓ − 1, . . . , 1}, L(λ) = λMℓ − Mℓ−1 . . . M1M0 ≡ C1(λ),

Ii = ∅, i = 1, 2, 3, I4 = {1, . . . , ℓ − 1}, L(λ) = λMℓ − M0M1 · · ·Mℓ−1 ≡ C2(λ),

For quadratics Q(λ) = λ2A2 + λA1 + A0, (2.14) yields four different linearizations
that belong to either L1(Q) or L2(Q), and hence have factorizations (2.4a) or (2.4b),
respectively:

L1(λ) = λM−1
1 M2 + M0 = λ

[
0 I

A2 A1

]
+

[
−I 0
0 A0

]
∈ L1(Q) with vector v = e2,

L2(λ) = λM2M
−1
1 + M0 = L1(λ)B ∈ L2(Q) with vector v = e2,

L3(λ) = λM2 + M1M0 ≡ C1(λ), L4(λ) = λM2 + M0M1 ≡ C2(λ).

For ℓ > 2, the linearizations in (2.14) do not all belong to L1(Q) or L2(Q).

Example 2.4 (linearizations of Amiraslani, Corless, and Lancaster) Consider a
sequence of polynomials {φj(λ)}∞j=0 with φ0(λ) ≡ 1 and φj(λ) of degree j satisfying a
three-term recurrence relation and rewrite the n × n matrix polynomial P (λ) of degree
ℓ as

P (λ) = φℓ(λ)Bℓ + · · · + φ1(λ)B1 + φ0(λ)B0. (2.15)

Amiraslani, Corless, and Lancaster [2] construct pencils L(λ) = λX +Y that are defined
in terms of the Bi and the coefficients of the recurrence and are linearizations of P . They
satisfy (2.4b) with

E(λ) = ΦT (λ) ⊗ I, hT = αℓ−1e
T
ℓ , (2.16)

where Φ(λ)T = [φ0(λ), φ1(λ), . . . , φℓ−1(λ)] and αℓ−1 6= 0 is the leading coefficient of
φℓ−1(x).

Example 2.5 (factorization of P ) One approach to our two problems (1.2) and (1.3)
is to try to factorize the matrix polynomial P . Consider the quadratic case (ℓ = 2). If
a solvent can be found, that is, a matrix S ∈ C

n×n such that P (S) = A2S
2 + A1S +

A0 = 0, then P (λ) = (λA2 + A1 + A2S)(λI − S) and clearly both (2.1) and (2.2)
hold with r = n and G(λ) = H(λ) ≡ In. This factorization approach is the basis of

6



some numerical methods for solving the PEP (1.2): they compute a solvent and thereby
reduce the problem to solving one standard eigenvalue problem and one generalized
eigenvalue problem [10], [12]. Note that this example is rather different from the others:
neither factor is a linearization, as it does not have the correct dimensions to satisfy
(2.3). Moreover, unlike in the examples above, E(λ) and F (λ) here are rank deficient for
certain λ, namely half of the eigenvalues of P .

Example 2.6 (quadratization of P ) A quadratization of a matrix polynomial P of
even degree ℓ = 2d > 2 is a quadratic matrix polynomial Q that is unimodularly equiv-
alent to

[
P
0

0
I

]
for an appropriately sized identity matrix I. Quadratizations are of par-

ticular interest for structured polynomials P when a correspondingly structured Q can
be found and efficient numerical methods are available for Q (see, for example, [9], [19]),
or when there is no structured linearization in the class of interest (for examples of
which see [25]). For palindromic matrix polynomials of even degree, Huang, Lin, and
Su [20] show how to build palindromic quadratizations that satisfy one-sided factoriza-
tions of the form (2.4a) and (2.4b). As an example, the ∗-palindromic quartic polynomial
P (λ) = λ4A2+λ3A1+λ2A0+λA∗

1+A∗
2 with A∗

0 = A0 and A2 nonsingular can be quadra-
tized into

Q(λ) = λ2

[
A1 A2

I 0

]
+ λ

[
A0 − I − A2A

∗
2 0

0 −I

]
+

[
A∗

1 I
A∗

2 0

]
,

which satisfies

Q(λ)

[
λI

λ2I + A∗
2

]
= e1 ⊗ P (λ), [λI I + λ2A2 ]Q(λ) = eT

1 ⊗ P (λ).

2.2. Matrix rational functions

Rational eigenproblems R(λ)x = 0, where the n × n rational function R(λ) has the
form (1.7) occur in a variety of physical applications [6]. The matrices Rj are usually
of low rank. Using the process of minimal realization [4, pp. 91–98] together with rank-
revealing factorizations of the Rj , Su and Bai [30] show how to rewrite R(λ) as

R(λ) = P (λ) + U(C − λD)−1V ∗,

where U and V are n×m and C,D are m×m and the value of m depends on the degree
of the polynomials qj(λ) and the rank of the matrices Rj . Now take any linearization
L1(λ) = λX1+Y1 ∈ L1(P ) with v = e1 and premultiply R(λ)x = 0 by e1 in the Kronecker
sense to obtain

(
L1(λ) + (e1 ⊗ U)(C − λD)−1(eT

ℓ ⊗ V ∗)
)
(Λ ⊗ x) = 0,

which becomes a linear eigenvalue problem L(λ)z = 0 with

L(λ) = λ

[
X1 0
0 D

]
+

[
Y1 e1 ⊗ U

eT
ℓ ⊗ V ∗ −C

]
, z =

[
Λ ⊗ x

(C − λD)−1V ∗x

]
.

It is then easy to check that (2.1) holds with

M(λ) = L(λ), F (λ) =

[
Λ ⊗ In

(C − λD)−1V ∗

]
, G(λ) =

[
e1 ⊗ In

0

]
, N(λ) = R(λ).
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3. Eigenvalue and eigenvector relations

We first determine what the factorizations (2.1) and (2.2) imply about the relation
between the eigensystem of M and that of N . While the spectra are not necessarily
identical, there are nevertheless close connections between eigenpairs of M and eigenpairs
of N , as the next result shows.

Theorem 3.1 Let M(λ) and N(λ) be matrix functions of dimensions r × r and n × n,

respectively, with r ≥ n.

(a) Let λ ∈ C and assume that (2.1) holds at λ with F (λ) and G(λ) of full rank.

Then

(i) F (λ)x is a right eigenvector of M with eigenvalue λ if and only if x is a right

eigenvector of N with eigenvalue λ.

(ii) If w ∈ C
r is a left eigenvector of M with eigenvalue λ then G(λ)∗w is a left

eigenvector of N with eigenvalue λ provided that it is nonzero.

(b) Let λ ∈ C and assume that (2.2) holds at λ with E(λ) and H(λ) of full rank.

Then

(i) If z ∈ C
r is a right eigenvector of M with eigenvalue λ then H(λ)z is a right

eigenvector of N with eigenvalue λ provided that it is nonzero.

(ii) E(λ)∗y is a left eigenvector of M with eigenvalue λ if and only if y is a left

eigenvector of N with eigenvalue λ.

Proof. The four parts follow, respectively, from the relations

M(λ)F (λ)x = G(λ)N(λ)x, w∗M(λ)F (λ) = w∗G(λ)N(λ), (3.1a)

E(λ)M(λ)z = N(λ)H(λ)z, y∗E(λ)M(λ) = y∗N(λ)H(λ). (3.1b)

It is instructive to apply Theorem 3.1 to some of the examples given in the previous
section, in particular when M(λ) = P (λ) is a matrix polynomial and M(λ) = L(λ) is a
pencil. For L ∈ L1(P ) and L ∈ L2(P ) in Example 2.2 we have F (λ) = Λ ⊗ In, G(λ) =
v ⊗ I, and E(λ) = ΛT ⊗ In, H(λ) = ṽT ⊗ I, respectively, which are of full rank for all
λ assuming v and ṽ are nonzero, and by exploiting this special structure the conclusions
of the theorem can be strengthened in two respects. First, the phrase “provided that it
is nonzero” can be removed in parts (a)(ii) and (b)(i) under the assumption that P is
regular (that is, det(P (λ)) 6≡ 0). Second, under the assumption that L is a linearization
of P , every right eigenvector of L and left eigenvector of P can be shown to be of the
forms given in parts (a)(i) and (a)(ii), and similarly for (b)(i) and (b)(ii). For proofs,
see [26, Thms. 3.8, 3.14, 4.4] [13, Thms. 3.2, 3.3]. It is worth noting that in the case
of L1(P ) and L2(P ), the eigenvector relations in parts (a)(ii) and (b)(i), respectively, of
Theorem 3.1 are not found in [26], but were first identified in [13]. The systematic use of
one-sided factorizations makes it easier to identify such relations in their full generality.

For the pencils in Example 2.4 arising from the basis of polynomials satisfying a three-
term recurrence, E(λ) = ΦT (λ)⊗ I has full rank for all λ. Moreover, since hT = αℓ−1e

T
ℓ ,

the vector H(λ)z = (hT ⊗In)z in part (b)(i) of Theorem 3.1 is always nonzero. Moreover,
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it is shown in [2] that these pencils are strong linearizations and hence from the arguments
in [13, Thm. 3.3] and [26, Thm. 3.14, 4.4] it follows that every right eigenvector of P and
left eigenvector of L is of the forms given in parts (b)(i) and (b)(ii). The same results
apply to the pencils for the Bernstein basis on [a, b] when λ 6= b [2, Sec. 4].

When (2.1) and (2.2) correspond to factorization of P (Example 2.5), the vectors
G(λ)∗w and H(λ)z in parts (a)(ii) and (b)(i) are just w and z, and so are automatically
nonzero. Since in a factorization P (λ) = L(λ)F (λ) the factors L and F may have
eigenvalues in common, a stronger result is obtained (in part (a)(i), for example) by
replacing the assumption that F (λ) is of full rank by the assumption that x is not in the
null space of F (λ).

Higham, Mackey, and Tisseur [15] investigate the conditioning of linearizations from
the vector space DL(P ) = L1(P )∩L2(P ). The analysis in that paper can be generalized
by using the conditions (2.1) and (2.2) in place of the conditions defining L1(P ) and
L2(P ). To indicate the key idea, let x and y denote right and left eigenvectors of P
and let z and w denote right and left eigenvectors of L, all corresponding to a simple,
nonzero, finite eigenvalue λ. Eigenvalue condition numbers are given, in the 2-norm, by
the following expressions:

κP (λ) =

(∑ℓ
j=0 |λ|j ‖Aj‖2

)
‖y‖2‖x‖2

|λ| |y∗P ′(λ)x| , κL(λ) =

(
|λ|‖X‖2 + ‖Y ‖2

)
‖w‖2‖z‖2

|λ| |w∗L′(λ)z| . (3.2)

These condition numbers measure the sensitivity of the eigenvalue λ of P and L, respec-
tively to small perturbations of P and L measured in a normwise relative fashion [31,
Thm. 5]. Ideally when solving (1.2) via (1.4) we would like κL(λ) ≈ κP (λ). The following
lemma shows that our factorizations (2.1) and (2.2) imply a close relation between these
condition numbers.

Lemma 3.2 Let λ and x be a finite eigenvalue and corresponding right eigenvector of P
and let w be a left eigenvector of L corresponding to λ. Assume that for M(λ) ≡ L(λ) and

N(λ) ≡ P (λ), (2.1) holds with F (λ) of full rank and y = G(λ)∗w 6= 0. Then z = F (λ)x
is a right eigenvector of L, y is a left eigenvector of P , and

w∗L′(λ)z = y∗P ′(λ)x.

Proof. By Theorem 3.1 (a)(i), z = F (λ)x is a right eigenvector of L and by Theorem 3.1
(a)(ii) y is a left eigenvector of P . Differentiating L(λ)F (λ) = G(λ)P (λ) with respect to
λ gives

L′(λ)F (λ) + L(λ)F ′(λ) = G′(λ)P (λ) + G(λ)P ′(λ).

Evaluating at λ, premultiplying by w∗, and postmultiplying by x gives

w∗L′(λ)z = w∗L′(λ)F (λ)x = w∗G(λ)P ′(λ)x = y∗P ′(λ)x.

An entirely analogous result holds for (2.2).
From Lemma 3.2 it follows that for a simple, finite eigenvalue λ,

κL(λ)

κP (λ)
=

|λ|‖X‖2 + ‖Y ‖2∑ℓ
j=0 |λ|j ‖Aj‖2

· ‖w‖2‖z‖2

‖y‖2‖x‖2
.
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This expression can now be used to investigate the size of κL(λ)/κP (λ) as L varies, for
fixed P , where the L-dependent terms are X, Y , w, and z. This is done in [15] for pencils
L ∈ DL(P ), where minimization of the ratio over L is considered. The same can be done
for the other special cases described in Section 2, but we will not pursue this here.

In the rest of the paper we concentrate on linear systems, which are much less well
studied than the polynomial eigenvalue problem.

4. Parametrized linear system relations

Now we turn to linear systems and show that by using the factorization (2.1) or
(2.2) we can identify an augmented system M(ω)z = c whose solution is related in a
well-defined way to that of the original system N(ω)x = b.

Theorem 4.1 Let ω ∈ C, r ≥ n, and let the r× r matrix M(ω) and n×n matrix N(ω)
be nonsingular.

(a) Assume that (2.1) holds at ω with G(ω) of full rank. Then x is the unique solution

to N(ω)x = b if and only if z = F (ω)x is the unique solution to M(ω)z = G(ω)b.

(b) Assume that (2.2) holds at ω with E(ω) of full rank. If z is the unique solution

to M(ω)z = c for some right hand side c satisfying E(ω)c = γb, where 0 6= γ ∈ C, then

x = γ−1H(ω)z is the unique solution to N(ω)x = b.

Proof. (a) Let x be the unique solution to N(ω)x = b and z the unique solution to
M(ω)z = G(ω)b. Then multiplying (2.1) on the right by x gives

M(ω)F (ω)x = G(ω)N(ω)x = G(ω)b. (4.1)

It follows that z = F (ω)x.

(b) Let z be the unique solution to M(ω)z = c. Using (2.2) we have

N(ω)H(ω)z = E(ω)M(ω)z = E(ω)c = γb.

It follows that x = γ−1H(ω)z.

Theorem 4.1 shows that if the right-sided factorization (2.1) holds then the right-hand
side c of a suitable augmented system M(ω)z = c is easy to construct. However, the
solution x may not be easy to recover from z = F (ω)x unless F (ω) has a simple form.
For the left-sided factorization (2.2) it is the right-hand side that is harder to construct,
but recovery of x is trivial.

Note that if L is a linearization of a matrix polynomial P then P (ω) nonsingular
implies L(ω) nonsingular, by (2.3).

Now we examine how Theorem 4.1 specializes for the vector spaces of ℓn× ℓn pencils
L1(P ) and L2(P ). Let Λ = Λ(ω) = [ωℓ−1 ωℓ−2 . . . 1]T . For z ∈ C

ℓn we write zj ≡
z((j − 1)n + 1: jn), j = 1: ℓ.

Corollary 4.2 Let ω ∈ C and let P (ω) and the ℓn× ℓn matrix L(ω) be nonsingular.
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(a) If L ∈ L1(P ) with vector v ∈ C
ℓ then the unique solutions of P (ω)x = b and

L(ω)z = v ⊗ b are related by z = Λ ⊗ x.

(b) If L ∈ L2(P ) with vector ṽ ∈ C
ℓ, and if u ∈ C

ℓ is such that ΛT u 6= 0, then the

unique solutions of P (ω)x = b and L(ω)z = u⊗ b are related by x = (ΛT u)−1
∑ℓ

j=1 ṽjzj.

Proof. The proof is straightforward, on noting in (b) that we can take c = u ⊗ b in
Theorem 4.1 (b).

Corollary 4.2 shows that for L ∈ L1(P ), x can be recovered from the solution z = Λ⊗x
of the augmented system in many ways. Although the vector z for L ∈ L2(P ) with right-
hand side of the form u⊗b does not have special structure in general, we do have freedom
in the choice of u.

Note that L ∈ L1(P ) with vector v implies that

L(ω)(Λ ⊗ In) = v ⊗ P (ω) ⇐⇒ (Λ ⊗ In)P (ω)−1 = L(ω)−1(v ⊗ In). (4.2)

Multiplying (4.2) on the left by f∗ ⊗ I with f ∈ C
ℓ such that Λ∗f 6= 0 leads to an

interesting formula for P (ω)−1 that will be used in Section 5. An analogous formula is
obtained in a similar way for L2.

Lemma 4.3 (a) Let L(ω) ∈ L1(P ) with vector v. For any f ∈ C
ℓ such that f∗Λ 6= 0,

P (ω)−1 =
1

f∗Λ
(f∗ ⊗ In)L(ω)−1(v ⊗ In). (4.3)

(b) Let L(ω) ∈ L2(P ) with vector ṽ. For any f ∈ C
ℓ such that f∗Λ 6= 0,

P (ω)−1 =
1

f∗Λ
(ṽT ⊗ In)L(ω)−1(f ⊗ In).

In the following two sections we use these results to compare the sensitivity of the
augmented system with that of the original system and to understand how backward
errors for the augmented system propagate into backward errors for the original system.
The focus of our analysis will be on the companion form pencil C1 and understanding
the effects of scaling C1 or P , but our analysis could equally well be used to guide the
choice of pencil L when, as is the case for the spaces L1(P ) and L2(P ) for example, there
is a parametrized family of possible choices.

5. Sensitivity of parametrized linear systems

We denote by ‖ · ‖ any vector norm and the corresponding subordinate matrix norm.
The norm ‖ · ‖D dual to a given vector norm ‖ · ‖ on C

n is defined by

‖x‖D = max
z 6=0

|z∗x|
‖z‖

and we say that z is a vector dual to y if z∗y = ‖z‖D‖y‖ = 1. For complex α we define

sign(α) =

{
α/|α|, α 6= 0,

0, α = 0.
11



We assume throughout this section that P (ω) =
∑ℓ

i=0 ωiAi is nonsingular, that is, the
parameter ω is not an eigenvalue of P . For notational convenience we define ∆P (ω) =∑ℓ

i=0 ωi∆Ai.
A normwise condition number of the solution x to P (ω)x = b can be defined by

κP,b(ω, x) := lim
ǫ→0

sup

{ ‖∆x‖
ǫ‖x‖ :

((
P (ω) + ∆P (ω)

)
(x + ∆x) = b + ∆b,

‖∆Ai‖ ≤ ǫαi, i = 0: ℓ, ‖∆b‖ ≤ ǫβ

}
. (5.1)

The αi, i = 0: ℓ and β are nonnegative weights, included to allow flexibility in how the
perturbations are measured; in particular, ∆Ai can be forced to zero by setting αi = 0.
The normwise relative measure of the perturbations corresponds to

αi = ‖Ai‖, i = 0: ℓ, β = ‖b‖. (5.2)

The following result provides a perturbation bound.

Theorem 5.1 Let P (ω)x = b and (P (ω) + ∆P (ω))y = b + ∆b, where ‖∆Ai‖ ≤ ǫαi,

i = 0: ℓ and ‖∆b‖ ≤ ǫβ. Assume that ǫ
(∑ℓ

i=0 |ω|iαi

)
‖P (ω)−1‖ < 1. Then

‖x − y‖
‖x‖ ≤

ǫ‖P (ω)−1‖
(
β/‖x‖ +

∑ℓ
i=0 |ω|iαi

)

1 − ǫ‖P (ω)−1‖∑ℓ
i=0 |ω|iαi

, (5.3)

and this bound is attainable to first order in ǫ.

Proof. It is straightforward to obtain y−x = P (ω)−1(∆b−∆P (ω)x)+P (ω)−1∆P (ω)(x−
y). Taking norms yields ‖y − x‖ ≤ ǫ‖P (ω)−1‖

(
β +

∑ℓ
i=0 |ω|iαi (‖x‖ + ‖y − x‖)

)
, which

yields the bound on rearranging. It is straightforward to show that the bound is attained
to first order for the perturbations

∆Ai = −ǫ sign(ωi)αi‖x‖zv∗, i = 0: ℓ, ∆b = ǫβz, (5.4)

where ‖z‖ = 1, ‖P (ω)−1z‖ = ‖P (ω)−1‖, and v is a vector dual to x.

An explicit formula for the condition number can now be identified.

Corollary 5.2 The condition number κP,b(ω, x) is given by

κP,b(ω, x) = ‖P (ω)−1‖
(

β

‖x‖ +

ℓ∑

i=0

|ω|iαi

)
. (5.5)

For the rest of this section we specialize to normwise relative perturbations (see (5.2)).
The dominant term in (5.5) is then

κP (ω) := ‖P (ω)−1‖
ℓ∑

i=0

|ω|i‖Ai‖ ∈ [ 12κP,b(ω, x), κP,b(ω, x)], (5.6)
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since ‖b‖ = ‖P (ω)x‖ ≤ ∑ℓ
i=0 |ω|i‖Ai‖‖x‖. Hence which right-hand side we choose for

the linearized system has little effect on the conditioning of the system when P is subject
to perturbation. Our aim in the rest of this section is to compare κL,c(ω, z) to κP,b(ω, x)
and to derive sufficient conditions on the coefficient matrices and parameters defining L
for κL,c(ω, z) ≈ κP,b(ω, x) to hold.

For the 2-norm, (5.6) implies that

κL,c(ω, z)

κP,b(ω, x)
≈ κL(ω)

κP (ω)
=

‖L(ω)−1‖2

‖P (ω)−1‖2

|ω|‖X‖2 + ‖Y ‖2∑ℓ
i=0 |ω|i‖Ai‖2

. (5.7)

We will need a result from [13, Lem. 3.5] that is useful when taking norms of block
matrices.

Lemma 5.3 For any block ℓ × m matrix B = (Bij) we have maxi,j ‖Bij‖2 ≤ ‖B‖2 ≤√
ℓm maxi,j ‖Bij‖2.

We will concentrate on the companion form pencils, C1(ω) = ωX1 + Y1 and C2(ω) =
ωX2 + Y2 given by (2.7). For k = 1, 2, ‖Xk‖2 = max(‖Aℓ‖2, 1) and from Lemma 5.3,
max(1,maxi=0:ℓ−1 ‖Ai‖2) ≤ ‖Yk‖2 ≤ ℓmax(1,maxi=0:ℓ−1 ‖Ai‖2). Hence

|ω|‖Xk‖2 + ‖Yk‖2∑ℓ
i=0 |ω|i‖Ai‖2

≥ |ω|max(1, ‖Aℓ‖2) + max(1,maxi=0:ℓ−1 ‖Ai‖2)∑ℓ
i=0 |ω|i‖Ai‖2

≥ 1

‖Λ‖1
. (5.8)

As an upper bound we obtain

|ω|‖Xk‖2 + ‖Yk‖2∑ℓ
i=0 |ω|i‖Ai‖2

≤ (|ω| + ℓ)
max(1,maxi ‖Ai‖2)∑ℓ

i=0 |ω|i‖Ai‖2

≤ max(1,maxi ‖Ai‖2)

min
(
‖A0‖2, ‖Aℓ‖2

) (|w| + ℓ)

1 + |w|ℓ .

(5.9)
We now need the following result from [13, Lem. 3.4] in order to bound the ratio

‖Ck(ω)−1‖2/‖P (ω)−1‖2. Recall that AB denotes the block transpose of A.

Lemma 5.4 For the first and second companion forms C1 and C2 there exists a block

ℓ × ℓ matrix polynomial R(λ) ∈ C
ℓn×ℓn such that

R(λ)C1(λ) = Iℓ ⊗ P (λ) = C2(λ)R(λ)B, (5.10)

where the n × n blocks of R(λ) are given by

[R(λ)]ij =





λℓ−iI, 1 ≤ i ≤ ℓ, j = 1,

−λj−i

ℓ−j∑

k=0

λk−1Ak, 1 ≤ i < j, 1 < j ≤ ℓ,

λj−i

ℓ∑

k=ℓ−j+1

λk−1Ak, 1 < j ≤ i ≤ ℓ.

(5.11)

(Note that (2.11) is the special case with ℓ = 3.)
Thus

‖Λ‖2 ≤ ‖Ck(ω)−1‖2

‖P (ω)−1‖2
≤ ‖R(ω)‖2 ≤ ℓ‖Λ‖1 max

(
1,max

i
‖Ai‖2

)
, k = 1, 2, (5.12)
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where the lower bound is from Lemma 4.3 (a) with v = e1 and f = Λ and the upper
bounds are from Lemma 5.3 and Lemma 5.4. Hence, combined with (5.7)–(5.9) and
(A.1), this yields

1

ℓ1/2
≤ κCk

(ω)

κP (ω)
≤ ℓ3

max(1,maxi ‖Ai‖2)
2

min(‖A0‖2, ‖Aℓ‖2)
, k = 1, 2. (5.13)

When the coefficient matrices of P have norms that differ widely, the companion
matrices Ck(λ), k = 1, 2 are badly scaled and the bounds above signal that κCk

≫ κP

is possible. For this reason we next analyze the effect on the conditioning of scaling the
identity blocks of C1 and C2, using a scaling proposed by Higham, Li, and Tisseur [13,
Sec. 3.3].

Let D = diag(d) ⊗ In, where d ∈ R
ℓ with d1 = 1 and di = maxj ‖Aj‖2, i = 2: ℓ. It

is easy to check that DC1(ω) = ωX̃1 + Ỹ1 = C̃1 ∈ L1(P ) with v = e1 and C2(ω)D =

ωX̃2 + Ỹ2 = C̃2 ∈ L2(P ) with ṽ = e1, and that we have, using (A.1) again,

|ω| + 1
∑ℓ

i=0 |ω|i
≤ |ω|‖X̃k‖2 + ‖Ỹk‖2∑ℓ

i=0 |ω|i‖Ai‖2

≤ (|ω| + ℓ) maxi ‖Ai‖2

(|ω|ℓ + 1)min(‖A0‖2, ‖Aℓ‖2)
≤ ℓ2

‖Λ‖1
ρ (5.14)

for k = 1, 2, where

ρ =
maxi ‖Ai‖2

min(‖A0‖2, ‖Aℓ‖2)
. (5.15)

Also, since (5.10) becomes R(ω)D−1 · DC1(ω) = Iℓ ⊗ P (ω) = C2(w)D · D−1R(ω)B, the
bounds in (5.12) translate to

‖Λ‖2 ≤ ‖C̃k(ω)−1‖2

‖P (ω)−1‖2
≤ ℓ‖Λ‖1, k = 1, 2,

so that, overall, using (A.2) for the lower bound,

2ℓ1/2

ℓ + 1
≤

κ
C̃k

(ω)

κP (ω)
≤ ℓ3ρ, k = 1, 2. (5.16)

The upper bound in (5.16) is much smaller than that in (5.13) if maxi ‖Ai‖2 ≫ 1 or
maxi ‖Ai‖2 ≪ 1, showing that block scaling has potentially a very beneficial effect on
the conditioning of the companion pencils.

One way to reduce ρ is by scaling the parameter ω. Write ω = θµ and

P (ω) = P̃ (µ) =

ℓ∑

i=0

µiÃi, Ãi = θiAi.

For the scaled polynomial P̃ , we have

ρ
P̃

= ρ
P̃

(θ) =
maxi θi‖Ai‖2

min(‖A0‖2, θℓ‖Aℓ‖2)
.

Betcke [5] shows that the unique minimizer of ρP (θ) over all θ > 0 is θopt = (‖A0‖2/‖Aℓ‖2)
1/2.

For ℓ = 2, Fan, Lin, and Van Dooren [7] suggest the same scaling and also mul-
tiply all three coefficient matrices by another scalar, chosen to bring the norms as
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close as possible to 1. This double scaling is used in [16], for example. It yields

2/3 ≤ max(‖Ã2‖2, ‖Ã1‖2, ‖Ã0‖2) ≤ 2 and ρ
P̃

(θopt) = max
(
1, ‖Ã1‖2/(‖Ã0‖2‖Ã2‖2)

1/2
)
,

and so ρ
P̃

(θopt) ≈ 1 if the quadratic is elliptic [17], [23] or, in the terminology of quadrat-
ics arising from mechanical systems with damping, the system is not too heavily damped.
It is easy to see that for normwise relative perturbations, κP is invariant under the Fan,
Lin, and Van Dooren scaling.

6. Backward error for linear systems

Suppose that x̂ is an approximate solution to P (ω)x = b. We can interpret x̂ as the
exact solution of a perturbed system

(P (ω) + ∆P (ω))x̂ =

( ℓ∑

i=0

ωi(Ai + ∆Ai)

)
x̂ = b + ∆b,

where there are many possible choices of ∆Ai, i = 0: ℓ and ∆b. We define the backward
error to be the smallest of all such perturbations, in the following sense:

ηP,b(ω, x̂) = min{ ǫ : (P (ω) + ∆P (ω))x̂ = b + ∆b, ‖∆Ai‖ ≤ ǫαi, i = 0: ℓ, ‖∆b‖ ≤ ǫβ }.

We denote by ηP (ω, x̂) the backward error with unperturbed right hand side (β = 0).
From a straightforward modification of a result of Rigal and Gaches on the normwise

backward error for a linear system [11, Thm. 7.1], [28] we derive an explicit expression
for ηP,b(ω, x̂).

Theorem 6.1 The normwise backward error ηP,b(ω, x̂) is given by

ηP,b(ω, x̂) =
‖b − P (ω)x̂‖

(∑ℓ
i=0 |ω|i αi

)
‖x̂‖ + β

. (6.1)

Proof. It is straightforward to show that the right hand side of (6.1) is a lower bound
for ηP,b(ω, x̂). This lower bound is attained for the perturbations

∆Ai = − sign(ωi)αi‖x̂‖rz∗
(∑ℓ

i=0 |ω|i αi

)
‖x̂‖ + β

, i = 0: ℓ, ∆b =
βr

(∑ℓ
i=0 |ω|i αi

)
‖x̂‖ + β

,

where r = b − P (ω)x̂ is the residual vector and z is a vector dual to x̂.

A straightforward modification of [11, Prob. 7.7] yields the following result for norm-
wise relative perturbations.

Lemma 6.2 Let αi ≡ ‖Ai‖ and β = ‖b‖. Then

ηP,b(ω, x̂) ≤ ηP (ω, x̂) ≤
2ηP,b(ω, x̂)

1 − ηP,b(ω, x̂)
.
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Hence if ηP,b(ω, x̂) ≪ 1 then the normwise relative backward error ηP (ω, x̂) with
unperturbed right hand side is within a small factor of ηP,b(ω, x̂). For this reason we
consider only ηP (ω, x̂) in the rest of this section. We concentrate on the 2-norm from
this point on and set αi ≡ ‖Ai‖2.

To relate backward errors for L and P we need to assume that the pencil L satisfies a
left-sided factorization (2.2), with E(ω) of full rank. Recalling Theorem 4.1(b), let ẑ be
the computed solution to L(ω)z = c with c ∈ C

r such that E(ω)c = γb for some nonzero
scalar γ. Then,

E(ω)
(
L(ω)ẑ − c

)
= P (ω)H(ω)ẑ − γb.

So if we recover x̂ from ẑ as x̂ = γ−1H(ω)ẑ we have a well-defined relation between
the residual for the linearized system and the residual for the original problem. Let us
assume that ẑ is computed exactly from this expression; certainly in the common case
where H(ω) = hT ⊗ I and h is a unit vector ek (see (2.6)), H(ω)ẑ = (eT

k ⊗ I)ẑ = ẑk is
obtained exactly. In particular,

‖P (ω)x̂ − b‖2 ≤ γ−1‖E(ω)‖2‖L(ω)ẑ − c‖2.

From (6.1) we have

ηP (ω, x̂)

ηL(ω, ẑ)
=

‖P (ω)x̂ − b‖2

‖L(ω)ẑ − c‖2
· |ω|‖X‖2 + ‖Y ‖2∑ℓ

i=0 |ω|i‖Ai‖2

‖ẑ‖2

‖x̂‖2

≤ ‖E(ω)‖2 ·
|ω|‖X‖2 + ‖Y ‖2∑ℓ

i=0 |ω|i‖Ai‖2

‖ẑ‖2

‖H(ω)ẑ‖2
.

From Lemma 5.4 and (2.6) it follows that for C1 the left-sided factorization (2.2)
holds for

Ek(ω) = (eT
k ⊗ In)R(ω), H(ω) = eT

k ⊗ I, k = 1: ℓ, (6.2)

and for c = e1 ⊗ b we have that Ek(ω)c = ωℓ−kb. So γ = ωℓ−k and x̂ = ẑk/ωℓ−k. Using
‖Ek(ω)‖2 ≤ ℓ1/2‖Λ‖1 max(1,maxi ‖Ai‖2), (5.9), and (A.1), we obtain

ηP (ω, x̂)

ηC1
(ω, ẑ)

≤ ℓ5/2 max
(
1,maxi ‖Ai‖2

)2

min
(
‖A0‖2, ‖Aℓ‖2

) ‖ẑ‖2

‖ẑk‖2
. (6.3)

Note that the second, Ai-dependent term in the bound is the same as that in the bound
(5.13) for the ratio of condition numbers.

If ‖ẑk‖2 ≪ ‖ẑ‖2 this bound is large, reflecting the fact that the computed x̂ is likely
to suffer from damaging cancellation. For C1, and more generally any L ∈ L1(P ),
Corollary 4.2(a) shows that the exact z has the form Λ ⊗ x. To minimize the bound in
(6.3) we should choose k = ℓ if |ω| ≪ 1 and k = 1 if |ω| ≫ 1, whence ‖z‖2/‖zk‖2 ≤ ℓ1/2.

For the block scaled companion pencil C̃1, for which E(ω) is replaced by E(ω)D−1,
we have, using (5.14), the bound

ηP (ω, x̂)

ηC̃1

(ω, ẑ)
≤ ℓ5/2 ρ

‖ẑ‖2

‖ẑk‖2
, (6.4)

which is much smaller than (6.3) when maxi ‖Ai‖2 ≫ 1 or maxi ‖Ai‖2 ≪ 1.
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For the second companion linearization, the factorization (2.2) holds for

E(ω) = ΛT ⊗ I, H(ω) = eT
1 ⊗ I, (6.5)

and for c = u⊗b for any u ∈ C
n such that ΛT u 6= 0, Corollary 4.2(b) gives x̂ = ẑ1/(ΛT u).

Using (5.9) and (A.1) we obtain

ηP (ω, x̂)

ηC2
(ω, ẑ)

≤ ℓ2
max

(
1,maxi ‖Ai‖2

)

min
(
‖A0‖2, ‖Aℓ‖2

) ‖ẑ‖2

‖ẑ1‖2
. (6.6)

For the block scaled second companion pencil this bound improves to

ηP (ω, x̂)

ηC̃2

(ω, ẑ)
≤ ℓ2ρ

‖ẑ‖2

‖ẑ1‖2
.

An important conclusion that can be drawn from (5.16) and (6.4) is that for the block
scaled first companion pencil, the desirable relations κ

C̃1

(ω) ≈ κP (ω) and ηC̃1

(ω, ẑ) ≈
ηP (ω, x̂) hold for a suitable choice of k, provided that ρ ≈ 1.

7. Numerical experiments

To illustrate the theory we report experiments with linear systems P (ω)x = b cor-
responding to three quadratic matrix polynomials from the NLEVP collection [6]. In
each case we use the first companion linearization C1 and the augmented system with
c = e1 ⊗ b and solve the problem in three forms: with C1 and P both unscaled, with
C1 having the block scaling and P unscaled, and with C1 unscaled but P having the
Fan, Lin, and Van Dooren scaling. We evaluate the condition numbers and backward
errors for normwise relative perturbations (thus with the parameters (5.2)). We report
condition numbers and backward errors over frequencies ω = 2πi10t with t taking ten
equally spaced values on [−3, 3]. The right-hand side b has equally spaced entries on the
interval [−2, 1].

Recall that key quantities are

θ =
max(1,maxi ‖Ai‖2)

2

min(‖A0‖2, ‖Aℓ‖2)
, ρ =

maxi ‖Ai‖2

min(‖A0‖2, ‖Aℓ‖2)
, (7.1)

since θ is a factor in the condition number and backward error bounds (5.13) and (6.3)
for the unscaled C1, while ρ is a factor in the condition number and backward error
bounds (5.16) and (6.4) for the block scaled C1,

The first test is nlevp(’railtrack’), which is a badly scaled quadratic of dimension
1005 arising from a model of the vibration of rail tracks under the excitation of high
speed trains [18], [25]. The condition numbers κP and κC1

are plotted in Figure 7.1. We
have ‖A2‖1 = 4.2 × 1010, ‖A1‖1 = 1.9 × 1011, ‖A0‖1 = 3.1 × 1010, θ = 1.2 × 1012 and
ρ = 6.2 for the original P , and θ = 8.9 and ρ = 5.3 for P after the Fan-Lin-Van Dooren
scaling. Hence our theory suggests that κC1

(ω) may be up to a factor 1012 larger than
κP (ω), but that with block scaling of C1 or the Fan-Lin-Van Dooren scaling of P , the
condition numbers must be of the same order of magnitude. This behavior is confirmed
by Figure 7.1.
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Figure 7.1: Railtrack problem: frequency ω against condition number κ
C1

or κ
P

. Key: unscaled C1

(“∗”), block scaled C1 (“♦”), C1 with Fan-Lin-Van Dooren scaling of P (“◦”), and P (“+”).

The second problem is nlevp(’cd player’), which is a quadratic of dimension 60
arising in the study of a CD player control task. Figure 7.2 plots the condition numbers
κP and κC1

along with the ratios ηP,b(ω, x̂)/ηC1
(ω, ẑ) of backward errors, where x̂ is

recovered from ẑ as described just after (6.2), with k chosen to maximize ‖zk‖2, and ẑ
is computed via the MATLAB backslash operator or via the MATLAB gmres function
with no restarts, a convergence tolerance 10−4, and a random starting vector within
relative distance 10−2 of the true solution. We have ‖A2‖1 = 1.0, ‖A1‖1 = 1.1 × 107,
‖A0‖1 = 2.5×105, θ = 1.2×1014 and ρ = 1.1×107 for the original P , and θ = 4.3×104 and
ρ = 4.4×104 for P after the Fan-Lin-Van Dooren scaling. Again, we see scaling bringing
improvements consistent with the bounds. However, for |ω| > 10 block scaling produces
a slight worsening in the conditioning of C1, and the backward error for backslash is
worsened by the Fan-Lin-Van Dooren scaling for most ω; this behavior is within the
freedom of a factor 104 afforded by the bounds.

Our final example is nlevp(’damped beam’), which is a quadratic from a finite ele-
ment model of a beam clamped at both ends with a damper in the middle, and which is
analyzed in detail by Higham, Mackey, Tisseur, and Garvey [16] with respect to the eigen-
value problem. Here, ‖A2‖1 = 6.7×10−3, ‖A1‖1 = 5.0, ‖A0‖1 = 1.8×109, θ = 4.6×1020

and ρ = 2.6 × 1011 for the original P , and θ = 2.0 and ρ = 1.0 for P after the Fan-Lin-
Van Dooren scaling. For computations analogous to those in the second example, the
results are shown in Figure 7.3. Surprisingly, the condition numbers of C1 are in several
cases very close to those of P when no scaling is used, despite the large values of θ and
ρ. Since the Fan-Lin-Van Dooren scaling produces θ and ρ of order 1 it guarantees the
ideal behavior that ηP,b ≈ ηC1

, which is verified by the second and third plots since the
corresponding ratios are of order 1. Note that there is some growth of the ratios with |w|
for block scaling, but that this is well within the freedom afforded by the bounds given
that ρ is of order 1011.
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Figure 7.2: CD player problem.: frequency ω against condition number κ
C1

or κ
P

or backward error

ratio η
P,b

/η
C1,c

. Key: unscaled C1 (“∗”), block scaled C1 (“♦”), C1 with Fan-Lin-Van Dooren scaling

of P (“◦”), and P (“+”).
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Figure 7.3: Damped beam problem: frequency ω against condition number κ
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8. Concluding remarks

A general technique for solving nonlinear eigenvalue problems and parametrized lin-
ear systems is to reduce the nonlinear problem to a larger but simpler (usually linear)
problem. For polynomial eigenvalue problems various classes of linearizations have been
derived and analyzed. In particular, analysis in [13], [15] compares the sensitivity of
the original and certain linearized problems and connects the backward errors of their
approximate solutions. In this work we have introduced a way to treat general nonlinear
matrix functions N(λ) in terms of one-sided factorizations relating N(λ) to the simpler
function M(λ). We have shown that such factorizations hold in many important spe-
cial cases and that they imply close relations between the eigensystems of N and M
(Theorem 3.1) and between the solutions of the parametrized linear systems N(ω)x = b
and the augmented systems M(ω)z = c (Theorem 4.1). We have developed the theory
in some detail for parametrized linear systems, which have received little attention in
the literature to date, but our techniques are equally applicable to rational and general
nonlinear eigenproblems. The one-sided factorization framework provides a balance be-
tween simplicity (so that the factorizations can be found) and utility (so that informative
results can be proved), and we intend to explore its use further in future work.

A. Appendix

We need the following two pairs of bounds, which are proved in [15, Lem. A.1]:

1 ≤ (1 + x2)(1 + x2 + x4 + · · · + x2(ℓ−1))

1 + x2ℓ
≤ ℓ, (A.1)

2ℓ1/2

ℓ + 1
≤ (1 + x)(1 + x2 + x4 + · · · + x2(ℓ−1))1/2

1 + x + x2 + · · · + xℓ
≤ 1. (A.2)
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