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Abstract

Generalizing the notion of an eigenvector, invariant subspaces are frequently used in
the context of linear eigenvalue problems, leading to conceptually elegant and numerically
stable formulations in applications that require the computation of several eigenvalues
and/or eigenvectors. Similar benefits can be expected for polynomial eigenvalue problems,
for which the concept of invariant subspaces needs to be replaced by the concept of
invariant pair. Little is known so far about numerical aspects of such invariant pairs. The
aim of this paper is to fill this gap. The behavior of invariant pairs under perturbations
of the matrix polynomial is studied and a first-order perturbation expansion is given.
From a computational point of view, we investigate how to best extract invariant pairs
from a linearization of the matrix polynomial. Moreover, we describe efficient refinement
procedures directly based on the polynomial formulation. Numerical experiments with
matrix polynomials from a number of applications demonstrate the effectiveness of our
extraction and refinement procedures.

1 Introduction

Given a matrix polynomial

P (λ) = A0 + λA1 + λ2A2 + · · ·+ λℓAℓ (1)

with n × n matrices A0, . . . , Aℓ, a vector x 6= 0 is called an eigenvector belonging to some
eigenvalue λ0 of P if P (λ0)x = 0. Generalizing the notion of an eigenpair (x, λ), a pair
(X,S) ∈ C

n×k × C
k×k is called invariant if the relation

P(X,S) := A0X + A1XS + A2XS2 + · · · + AℓXSℓ = 0. (2)

is satisfied. One could regard the space X spanned by the columns of X as an invariant
subspace for P . However, as we will see in the course of this paper, the notion of invariant
subspaces is rather inconvenient when dealing with polynomial eigenvalue problems and the
notion of invariant pairs should be preferred.
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For linear eigenvalue problems, it is well known that working with invariant subspaces in-
stead of eigenvectors offers conceptual and numerical benefits [16]. For example, eigenvectors
associated with a multiple eigenvalue are unstable under perturbations, that is, an arbitrarily
small change in the matrix may cause some of the eigenvectors disappear. In contrast, the
corresponding invariant subspace remains stable under perturbations, provided that all copies
of the eigenvalue are included in the subspace. It will be seen that similar statements hold
for matrix polynomials; working with invariant pairs generally increases the robustness of
numerical methods in the presence of (nearly) multiple eigenvalues.

For k = nℓ, invariant pairs are closely connected to the notion of standard pairs developed
by Gohberg, Lancaster, and Rodman [15]. For k < nℓ, invariant pairs could therefore be seen
as local versions of standard pairs. As the focus of this paper is on numerical aspects, we
shall not discuss this connection in more detail.

For k = n, any matrix S satisfying (2) is called a solvent. We refer to Higham and Kim [19]
for existing results on solvents for ℓ = 2. Currently, it is not clear to us how solvents can be
put to good use in the context of invariant pairs. One emphasis of this paper is that it is
best, both from a theoretical and numerical point of view, to treat the matrices X and S not
as independent entitities but only jointly in an invariant pair (X,S).

For k = 1, invariant pairs coincide with eigenpairs (provided that X 6= 0). Numeri-
cal aspects of eigenpairs for matrix polynomials have been studied quite intensively in the
last decade. A number of theoretical results concerning the sensitivity of eigenvalues and
eigenvectors of matrix polynomials under (structured) perturbations are available [5, 11, 1].

The polynomial eigenvalue problem (1) is usually solved via linearization and a large class
of linearizations particularly suitable for computing eigenpairs has been introduced in Mackey
et al. [29]. The effects of linearization on the (structured) eigenvalue sensitivity and backward
error have been studied in [20, 21, 1], leading to clear recommendations which linearization
is to preferred from a numerical point of view. Scaling and balancing are preprocessing steps
that aim at improving the accuracy of computed eigenpairs, see [6, 13, 22].

The purpose of this paper is to discuss numerical aspects of invariant pairs for general k.
Little is known in this direction so far, with the notable exception of the work by Beyn and
Thümmler [9] on the continuation of invariant pairs for monic quadratic matrix polynomials.
In fact, the work on this paper was very much inspired by the results in [9] and we will point
out connections whenever possible.

The rest of this paper is organized as follows. Section 2 is concerned with basic properties
of invariant pairs and introduces the notions of minimality and simplicity. In Section 3, we
study the first-order behavior of an invariant pair under perturbations of the matrix polyno-
mial. In particular, Theorem 7 reveals that simple invariant pairs combined with a suitable
normalization condition are well-posed. Section 4 investigates computational aspects and
presents several approaches to extracting invariant pairs from the solution of the linearized
eigenvalue problem. Numerical experiments suggest that a novel approach based on the
generalized singular value decomposition is the preferred one. In Section 5, we describe a
Newton iteration for refining invariant pairs and investigate the solution of the corresponding
linearized equations in some detail. Section 6 contains some numerical experiments demon-
strating the use of the presented concepts and algorithms in applications. Appendix A serves
to illustrate the relation between Jordan chains for matrix polynomials and invariant pairs.

Remark 1 Recent numerically oriented work on polynomial eigenvalue problems, see for ex-
ample [20, 21], has shifted towards the use of a homogeneous formulation P (α, β) = βℓA0 +
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αβℓ−1A1 + α2βℓ−2A2 + · · · + αℓAℓ in place of (1), partly because it elegantly allows for the
simultaneous treatment of finite and infinite eigenvalues. At least for ℓ = 1, it is known
how to put invariant subspaces in a homogeneous framework: by using pairs of deflating sub-
spaces [34, 35]. In this work, we will refrain from using such a homogenous formulation as
it would significantly increase the level of technicality. Moreover, one of the advantages of
deflating subspaces, their direct connection to the factors of the generalized Schur form, is
lost when going to ℓ > 1. Infinite eigenvalues contained in an invariant subspace can still be
covered in (2) by simply reversing the order of the polynomial coefficients. The only restric-
tion imposed by the inhomogeneous formulation, it cannot handle zero and infinite eigenvalues
simultaneously.

2 Preliminaries

In this section, we provide basic theoretical results on invariant pairs for matrix polynomials.
Throughout this paper, we mainly consider matrix polynomials that are regular: det(P (λ)) 6≡
0.

First, let us emphasize that the definition of an invariant pair (2) is independent of the
choice of basis. Let T ∈ C

k×k be an invertible matrix and consider X̃ = XT . Then multiply-
ing (2) with T from the right yields

A0X̃ + A1X̃S̃ + A2X̃S̃2 + · · ·+ AℓX̃S̃ℓ = 0, S̃ = T−1ST, (3)

and hence (X̃, S̃) is also an invariant pair. If S is diagonalizable then T can be chosen such
that

S̃ = T−1ST = diag(λ1, λ2, . . . , λk).

In this case the relation (3) implies that the columns x̃1, . . . , x̃k of the transformed basis X̃
are eigenvectors of P : P (λi)x̃i = 0, provided of course that x̃i 6= 0. This shows that the
eigenvalues of S form a subset of the eigenvalues of P . More generally, if S̃ is in Jordan
canonical form then the columns of X̃ contain Jordan chains for P [15, Proposition 1.10], see
also Appendix A.

2.1 Simple invariant pairs and deflating subspaces

In contrast to linear eigenvalue problems, eigenvectors belonging to mutually distinct eigen-
values are not necessarily linearly independent. For example, the matrix polynomial [12]

P (λ) =

[
0 12
−2 14

]
+ λ

[
−1 −6
2 −9

]
+ λ2

[
1 0
0 1

]

has the same eigenvector
[1

1

]
belonging to the eigenvalues 3 and 4. Hence, a given full rank

matrix X that is known to be part of an invariant pair may not uniquely determine the matrix
S such that (X,S) is an invariant pair. It is not even reasonable to require X to have full
rank. These limitations raise doubts whether the concept of an invariant subspace (i.e., the
space spanned by the columns of X) is appropriate at all for polynomial eigenvalue problems
and we therefore favor the concept of an invariant pair.

To allow for rank deficiencies in X, the following notion of minimality will be used, which
has first been proposed in [9] for ℓ = 2.



Invariant Pairs for Matrix Polynomials 4

Definition 2 (Minimal pair) A pair (X,S) ∈ C
n×k × C

k×k is called minimal if there is
m ∈ N such that

Vm(X,S) :=




XSm−1

...
XS
X


 (4)

has full column rank. The smallest such m is called minimality index of (X,S).

By the Cayley-Hamilton theorem, the minimality index of a minimal pair cannot exceed k,
see also [28, Lemma 5]. Moreover, it will be shown in Lemma 5 below that the minimality
index cannot exceed the degree of the matrix polynomial.

The following theorem shows that it is always possible to extract a minimal invariant pair
with minimality index at most ℓ from a non-minimal one. This allows us to restrict most of
the discussion in this paper to minimal invariant pairs.

Theorem 3 Let (X,S) be an invariant pair for a matrix polynomial P of degree ℓ. Then
there is a minimal invariant pair (X̃, S̃) with minimality index at most ℓ such that

span Vℓ(X̃, S̃) = span Vℓ(X,S),

with Vℓ(X,S) and Vℓ(X̃, S̃) defined as in (4).

Proof. Let k̃ denote the rank of Vℓ(X,S). If (X,S) is not minimal, k̃ < k and after a
change of basis we may assume that the null space of Vℓ(X,S) is spanned by the unit vectors
ek̃+1, . . . , ek. This implies that the last k − k̃ columns of X,XS, . . . ,XSℓ−1 are zero. Let us
partition

X =
[
X̃, 0

]
, S =

[
S̃ S12

S21 S22

]

with X̃ ∈ C
n×k̃ and S̃ ∈ C

k̃×k̃. Then, by induction,

XS =
[
X̃S̃, 0

]

XS2 =
[
X̃S̃, 0

]
S =

[
X̃S̃2, 0

]

...

XSℓ−1 =
[
X̃S̃ℓ−2, 0

]
S =

[
X̃S̃ℓ−1, 0

]

XSℓ =
[
X̃S̃ℓ−1, 0

]
S =

[
X̃S̃ℓ, ⋆

]
.

Hence, the first k̃ columns of the relation P(X,S) = 0 amount to P(X̃, S̃) = 0, showing that
(X̃, S̃) is an invariant pair for P . By construction, Vℓ(X̃, S̃) has full column rank and thus
(X̃, S̃) is minimal.

An eigenvector x of P is called simple if the corresponding eigenvalue λ0 is a simple root
of det(P (λ)). The following definition provides an appropriate extension of this concept to
invariant pairs, see also [9].

Definition 4 (Simple invariant pair) An invariant pair (X,S) for a regular matrix poly-
nomial P of degree ℓ is called simple if (X,S) is minimal and the algebraic multiplicities of the
eigenvalues of S are identical to the algebraic multiplicities of the corresponding eigenvalues
of P .
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The definition of invariant pairs is motivated by their connection to standard and gener-
alized eigenvalue problems via the companion form linearization

C(λ) = CA + λCB =




Aℓ−1 Aℓ−2 · · · A0

−In 0 · · · 0
...

. . .
. . .

...
0 · · · −In 0


 + λ




Aℓ 0 · · · 0

0 In
. . .

...
...

. . .
. . . 0

0 · · · 0 In




. (5)

The eigenvalues of CA + λCB are identical with the eigenvalues of P . In particular, the
regularity of P implies the regularity of CA + λCB. Moreover, if (X,S) is an invariant pair
and Aℓ is invertible then it is easy to see that span(Vℓ(X,S)) is an invariant subspace for
C−1
B CA. For the more general case, where Aℓ may be singular, we note that

CA Vℓ(X,S) =




∑ℓ
j=0 AjXSj

−XSℓ

...
−XS2

−XS




=




−AℓXSℓ

−XSℓ−1

...
−XS2

−XS




, CB Vℓ(X,S) =




AℓXSℓ−1

XSℓ−2

...
XS
X




. (6)

This shows CA Vℓ(X,S) + CB Vℓ(X,S)S = 0 and hence (Vℓ(X,S), S) is a minimal invariant
pair for the matrix pencil CA+λCB.1 Note that Lemma 5 below implies that actually Vℓ(X,S)
itself has full rank and therefore its minimality index is 1. Later on, in Section 4, we will see
that the opposite direction of the above derivations is also possible; we can always extract
invariant pairs for P from simple invariant pairs for CA + λCB.

Lemma 5 Let (X,S) be a minimal invariant pair of a regular matrix polynomial of degree ℓ.
Then the minimality index of (X,S) does not exceed ℓ.

Proof. Suppose that the minimality index is larger than ℓ. Then there is v 6= 0 such that
Xv = XSv = · · · = XSk−1v = 0 and XSkv 6= 0 for some k ≥ ℓ. By the invariance of (X,S),

ℓ∑

j=0

AjXSj = 0 ⇒

ℓ∑

j=0

AjXSj+k−ℓ = 0 ⇒

ℓ∑

j=0

AjXSj+k−ℓv = 0,

and hence AℓXSkv = 0. This implies that the vector

y = Vℓ(X,S)S1+k−ℓv =




XSkv
0
...
0


 6= 0

satisfies CBy = 0 and hence y is an eigenvector belonging to the eigenvalue∞ of the companion
matrix pencil CA+λCB. On the other hand, by its definition y is also contained in the deflating
subspace span

(
Vℓ(X,S)

)
belonging to all or some eigenvalues of S. Hence, the intersection of

the deflating subspaces belonging to the eigenvalue ∞ and the deflating subspaces belonging
to the eigenvalues of S is nontrivial. By standard results for matrix pencils [35] this is not
possible since CA + λCB is regular according to the assumption.

1In the usual language of matrix pencils [35], one would call span(Vℓ(X, S)) a right deflating subspace
belonging to the eigenvalues of S. To stay notationally consistent we will use the concept of invariant pairs
also in the linear case.
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Lemma 6 A minimal invariant pair (X,S) for a regular matrix polynomial is simple if and
only if (Vℓ(X,S), S) is a simple invariant pair for the corresponding companion linearization.

Proof. This follows directly from the one-to-one correspondence between the eigenvalues
of CA + λCB and P .

3 First-order Perturbation Theory

Given a matrix polynomial P of the form (1), let us consider the nonlinear matrix operator

P : C
n×k × C

k×k → C
n×k,

(X,S) 7→ A0X + A1XS + · · ·+ AℓXSℓ.
(7)

By definition, a simple invariant pair (X,S) satisfies P(X,S) = 0. As this condition is not
sufficient to characterize (X,S) we add the condition W HVm(X,S) = Ik, where m ≤ ℓ is not
smaller than the minimality index of (X,S) and the columns of W = [W H

m−1, . . . ,W
H

0 ]H form
an orthonormal basis of span(Vm(X,S)).

In the following, we study the change of (X,S) under small perturbations of the coefficients
of the polynomial:

(P +△P )(λ) = (A0 + E0) + λ(A1 + E1) + · · ·+ λℓ(Aℓ + Eℓ) (8)

for general matrices E0, . . . , Eℓ ∈ C
n×n. In other words, we look for a nearby pair (X̂, Ŝ) that

satisfies the equations

(P +△P)(X̂, Ŝ) = 0, W HVm(X̂, Ŝ)− I = 0, (9)

with P +△P defined as in (7) but with perturbed coefficients.
Stewart [33, 34] analyzed perturbations of invariant and deflating subspaces associated

with linear eigenvalue problems by solving the corresponding quadratic matrix equations (9)
with a fixed point iteration. Apart from pioneering the study of perturbed invariant subspaces
for non-normal matrices, Stewart’s approach has the additional merit of admitting exact
bounds, provided that the norm of the perturbation stays below a certain specified threshold.
Although an extension of this approach to polynomial eigenvalue problems is certainly possible
we restrict ourselves to first-order effects by linearizing (9), in the spirit of Sun’s perturbation
expansions for linear eigenvalue problems [36]. By its nature, such an approach only yields
local first-order perturbation bounds but it has the advantage of being significantly simpler
and less technical.

3.1 Solvability of the linearized matrix equations

For the linearization of the nonlinear matrix equations (9), we set X̂ = X +△X, Ŝ = S +△S
and consider ‖Ej‖F ≤ ε, ‖△X‖F ≤ ε, ‖△S‖F ≤ ε for some sufficiently small ε > 0. Omitting
terms of order O(ε2) as ε→ 0 the linearized equations read as follows:

LP (△X,△S) = −△P(X,S), LV (△X,△S) = 0, (10)
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with

LP : (△X,△S) 7→ P(△X,S) +

ℓ∑

j=1

AjX DSj(△S), (11)

LV : (△X,△S) 7→ W H

0△X +

m−1∑

j=1

W H

j

(
△X Sj + X DSj(△S)

)
, (12)

where DSj denotes the Fréchet derivative of the map S 7→ Sj :

DSj : △S 7→

j−1∑

i=0

Si△S Sj−i−1. (13)

For example, for ℓ = m = 2, the linear matrix operators (11)–(12) amount to

LP (△X,△S) = A0△X + A1△X S + A2△X S2 + A1X△S + A2X
(
△S S + S△S

)
,

LV (△X,△S) = W H

0△X + W H

1

(
△X S + X△S

)
.

Theorem 7 Let (X,S) be a minimal invariant pair for a regular matrix polynomial P . Then
the linear system of matrix equations (10) has a unique solution (△X,△S) if and only if
(X,S) is simple.

Proof. For the case ℓ = 2 and invertible Aℓ, this result is proven in [9, Thm 2.2] based on
results from [8]. The extension of the proof to ℓ 6= 2 is relatively easy but the extension to
singular Aℓ requires a more significant change.

We first note that m = ℓ can be assumed without loss of generality. If m < ℓ we simply
define W̃ to be W padded with zeros such that W HVm(X̂, Ŝ) = W̃ HVℓ(X̂, Ŝ) and work with
the latter formulation.

By Lemma 6, (X,S) is simple if and only if (Vℓ(X,S), S) is a simple invariant pair for the
companion linearization CA+λCB defined in (5). By existing results on generalized eigenvalue
problems [27, 35], the latter condition is equivalent to the condition that the only solution to
the linear matrix equations

CA△V + CB△V S + CBV △S = 0, W H△V = 0, (14)

is (△V,△S) = (0, 0). Thus, to prove the statement of the theorem we need to show that (14)
has a nonzero solution if and only if (10) has a nonzero solution in the homogeneous case
△P ≡ 0.

Assume there exists (△X,△S) 6= (0, 0) satisfying (10), i.e., LP (△X,△S) = 0 and
LV (△X,△S) = 0. Define

△V =




△X Sℓ−1 + XDSℓ−1(△S)
...

△X S1 + XDS1(△S)
△X


 .
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Then, directly by definition, LV (△X,△S) = 0 implies W H△V = 0. Moreover,

CA△V + CB△V S =




P(△X,S) +
ℓ−1∑
j=1

AjX DSj(△S) + AℓX
(
DSℓ−1(△S)

)
S

X
(
DSℓ−2(△S)

)
S −X DSℓ−1(△S)
...

XS −X DS1(△S)




By (13), (
DSj−1(△S)

)
S − DSj(△S) = −Sj−1△S. (15)

Together with LP (△X,△S) = 0, this shows

CA△V + CB△V S =




−AℓXSℓ−1△S
−XSℓ−2△S

...
−X△S


 = −CBV △S,

and hence the constructed (△V,△S) is a nontrivial solution of (14).
For the other direction, assume that there exists (△V,△S) 6= (0, 0) satisfying (14). Parti-

tion △V = [△XH

ℓ−1, . . . ,△XH

0 ]H with △Xj ∈ C
n×k. Then the condition CA△V + CB△V S +

CBV △S = 0 implies

ℓ−1∑

j=1

Aj△Xj + Aℓ△Xℓ−1 S + AℓXSℓ−1△S = 0, (16)

−△Xj +△Xj−1 S + XSj−1△S = 0, for j = 1, . . . , ℓ. (17)

First, note that either △X0 6= 0 or △S 6= 0, since otherwise (17) implies (△V,△S) = 0. By
induction, (17) combined with (15) yields

△Xj = △X0 Sj + X DSj(△S). (18)

Inserted into (16) and using (15) for j = ℓ, this gives LP (△X0,△S) = 0. Moreover, (18)
immediately implies LV (△X0,△S) = 0 from W H△V = 0, which concludes the proof.

3.2 First-order perturbation expansions

In the following, we use Theorem 7 to derive first-order perturbation expansions. The overall
Fréchet derivative of the nonlinear equations (9) is given by

L : C
n×k × C

k×k → C
n×k × C

k×k

(△X,△S) 7→
(
LP (△X,△S), LV (△X,△S)

)
,

(19)

where LP and LV are defined as in (11)–(12). By Theorem 7, L is invertible for a simple
invariant pair (X,S). By the implicit function theorem [26], there are uniquely determined
analytic functions fX : U(0)→ C

n×k and fS : U(0)→ C
k×k such that

fX(0) = X, fS(0) = S, fX(△P ) = X +△X, fS(△P ) = S +△S,
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for all △P ∈ U(0) and some open neighborhood U(0) ⊂ (Cn×k)ℓ+1 around zero. Moreover,
the Fréchet derivatives of these functions satisfy

(
DfX(△P ), DfS(△P )

)
= −L

−1
(
△P(X,S), 0

)
. (20)

Defining
‖△P‖ :=

∥∥[E0, E1, . . . , Eℓ]
∥∥

F
, (21)

this shows that the perturbed polynomial P +△P has an invariant pair (X̂, Ŝ) close to (X,S),
satisfying

(X̂, Ŝ) = (X,S) − L
−1

(
△P(X,S), 0

)
+O(‖△P‖2), (22)

where the addition of pairs is understood elementwise. Note that the first-order correction
term may contain components in the “direction” of (X,S). Since invariant pairs are only
determined up to a basis transformation, there is a whole manifold M of invariant pairs
generated by (X,S):

M =
{
(XT, T−1ST ) : T ∈ C

k×k invertible
}
⊂ C

n×k × C
k×k.

To assess the sensitivity of (X,S) under perturbations, it is sensible to neglect components of
the error term (X̂, Ŝ) − (X,S) that are contained in M. In first-order, this can be achieved
by considering the tangent space of M at (X,S),

T(X,S)M =
{
(XM,SM −MS) : M ∈ C

k×k
}
, (23)

and projecting out components of L
−1

(
△P(X,S), 0

)
contained in T(X,S)M. To summarize,

we have the following result characterizing the first-order sensitivity of (X,S).

Theorem 8 Let (X,S) be a simple invariant pair for a regular matrix polynomial P . For
sufficiently small ‖△P‖ the perturbed polynomial P +△P has a simple invariant pair (X̃, S̃)
satisfying

(X̃, S̃) = (X,S) − (I − Proj) ◦ L
−1

(
△P(X,S), 0

)
+O(‖△P‖2),

where Proj is the orthogonal projector onto the tangent space T(X,S)M defined in (23).

Proof. By (22),

(X̂, Ŝ)− (X,S) = −L
−1

(
△P(X,S), 0

)
+O(‖△P‖2)

= −Proj ◦ L
−1

(
△P(X,S), 0

)
− (I − Proj) ◦ L

−1
(
△P(X,S), 0

)
+O(‖△P‖2).

Setting (X̃0, S̃0) := (X̂, Ŝ)− Proj ◦ L
−1

(
△P(X,S), 0

)
and defining LP+△P similarly as LP in

(11), we obtain

(P +△P)(X̃0, S̃0) = (P +△P)(X̂, Ŝ)︸ ︷︷ ︸
=0

−LP+△P

(
Proj ◦ L

−1
(
△P(X,S), 0

))

= −LP

(
Proj ◦ L

−1
(
△P(X,S), 0

))
+O(‖△P‖2),

Note that P is zero on M and hence its Jacobian LP vanishes on T(X,S)M. In particular,

LP

(
Proj ◦ L

−1
(
△P(X,S), 0

))
= 0, implying (P +△P)(X̃0, S̃0) = O(‖△P‖2). Therefore, for

sufficiently small △P there exists an invariant pair (X̃, S̃) of P + △P such that (X̃, S̃) −
(X̃0, S̃0) = O(‖△P‖2). Combined with the definition of (X̃0, S̃0), this concludes the proof.

We remark that Theorem 8 could be used to define a suitable condition number for an
invariant pair (X,S) as the norm of (I − Proj) ◦ L

−1(·, 0) induced by the norm (21).
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3.3 The case k = 1

It is instructive to specialize the result of Theorem 8 to the case of eigenvectors, k = 1. In this
case, X ≡ x ∈ C

n \ {0}, S ≡ λ ∈ C. Without loss of generality, we may assume ‖x‖2 = 1 and
consider the normalization vector W = x. Then the nonlinear matrix equations (9) amount
to

(P +△P )(λ̂) · x̂ = 0, xHx̂− 1 = 0.

and the Fréchet derivative (19) can be written in matrix form as

L =

[
P (λ) P ′(λ)x
xH 0

]
.

Theorem 7 states that L is invertible for a simple eigenvalue; which is in accordance with
results from [2]. For k = 1, the tangent space T(X,S)M defined in (23) and featuring promi-
nently in Theorem 8 reduces to the one-dimensional linear space {(xµ, 0) : µ ∈ C} and

hence the projector takes the form Proj =
[

xxH

0
0
0

]
. A straightforward calculation shows that

(I − Proj) ◦ L
−1 is given by

(I − Proj) ◦

[
X⊥

(
ZH

⊥P (λ)X⊥

)−1
ZH

⊥ x
yH/(yHP ′(λ)x) 0

]
=

[
X⊥

(
ZH

⊥P (λ)X⊥

)−1
ZH

⊥ 0
yH/(yHP ′(λ)x) 0

]
.

where the columns of X⊥, Z⊥ form orthonormal bases of (spanx)⊥, span(P ′(λ)x)⊥, respec-
tively, and y denotes a normalized left eigenvector belonging to λ. Hence, Theorem 8 implies
the perturbation expansions

x̃ = x−X⊥

(
ZH

⊥P (λ)X⊥

)−1
ZH

⊥△P (λ)x +O(‖△P‖2),

λ̃ = λ−
1

yHP ′(λ)x
yH△P (λ)x +O(‖△P‖2),

which is again in accordance with results from [2, 5].

4 Computation via Linearization

In this section, we discuss the computation of invariant pairs. In principle, it is possible to
construct invariant pairs by combining several eigenvalue/eigenvector pairs. However, such a
construction runs into conceptual and numerical difficulties as soon as some of the eigenvalues
are (nearly) multiple. In contrast – as shown by the perturbation analysis in the previous
section – invariant pairs remain well-posed objects in the presence of multiple eigenvalues as
long as all multiple copies of an eigenvalue are included in the invariant pair.

4.1 Linearization of Matrix Polynomials

The standard way to solve a polynomial eigenvalue problem (1) of degree ℓ ≥ 2 is to convert
P (λ) into a linear ℓn× ℓn pencil

L(λ) = A+ λB



Invariant Pairs for Matrix Polynomials 11

having the same spectrum as P (λ) and then solve this linear eigenvalue problem by a standard
solver, e.g., the QZ algorithm [16, 25, 31]. A frequently used linearization is the companion
form (5). This linearization has the property that

CB ⊞→CA :=




Aℓ 0 · · · 0 0

0 In
. . .

...
...

...
. . .

. . . 0 0
0 · · · 0 In 0




+




0 Aℓ−1 Aℓ−2 · · · A0

0 −In 0 · · · 0
...

...
. . .

. . .
...

0 0 · · · −In 0


 = e1⊗

[
Aℓ Aℓ−1 . . . A0

]
.

Here, following the notation introduced in [29], the so called column shifted sum X ⊞→Y adds
zero block columns to the right of the matrix X and to the left of the matrix Y and then
adds up the enlarged matrices.

Using the column shifted sum it is possible to define a whole space of potential lineariza-
tions of P by

L1(P ) =
{
A+ λB : B⊞→A = v ⊗

[
Aℓ Aℓ−1 . . . A0

]
, v ∈ C

ℓ
}

.

In [29] it was shown that almost all pencils in L1(P ) are linearizations of P . Furthermore, if
L(λ) = A+ λB ∈ L1(P ) then

A =
[
W +

(
v ⊗

[
Aℓ−1 . . . A1

])
, v ⊗A0

]
, B =

[
v ⊗Aℓ, −W

]
,

where W ∈ C
ℓn×(ℓ−1)n is chosen arbitrarily [29, Theorem 3.5].

If (X,S) is an invariant pair for P then for any potential linearization L(λ) = A + λB ∈
L1(P ) it holds that

A



XSℓ−1

...
X


 +B




XSℓ−1

...
X


 S = (B⊞→A)




XSℓ

XSℓ−1

...
X


 = v⊗

[
Aℓ Aℓ−1 . . . A0

]




XSℓ

XSℓ−1

...
X


 = 0.

(24)
This generalizes (6) and shows that every invariant pair (X,S) of P can be used to construct
an invariant pair of L(λ) = A+ λB. The converse question, whether an invariant pair (Y, S)
of the linearization can be used to construct an invariant pair (X,S) of P , is answered in the
following theorem. This is an extension of the eigenvector recovery property for L1(P ) shown
in [29, Theorem 3.8].

Theorem 9 Let L(λ) = A + λB ∈ L1(P ) be a linearization of a regular matrix polynomial
P . Then for every simple invariant pair (Y, S) ∈ C

ℓn×k × C
k×k of L there exists X ∈ C

n×k

such that Y = Vℓ(X,S) and (X,S) is a simple invariant pair of P .

Proof. An invariant pair (Y, S) satisfies

L(Y ) := AY + BY S = 0. (25)

In the following, we consider S fixed and will show that the relation L(Y ) = 0 implies
Y = Vℓ(X,S) for some X ∈ C

n×k. It then readily follows from (24) combined with v 6= 0
(otherwise, L would not be a linearization) and Lemma 6 that (X,S) is a simple invariant
pair of P .
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Let S have f mutually different eigenvalues λ1, . . . , λf with algebraic multiplicities ki

partitioned into partial multiplicities ki,1, . . . , ki,gi
, where gi denotes the geometric multiplicity

of λi. To classify all elements in the null space of L we first transform S to Jordan canonical
form: T−1ST = J where T is invertible and J = diag

(
J1, . . . , Jf

)
with Ji ∈ C

ki×ki containing

the Jordan blocks for λi. Setting Ỹ = Y T , (25) becomes equivalent to

AỸ + BỸ J = 0. (26)

Since (Y, S) is assumed to be simple, the partial eigenvalue multiplicities ofA+λBmatch those
of S and J . We can therefore choose Yi =

[
Yi,1, . . . , Yi,gi

]
∈ C

ℓn×ki such that Yij ∈ C
ℓn×kij

contains the jth Jordan chain of A + λB belonging to λi. A result by Košir [24, Theorem 4]
implies that Ỹ satisfies (26) if and only if it takes the form

Ỹ =
[
Y1H1, Y2H2, . . . , YfHf

]
, (27)

where Hi ∈ C
ki×ki commutes with Ji (i.e., Hi is a block matrix partitioned conformally with

Ji and each block is an upper triangular Toeplitz matrix [14, Pg. 221]). The discussion in
Appendix A reveals that there is Xi ∈ C

n×ki such that Yi = Vℓ(Xi, Ji). Setting

X̃ =
[
X1, . . . Xf

]
, H = diag

(
H1, . . . ,Hf

)

the relation (27) can therefore be written as

Ỹ = Vℓ(X̃, J)H = Vℓ

(
X̃H, J

)
,

where we used the fact that J commutes with H. The proof is concluded by observing
Y = Ỹ T−1 = Vℓ

(
X̃HT−1, S

)
and setting X = X̃HT−1.

4.2 Extraction

In the following, we put the result of Theorem 9 into practice and discuss computational
approaches to extracting an approximate invariant pair (X̃, S̃) for P (λ) from a computed
invariant pair (Ỹ , S̃) of the linearization L(λ).

Consider first the single vector case. Let (ỹ, λ̃) be an approximate eigenpair for L(λ) ∈
L1(P ) and partition ỹ =

[
ỹH

ℓ . . . ỹH

1

]
H

with ỹj ∈ C
n. In [20] it was shown for the companion

linearization that a good choice for an approximate eigenvector of P is x̃ := ỹℓ if |λ| > 1
and x̃ := ỹ1 otherwise. The motivation behind this idea is that in exact arithmetic we have

y =




λℓ−1x
...
x


 for an eigenvector x of P associated with λ. Hence, we can expect that –

depending on the magnitude of λ – either the first or the last components of y will suffer least
from cancellation in floating point arithmetic.

If (Y, S) is a simple invariant pair of L(λ) ∈ L1(P ) we can extend the ideas above and
attempt to extract an invariant pair for P (λ) from one of the block components Yj ∈ C

n×k of

Y =
[
Y H

ℓ . . . Y H

1

]
H

. In fact, for the block Y1 of Y the feasibility of such an approach follows
already from Theorem 9. For the other block components of Y the following lemma provides
a necessary and sufficient condition.
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Lemma 10 Let (Y, S), Y ∈ C
ℓn×k, S ∈ C

k×k be a simple invariant pair of L(λ) ∈ L1(P )
and let Y be partitioned as Y =

[
Y H

ℓ . . . Y H

1

]
H

with Yj ∈ C
n×k, j = 1, . . . , ℓ. Then, for any

j ∈ [2, ℓ], (Yj , S) is a simple invariant pair of P (λ) if and only if S is nonsingular.

Proof. Theorem 9 implies that (Y1, S) is a simple invariant pair and Yj = Y1S
j−1. We

obtain
P(Yj, S) = AℓYjS

ℓ + · · · + A1YjS + A0Yj = P(Y1, S)Sj−1 = 0.

If S is nonsingular then this relation implies that (Yj, S) is an invariant pair. Moreover,

rank (Vℓ(Yj, S)) = rank
(
Vℓ(Y1, S)Sj−1

)
(28)

shows that (Yj , S) is minimal and therefore a simple invariant pair. If S is singular then,
by (28), (Yj , S) is not minimal and is therefore not a simple invariant pair.

Lemma 10 reveals that every block component of a computed simple and minimal invariant
pair of L(λ) is a candidate for approximating a simple invariant pair of P (λ), provided that
S is nonsingular. In the following we discuss four different strategies for extracting invariant
pairs.

Extraction I (normwise) A heuristic choice for Ỹj is to choose the first block component
of Ỹ if ‖S‖ > 1 and the last block component of Ỹ if ‖S‖ < 1. This is a direct generalization
of the extraction strategy proposed in [20] for the single vector case.

Extraction II (polyeig) A more refined choice, inspired by the current extraction proce-
dure in Matlab’s polyeig, is obtained by choosing j such that the residual

R(Ỹj, S̃) :=

∥∥P (Ỹj, S̃)
∥∥

F

‖Ỹj‖F
(29)

is minimized.

Extraction III (GSVD) The above strategy can be further refined by minimizing among
arbitrary n×k matrices. For a given S̃ ∈ C

k×k the optimal residual is obtained for X̃ ∈ C
n×k

satisfying
R(X̃, S̃) = min

X∈C
n×k\{0}

R(X, S̃),

with R defined as in (29). It follows that the vector vec(X̃) is a right singular vector associated

with the smallest singular value of the matrix K :=
∑ℓ

j=0

(
S̃j

)
T

⊗ Aj ∈ C
kn×kn. However,

the cost for solving this dense kn × kn SVD problem grows proportionally with k3n3 and is
therefore not practicable for larger problems. To avoid this excessive computational cost, we
therefore propose the following strategy based on the generalized singular value decomposition
(GSVD) [16]. An approximate minimizer of R(·, S̃) can be obtained by restricting X̃ to be a
linear combination of the block components of Ỹ , that is

X̃ = γ1Ỹ1 + · · · + γℓỸℓ, c =




γ1
...
γℓ


 ∈ C

ℓ.
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Since P (X̃, S̃) = γ1P (Ỹ1, S̃) + · · ·+ γℓP (Ỹℓ, S) it follows that

R(X̂, S̃) =

∥∥∥γ1P (Ỹ1, S̃) + · · ·+ γℓP (Ỹℓ, S̃)
∥∥∥

F∥∥∥γ1Ỹ1 + · · ·+ γℓỸℓ

∥∥∥
F

=

∥∥[
vec(P (Ỹ1, S̃)), . . . , vec(P (Ỹℓ, S̃))

]
c
∥∥

2∥∥[
vec(Ỹ1), . . . , vec(Ỹℓ)

]
c
∥∥

2

=:
‖Mc‖2
‖Nc‖2

Hence, the vector c that minimizes R(X̃, S̃) is the generalized singular vector associated with
the smallest generalized singular value of the pair (M,N), where M,N ∈ C

kn×ℓ [16]. The cost
of computing this vector is O(knℓ2), which is usually small compared to the cost of computing
the approximate invariant pair (Ỹ , S̃) of L(λ).

Extraction IV (structured) A rather different strategy to extract an approximate invari-
ant pair (X̃, S̃) for P from (Ỹ , S̃) is to consider structured projections of Ỹ . In this approach,
we choose X̃ as the solution to the minimization problem

min
X̃∈Cn×k\{0}

∥∥∥∥∥∥∥




X̃S̃ℓ−1

...

X̃


−




Ỹℓ

...

Ỹ1




∥∥∥∥∥∥∥
F

.

The following theorem provides an explicit solution to this problem.

Theorem 11 The unique solution X ∈ C
n×k that minimizes (30) is given by

X =




ℓ−1∑

j=0

Ỹj+1(S̃
j)H







ℓ−1∑

j=0

(S̃j)HS̃j




−1

Proof. Vectorizing (30) leads to the linear least-squares problem

min
x∈Cnk

∥∥∥∥∥∥∥



(S̃ℓ−1)T ⊗ In

...
In


 x−




vec(Ỹℓ)
...

vec(Ỹ1)




∥∥∥∥∥∥∥
2

,

The corresponding normal equations are given by

ℓ−1∑

j=0

(
(S̃j)T ⊗ In

)
H
(
(S̃ℓ−1)T ⊗ In

)
x =

ℓ−1∑

j=0

(
(S̃j)T ⊗ In

)
H

vec(Ỹj+1),

leading to

[(
S̃ℓ−1(S̃ℓ−1)T ⊗ In

)
+ · · ·+

(
S̃S̃T ⊗ In

)
+ Ikn

]
x =

ℓ−1∑

j=0

(
S̃j ⊗ In

)
vec(Ỹj+1).

Reformulation in terms of matrices gives

X
[
S̃ℓ−1(S̃ℓ−1)H + · · · + S̃S̃H + Ik

]
= Ỹℓ(S̃

ℓ−1)H + · · ·+ Ỹ2S̃
H + Ỹ1.

Since the sum in the square brackets is positive definite and therefore nonsingular the result
follows.
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Figure 1: Performance diagram for the extraction of the smallest eigenvalues.

4.3 Numerical comparison of the extraction strategies

To numerically compare the four different extraction strategies described above we use the
NLEVP collection of polynomial and nonlinear eigenvalue problems [7], from which we selected
the 24 polynomial test problems with n ≤ 500. The test problems are linearized using the
companion form (5). Approximate eigenvalues and eigenvectors are then computed using
Matlab’s eig function. To obtain approximate invariant pairs of the linearization we select
for each problem 4 approximate eigenvalues and the corresponding invariant pair according
to one of the following three criteria: (1) the 4 smallest eigenvalues in magnitude, (2) the 4
largest eigenvalues in magnitude, (3) the 2 smallest and 2 largest eigenvalues in magnitude.

The results of the comparisons are presented in the form of performance diagrams in Fig-
ures 1,2 and 3. For a given factor α the performance is defined as the percentage of test cases
for which the residual of the extracted invariant subspace does not exceed α times the lowest
residual achieved by any of the tested methods. In all three test cases the GSVD based ex-
traction (Extraction III) turns out to be the method with the best performance followed by
the polyeig approach (Extraction II). Since the additional cost of the GSVD computation
is small compared to the solution of the overall polynomial eigenvalue problem, this strategy
is therefore the one we recommend among the tested extraction methods. Interestingly, the
norm based method (Extraction I) performs well for large eigenvalues but only poorly for
small eigenvalues. The structured approach (Extraction IV) always performs badly com-
pared to the winner. This is expected due to the fact that the structured extraction does not
perform any kind of residual minimization.

5 Refinement

In this section we discuss efficient iterative refinement strategies for approximate invariant
pairs of a matrix polynomial P . Refinement is a crucial ingredient for the development of
robust polynomial eigenvalue solvers that are based on linearizing the matrix polynomial P
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Figure 2: Performance diagram for the extraction of the largest eigenvalues.
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Figure 3: Performance diagram for the extraction of a block of small and large eigenvalues.
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since these methods are not always backward stable [20]. Another interesting application
arises in numerical continuation of eigenvalues for matrix polynomials as discussed by Beyn
and Thümmler in [9].

5.1 Basic Algorithm

Given an approximation (X0, S0) to a simple invariant pair (X,S) ∈ C
n×k × C

k×k our aim
is to compute a correction that brings (X0, S0) closer to (X,S). By Theorem 7, (X,S) is a
regular value of the nonlinear matrix equations

P(X,S) = 0, V(X,S) = 0, (30)

where P(X,S) = XA0 + XA1S + · · · + XAℓS
ℓ and V(X,S) = W HVm(X,S) − I for some

normalization matrix W H = [W H

m−1, . . . ,W
H

0 ] ∈ C
k×mn. Newton’s method applied to (30)

with starting value (X0, S0) takes the form

(Xp+1, Sp+1) = (Xp, Sp)− L
−1
p

(
P(Xp, Sp), V(Xp, Sp)

)
, (31)

where Lp is the Jacobian of (P, V) at the current iterate (Xp, Sp):

Lp(△X,△S) =

(
P(△X,Sp) +

ℓ∑

j=1

AjXp DSj
p(△S),

m−1∑

j=0

W H

j

(
△X Sj

p + X DSj
p(△S)

))
,

see also (19). The invertibility of Lp and the local quadratic convergence of Newton’s method
is guaranteed by Theorem 7, provided of course that (X0, S0) is sufficiently close to (X,S).

In our implementation of (31) we keep the columns of Vm(Xp, Sp) orthonormal and adapt
W correspondingly in the course of the iteration. For this purpose, we compute a (compact)
QR decomposition

Vm(Xp, Sp) = QR

with Q ∈ C
mn×k such that QHQ = I. It then follows directly that Q takes the form

Q =




Q0RSm−1
p R−1

...
Q0RSpR

−1

Q0


 .

for Q0 ∈ C
n×k. Hence the replacement (Xp, Sp) ← (Q0, RSpR

−1) results in orthonormal
Vm(Xp, Sp). Moreover, by choosing W = Vm(Xp, Sp) we have V(Xp, Sp) = 0. Algorithm 1
summarizes the Newton method combined with this procedure.

Algorithm 1 Newton method for computing invariant pairs

Input: Initial pair (X0, S0) ∈ C
n×k × C

k×k such that Vm(X0, S0)
HVm(X0, S0) = Ik.

Output: Approximate solution (Xp+1, Sp+1) to (9).
1: p← 0, W ← Vm(X0, S0)
2: repeat
3: Res← P(Xp, Sp)
4: Solve linear matrix equation Lp(△X,△S) = (Res, 0).

5: X̃p+1 ← Xp −△X, S̃p+1 ← Sp −△S



Invariant Pairs for Matrix Polynomials 18

6: Compute compact QR decomposition Vm(Xp+1, Sp+1) = WR.

7: Xp+1 ← X̃pR
−1, Sp+1 ← RS̃p+1R

−1

8: until convergence

An extension of Algorithm 1 to nonlinear eigenvalue problems can be found in [28].

5.2 Solution of the correction equation

In the following, we discuss 3 approaches to solving the correction equation in Step 4 of
Algorithm 1.

I. Kronecker products Vectorization and Kronecker products allow us to rewrite the
linear matrix equation Lp(△X,△S) = (Res, 0) as the (nk + k2)× (nk + k2) linear system

[
K11 K12

K21 K22

] [
vec(△X)
vec(△S)

]
=

[
vec(Res)

0

]
, (32)

where

K11 =
ℓ∑

j=0

(
(Sj

p)
T ⊗Aj

)
, K12 =

ℓ∑

j=1

(
Ik ⊗AjXp

)
K

S
j
p
,

K21 =

m−1∑

j=0

(
(Sj

p)
T ⊗W H

j

)
, K22 =

m−1∑

j=1

(
Ik ⊗W H

j Xp

)
K

S
j
p
,

with K
S

j
p

denoting the Kronecker product formulation of the Fréchet derivative DSj
p (13):

K
S

j
p

=

j−1∑

i=0

(
(Sj−i−1

p )T ⊗ Si
p

)
.

Solving (32) requires O((nk+k2)3) flops (floating point operations) and O((nk+k2)2) storage.
This approach should therefore only be used for tiny values of k.

Remark 12 For k = 1 and m = 1, the linear system (32) simplifies to

[
P (λ) P ′(λ)x
W H

0 0

] [
△x
△λ

]
=

[
P (λ)x

0

]
,

where we set x ≡ Xp, λ ≡ Sp.

II. Forward substitution By the Schur decomposition of Sp and an appropriate unitary
transformation of (Xp, Sp), we may assume without loss of generality that Sp is in upper
triangular form. The triangular structure of Sp allows to determine the columns of △X
and △S successively in a forward substitution process. This was shown in [9] for quadratic
eigenvalue problems and in [28] for nonlinear eigenvalue problems. We include the derivation
of this forward substitution process for the sake of completeness, as it is needed in Approach
III below.
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In the following, we will drop the subscript p and simply write (X,S). The triangular
structure of S implies that the equation L(△X,△S) = (Res, 0) simplifies considerably for the
first columns △x1 and △s1 of △X and △S, respectively. In fact, it is not hard to see that




P (s11)
ℓ∑

j=1
AjX[DSj]11

m−1∑
j=0

sj
11W

H

j

m−1∑
j=1

W H

j X[DSj ]11




[
△x1

△s1

]
=

[
r1

0

]
, (33)

where r1 denotes the first column of Res and s11 is the first diagonal entry of S. The k × k
matrix [DSj ]11 denotes the Fréchet derivative of the first column of Sj with respect to the
first column of S. By (15), we have the recursion

DS1(△S) = △S, DSj(△S) = (DSj−1(△S))S + Sj−1△S, j ≥ 2,

implying
[DS1]11 = Ik, [DSj]11 = s11[DSj−1]11 + Sj−1, j ≥ 2. (34)

Besides providing an efficient means for computing [DSj ]11, this also shows that [DSj ]11 is
upper triangular.

Similar to the forward substitution process for solving lower triangular systems, we can
derive an equation of the form (33) also for the second columns of △X and △S, provided
that the right hand side is updated accordingly. To describe this update, partition

△X = [△x1,△X2], △S = [△s1,△S2], Res = [r1,Res2],

and

S =

[
s11 s12

0 S22

]
, Sj =

[
sj
11 [Sj]12
0 Sj

22

]
.

Inserted into L(△X,△S) = (Res, 0), we obtain the following linear matrix equation for the
pair (△X2,△S2) ∈ C

n×(k−1) × C
k×(k−1):

P(△X2, S22) +

ℓ∑

j=0

AjX DSj
(
[0,△S2]

) [
0

Ik−1

]
= R̃es2, (35)

m−1∑

j=0

W H

j

(
△X2S

j
22 + X DSj

(
[0,△S2]

) [
0

Ik−1

])
= Õrt2. (36)

with updated right-hand sides

R̃es2 := Res2 −

ℓ∑

j=0

Aj

(
△x1[S

j ]12 + XDSj([△s1, 0])

[
0

Ik−1

])
,

Õrt2 := −

m−1∑

j=1

W H

j

(
△x1[S

j]12 + X DSj
(
[△s1, 0]

) [
0

Ik−1

])
.
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Letting r2 and q2 denote the first columns of R̃es2 and Õrt2, respectively, this shows that the
second columns △x2,△s2 of △X,△S satisfy the linear system




P (s22)
ℓ∑

j=1
AjX[DSj]22

m−1∑
j=0

sj
22W

H

j

m−1∑
j=1

W H

j X[DSj ]22




[
△x2

△s2

]
=

[
r2

q2

]
, (37)

where s22 denotes the first diagonal element of S22 and [DSj]22 satisfies the recursion (34)
with s11 replaced by s22.

The described process can be continued in an analogous manner to compute all columns
of △X and △S. The cost of the overall algorithm is dominated by the solution of k linear
systems of the form (33) and (37). Since each of these systems has order n + k, the overall
cost is O(k(n + k)3) flops, which compares favorably with the O((nk + k2)3) flops needed by
the Kronecker product formulation. If the coefficients Aj of the matrix polynomial are sparse
then (33) is a bordered sparse system and a sparse direct solver for bordered matrices [4]
could be used. Moreover, it might be possible to extend ideas on Krylov subspace methods
for parametrized systems [32] to design a Krylov subspace method that handles the k systems
of the form (33), (37) for s11, . . . , skk simultaneously.

III. Linearization Given a matrix polynomial P , the efficient solution of linear systems of
the form P (s)x = b for many different parameters s ∈ C and right-hand sides b by means of
linearizing P has been discussed in [17, 32]. In the following, we extend these ideas to solve
bordered systems of the form

[
P (s) A12

A21 A22

] [
x1

x2

]
=

[
b1

b2

]
(38)

for many different values of s ∈ C. The border matrices A12 ∈ C
n×k, A21 ∈ C

k×n, A22 ∈ C
k×k,

and the right-hand side are different for each s, in some non-specified fashion.
Given a linearization A+ λB ∈ L1(P ), we have

(A+ sB)Vℓ(x1, s) = v ⊗ P (s)x1

for arbitrary s ∈ C, x1 ∈ C
n, and some fixed nonzero vector v ∈ C

ℓ describing the lineriza-
tion [29]. Note that v⊗P (s)x = v⊗ b if and only if P (s)x = b. This allows us to rewrite (38)
as [

A+ sB v ⊗A12

wH ⊗A21 A22

] [
Vℓ(x1, s)

x2

]
=

[
v ⊗ b1

b2

]
(39)

where w ∈ C
ℓ is any vector satisfying [sℓ−1, . . . , s, 1]Hw = 1. Once the solution ỹ ∈ C

ℓn+k

to (39) is computed, we can extract x2 from its trailing k entries and x1 from its leading
ℓn entries using any of the extraction strategies discussed in Section 4.2. Note that the
conditioning for (39) might be significantly worse than for (38), but a full discussion of this
effect is behind the scope of this paper. Instead, we refer to [17] for a related discussion and
remark that there is no need to solve (39) very precisely thanks to the forgivingness of the
outer Newton iteration [37].

To solve 39 efficiently for many different s we first compute a generalized Schur decompo-
sition

QH(A+ λB)Z = TA + λTB (40)
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with unitary matrices Q,Z ∈ C
ℓn×ℓn and upper triangular matrices TA, TB ∈ C

ℓn×ℓn. Note
that if the initial approximation (X0, S0) to the invariant pair was computed by solving
the linearized eigenvalue problem combined with one of the extraction methods described in
Section 4 then this decomposition is usually readily available. Setting

Ã12 = QH
(
v ⊗A12

)
, Ã21 =

(
wH ⊗A21

)
Z, x̃1 = ZHVℓ(x1, s), b̃1 = QH(v ⊗ b1), (41)

the linear system (39) becomes equivalent to

[
TA + sTB Ã12

Ã21 A22

] [
x̃1

x2

]
=

[
b̃1

b2

]
, (42)

which is a bordered triangular system and can be solved, e.g., via a slightly modified QR or
LU decomposition [10] that takes the structure into account. This requires O(k(ℓn + k)2)
flops for computing the decomposition and O((ℓn + k)2) flops for solving the resulting upper
triangular system. Setting up the transformed system (42) requires another O(k(ℓn)2) flops.

In total, the overall cost of this approach for refining an invariant pair is O(ℓ3n3) flops
for computing the generalized Schur decomposition (which needs to be performed only once
throughout the entire Newton iteration or might already be available) plus O(k2(ℓn + k)2)
flops for solving the k linear systems. This compares well with the O(k(n + k)3) flops needed
by the second approach, provided that ℓ stays small and n is sufficiently large.

Performance comparison To gain insight into the actual performance of the three ap-
proaches we measured the execution times needed for

• solving the linear system (32) in Approach I;

• solving k linear systems of the form (37) in Approach II;

• setting up (41) once and solving k linear systems of the form (42) in Approach III.

We run experiments in Matlab 7.5 on a 2.20 GHz Intel Core2 Duo CPU with 2 GiB RAM. All
approaches have been implemented in Matlab in a rather straightforward fashion, with the
exception that we have used a MEX interface to a slightly modified variant of the LAPACK
routine ZGETRF for computing the LU decomposition of (42) within O(k(ℓn+k)2) flops. The
following two tables contain the obtained execution times in seconds for n = 500, 1000, 2000:

n = 500 n = 1000 n = 2000

k I II III

2 0.57 0.17 0.14
4 3.9 0.33 0.28

32 ∞ 3.2 2.7
128 ∞ 20 23

k I II III

2 3.8 1.11 0.56
4 28 2.24 1.16

32 ∞ 19 11
128 ∞ 97 79

k I II III

2 28 7.7 2.4
4 ∞ 15 5.1

32 ∞ 126 44
128 ∞ 582 303

An entry ∞ indicates an out of memory error. As expected, Approach I is rather expensive
and should only be used for tiny k and n. With the exception of n = 500, k = 128, Approach
III is always faster than Approach I. However, it is important to note that these figures assume
the availability of a Schur decomposition for the linearization. If this decomposition is not
available (because, for example, the initial approximation to the invariant pair has been
obtained by some other means), Approach III becomes much less attractive. The current
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implementation [31] of the QZ algorithm requires about 160 seconds for n = 500 and about
1450 seconds for n = 1000. Even taking into account that the new implementation of the QZ
algorithm described in [25] (which is not yet included in Matlab) may reduce these numbers
by a factor 4 − 8 it would require an excessive number of iterations to make Approach III
competitive.

6 Numerical Examples

In this section, we illustrate the use of the presented concepts for two examples from [38, 7].
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Figure 4: Power plant example from [7]. Left plot: Location of eigenvalues (crosses) and
selected eigenvalues (circles). Right plot: Absolute error of the 10 selected eigenvalues after
(i) extraction from the linearization, (ii) 1 Newton iteration, (iii) 2 Newton iterations.

Example 13 The simplified dynamical model of a nuclear power plant from [7] leads to an
8 × 8 quadratic matrix polynomial that has been noted [38] to have rather ill-conditioned
eigenvalues, mainly due to the bad scaling of the coefficient matrices. Using Extraction III
based on the GSVD, we compute the invariant pair for the 10 rightmost eigenvalues from the
linearization. “Exact eigenvalues” are obtained from a high precision arithmetic computation.
As shown in Figure 4, the computed eigenvalues are rather inaccurate, with absolute errors
of order 10−2 to 10−4. Two Newton iterations applied to the extracted invariant pair reduce
these errors down to almost machine precision. This indicates that iterative refinement for
invariant pairs cures the effects of bad scaling, similarly as for linear systems [18].

Example 14 In [38] the following matrix polynomial was discussed:

P (λ) = λ2



1 0 0
0 1 0
0 0 0


 + λ



−2 0 1
0 0 0
0 0 0


 +




1 0 0
0 −1 0
0 0 1


 .

It has an eigenvalue λ = 1 with algebraic multiplicity 3. A corresponding invariant pair is
given by

X =




0 1 0
1 0 1
0 0 0


 , S =




1 0 0
0 1 1
0 0 1


 .
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We perturb X and S by setting X(3, 3) = 1 and S(3, 2) = 10−8. The perturbed matrix
S̃ has eigenvalues λ1 = 1, λ2 ≈ 1.0001, λ3 ≈ 0.9999. The initial residual of (X̃, S̃) is
R(X̃, S̃) ≈ 0.73. After three refinement steps using approach II (Forward Substitution) we
have R(X̃, S̃) ≈ 3.89 · 10−16. The refined eigenvalues of S̃ are

λ̃1 = 1,

λ̃2 = 0.9999999999945053 + 7.654628153552778 × 10−9i,

λ̃3 = 1.000000000005495 − 7.654628059339143 × 10−9i.

The refined matrix X̃ is given by (displayed to three decimal digits accuracy)

X̃ =




0 7.07 · 10−1 − 5.79 · 10−4i 7.07 · 10−1 + 1.10 · 10−5i
7.07 · 10−1 1.27 · 10−17 − 1.04 · 10−20i −2.98 · 10−17 − 4.65 · 10−22i

0 5.91 · 10−36 + 2.25 · 10−35i 6.75 · 10−32 + 8.14 · 10−32i


 .

The third row is close to zero and hence the span of this matrix is almost identical to the span
of the original matrix X demonstrating that the invariant pair (X,S) was very well recovered
even though S contains a Jordan block.

7 Conclusions

One aim of this paper is to promote the concept of invariant pairs for polynomial eigenvalue
problems as a suitable way of handling several eigenvalues simultaneously. Several theoretical
results, algorithms, and numerical experiments have been presented to support this concept.
The benefits of using invariant pairs in applications are not fully explored yet. The experi-
ments in Section 6 suggest that extracting and refining invariant pairs might have a positive
impact on the accuracy in any polynomial eigenvalue computation. Also, we believe that
invariant pairs can be a useful framework in the design and analysis of Krylov subspace and
Jacobi-Davidson methods for solving large-scale polynomial eigenvalue problems [3, 23, 30].
Finally, we remark that some of the results presented in this paper can be extended to gen-
uinely nonlinear eigenvalue problems [28].
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[8] W.-J. Beyn, W. Kleß, and V. Thümmler. Continuation of low-dimensional invariant
subspaces in dynamical systems of large dimension. In Ergodic theory, analysis, and
efficient simulation of dynamical systems, pages 47–72. Springer, Berlin, 2001.
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A Construction of Jordan chains

In the following we demonstrate how Jordan chains of a regular matrix polynomial P can be
turned into Jordan chains of a linearization A + λB ∈ L1(P ). This result is needed in the
proof of Theorem 9, but might also be of independent interest. The construction is rather
similar to the ones given in [15, 38].

Let λ be a finite eigenvalue of P and consider an arbitrary vector x ∈ C
n. Then

(A+ λB)Vℓ(x, λ) = v ⊗ P (λ)x (43)

see [29] or the relation (24) for k = 1. Differentiating (43) with respect to λ yields

(A + λB)V ′
ℓ (x, λ) = v ⊗ P ′(λ)x−BVℓ(x, λ), (44)

where

V ′
ℓ (x, λ) =




(l − 1)λl−2x
...

2λx
x
0




.

Chains of length 2: Let us first consider a Jordan chain x1, x2 ∈ C
n of length 2 for P :

P (λ)x1 = 0, P (λ)x2 + P ′(λ)x1 = 0.

Set
y1 := Vℓ(x1, λ), y2 := Vℓ(x2, λ) + V ′

ℓ (x1, λ).

Then (43) yields (A+ λB)y1 = 0 and (44) yields

(A+ λB)y2 = v ⊗ P (λ)x2 + v ⊗ P ′(λ)x1 −By1 = −By1.

This shows that y1, y2 is a Jordan chain for (A+ λB). Note that we can write

[y1, y2] = Vℓ

(
[x1, x2],

[
λ 1
0 λ

])
.

Chains of arbitrary length: Let us now consider a Jordan chain x1, . . . , xk ∈ C
n of length

k for P :
j∑

i=1

1

(i− 1)!
P (i−1)(λ)xj−i+1 = 0, for j = 1, . . . , k.

Set

yj :=

j∑

i=1

1

(i− 1)!
V

(i−1)
ℓ (xj−i+1, λ).

Repeated differentiation of (44) gives

(A+ λB)V
(i−1)
ℓ (x, λ) = v ⊗ P (i−1)(λ)x− (i− 1)BV

(i−2)
ℓ (x, λ)
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and hence

(A+ λB)yj =

j∑

i=1

1

(i− 1)!
(A+ λB)V

(i−1)
ℓ (xj−i+1, λ)

=

j∑

i=1

(
v ⊗

1

(i− 1)!
P (i−1)(λ)x−

(i− 1)

(i− 1)!
BV

(i−2)
ℓ (x, λ)

)

= −

j∑

i=1

1

(i− 2)!
BV

(i−2)
ℓ (x, λ) = −Byj−1.

This shows that y1, . . . , yk is a Jordan chain for (A+ λB). Moreover, we can write

[y1, . . . , yk] = Vℓ

(
[x1, . . . , xk], Jk(λ)

)
,

where Jk(λ) is a k × k Jordan block belonging to λ.


