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We consider the problem of determining spherical classes in H∗QS
1. We take a

geometrical approach and show how existence of specific classes as a spherical class
in H∗QS

1 will determine the type of homology operations that can detect the related
homotopy class. Most of our results here are quite general, and can be applied to
H∗QX, with X an arbitrary path connected space . We see this as an approach to
attack the conjecture of Ed Curtis about spherical classes in H∗Q0S

0.
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Chapter 1

Introduction

I believe that the theory of infinite loop spaces has been one of the most influential

branches of topology, and that the machineries produced to study such spaces have

found fundamental applications in other areas of mathematics, as well as theoretical

physics. Nevertheless, there are still many questions in this area which are waiting to

be answered, both from technical and computational point of view, as well as from

theoretical point of view.

The present thesis considers a computational problem, and our aim is to tackle an

outstanding conjecture in the field known as the Curtis conjecture. This conjecture,

first stated as a theorem by Ed Curtis [C75, Theorem 7.1], predicts the type of

spherical classes in the Z/2-homology of Q0S
0, the base point component of the

infinite loop space associated with the sphere spectrum S0. It reads as follows.

The Curtis conjecture. Let f ∈ 2π∗Q0S
0 be a positive dimensional class with

hf 6= 0 where h : 2π∗Q0S
0 → H∗(Q0S

0; Z/2) is the Hurewicz homomorphism. Then

f is either a Hopf invariant one element or a Kervaire invariant one element.

Let me start by explaining the terminology used in the statement of the above

conjecture. But first, let us fix a notation. Assume fS ∈ 2π
S
∗ be the image of f under

the isomorphism 2π∗Q0S
0 → 2π

S
∗ . We refer to fS as the stable adjoint of f . Similarly,

we may refer to f as the stable adjoint of fS.

The Hopf invariant one elements. We will say f ∈ 2π∗Q0S
0 is a Hopf invariant

one element if fS is detected by the Hopf invariant, i.e. it is detected by Sq2j
in

12



Chapter 1. Introduction 13

its stable mapping cone. A spherical class ξ ∈ H∗(Q0S
0; Z/2) with hf = ξ is called

a Hopf invariant one element if f is a Hopf invariant one element. Shortly, we will

explain what we mean by detecting.

The Kervaire invariant one elements. We say that f is a Kervaire invariant one

element if fS is detected by the Kervaire invariant, i.e. it is detected by a secondary

operation arising from the Adem relation

Sq2j

Sq2j

=
∑

t

Sq2j+1−2t

Sq2t

in its stable mapping cone. Given a spherical class ξ ∈ H∗(Q0S
0; Z/2) with hf = ξ,

we say ξ is a Kervaire invariant one element if f is a Kervaire invariant one element.

Notice that the positive dimensional Hopf invariant one elements in 2π
S
∗ are known to

exist only in 1-stem, 3-stem, and 7-stem given by one of the classical Hopf invariant

elements η ∈ 2π
S
1 , ν ∈ 2π

S
3 , σ ∈ 2π

S
7 [A60, Theorem 1.1.1]. We also recall that

there exits a Hopf invariant one element if and only if certain elements hi ∈ E1,2i

2

are permanent cycles, where here E∗,∗
2 denotes the E2-term of the Adams spectral

sequence. Regarding the Kervaire invariant one element, Browder [B69, Theorem 7.1]

showed that there exits an element in 2π
S
∗ detected by the Kervaire invariant if and

only if h2
i ∈ E

2i+1,2
2 are permanent cycles. This means that such elements may exist

only in dimensions 2i+1−2. Moreover, a very recent development [HHR09, Doomsday

Theorem] is that the Kervaire invariant one elements only exist in dimensions 2i+1−2

with i < 7. These are known to exist when i < 6 and the case i = 6 still is open.

Henceforth, the Curtis conjecture predicts that the Hurewicz homomorphism h :

2π∗Q0S
0 → H∗(Q0S

0; Z/2) cannot detect as many elements of 2π
S
∗ as one may wish.

In fact, it predicts that this homomorphism cannot see above the 2-line in the Adams

spectral sequence for the sphere spectrum. Philosophically, this may not seem very

useful as it predicts what we cannot do, where often we look for what we can do.

However it is an interesting problem from computational point of view. The gaps

in Curtis’s argument were discovered by Wellington [W82] while he was trying to

generalise Curtis’s theorem to odd primes. We postpone more discussion on this

to Chapter 5. Indeed, we have to say that Curtis’s goal in [C75] was to describe
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the relation between the Dyer-Lashof algebra R and the Λ-algebra and this goal

is achieved [C75, Lemma 5.4]. This result is even generalised to odd primes by

Wellington [W82, Theorem 7.11, Theorem 7.12].

It has been a common belief in the community of the infinite loop space theorists

that the Curtis conjecture is true, however there has been no proof of it since it

was stated by Curtis in 1974. In this thesis, we are not claiming any proof of the

conjecture. The approach taken seems to be a new one, the results may seem to

be natural ones that one could have expected. I will suggest a road map towards

the proof of this conjecture which I believe will give a resolution of this conjecture.

However, the details need to be written down and completed.

Previous approaches to solve this problem have used a lot of heavy algebraic

methods. Perhaps Wellington’s work [W82] is the most detailed existing record of

this. Other approaches include Lannes and Zarati’s work, which recently has been

pursued by Hung and his students, see for example [H99]. This latter approach

relates the Curtis conjecture to some problems in Dickson algebra, Singer’s algebraic

transfer, and etc. This then may be taken as an evidence for the level of complexity

of the Curtis conjecture, and perhaps justify our interest in attacking this problem.

The latter approach is also very algebraic.

We will not consider use of the spectral sequences as the main tool in our approach.

This has been tried previously by Curtis and later on by Wellington. Our approach

seems to be a bit different compared to other works that we referred above. We will

consider a more general problem on the type of spherical classes in H∗QX for any

path connected space X. First, let us fix a notation. We use fS to denote the image

of f ∈ 2π∗QX under the isomorphism 2π∗QX → 2π
S
∗X. We refer to fS as the stable

adjoint of f , and similarly refer to f as the stable adjoint of fS. Sometimes we may

use hSf to denotes hfS. We have a conjecture on this due to Eccles which reads as

following.

The Eccles conjecture. Suppose X is a path connected space. Let f ∈ 2π∗QX

be a positive dimensional class with hf 6= 0 where h : 2π∗QX → H∗(QX; Z/2) is

the Hurewicz homomorphism. Then f is either a stably spherical element or a Hopf
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invariant one element.

Stably spherical classes. We say ξ ∈ H∗(QX; Z/2) with hf = ξ is stably spherical,

if fS is nontrivial in homology, i.e. hSf = hfS 6= 0.

The Hopf invariant one elements. Recall that f ∈ 2π∗Q0S
0 is a Hopf invariant

one element if fS is detected by a primary operation, namely Sq2j
. We say f ∈ 2π∗QX

is a Hopf invariant one element, if fS is detected by a primary operation in its stable

mapping cone. Moreover, given a spherical class ξ ∈ H∗(QX; Z/2) with hf = ξ we

say ξ is a Hopf invariant one element if f is a Hopf invariant one element.

Shortly, in Chapter 2, we will show how the Curtis conjecture motivates the Eccles

conjecture. We shall then postpone more discussion on the relation between the two

conjectures to Chapter 5.

Although we fail to prove the Eccles conjecture as well, we do obtain some brand

new partial results in a very general setting which could be of interest on their own.

These results have been never considered before. In the case of X = Sn, n > 0, our

results are more precise and we have succeeded in identifying the form of the potential

spherical classes in H∗(QS
n; Z/2) which is the statement of Lemma 12. In the case

of X = S0, instead of focusing on a single space Q0S
0, we consider the collection of

spaces QSn with n ∈ Z. Suspending up, will help us to identify potential classes for

being spherical, where desuspending down will help to eliminate some of the potential

classes.

Our approach was suggested by Peter Eccles at the beginning of this project. It

provides easy proofs of what is known before, and the author hopes that one day it

may prove more than what we know now.

Through the rest of this chapter we fix our notation and recall some well known

facts. First, we note that throughout this thesis, we will work with CW-complexes

of finite type. Notice that the cellular approximation theorem [MT68, Theorem 1,

Corollary 1, Chapter 13] allows us to choose maps, up to homotopy, to be cellular.

A genuine mapping between two spaces X, Y is denoted by X → Y , whereas we use

X 6→ Y to denote a stable mapping from X to Y . Here by a stable mapping X 6→ Y

we mean a mapping that will be realised as a genuine mapping after finitely many
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suspensions. A mapping f : X → Y between two path connected spaces is called a

weak equivalence if it induces isomorphisms f∗ : πiX → πiY for i > 0. If X and Y

are not path connected, we then require f∗ : π0X → π0Y to be a 1-1 correspondence,

and that f∗ induces an isomorphism on higher homotopy groups between the corre-

sponding components of X and Y . Notice that according to the Whitehead Theorem

[MT68, Chapter 13, Theorem 3] a weak equivalence f : X → Y is a homotopy equiv-

alence, i.e. there is a mapping g : Y → X such that fg : Y → Y and gf : X → X

are homotopic to identity maps of Y and X respectively. By abbreviation “X ' Y ”

we mean X is homotopy equivalent to Y .

Infinite loop spaces. Following Adams [A78] we say X is an infinite loop space

if there is a collection of spaces {Xi : i = 0, 1, 2, . . .} with X = X0 and homotopy

equivalences Xi → ΩXi+1. One may replace the homotopy equivalences with home-

omorphisms, since [M69, Page 472] shows that for the purpose of homotopy theory

the two definitions are equivalent. Most of the time we are dealing with infinite loop

spaces QX defined by

QX = colim (· · · → ΩkΣkX → Ωk+1Σk+1X → · · ·)

where the map ΩkΣkX → Ωk+1Σk+1X is the kth loop of the suspension map EΣkX :

ΣkX → ΩΣk+1X, with the suspension map EΣkX being the adjoint of the identity

map Σk+1X → Σk+1X. The space QX, with X being path connected, sometimes is

referred to as the free infinite loop space generated by X [CLM76, Part I, Section

2, Page 39 2nd Paraghraph]. Observe that QX = ΩQΣX. We can view Q as a

functor from spaces to infinite loop spaces. An infinite loop space X is armed with

a structure map θX : QX → X. This map itself is a map of infinite loop spaces,

i.e. it can be delooped infinitely many number of times, and so its homotopy fibre

is also an infinite loop space. Using the structure map, any mapping f : Y → X

can be extended to a unique infinite loop map QY → X defined by the composite

θX ◦ Qf : QY → QX → X.

We feel free to to use the stable splitting of loop spaces of the form ΩkΣkX with
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k > 0, known as the Snaith splitting [S74, Theorem 1.1], given by

ΩkΣkX 'stable

∨
r>1

Dr(Rk, X), (1.1)

where X is assumed to be path-connected. This splitting has been obtained by use of

the stable James-Hopf invariants. The rth stable James-Hopf invariant is a mapping

jr : ΩkΣkX → QDr(Rk, X).

Here Dr(Rk, X) is known as the r-adic construction on X, and is defined by

Dr(Rk, X) = F (Rk, r) nΣr X
∧r

where F (Rk, r) is the configuration space of r-tuples in Rk with an action of the

permutation group Σr. The space X∧r is the r-fold smash product of X with itself.

In particular D1(Rk, X) ' X where k > 0. We use DrX to denote Dr(R∞, X). In

this case we may replace F (R∞, r) with EΣr, where EΣr is a contractible space with

a free Σr action such that EΣr/Σr ' BΣr. Of particular interest are D2(Rk, Sn) '

ΣnP n+k−1
n where k > 0 [K82, Corollary 1.4]. Here P is the infinite dimensional real

projective space, P i is its i-skeleton i.e. the i-dimensional real projective space, and

P n+k−1
n is the truncated projective space P n+k−1/P n−1.

The r-adic construction can be defined for any spaceX, not necessary path connected.

For example when X = S0 we have D2(Rk, S0) = P k−1
+ [K82, Proposition 1.3].

However, in this case the stable equivalence (1.1) does not hold, and we have to use

group-completion [A78, Theorem 3.2.1].

We will only use the homology of the stable James-Hopf invariants. The main result

on this is due to Kuhn [K83, Proposition 2.7] and we will recall this result at Chapter

4, where we use jr’s.

We note that given any spectrum E we may use the structure maps Ei → ΩEi+1

to define an infinite loop space Ω∞E = colim ΩiEi. Then for a given space X, QX

will be the infinite loop space associated with Σ∞X where Σ∞X is the suspension

spectrum of the space X. We use QΣ−kX to denote the infinite loop space associated

with the k-th desuspension of Σ∞X. In this case we have QΣ−kX = ΩkQX. We will

be interested in QS−n = ΩnQS0.
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There are different machineries on the market to describe the geometry of in-

finite loop spaces such as Boardmann-Vogt-May’s little n-cubes [M69], or Barratt-

Eccles Γ-functor [B71],[BEa74],[BEb74],[BEc74]. Although we will not work with

these models, a slight knowledge of them sometimes can help with understanding the

calculations. Due to the credit crunch [BBC] we use the homemade Barratt-Eccles

model, which has been exported very well, and nowadays in the language of operads

is known as the Barratt-Eccles operad! This provides one with a simplicial model

of an infinite loop space. In this setting an infinite loop space X has a Γ-structure

which is given by a map ΓX → X.

Finally we note that it is possible to have different deloopings of a given space.

Such phenomenon gives rise to the notion of E∞ ring spaces explored in [M77].

Of interest among such spaces is QS0 where it has two product structures coming

from the loop sum and composition product of maps of degree 1. Although some

results of Madsen [M70],[M75] on the image of the homology of the J-homomorphism

O → Q1S
0 → Q0S

0 are obtained by the interaction between the two infinite loop

structures on QS0, however we will not work with the composition product on QS0.

Homology. Through this thesis we will only use the singular homology with Z/2-

coefficients. We denote the homology of a space by H∗X, and H∗X will denote the

reduced homology of the space X. This will be the only homology theory that we

will use. We use Σx to denote image of x ∈ HnX under the homology isomorphism

HnX → Hn+1ΣX.

Since we are working with Z/2 coefficients, the universal coefficient theorem [G75,

Theorem 25.16] then allows us to have HnX ' HomZ/2(H
nX,Z/2). We then may

view the Kronecker pairing as 〈−,−〉 : HnX⊗HnX → Z/2 defined by 〈x, y∗〉 = x(y∗).

Any y∗ ∈ HnX with 〈x, y∗〉 = 1 will be a cohomology dual for x. Often we use the

same notation to denote both x and any cohomology class dual to it.

Steenrod operations. We will use the Steenrod operations Sqi : H∗X → H∗+iX.

Given a mapping f : X → Y the functional operation Sqi
f is defined on a class

y ∈ HnY if f ∗y = 0 and Sqiy = 0. The fact that f ∗y = 0 implies that y pulls back

to a generator y ∈ HnCf where Cf denotes the mapping cone of f . One then may
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look for the value of Sqiy ∈ Hn+iCf . This then pulls back to a class u ∈ Hn+i−1X.

This class is not unique, and is determined up to an indeterminacy given by

Υ = SqiHn−1X + f ∗Hn+i−1Y,

i.e. u gives rise to a class Sqi
fy in Hn+i−1X/Υ. Observe that

Sqiy 6= 0 in H∗Cf ⇐⇒ Sqi
fy 6= 0 in Hn+i−1X/Υ.

This means that we may identify functional operations with the operations defined

on the mapping cone. We feel free to switch between these two interpretation of these

operation. Notice that if a nontrivial class Sqiy ∈ H∗C is given with a homology

dual u ∈ H∗C, we then have

〈Sqi
∗u, y〉 = 〈u, Sqiy〉 = 1,

i.e. Sqi
∗u is a homology dual to y. Here Sqi

∗ is the operation dual to Sqi. By the

statement “ the mapping f : X → Y is detected by Sqi on y ∈ HnY ” we really mean

that the mapping f is detected by the operation Sqi on a dual class y in its mapping

cone, i.e. by Sqi
fy. We refer the reader to [MT68, Chapter 16] for the basic material

on this topic.

Kudo-Araki operations. We will rely on the so-called Kudo-Araki operations

[DL62, Definition 2.2], [CLM76, Part I, Theorem 1.1] defined on the homology of

infinite loop spaces. These operations are defined on the homology of any infinite

loop space A as homomorphisms

Qi : H∗A→ H∗+iA.

For a ∈ HnA, we have Qia = 0 if i < n, and Qna = a2 where the square is taken

with respect to the Pontryagin product in H∗A induced by the loop sum on A.

These operations satisfy various forms of the Cartan formulae, Adem relations, etc.

We will use very basic properties of these operations, and try to do down to earth

calculations. We refer the reader to [CLM76, Part I, Theorem 1.1] for the full list of

these properties, and their proof. During the thesis we will recall any property when
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needed.

The homology algebra H∗QX. The homology of spacesQX, forX path connected,

is described using the operations Qi. Let {xµ} be an additive basis for H∗X. Then

the homology of the space QX as an algebra and as a module over the Dyer-Lashof

algebra, is given by

H∗QX ' Z/2[QIxµ : excess(QIxµ) > 0, I admissible].

Here I = (i1, . . . , ir) is called admissible if ij 6 2ij+1 for any 1 6 j 6 r − 1. The

iterated operation QI is defined by QIx = Qi1Qi2 · · ·Qirx. The excess of QIxµ

is defined to be excess(QIxµ) = i1 − (i2 + · · · + ir + dimxµ). We also allow the

empty sequence φ to be admissible with Qφxµ = xµ, excess(Qφxµ) = +∞, and

l(φ) = 0. Observe that if excess(QIx) = 0, then i1 = dimQi2 · · ·Qirx which means

that QIx is a square, i.e. QIx = (Qi2 · · ·Qirx)2. Moreover, if excess(QIx) < 0 then

i1 < dim(Qi2 · · ·Qirx) which means that QIx = 0.

We may define a filtration w : H∗QX → N, called the weight filtration, by w(ξξ′) =

w(ξ)+w(ξ′) and w(QIx) = 2l(I) where ξ, ξ′ ∈ H∗QX, and for I = (i1, . . . , ir) we have

l(I) = r. Notice that the stable splitting of (1.1) gives a decomposition of H∗QX as

⊕rH∗DrX. One then has that H∗DrX is the group of elements of weight r. We have

to say that the homology of QX is more complicated when X is not path connected.

We will describe H∗QS
0 in Chapter 5, where we know that π0QS

0 ' Z.

We have not said anything about the Dyer-Lashof algebra R, and the Λ-algebra.

Appendix B contains a very brief introduction to these algebras. We will not use

these algebras, although we will use some of results obtained as a relation between

these two algebras. We refer the reader to [W82, Chapter 7] for a careful and clear

discussion of this.

We will recall some results on any infinite loop space of finite type, obtained

by Finkelstein as a generalisation of the Kahn-Priddy theorem [F77, Theorem 3.2,

Proposition 6.9], which seem to be less known, and very rarely referred to in the

literature. We will demonstrate some applications of these results.

Hopf algebras. We also assume that the reader is familiar with the notion of Hopf
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algebras, where basic material on this subject can be found in the classic paper

by Milnor-Moore [MM65]. Our main tool will be the Milnor-Moore exact sequence

[MM65, Proposition 4.23]

0→ Pk(sHH)→ PH → QH → Qk(rHH)→ 0

where H is a Hopf algebra of finite type over Z/2, P is the primitive submodule

functors, Q is the indecomposable quotient module functor, sH : H → H is the

Frobenius homomorphism defined by h 7→ h2, and rH : H → H is dual to the

squaring map sH∗ : H∗ → H∗ where H∗ = Homk(H, k). By k(S) we mean the

submodule of H generated by S, where S ⊆ H. We note that having fixed a basis

{xµ} for H∗X, then H∗QX is a polynomial generated by symbols QIx where I is

admissible, and excess(QIx) > 0. In such a case, by abuse of notion, we refer to QIx

as an indecomposable. Notice that in this case any class ξ ∈ H∗QX which has at

least one term of the form QIx, with QIx being a generator of H∗QX, will determine

a nonzero class in QH∗QX, hence determining an indecomposable element.

We shall also recall some facts on the Eilenberg-Moore spectral sequence. The main

material on this is to be found in [S70] together with some results borrowed from

[G04]. We leave more discussion on this to Chapter 5 where we shall apply this

machinery.

The organisation of this thesis is as following. Chapter 2 is a brief introduction to

spherical classes, and their basic properties. We will explain our approach, and the

motivations behind it in this chapter. We exhibit our main results in this chapter,

and leave the proofs to the next chapters. Chapters 3 and 4 provide the reader with

proof of most of our results mentioned in Chapter 2. We provide the reader with

explicit calculations, which hopefully will make the material clearer. The proofs in

these chapters are quite explicit, and tedious, although they are based on simple

numerical facts.

Chapter 5 has two parallel purposes. Our first aim is to have a discussion on

the homology of H∗Q0S
0, and record some calculations that we have done in this

ring, perhaps well known to the experts! On the other hand some of our results
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stated in Chapter 2 need some results about H∗QS
−n for n = 0, 1, 2. For this reason

we start Chapter 5 by recalling some basic material about Hopf algebras and the

Eilenberg-Moore spectral sequence. We then describe H∗Q0S
0, and the submodule

of primitives in this algebra. This will make it quite straightforward to digest the

rest of the material on our calculations on the primitive classes in other algebras like

H∗QP , H∗QCP , and H∗QS
−1. This enables us to prove the rest of our claims. These

discussions are also fruitful as we succeed to add a bit to our current knowledge on

homology algebras H∗QS
−2. Moreover, they make us able to do more calculations

and derive perhaps some new information on homology rings H∗QΣ−1P , H∗QΣ−1CP ,

H∗QS
−1, and H∗QS

−2. We succeed to identify some specific subalgebras of H∗Q0S
−2

and H∗Q0S
−3, with explicit description of its generators. These results may be of

interest on their own as well. We have to say that the discussions in this chapter

help us to get a general picture, and propose our road map toward the proof of the

Curtis’s conjecture.

Finally we like to mention that the numbering of theorems, lemmata and etc is

done in two separate ways. As the Chapter 2 is about our main results, we have used

single numbers in this chapter, like Theorem 1. In all of the other chapters we have

have used numbering based on chapters.



Chapter 2

Statement of Results

The Hurewicz homomorphism

h : πnX → HnX

is defined by sending a homotopy class f : Sn → X to f∗gn where gn ∈ HnS
n is the

generator. A homology class x ∈ H∗X is called spherical if it is in the image of the

Hurewicz homomorphism. If x ∈ H∗X is spherical, then it has two basic properties:

• x is primitive;

• x is A-annihilated.

Here primitive is understood to be primitive with respect to the co-product induced

by the diagonal map X → X ×X. By x ∈ H∗X being A-annihilated we mean that

Sqi
∗x = 0 for any i > 0,

where Sqi
∗ : H∗X → H∗−iX is the dual to the i-th Steenrod operation Sqi : H∗X →

H∗+iX. One notes that not every class in H∗X may have both properties. Hence

the above properties give an upper bound on the set of all spherical classes in H∗X,

although they do not in general characterise such classes.

The stable Hurewicz homomorphism

hS : πS
nX → HnX

23
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is defined in a similar way. Notice that depending on the connectivity of X there

exists a positive integer k such that πS
nX ' πn+kΣ

kX. We then define hS to be the

composite

πS
nX ' πn+kΣ

kX
h→ Hn+kΣ

kX ' HnX.

These homomorphisms fit into a commutative diagram as following

πS
nX

hS
// HnX

πnQX

'

OO

h // HnQX.

σ∞∗

OO

Here σ∗ is the homology suspension, and σ∞∗ is the iterated homology suspension.

We may also view σ∞∗ as the projection onto the first factor in the Snaith splitting

for QX.

We start with an example to see why calculating the image of the Hurwicz homo-

morphism h : πnQX → HnQX can be useful.

Example 1. Let us assume that the Curtis conjecture holds, i.e. the only spherical

classes inH∗Q0S
0 are the Hopf invariant one, and the Kervaire invariant one elements.

It is well known that there is Hopf invariant one element in 2π
S
∗ if and only if certain

primitive elements p′2s−1 ∈ H2s−1Q0S
0 are spherical. Moreover, according to Madsen

[M70, Theorem 7.3] the Kervaire invariant one elements in dimension 2i+1 − 2 give

rise to spherical classes (p′2i−1)
2 ∈ H2i+1−2Q0S

0.

The Kervaire invariant one elements then die under the homology suspension σ∗ :

H∗Q0S
0 → H∗+1QS

1, as they are decomposable terms. On the other hand a class

of the form p′2s−1 suspends to Q2s−1g1 + Q2s−2Q1g1. Notice that a spherical class in

H∗QS
1 will pull back to a spherical class in H∗Q0S

0. Hence, the Curtis conjecture

implies that the only spherical classes inH∗QS
1 are the Hopf invariant one classes, i.e.

those ones which arise from stable mapping Sn 6→ S1 which are detected by a primary

operation operation in their stable mapping cone. This is indeed the statement of

the Eccles conjecture for X = S1.

Now we want to justify why looking at homology of a mapping Sn → QS1 can be

useful. Let X = S1. Assume that n > 1 and f ∈ πS
nS

1. Clearly there is no hope of
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detecting this map by homology as

f∗ : HnS
n → HnS

1 ' 0,

i.e. hSf = 0. On the other hand the stable adjoint of f , say f ′, is an element in

πnQS
1. We know H∗QS

1 ' Z/2[QIg1 : excess(QIg1) > 0, I admissible] which is

much richer than H∗S
1 ' EZ/2(g1), the exterior algebra over g1 in dimension 1. So

we may try to examine f ′ in homology by calculating hf ′, and hope that it may

not fail to be trivial. In fact there are spherical classes in H∗QS
1 given by the well

known classical Hopf invariant one elements. We may consider η ∈ 2π2QS
1 ' Z/2,

ν ∈ 2π4QS
1 ' Z/8, and σ ∈ 2π8QS

1 ' Z/16, where we have [E80, Proposition 3.4]

hη = Q1g1 = g2
1,

hν = Q3g1 +Q2Q1g1 = Q3g1 + g4
1,

hσ = Q7g1 +Q4Q3g1 = Q7g1 + (Q3g1)
2.

Hence, calculating the spherical classes in H∗QS
1 can be useful. Notice that in any of

the above examples any single term is primitive and A-annihilated. We will explain

the reason for this. We will see in Chapter 5 that the Curtis conjecture implies that

the above examples are the only possible spherical classes in H∗QS
1. Finally observe

that there is no term in these homology classes belonging to H∗S
1, i.e. they have

trivial image under hS : πS
∗ S

1 → H∗S
1.

We note that a given spherical class in H∗QS
n pulls back to a spherical class in

H∗QS
1. This implies that if we prove the Eccles conjecture for X = S1, then it

automatically holds for X = Sn with n > 0. On the other hand notice that spheres

are the building blocks of CW-complexes, hence this provides one with another mo-

tivation that the Eccles conjecture can hold for any path connected space X of finite

type, if it can be proven for X = S1. In order to tackle the Eccles conjecture we

need to identify all A-annihilated classes in H∗QX. Our first result provides one

with a full and complete description of indecomposable A-annihilated classes of the

form QIx in H∗QX where X is an arbitrary path connected space. We need the

following definition to state this result. Let n be a positive integer with n =
∑
ni2

i
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with ni ∈ {0, 1}. We may define a function ρ : N → N by ρ(n) = min{i : ni = 0}.

We then have the following.

Theorem 2. Suppose QIx ∈ H∗QX is given, with I = (i1, . . . , ir) admissible, and

excess(QIx) > 0. Such a class is A-annihilated if and only if the following conditions

are satisfied:

1- x ∈ H∗X is A-annihilated;

2- excess(QIx) < 2ρ(i1);

3- 0 6 2ij+1 − ij < 2ρ(ij+1);

where excess(QIx) = i1−(i2+· · ·+ir+dimx). If l(I) = 1, then the first two conditions

chracterise all A-annihilated class of the form Qix of positive excess. Notice that the

fact that excess(QIx) > 0 means that QIx is not a square, i.e. it is an indecomposable.

In an appendix, and based on elementary observations, we will provide the reader

with a construction for sequences I which will satisfy condition 3 of Theorem 2.

Important Remark. Notice that if QIx is an A-annihilated class with excess(QIx) > 0,

then I cannot have any even entry. This is easy to see, once we observe that having

i1 even implies that ρ(i1) = 0. This together with condition 2 of the above theorem

implies that excess(QIx) < 20 = 1, i.e. excess(QIx) = 0 which is a contradiction.

Moreover, if there exists j > 1 with ij even, then condition 3 implies that ij−1 is even.

Iterated application of this will imply that i1 is even which leads to a contradiction.

Note 3. Conditions (2)−(3) were used in Curtis’s work [C75, Theorem 6.3] to describe

the 0-line of the E2-term of the unstable Adams spectral sequence converging to

the 2-primary component of π∗Ω
nSn+k were his condition (1), corresponding to our

condition (2), is adapted to work for any space ΩnSn+k. Curtis claims that these

conditions describe a basis for the 0-line of the E2-term of the unstable Adams spectral

sequence, whereas Wellington [W82, Remark 11.26] shows that this claim is not valid

for the case k = 0. It seems that Curtis’s claim can be true in odd dimensions,

and fails to be true in even dimensions. Corollary 6 of ours, to be followed shortly,

together with Theorem 5.23 can be thought of as a confirmation of Curtis’s claim in

odd dimensions for the case k > 0, at least in the E1-level.
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In a more careful statement by Wellington, conditions (2)−(3) are used to describe

A-annihilated classes in the Dyer-Lashof algebra R [W82, Theorem 11.25]. One may

derive his theorem from ours by formally defining QI = QIg0, where g0 is a formal

0-dimensional A-annihilated class.

However as we observe, adding condition (1) will give a complete set of indecom-

posable A-annihilated classes in homology of H∗QX, where X is any path connected

space. I believe that Theorem 2 is the most general possible statement which classi-

fies A-annihilated classes in H∗QX which are of the form QIx with excess(QIx) > 0,

when X is path connected. Although Wellington might be aware of a such state-

ment, but I am not aware of such a statement or anything similar to this mentioned

anywhere in the literature.

All of the above results, those obtained by Curtis and Wellington as well as our

Theorem 2, are based on an observation by Curtis [C75, Lemma 6.2]. We will recall

this observation in an appendix as it is an important step in the proof of Theorem

2. The result of Curtis [C75, Lemma 6.2] later on was generalised to odd primes by

Wellington [W82, Lemma 12.5].

Finally we note that other partial results, describing indecomopsableA-annihilated

classes, may be found in a work by Snaith and Tornehave [ST82, Theorem 1.1]. But

such results are restricted to a limited number of cases.

It is possible to use the conditions in Theorem 2 to do more numerical calculations

in order to extract more information about indecomposable A-annihilated classes by

giving an explicit description of such classes. When X = S1 and l(I) is not too big,

it is possible to determine all indecomposable A-annihilated classes of the form QIg1.

We have the following example.

Lemma 4. Consider QIg1 with excess(QIg1) > 0, i.e. it is an indecomposable. If

l(I) = 1, then this class is A-annihilated if and only if it is of the form Q2s−1g1

for some s > 1. If l(I) = 2, then such a class is A-annihilated if and only if it is

of the form Q2s+2j−1Q2s−1g1 with 1 6 j 6 s − 1. If l(I) = 3 and Qi1Qi2Qi3g1 is

A-annihilated, then Qi2Qi3g1 is not A-annihilated.
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Remark 5. A class of the form Q2s+2j−1Q2s−1g1 will pull back to a class of the form

Q2s+2j−1x2s−1 ∈ H∗Q0S
0 modulo decomposable terms. We will describe H∗Q0S

0 in

Chapter 5. One observes that Q2s+2j−1x2s−1 is not A-annihilated, where this can be

seen by use of Sq2j

∗ . Hence a corollary of the above lemma will be that the only

A-annihilated classes of the form Qixj ∈ H∗Q0S
0 are of the form x2

2s−1. It is also

straightforward to see that xn is A-annihilated if and only if n = 2s − 1 for some

s > 0. These may be compared to [W82, Theorems 11.10, 11.11]

Next we mention a rather nontrivial corollary of Theorem 2 which is an outcome

of its proof.

Corollary 6. Let x ∈ H∗X be fixed. Suppose

ξ =
∑

QIx

is A-annihilated, with excess(QIx) > 0, and I runs over certain admissible sequences.

Then each term QIx is A-annihilated. In particular any odd dimensional class of the

above form has this property.

Remark 7. The reader may notice that this is really a fact about the Dyer-Lashof

algebra. More precisely, we may say that any two operations QI and QJ which are

of positive excess, and are not A-annihilated can be separated by an operation Sqr
∗.

We note that this is not true in general if at least one of these iterated operations is

of trivial excess. A counter example maybe found in [W82, Remark 11.26] which is

discussed in Chapter 5.

Note 8. Not every spherical class can in fact be written as
∑
QIx with x fixed. For

example consider X = P and let ν̃ ∈ π3QP be the pull back of ν ∈ π3Q0S
0 through

the Kahn-Priddy map λ : QP → Q0S
0. This has nontrivial Hurewicz image given by

hν̃ = a3 + a1a2 + a3
1 +Q2a1.

To see this notice that the Kahn-Priddy theorem provides us with a monomorphism

H∗Q0S
0 → H∗QP . In this example the image must be A-annihilated and primitive,

and the above class is the only class in that dimension with these properties. We

leave more discussion on this to Chapter 5.
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On the other hand we note that in some still interesting cases like X = Sn it

is the case that any spherical class can necessarily be written as ξ =
∑
QIx where

x = gn ∈ HnS
n is fixed.

Corollary 6 is a weaker version of a uniqueness property that we conjecture to

be true, and seems to be an argument of a purely numerical nature, like many other

arguments that we make!

Conjecture 9. Suppose x ∈ HnX, and let r > 0 be given. Let I, J be two admissible

sequences of length r such that excess(QIx) > 0, and excess(QJx) > 0. Suppose both

QIx and QJx are A-annihilated terms. Then

dim I 6= dim J,

where for I = (i1, . . . , ir) we have dim I = i1 + · · ·+ ir.

A rather trivial, but useful, observation is that if ξ ∈ H∗+1QΣX is spherical, then

it is in the image of the homology suspension

σ∗ : H∗QX → H∗+1QΣX.

This implies the following simple lemma.

Lemma 10. Suppose ξ ∈ H∗+1QΣX is spherical. Then

ξ =
∑

QIΣx,

where the sum varies over certain terms QIΣx with I admissible, x ∈ H∗X not

necessarily fixed, and excess(QIΣx) > 0.

Hence working with spaces QΣX has the advantage that the spherical classes do

not have unpredicted decomposable terms, and the only possible decomposable terms

will be square ones, i.e those terms with excess(QIΣx) = 0. Notice that suspension

kills the cup product. This then implies that any class in H∗ΣX, and consequently

any class QIΣx ∈ H∗QΣX is primitive.



Chapter 2. Statement of Results 30

Remark 11. Similar to Note 8, not all primitive A-annihilated sums
∑
QIΣx ∈

H∗QΣX have the property that each QIΣx is A-annihilated. We urge the reader not

to confuse this with the case of Corollary 6, where there x ∈ H∗X was fixed. Here Σx

varies as well as I. As an example, consider Q67Q35Q19a11 +Q67Q35Q23a7 ∈ H132QP .

This sum is A-annihilated, and maps to Q67Q35Q19Σa11+Q67Q35Q23Σa7 ∈ H133QΣP

under the homology suspension. This later class is A-annihilated, and primitive. But

still neither any single term is A-annihilated.

Despite the above remark, we are able to take advantage of Corollary 6 in some

special, and still important cases. Specialising to X = Sn with n > 0, we have the

following result.

Lemma 12. Suppose ξ =
∑
QIgn ∈ H∗QS

n is a spherical class. Then each QIgn is

A-annihilated.

The proof of this theorem when ξ is odd dimensional does not use any desuspen-

sion argument, and the claim holds for any odd dimensional A-annihilated primitive

class. However, the proof for the case of even dimensional classes depends on desus-

pension arguments, and we need the assumption of ξ being spherical.

Notice that when n > 1, any spherical class ξn ∈ H∗QS
n will desuspend to a

spherical class ξ1 ∈ H∗QS
1. Hence a good knowledge on spherical classes in H∗QS

1

can be very useful. According to Lemma 12, any spherical class in H∗QS
1 is of the

form
∑
QIg1, such that each QIg1 is A-annihilated with excess(QIg1) > 0. This tells

us about the possible forms of an odd dimensional spherical class ξ1 ∈ H∗QS
1 and

the terms which may contribute to a spherical class, although we will see that there

will be a very few terms in any potential spherical class.

Next we have two parallel tasks. First, given f ∈ 2πnQS
1 with hf = ξ =∑

QIg1 ∈ HnQS
1 we may try to extract more information about the stable ad-

joint of f , fS : Sn 6→ S1 in terms of the cohomology operations that detect fS, where

we have used 6→ to indicate that the mapping is stable, i.e. it can be realised after

finitely many suspensions. The second task is to try to eliminate possible terms which

may contribute to a spherical class ξ ∈ H∗QS
1.
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We start by dealing with the first task, and ask the question in a wider generality.

Assume ξ ∈ HnQX is spherical, then there exists a homotopy class f : Sn → QX,

not necessarily unique, with hf = ξ. The mapping f has a stable adjoint fS :

Sn 6→ X characterising a unique element in 2π
S
nX. If X is a suspension, then the

results mentioned earlier describe a potential spherical class. One may ask, what

is the relationship between the spherical class ξ ∈ HnQX and the stable mapping

fS : Sn 6→ X? More precisely, we may like to understand the order of the stable

operation that detects fS based on information about ξ.

Let me explain what is our approach to dealing with this first task. Assume that

f : Sm → QX is given. Since QX = ΩQΣX then we may use adjointness to suspend

up to obtain a mapping f 1 : Sm+1 → QΣX. Performing this operation finitely many

times, depending on the connectivity of X, we end up with the stable adjoint of f ,

namely fS : Sm 6→ X. On the other hand we may try to do the same with homology,

that is assuming that hf 6= 0 then we may try to see what happens to hf when we

suspend up under the homology suspension σ∗ : H∗QX → H∗QΣX.

Notice that if hSf 6= 0, then this will imply that fS is detected by homology.

Hence we restrict our attention to the cases where hSf = 0.

One of the first examples is provided by two equivalent definitions of the Hopf

invariant. It is well known that f : S2n+1 → Sn+1 has Hopf invariant one if and only

if the adjoint mapping S2n → ΩΣSn has g2
n ∈ H2nΩΣSn as its image in homology.

On the other hand f has Hopf invariant 1 if it is detected by a primary operation.

This fact may be generalised as follows. Let X be a path connected space, and

f : S2n → QX be given with hSf = 0. Then hf has x2
n ∈ H2nQX in its image if

and only if the adjoint mapping fS : S2n 6→ X is detected by the primary operation

Sqn+1 on xn ∈ HnX in its stable mapping cone [E81, Lemma 4.2], [E93, Proposition

4.4]. The following result demonstrates a full generalisation of this fact where we

remove the restriction on the choice of xn.

Lemma 13. Suppose f ∈ π2nQS
k, k > 0, with hf = ξ

′2
n where ξ′n ∈ HnQS

k. Then

the adjoint mapping S2n+1 → QΣSk is detected by the primary Sqn+1 on σ∗(ξ
′
n +O)
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in its mapping cone, where O refers to the indeterminacy which is a sum of terms of

the same weight as ξn and of lower excess. (O = 0 if Conjecture 9 holds.)

Remark 14. The proof for case with k = 0 will be slightly different, and a bit technical.

We will provide the reader with the proof of this case after a discussion of the delooped

Kahn-Priddy theorem.

Note 15. Observe that in Lemma 13 the class ξ′n ∈ HnQS
k will be A-annihilated

and primitive. Hence we know that we may write it as
∑
QIgk where the sum is

A-annihilated. If there exists I = φ, i.e. hf = g2
k, then we obtain the previous gen-

eralisation in [E93, Proposition 4.4] where in this case one has trivial indeterminacy,

that is O = 0. In this case the stable mapping fS will be detected by a primary

operation.

Remark 16. The above lemma can be generalised in the following way. Notice that

in the above lemma f ∈ π2nQS
k, i.e. f : S2n → QSk. It is quite straightforward

to replace S2n with Y2n, where Y2n has the bottom cell in dimension 2n. This part

of the generalisation comes straightforward as a corollary of the above lemma. It

seems that it is possible to replace Y2n with a wider range of spaces. My conjecture

is that still it should be true if we replace Y2n with any path connected space Y ,

assuming that f : Y → QSk has trivial homology in dimensions 6 n. This will

ensure that the functional operation Sqn+1 on the mapping cone of ξ does not have

any indeterminacy. However, I have not written down the proof of this last claimed

generalisation. Such a generalisation would be very useful in a proof of Conjecture

26.

We have to say that in the above lemma we need to know that σ∗ξ
′
n 6= 0. However

we know that ξ′n =
∑
QIgk. This means that if σ∗ξ

′
n = 0, then ξ′n it must be a square.

The following result shows that this will not happen.

Theorem 17. Let ξ ∈ H∗QS
n, with n > 0 be spherical. Then it is impossible to have

ξ = ζ2t
for any t > 1.

The proof of this for the case n = 0 depends on the homology of QS−2 which will

be discussed in its own place.
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Note 18. One can state the above Theorem 17 in a much wider generality. One may

weaken the condition of ξ being spherical and replace it by ξ being A-annihilated and

primitive class which is in the image of homology suspension, i.e. ξ = σ∗ξ
′ with ξ′ an

A-annihilated and primitive class. This still can be handled when n = 0 by different

methods.

The method used in the proof of Theorem 17 can be employed to prove the

following lemma.

Lemma 19. Let ξ = ζ2 ∈ H2dQS
n, n > 0, be spherical. Then d must be odd.

Note 20. In the context of finding potential candidates for being spherical Theorem 17

may be compared to [W82, Theorem 11.16(i)] where it seems our theorem eliminates

more classes than Wellington’s. In Wellington’s terminology, a tower can give rise

to a spherical class, and his theorem [W82, Theorem 11.16(i)] counts the classes ζ2t

with t > 1 among these candidates.

Let us mention the motivation behind Lemma 13 as it provides us with a kind

of inductive step in our arguments. We write σk
∗ for iterations of the homology

suspension, i.e. σk
∗ will be a homomorphism

σk
∗ : H∗QX → H∗+kQΣkX.

As we mentioned earlier, given f ∈ πmQX we use hSf to denote fS
∗ gm, where h and

hS fit into a commutative diagram as following

πS
mX

hS
// HmX

πmQX

'

OO

h // HmQX.

σ∞∗

OO

If X is a suspension, then according to Lemma 10 we know the possible form that

a spherical class ξ ∈ HmQX is going to take. Moreover, according to Lemma 12 we

have additional information when X = Sn with n > 1. If hSξ = 0 then σ∞∗ hξ = 0.

This shows that there exists k > 0, such that σk
∗hξ is a decomposable. Notice that

according to the Milnor-Moore exact sequence a decomposable primitive must be

square of a primitive class. This implies that σk
∗hξ must be a square, i.e. σk

∗hξ = ζ2t
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for some t > 0. Let X = Sn with n > 0, then Theorem 17 implies that t = 1. This

implies that ζ is not decomposable, i.e. σ∗ζ 6= 0. Hence we can use the Lemma 13

which implies that if Sm+k → QSn+k has ζ2 in its image, then the adjoint mapping

Sm+k+1 → QSn+k+1 will be detected by Sqd+1 on σ∗(ζ + O) where d = dim ζ and O

is the indeterminacy, probably O = 0.

If σ∗ζ 6∈ H∗S
n+k+1 then similar reasoning will show that σk2

∗ ζ will be a decompos-

able class for some k2 > 0. Moreover, as we explained in Note 19 it is impossible to

have σk2
∗ ζ = ζ

′2t
with t > 1, i.e. we only can have t = 1.

On the other hand, observe that as excess of any single term in O is less than

excess(ζ), then while we suspend, O will die under suspension before ζ.

Note 15 explained what happens if there exists I = φ in the expression for ζ. In

this case l(I) = l(φ) = 0. Hence the next case will be the case when there exists

I in the expression for ζ with l(I) = 1 i.e. ζ has a term of the form Qign. This

then implies that after finite suspension, the function will be detected by a primary

operation on a square. We then have the following result.

Theorem 21. Suppose we have a mapping f : S2n+k−1 → QSn detected by Sqk
f on

g2
n. Moreover, we require k > 1 to be minimum in the sense that f is not detected

by Sqk′ with k′ < k on an element of weight 2. Also assume that f is not detected

by a primary operation on a class of weight 1. Then the adjoint of this mapping

g : S2n+k → QSn+1 is detected by a secondary operation arising from non-admissible

term SqkSqn+1 on gn+1.

Notice that choosing k to be least implies that k = 2s for some s > 0. We observe

that for s = 0, being detected by Sq1
f will be the same as being detected by homology,

and this will reduce to the case of Lemma 13.

Remark 22. We warn the reader that the notion of being admissible for the Steenrod

operations is completely opposite to the notion of being admissible for Kudo-Araki

operation. Recall that SqaSqb is admissible if and only if a > 2b. So non-admissible

means a < 2b. We will recall the related Adem relation in its place when we are going

to use it!
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Moreover, notice that in general a secondary operation determined by a relation is

not unique [MT68, Page 163].

We have to say that Theorem 21 is motivated by the real life examples such as

the following.

Example 23. The stable mapping η : S1 6→ S0 may be realised as a genuine mapping

η : S15 → S14 which is detected by Sq2 on its mapping cone. Similarly the stable

mapping σ : S7 6→ S0 may be realised as a mapping S15 → S8 with adjoint σ : S14 →

ΩΣS7. For the adjoint mapping σ we have hσ = g2
7. Hence the composite ση : S15 →

ΩΣS7 is detected by Sq2 on g2
7, with trivial indeterminacy. Now Theorem 21 implies

that the adjoint mapping S16 → QS8 is detected by the secondary operation arising

from a Adem relation with the non-admissible term Sq2Sq8. Notice that we may

consider the composite

S15 → S14 → ΩΣS7 → QS7.

We already know that the the stable adjoint σ : S14 → QS7 satisfies hσ = g2
7. Hence

the composite ση : S15 → QS7 is detected by Sq2 on g2
7. However, here we have a

nontrivial indeterminacy coming from Sq2
∗Q

9g7 = g2
7. Now Theorem 21 implies that

the adjoint mapping S16 → QS8 is detected by the secondary operation arising from

a Adem relation with the non-admissible term Sq2Sq8. Notice that at this stage the

above composite is in the stable range and can be seen as a mapping S16 → S8.

Observe that this is the same η3 ∈ 2π
S
8 modulo elements of higher Adams filtration,

where ηi ∈ 2π
S
2i denotes Mahowald’s family [M77, Theorem 1].

Remark 24. Observe that η3, and in general ηi, does not give rise to a spherical class

in H∗QS
1, or even in H∗Q0S

0. This is quite straightforward to see based on the

construction [M77, Theorem 2]. Hence the above example can be seen as an evidence

that Theorem 21 admits a kind of inverse. That is given any stable mapping Sn 6→ X

which is detected by a secondary operation, then there exists a nonnegative integer

l such that the stable adjoint mapping Sn+l → QΣlX is detected by a primary

operation on a square term in homology of H∗QΣlX.
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Notice that Theorem 21 together with our previous observations imply that if

f ∈ π∗QS1 such that the minimum l(I) in the expression for hf is 2, or equivalently

its minimum weight is 4, then the stable adjoint of f will be detected by a secondary

operation. On the other hand it is easy to show that if fS is detected by a secondary

operation then it will not give rise to a spherical class in H∗QS
1. Summing up these

two would imply the following.

Lemma 25. It is impossible to have a spherical class in H∗QS
1 whose minimum

weight is 4.

This means that if there exists a spherical class in H∗QS
1, which is not a stably

spherical, then its minimum weight will be either 2 or at least 8.

A combination of Lemma 13 and Theorem 21 provides us with a motivational

result towards elements of higher weights, where we like to see them as results illus-

trating the inductive step in a more general picture. That is, we may hope to prove

a result of the following form.

Conjecture 26. Suppose we have a mapping f : Sm → QSn detected by an operation

of order r on ξ2
n. Then the adjoint mapping will be detected by an operation of order

r + 1 on σ∗(ξn +O), where O is a sum of terms of lower excess.

In practice this is what one might expect and the proof of this depends on choos-

ing the right framework towards the higher order operations, and interpreting the

previous results in this term. We outline an approach that we think will lead to

the proof of this claim. Of course there are some examples coming from the “real

life” which provide us with some evidence for correctness of the above conjecture.

Consider η3 ∈ 2π
S
3 realised by the composition

S3
η // S2

η2
// Q0S

0

as an unstable mapping. We know that this mapping has Adams filtration 3. Recall

that according to Example 1, the mapping η2 is detected by homology with hη2 = x2
1.

Moreover, the mapping η in the above composition is detected by Sq2. Hence the
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composition, i.e. η3 is detected by Sq2 on x2
1. Applying Theorem 21 we see that the

adjoint mapping S4 → S3 → QS1 is detected by a secondary operation arising from

the Adem relation Sq2Sq2 = Sq3Sq1 on σ∗x1 = Q1g1 = g2
1. The above conjecture

then predicts that the adjoint mapping S5 → S4 → QS2 is detected by an operation

of order 3 on g2, where by other methods we know that this is the case.

We like to note that given a stable map which is detected by an operation of order

r, then it implies that the Adams filtration of that stable map is at least r. Hence

the above conjecture relates the minimum length of a spherical class in H∗Q0S
0 to

the Adams filtration of its stable adjoint. I think that this is related to the results

of Lannes-Zarati, and maybe thought as a geometric approach to it. But I am not

aware of all details of their work.

Now we switch to our second task, namely trying to eliminate some of the possi-

ble cases which we found during our analysis of A-annihilated primitives. We have

already mentioned one of the eliminations that we meant to do, which was the state-

ments of Theorem 17 and Note 19. These calculations are based on our analysis of

primitives in H∗Q0S
0, various transfer maps, and use of the Eilenberg-Moore spectral

sequence. As an outcome we also calculate primitives in H∗QP and H∗QCP . We

will give three slightly different descriptions of these primitive submodules. However,

proof of all these descriptions is the same. The result for H∗QP reads as following.

Proposition 27. Any primitive class in H∗QP belongs to the R-module generated by

pP
2n+1, p

P
i,j, i.e. any primitive class in H∗QP will be a linear combination of elements

of the form QIpP
2n+1 and QKpP

i,j with I and K are admissible. The classes pP
2n+1 and

pP
i,j are defined, modulo decomposable terms, by pP

2n+1 = a2n+1 and pP
i,j = Q2i+1a2j.

Here ai ∈ HiP is a generator dual to ai ∈ H iP with a ∈ H1P being the first universal

Steifel-Whitney class.

I am in debt to Søren Galatius for the discussions that we had during the Arolla

Topology conference-2008. I learnt from him how to calculate the primitive elements

using the Milnor-Moore exact sequence.
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The precise description of the classes p2n+1 and pP
i,j are given in Section 5.8. A

similar result for H∗QCP holds.

Proposition 28. Any primitive element in H∗QCP is a linear combination of terms

of the form QLpCP
4n+2 and QKpCP

i,j with L and K are admissible. The classes pCP
4n+2 and

pCP
i,j are defined, modulo decomposable terms, by pCP

4n+2 = c4n+2, and pCP
i,j = Q2i+1c2j

with j even. Here c2i ∈ H2iCP is a dual to ci ∈ H2iCP with c ∈ H2CP being the

first universal Chern class.

After these calculations we focus on theH∗Q0S
0. We give a complete classification

of potential spherical classes inH∗Q0S
0 which do not correspond to the Hopf invariant

one or the Kervaire invariant one elements. The result, which is the statement of

Theorem 5.45 reads as following.

Theorem 29. Let θ ∈ H∗Q0S
0 be a spherical class which is not a Hopf invariant one

class, neither a Kervaire invariant one class. Then θ satisfies one of the the following

cases.

1- If σ∗θ 6= 0 and θ is an odd dimensional class, then

θ =
∑

QIp′2i+1,

with l(I) > 1 such that each of terms QIp′2i+1 in the above sum is A-annihilated.

2- If σ∗θ 6= 0 and θ is an even dimensional class, then

θ =
∑

QIp′2i+1 + P 2,

with l(I) > 1 where I has only has odd entries. In this case (I, 2i + 1) satisfies

condition 3 of Theorem 2, i.e. 0 < 2ij+1−ij < 2ρ(ij+1) for 1 6 j 6 r with ir+1 = 2i+1.

Moreover, excess(QIp′2i+1) − 1 < 2ρ(i1) for every QIp′2i+1 involved in the above sum.

Here P is a primitive term. If P 6= 0, then it is of odd dimension. If P = 0, then

each term in the above expression for θ is A-annihilated.

3- If σ∗θ = 0, then θ = ξ2, with ξ an odd dimensional A-annihilated primitive class,

i.e.

θ = (
∑

QIp′2i+1)
2,

with l(I) > 0 such that each of terms QIp′2i+1 in the above sum is A-annihilated.
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We note that at the above theorem p′2i+1 ∈ H2i+1Q0S
0 is a certain primitive

element, described in Chapter 5 as Madsen’s description, such that any primitive

class can be written as a sum of terms of the form QIp′2i+1.

This theorem will be clear after a long preparation on the type of primitive classes in

H∗Q0S
0. This preparation will be achieved after a discussion on different generating

sets for PH∗Q0S
0, and their relation to each other.

We then run towards studying homology of Q0S
−n for n > 0. We like to identify

subalgebras of these homology rings which will contain pull back of any class classified

by Theorem 29. We succeed to give a geometric meaning for generators of specific

types of these subalgebras using the classical Hopf invariant one maps, namely η ∈ πS
2

and ν ∈ πS
3 . This job is done in Remark 5.40, Note 5.41, and Remark 5.52.

Our study in subsection 5.9.1 illustrates the pattern that we look for to show to

the reader. This is the pattern that appears while we desuspend a spherical class

θ−k ∈ H∗Q0S
−k into a spherical class θ−k−1 living in H∗Q0S

−k−1. This predicts what

can happen when we try to write θ−k−1 in terms of primitive classes. Of course,

this is based on the assumption that certain primitive classes pull back through the

homology suspension and we have examined the consequences of such an assumption.

This assumption may fail, but the following pattern is what I strongly suspect that

will happen while we desuspend a spherical class in H∗Q0S
−n to a spherical class in

H∗Q0S
−n−1. We have two different types of primitive classes in H∗Q0S

−k, namely

classes pS−k

(I,2i+1) and QIpS−k

2i+1. These are defined in subsection 5.9.2 in an inductive

manner, and with use of homology suspension σ∗ : H∗Q0S
−k−1 → H∗Q0S

−k. This

of course does not define such classes uniquely. However, such a description is ad-

equate to estimate the action of the Steenrod algebra on such classes, up to some

indeterminacy. We have the following result which is the statement of Proposition

5.53.

Proposition 30. Let θ−k ∈ H∗Q0S
−k be a spherical class with θ = σk

∗θ−k 6= 0 which

is not a Hopf invariant class nor a Kervaire invariant class. Then modulo kernel of

σ∗ : H∗Q0S
−k → H∗Q0S

−k+1 the class θ−k can be written as linear combination of
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primitive terms of the following forms

QJpS−k

K , QLpS−k

2l+1−k,

where (I, 2i+ 1) = (J,K) = (L, 2l+ 1) with I, J,K, L being admissible and J can

be the empty sequence. Here θ has either one of the following forms,

θ =
∑
QIp2i+1 modulo decomposable terms

θ = (
∑
QIp2i+1)

2

satisfying one of the cases identified by Theorem 5.45, (I, 2i + 1) admissible if

excess(I, 2i+ 1) > 0.

I then claim that the Curtis conjecture is a corollary of this proposition. This is

the statement of Conjecture 5.54 which reads as following.

Conjecture 31. It is impossible to have a spherical class in H∗Q0S
0 satisfying one

of cases identified by Proposition 29.

I give a sketch of a proof for this conjecture. I will mention where the possible

gaps of such an argument can be. But I believe that this will lead us to a proof of

the Curtis conjecture.

Finally in Chapter 6, which is relatively very short, I will discuss some further

projects that can be done based on the work done in this thesis, or are related to the

subject of this thesis.
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Proof of Theorem 2

Recall that having fixed an additive basis {xα} forH∗X, withX path connected, then

H∗QX is a polynomial algebra with generators given by the symbols QIxα, with I

admissible. Allowing the empty sequence φ to be an admissible sequence, with Qφx =

x, and excess(φ) = +∞, then we can see that QIx is a decomposable if and only if

excess(QIxα) = 0 > 0 where in this case QIx = (Qi2 · · ·Qirx)2 with I(i1, . . . , ir).

Hence, Theorem 2 determines all A-annihilated classes in H∗QX classes of the form

QIx with are not square. Notice that in general, any class in H∗QX involving at least

one term QIx of positive excess with I determines a nonzero class in QH∗QX, the

module of indecomposables of H∗QX, i.e. it gives rise to an indecomposable element.

We only use the Nishida relations. The Nishida relation is given as following

[CLM76, Part I, Theorem 1.1(9)],

Sqa
∗Q

b =
∑

r>0

(
b−a
a−2r

)
Qb−a+rSqr

∗. (3.1)

Notice that Sqr
∗Q

I with l(I) > 1 may be computed by iterated use of the Nishida

relations. One observes that the Nishida relations respect the length, i.e. if

Sqa
∗Q

I =
∑

QKSqaK

∗ ,

then l(I) = l(K).

Let R denote the Dyer-Lashof algebra. Then according to [M75, Equation 3.2]

41
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the Nishida relations maybe used to define an action N : A⊗R→ R as following

N(Sqa
∗ , Q

b) =

(
b− a
a

)
Qb−a, (3.2)

N(Sqa
∗ , Q

i1 · · ·Qir) =
∑ (

i1 − a
a− 2t

)
Qi1−a+tN(Sqt

∗, Q
i2 · · ·Qir). (3.3)

In other suppose Sqa
∗Q

I =
∑
QKSqaK

∗ where aK ∈ Z. Then we have

N(Sqa
∗ , Q

I) =
∑

aK=0Q
K . (3.4)

We note that if a sequence I is admissible, then it is not clear whether or not

after applying Sqa
∗ we will get a sum of admissible terms, i.e we may need to use the

Adem relations to rewrite terms in admissible form. This means that we may decide

about vanishing or non-vanishing of a homology class Sqa
∗Q

Ix after rewriting it in

admissible form.

Example 3.1. Consider Q9Q5g1 which is an admissible term. One has

Sq4
∗Q

9Q5g1 = Q7Q3g1,

where Q7Q3 is not admissible. Although it may look nontrivial, however the Adem

relation Q7Q3 = 0 implies that Q7Q3g1 = 0. Indeed the class Q9Q5g1 is not A∗-

annihilated, which can be seen by applying Sq2
∗ as we have

Sq2
∗Q

9Q5g1 = Q7Q5g1 6= 0.

Notice that the right hand side of the above equation is an admissible term.

According to the above example, part of the job in distinguishing between A-

annihilated and not-A-annihilated classes QIx is to choose the right operation Sqa
∗ in

a way that the outcome is admissible and there is no need to use the Adem relations

after the Kudo-Araki operation. The reason being that it is practically impossible to

use the Adem relations when l(I) is big. The following lemma tells us when it is not

possible to choose the right operation! and provides us with the main tool towards

the proof of Theorem 2.
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Lemma 3.2. Suppose I is an admissible sequence such that 2ij+1 − ij < 2ρ(ij+1) for

all 1 6 j 6 r − 1. Let

N(Sqa
∗ , Q

I) =
∑

K admissible

QK .

Then

excess(K) 6 excess(I)− 2ρ(i1).

Remark 3.3. The above lemma is implied by a result of Curtis [C75, Lemma 6.2]. It

also can be obtained by combining [W82, Theorem 7.11], [W82, Theorem 7.12] and

[W82, Lemma 12.5]. We note that Curtis’s result [C75, Lemma 6.2] is meant to tell

one about the way that differentials in the Λ-algebra and the Dyer-Lashof algebra

are related. We refer to Appendix B to see how the above lemma is obtained from

Curtis’s result. We urge the reader to take care while comparing the above statement

to Wellington’s and Curtis’s as they let the Steenrod operation act from right, and

their iterated operations QI , in fact λI in terms of the Λ-algebra, are in the reverse

order which may cause a bit of confusion. Although we we will not use the result,

this lemma has been generalised to odd primes by Wellington [W82, Lemma 12.15].

We will make some more comments on this in an appendix.

Now we are ready to prove Theorem 2. We break it into little lemmata.

Lemma 3.4. Let x ∈ H∗X be A-annihilated, and I an admissible sequence with

excess(QIx) > 0 such that

1- excess(QIx) < 2ρ(i1);

2- 2ij+1 − ij < 2ρ(ij+1) for all 1 6 j 6 r − 1;

Then QIx is A-annihilated.

Proof. Let r > 0. Then we have the following

Sqa
∗Q

Ix =
∑
QKSqaK

∗ x =
∑

aK=0Q
Kx.

But notice that according to Lemma 3.2

excess(QKx) 6 excess(QIx)− 2ρ(i1) < 0.

Hence the above sum is trivial, and we are done.
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This proves the Theorem 2 in one direction. Now we have to show that the

reverse direction holds as well. That is we have to show if either of conditions (1)-(3)

of Theorem 2 does not hold then QIx will be not-A-annihilated.

Remark 3.5. Before proceeding, we recall a basic property of the function ρ defined

before Theorem 2 which is as following. Notice that given a positive integer n, then

ρ(n) is the least integer t such that(
n− 2t

2t

)
≡ 1 mod 2.

Notice that if n =
∑
ni2

i and m =
∑
mi2

i are given with ni,mi ∈ {0, 1} then(
n
m

)
= 1 mod 2 if and only if ni > mi for all i. This makes it easy to verify the above

property for ρ.

The next three lemmata show that if any of conditions (1), (2) or (3) doesn’t hold,

then QIx will not be A-annihilated.

Lemma 3.6. Let X be path connected. Suppose I = (i1, . . . , ir) is an admissible

sequence, such that excess(QIx) > 2ρ(i1). Then such a class is not A-annihilated.

Proof. This is quite straightforward. We may use Sq2ρ

∗ with ρ = ρ(i1), which gives

Sq2ρ

∗ Q
Ix = Qi1−2ρ

Qi2 · · ·Qirx+O (3.5)

where O denotes other terms given by

O =
∑
t>0

(
i1 − 2ρ

2ρ − 2t

)
Qi1−2ρ+tSqt

∗Q
i2 · · ·Qirx.

Notice that excess(QIx) > 2ρ(i1) ensures that i1 is not of the form 2ρ. Looking at the

binary expression implies that all coefficients in O are nontrivial, and O will depend

on the action of Sqt
∗ on terms Qi2 · · ·Qirx. However, all of these terms are terms of

lower excess, and they will not cancel the first term in (3.5).

Notice that at the right hand side of (3.5) the term Qi1−2ρ
Qi2 · · ·Qirx is obviously

admissible. Moreover,

excess(Qi1−2ρ

Qi2 · · ·Qirx) = excess(QIx)− 2ρ > 0.



Chapter 3. Proof of Theorem 2 45

This proves that Sq2ρ

∗ Q
Ix 6= 0. Notice that if excess(Sq2ρ

∗ Q
Ix) = 0, then

Sq2ρ

∗ Q
Ix = (Qi2 · · ·Qirx)2 6= 0.

This completes the proof.

The above lemma shows that if (2) of Theorem 2 does not hold, then we will have

a class which is not A-annihilated. Next, we move on to the case when condition (3)

does not hold.

Lemma 3.7. Let X be path connected. Suppose I = (i1, . . . , ir) is an admissible

sequence, and let QIx be given with excess(QIx) > 0 such that 2ij+1 − ij > 2ρ(ij+1)

for some 1 6 j 6 r − 1. Then such a class is not A-annihilated.

Proof. Assume that QIx satisfies the condition above. We may write this condition

as

ij − 2ρ 6 2ij+1 − 2ρ+1 = 2(ij+1 − 2ρ),

where ρ = ρ(ij+1). This is the same as admissibility condition for the pair (ij −

2ρ, ij+1 − 2ρ). In this case we use Sq2ρ+j

∗ where we get

Sq2ρ+j

∗ QIx = Qi1−2ρ+j−1

Qi2−2ρ+j−2 · · ·Qij−2ρ

Qij+1−2ρ

Qij+2 · · ·Qirx+O (3.6)

where O denotes other terms, and similar to previous lemma will be a sum of terms

of lower excess.

The first term in right hand side of the of the above equality is admissible. More-

over,

excess(Sq2ρ+j

∗ QIx) = (i1 − 2ρ+j−1)− (i2 − 2ρ+j−2)− (ij − 2ρ)− (ij+1 − 2ρ)−

(ij+2 + · · ·+ ir + dimx)

= i1 − (i2 + · · ·+ ir + dimx)

= excess(QIx) > 0,

where by abuse of notation we have written excess(Sq2ρ+j

∗ QIx) to denote the excess

of the first term in (3.6). This implies that

Sq2ρ+j

∗ QIx 6= 0,

and hence completes the proof.
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Remark 3.8. According to the proof in this case we always have

excess(Sq2ρ+j

∗ QIx) > 0

which means that we always end up with an indecomposable term after applying the

“right” operation, i.e. the outcome will not be a square. This little observation will

be useful.

Now we show that the condition (1) is also necessary in the proof of the main

theorem.

Lemma 3.9. Let X be path connected, and x ∈ H∗X be not A-annihilated. Then

QIx is not A-annihilated.

Proof. Let t be the least number that

Sq2t

∗ x 6= 0.

If I = (i1, . . . , ir), we apply Sq2t+r

∗ to QIx, where we get

Sq2r+t

∗ QIx = Qi1−2r+t−1 · · ·Qir−2t
Sq2t

∗ x+O,

where O denotes sum of other terms which are of the form QJy with dim y >

dimSq2t

∗ x. This means that the first term in the above equality will not cancel

with any of other terms.

By abuse of notation we write excess(Qi1−2r+t−1 · · ·Qir−2t
Sq2t

∗ x) to denote the excess

of the first term in the above equality. We have excess(Qi1−2r+t−1 · · ·Qir−2t
Sq2t

∗ x) =

excess(QIx) > 0. Moreover,

Qi1−2r+t−1 · · ·Qir−2t

is admissible. Hence Sq2t+r

∗ QIx 6= 0. Note that similar to the previous lemma we end

up with an indecomposable term.

This completes the final step in the proof of Theorem 2. Next we move on to prove

Corollary 6, which is an outcome of the proof of Theorem 2. Recall that according

to Corollary 6, if
∑
QIx ∈ H∗QX is an A-annihilated class with excess(QIx) > 0,
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with x ∈ H∗X fixed and X path connected, then every QIx in the above sum will

be A-annihilated. We like to demonstrate how this will work. To make our approach

more clear we start with some illustrations. Recall that a class of the form QIx with

I having at least one even entry is not A-annihilated. Our illustration below shows

that such a class will not be a term of any A-annihilated sum of the form
∑
QIx

with excess(QIx) > 0.

Recall that Nishida relations respect the length. Hence we concentrate on terms

QIx with I of fixed length, and single out the not-A-annihilated terms. Although we

do the proofs for X = S1, but they can be adopted to any path connected space X.

The proofs are based on the following Nishida relations,

Sq1
∗Q

2t = Q2t−1, (3.7)

Sq1
∗Q

2t+1 = 0. (3.8)

We also recall that the operations Sqi
∗ satisfy the Cartan formula as following. If

x, y ∈ H∗ΩX, then we have [W82, Remark 1.9]

Sqi
∗(xy) =

∑
j+k=i

(Sqj
∗x)(Sq

k
∗y). (3.9)

This in particular implies that

Sq2t
∗ ξ

2 = (Sqt
∗ξ)

2. (3.10)

We also have the following Cartan formulae,

Q2tξ2 = (Qtξ)2, (3.11)

Q2t+1ξ2 = 0. (3.12)

The following lemma illustrates how we apply these relations, and proves even

more that we may expect. It shows that if QIx is an indecomposable, and a term of

a spherical class, then i1 must be odd. We have the following.

Lemma 3.10. An admissible term QIg1 with excess(QIg1) > 0 and i1 even is not

A-annihilated. Moreover, the action of Sq1
∗ separates such a term from any other

class of the form QJg1 which is not A-annihilated. In particular it is impossible to

have a term of this form as part of a spherical class ξ ∈ H∗QS
1.
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Notice that here being separated under an operation has its obvious meaning. We

say two classes are separated under Sqr
∗ if they map to different elements under this

operation.

Proof. Suppose we are given distinct terms

QHg1, QIg1, QJg1, QKg1,

of the same dimension with H, I, J,K nonempty admissible sequences, and

H = (2s1, h2, . . . , hr),

I = (2t1, i2, . . . , ir),

J = (2t′1 + 1, j2, . . . , jr),

K = (k1, k2, . . . , kr).

Moreover, assume that excess(QHg1) > 0, excess(QIg1) > 0, excess(QJg1) > 0 and

excess(QKg1) = 0. Notice that excess(QKg1) = 0 implies that we may write

QKg1 = (QLg1)
2s

for some s > 1, and L admissible. Applying Sq1
∗ to these classes we obtain

Sq1
∗Q

Hg1 = Q2s1−1Qh2 · · ·Qhrg1 6= 0,

Sq1
∗Q

Ig1 = Q2t1−1Qi2 · · ·Qirg1 6= 0,

Sq1
∗Q

Jg1 = 0,

Sq1
∗Q

Kg1 = 0.

This shows that the last two, the square term and the term starting with an odd

number, are annihilated by Sq1
∗ where the first two terms survive. Notice that

excess(Sq1
∗Q

Hg1) = excess(QHg1)− 1 > 0,

excess(Sq1
∗Q

Ig1) = excess(QIg1)− 1 > 0.

This shows that QHg1 is not A-annihilated. Now we show that it cannot be term of

any sphercial class.

The fact that H 6= I implies that (2s1 − 1, h2, . . . , hr) 6= (2t1 − 1, i2, . . . , ir), i.e.

Sq1
∗Q

Hg1 6= Sq1
∗Q

Ig1. This means that having a class like QHg1 starting with an even
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number as a term of a spherical class ξ ∈ H∗QS
1 will contradict the fact that ξ must

be A-annihilated. More precisely, according to Lemma 10 we may write ξ =
∑
QAg1

with A admissible, and excess(QAg1) > 0. Any term QAg1 can be in either of the

forms that we have mentioed at the beginning of the proof. However, the above

calculations shows that if there is a sequence A with QAg1 of positive excess, then ξ

will not be A-annihilated which is a contradiction. This completes the proof.

According to this lemma from now on we have to concentrate on distinct terms

of the form

QIg1, QJg1, QKg1,

with excess(QIg1) > 0, excess(QJg1) > 0 and excess(QKg1) = 0 where I, J start with

odd numbers. Before proceeding more, we have a very little observation.

Lemma 3.11. Let a be odd, and (a, b) be an admissible pair, i.e. a 6 2b. Then

(a− 1, b− 1) is also admissible.

We do one more example to see how other similar cases will be resolved.

Lemma 3.12. Suppose QIg1 is an admissible term with excess(QIg1) > 0, i1 odd

and i2 even. Then such a class is not A-annihilated. Moreover, the action of Sq2
∗

separates such a class from any other QJg1 which is not A-annihilated. In particular,

this implies it is impossible to have a term of this form as part of a spherical class

ξ ∈ H∗QS
1.

Proof. Suppose we have QIg1 with I = (i1, . . . , ir), i1 odd, and excess(QIg1) > 0.

Notice that the fact that excess(QIg1) > 0 together with the admissibility of I implies

that excess(Qi2 · · ·Qirg1) > 0. The Nishida relations give the following

Sq2
∗Q

Ig1 =
(

i1−2
2

)
Qi1−2Qi2 · · ·Qir +

(
i1−2

0

)
Qi1−1Sq1

∗Q
i2 · · ·Qirg1

=

 O +Qi1−1Qi2−1Qi3 · · ·Qirg1 if i2 is even,

O + 0 if i2 is odd.

Here O refers to the other terms which in this case is given by

O =

(
i1 − 2

2

)
Qi1−2Qi2 · · ·Qir ,
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which can be trivial or nontrivial. Notice that if O is nontrivial it will be admis-

sible, and wouldn’t cause trouble, as it is different from the second term in the above

relation. We concentrate on the second term. Notice that according to above lemma

Qi1−1Qi2−1 is admissible, and hence Qi1−1Qi2−1Qi3 · · ·Qir is admissible. Moreover

excess(Qi1−1Qi2−1Qi3 · · ·Qirg1) = (i1 − 1)− ((i2 − 1) + i3 + · · ·+ ir + 1)

= i1 − (i2 + i3 + · · ·+ ir + 1)

= excess(QIg1) > 0.

Hence the second term is nontrivial, i.e.

Sq2
∗Q

Ig1 6= 0.

Notice that, if we have an admissible term QHg1 6= QIg1 with h1 odd and h2 even,

then it would be not A-annihilated, and separated from QIg1 under the action of Sq2
∗

for obvious reasons.

If we have any term QJg1 with excess(QJg1) = 0, then it is a square, i.e. QJg1 =

(QKg1)
2s

. According to (3.8) if we succeed to find an operation, say Sqt
∗, with

Sqt
∗Q

Jg1 6= 0, then the outcome will be again a square term. This means that

QIg1 is also separated from QJg1 under the action of Sq2
∗. This completes the proof

of the lemma.

Remark 3.13. Again we observe that apart from the case when i1 is even, in the other

case applying the right operation gives us an indecomposable term. For example in

the example in the above lemma we have excess(Qi1−1Qi2−1Qi3 · · ·Qirg1) > 0. This

is true in general.

Perhaps one can see how the rest of classes QIg1 with I having at least one even

entry will be excluded from being A-annihilated. The following theorem resolves the

general case.

Theorem 3.14. Suppose QIg1 is an admissible term with excess(QIg1) > 0, such

that I = (i1, i2, . . . , ir) has at least one even entry, say is is even with s chosen to

be the least such number. Then this class is not A-annihilated under the action of

Sq2s−1

∗ . Moreover, the action of Sq2s−1

∗ separates such a term from any other class
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of the form QJg1 which is not A-annihilated. In particular it is impossible to have a

term of this form as part of a spherical class ξ ∈ H∗QS
1.

The proof of this theorem is analogous to the examples provided before. Indeed

we have to observe that in general case O will be a sum of terms of lower excess, and

order.

Remark 3.15. Notice that we may order terms of the form QIg1, of the same dimen-

sion, by putting an order on the sequences I. For sequences of length 1 the order is

just the order of natural number. Suppose we have defined the order on the sequences

of length r − 1. Given two admissible sequences I, J of length r, we assume I > J if

either i1 > j1 or i1 = j1 and (i2, . . . , ir) > (j2, . . . , jr). The term order in the above

paragraph refers to this order.

Notice that the above observations have a very quick corollary about possible

form that a spherical can have. We have the following.

Corollary 3.16. Let ξ =
∑
QIx ∈ H∗QX with X path connected, and x ∈ H∗X

fixed. Assume that ξ is A-annihilated. Then for any term with excess(QIx) > 0 we

have I only with odd entries. In particular, if ξ ∈ H∗QS
n with n > 0 is an odd

dimensional class, then

ξ =
∑

QIgn,

with I admissible, having only odd entries.

Proof. The first half of the corollary is evident from the previous explanations. If is

ξ ∈ H∗QS
n then ξ = hf for some f ∈ π∗QSn. The class f has an isomorphic image,

say g ∈ π∗−1QS
n−1 with σ∗hg = ξ which means that ξ is in the image of the homology

suspension σ∗ : H∗−1QS
n−1 → H∗QS

n. Hence according to Lemma 6 we may write

ξ =
∑
QIgn with excess(QIgn) > 0. As we have chosen ξ to be odd dimensional, we

then don’t have the case of excess(QIgn) = 0. This proves the lemma.

Notice that gn ∈ HnS
n is primitive, and hence any single term QIgn is primitive.

One may expect a similar result to hold for odd dimensional spherical classes in

H∗Q0S
0. We leave this until after some discussion on primitive classes in H∗Q0S

0.
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3.1 Filtering Indecomposable A-annihilated Classes

using their Length

Theorem 2 provides us with a general description of indecomposable A-annihilated

classes QIx ∈ H∗QX for any path connected space X. As we have mentioned earlier,

the case X = S1 is of special importance for us. In this case Lemma 4 provides us

with an explicit description of such classes when l(I) < 3. This section contains the

calculations to verify this claim.

We start by doing the proof for when l(I) = 1. This is rather easier than one

might guess. Clearly g1 ∈ H1S
1 is A-annihilated. Next in this line are classes of the

form Qig1, with i odd. The action of an operation Sqr
∗ on such a class is given by

Sqr
∗Q

ig1 =
(

i−r
r

)
Qi−rg1.

If i 6= 2α − 1, choose m = ρ(i). Then i − 2m ≡ 2m+1 − 1 mod 2m+1 and hence the

binomial coefficient above for r = 2m is odd, i.e.

Sq2m

∗ Qig1 = Qi−2m
g1 6= 0.

It is also obvious that any class of the form Q2α−1g1 is A-annihilated. The triviality

of the coefficients is easy to see once we look at the binary expansions.

Next in line are classes of the form QaQbg1, i.e. QIg1 with l(I) = 2. Let us fix

our notation. For a natural number k let ν(k) be the number of 1’s in its binary

expansion. Then we have the following lemma.

Lemma 3.17. Suppose k is a natural number such that the pair (2α − 1 + k, 2α − 1)

is admissible and the class Q2α−1+kQ2α−1g1 is of positive excess, i.e. k > 1. Then

such a class is not A-annihilated if and only if ν(k) > 1, i.e. it is A-annihilated if

and only if ν(k) = 1.

Proof. First of all, notice that we like 2α− 1 + k to be odd, as otherwise we have the

elimination by Sq1
∗. Hence we only restrict to the cases where 2α − 1 + k is odd, i.e.

k is even. First let ν(k) = 1, i.e. k = 2j for some 1 6 j 6 α− 1. The only operation
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which might act nontrivially is Sq2j

∗ , but

Sq2j

∗ Q
2α+2j−1Q2α−1g1 = Q2α−1Q2α−1g1 = 0,

where it vanishes for dimensional reasons. The operations Sq2l

∗ with l < j do have

trivial action for numerical reasons, i.e. the coefficients in the Nishida relation become

trivial. Moreover, the operations Sq2l

∗ with l > j have trivial action for dimensional

reasons.

Now assume ν(k) > 1, k even. Having k =
∑

l kl2
l, let j be the minimum l such

that kl = 1. Then,

Sq2j

∗ Q
2α+k−1Q2α−1g1 = Q2α+k−2j−1Q2α−1g1 6= 0.

Notice that since ν(k) > 1, after taking 2j out, still there is another l, say l′ with

kl′ = 1, which means that (
k − 2j

2j

)
≡ 1 mod 2.

This completes the proof.

Remark 3.18. Notice that we may choose k in way to get 2α + k − 1 = 2β − 1. But

this will not give an admissible term. To see this notice that

Q2β−1Q2α−1g1

is nontrivial if 2β − 1 > 2α − 1 + 1 > 2α − 1, which implies that β > α. On the

other hand the term will be admissible if

2β − 1 6 2(2α − 1) < 2α+1 − 1,

which implies that β < α+1 where β is an integer, but packed between two successive

integers. This is a contradiction.

The above lemma classifies all A-annihilated classes of the form QiQ2s−1g1. This

proves Lemma 2 in one direction. The following will complete the proof when l(I) = 2.

Lemma 3.19. Let QaQbg1 be an A-annihilated class with excess(QaQbg1) > 0. Then

b = 2s − 1 for some s > 0.
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Proof. According to Theorem 2, this class is A-annihilated, if and only if,

a− (b+ 1) < 2ρ(a),

2b− a < 2ρ(b).

Adding these together yields

0 6 b− 1 < 2ρ(b) + 2ρ(a).

Notice that for any integer b, there exists Nb > 0 such that b = 2ρ(b)+1Nb + 2ρ(b) − 1.

Also recall from the appendix A, or [C75, Proof of Lemma 6.2], that if 0 6 2b− a <

2ρ(b), then ρ(a) 6 ρ(b). Hence we have,

0 6 2ρ(b)+1Nb + 2ρ(b) − 1− 1 < 2ρ(b) + 2ρ(a).

This implies that

2ρ(b)+1Nb − 1− 1 < 2ρ(a).

Taking into account that ρ(b) > ρ(a), the above inequality can hold only if Nb = 0,

i.e. b = 2ρ(b) − 1. This completes the proof.

Next, we may consider the case l(I) = 3. A natural way to obtain an A-annihilated

class of QIg1 with l(I) = n is try to find a suitable operation Qi, and apply it to an

indecomposable A-annihilated class QJg1 with l(J) = n − 1. The following lemma,

shows that this is not possible when l(J) = 2.

Lemma 3.20. It is impossible to have a nontrivial admissible class of the form

Q2α+1+2j+k−1Q2α+2j−1Q2α−1g1

which is A-annihilated.

Proof. According to previous section, we are not worried about the cases that 2α+1 +

2j + k − 1 is even. So we consider the cases where it is odd. Notice that the class

above is admissible only if

2α+1 + 2j + k − 1 6 2(2α + 2j − 1) = 2α+1 + 2j+1 − 2,
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which implies that

1 < k < 2j − 1.

If k − 1 6= 2b − 1, choose m = ρ(k), i.e. k − 1 ≡ 2m − 1 mod 2m+1. Then

Sq2m

∗ Q2α+1+2j+k−1Q2α+2j−1Q2α−1g1 =

Q2α+1+2j+k−1−2m
Q2α+2j−1Q2α−1g1 6= 0.

If k − 1 = 2b − 1, then

Sq2b

∗ Q
2α+1+2j+k−1Q2α+2j−1Q2α−1g1 =

Q2α+1+2j−1Q2α+2j−1Q2α−1g1 =

(Q2α+2j−1Q2α−1g1)
2 6= 0.

This completes the proof.

According to this lemma if Qi1Qi2Qi3g1 is A-annihilated, then Qi2Qi3g1 is not

A-annihilated. This completes the proof for Lemma 2.

Remark 3.21. Notice that an A-annihilated class of the form Q2s+2j−1Q2s−1g1 may be

identified with the class Q2s+2j−1Σa2s−1 ∈ H∗QΣP where a2s−1 ∈ H2s−1P is a dual to

a2s−1 ∈ H∗P . In fact these two classes have similar behavior under the avtion of the

Steenrod operations. However, the class Q2s+2j−1a2s−1 ∈ H∗QP is not A-annihilated.

3.2 Complementary Notes

Theorem 2 provides us with a complete description of A-annihilated classes in H∗QX

of the form QIx of positive excess, with X being path connected. In return, this

also classifies all such classes that are not A-annihilated. For instance given a class

QIx ∈ H∗QX, this class will not be A-annihilated, if at least one of conditions in

Theorem 2 does not hold; i.e.

• x is not A-annihilated,

• excess(QIx) > 2ρ(i1);

• There exists j such that 2ij+1 − ij > 2ρ(ij+1);
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We applied a part of such information to obtain more information on the possible

form of an odd dimensional spherical class in H∗QS
n with n > 0 which was the

statement of Corollary 3.16. Recall that according to Theorem 3.14 and Corollary

3.16 we excluded any class QIgn with I having at least one even entry from being

a term of a spherical class. Notice that according to the remark after Theorem 2, a

class QIx of positive excess with at least one even entry will not be A-annihilated.

We want to see that if more can be done, and use full power of this description.

That is we like to prove Corollary 6, and Lemma 12, and show that having given an

A-annihilated sum of terms QIgn of positive excess, then each of these terms must

be A-annihilated.

Now we return to the above classification of classesQIx which are notA-annihilated.

Each of the above cases distinguishes a class of indecomposable terms QIx that are

not A-annihilated. One observes that a given class QIx can be not-A-annihilated for

multiple reasons. For instance, consider a2 ∈ H2P . This class is not A-annihilated

as Sq1
∗a2 = a1. This then implies that Q5a2 is not A-annihilated which comes from

applying Lemma 3.9. But this also can be seen by the fact that excess(Q5a2) = 3 6<

2ρ(5) = 2. However, for any class there is a “minimal” condition for being not-A-

annihilated. To be more precise, given a class QIx which is not A-annihilated for

one of the above reasons, we can find least t such that Sq2t

∗ Q
Ix 6= 0, this gives the

minimal case. This makes more sense when a class QIx is not A-annihilated, be-

cause there exists j with 2ij+1 − ij > 2ρ(ij+1). In this case choosing least such j, can

lead us to the least operation. To see a more complex example, assume that QIx

is not A-annihilated because there exists j with 2ij+1 − ij > 2ρ(ij+1); and because

excess(QIx) > 2ρ(i1). In such a case we pick up least j, giving the operation Sq2t

∗ and

compare it to Sq2ρ(i1)

∗ and choose the one with least degree, i.e. let m = min(ρ(i1), t)

and then Sq2m

∗ will be the least operation that does not kill QIx.

Now let us see how this helps to get a result sharper than Corollary 3.16. Recall

that Corollary 3.16 allows us to restrict our attention to indecomposable terms QIx

with I having only odd entries. We like to show that if two indecomposable terms

QIx, and QJx are not A-annihilated for the same minimal reason, then they are
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separated from each other. We say two indecomposable classes QIx and QJx are

separated if there exists k such that Sqk
∗Q

Ix 6= Sqk
∗Q

Jx.

First, consider the classes QIx and QJx of the same dimension, of positive excess

with x ∈ H∗X not A-annihilated. Then there exists the least positive integer t such

that Sq2t

∗ x 6= 0. Then

Sq2t+r

∗ QIx 6= Sq2t+r

∗ QJx

where l(I) = l(J) = r. To see that let us assume r = 2, then iterated use of the

Nishida relations implies that

Sq2t+r

∗ QIx = Qi1−2t+1
Qi2−2t

Sq2t

∗ x,

Sq2t+r

∗ QJx = Qj1−2t+1
Qj2−2t

Sq2t

∗ x.

As I 6= J the right hand side of the first and second quality are admissible terms of

positive excess, in fact excess(Qi1−2t+1
Qi2−2t

Sq2t

∗ x) = excess(Qi1Qi2x) > 0. Moreover,

the right hand sides of these equalities are not equal. This then verifies the above

inequality. The cases with r > 2 can be verified in a similar way. Notice that because

of the choice of t, in these cases each side of the above inequality will have only one

term, namely

Sq2t+r

∗ QIx = Qi1−2t+r−1
Qi2−2t

Sq2t

∗ x,

Sq2t+r

∗ QJx = Qj1−2t+r−1
Qj2−2t

Sq2t

∗ x,

which verifies that Sq2t+r

∗ QIx 6= Sq2t+r

∗ QJx.

Second, letQIx andQJx be two classes that are notA-annihilated such that excess(QIx) >

2ρ(i1), and excess(QJx) > 2ρ(j1). If we choose ρ = min{ρ(i1), ρ(j1)}, then it is clear

that

Sq2ρ

∗ Q
Ix 6= Sq2ρ

∗ Q
Jx.

Notice that we are assuming that I and J have the same length. Finally we may

consider QIx, and QJx where they are not A-annihilated because there exists least

k such that 2ik+1 − ik > 2ρ(ik+1) and 2jk+1 − jk > 2ρ(jk+1). In this case we have

Sq2ρ(ik+1)+r−k

∗ QIx 6= 0,

Sq2ρ(jk+1)+r−k

∗ QJx 6= 0,
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where the above operations are the least operations which do not annihilate the

related classes. One may choose the least among such operation, and such that

Sq2m+r−k

∗ QIx 6= Sq2m+r−k
∗ QJx,

where m = min{ρ(ik+1), ρ(jk+1)}.

These may be summarised by saying that if two classes QIx and QJx are not

A-annihilated for precisely the same reason, then it is possible to find an operation

which does annihilated one, and does not annihilate the other one. We like to take

this further up. We are able to take this further more and obtain reasonably more

general results. More precisely, we aim to show that if QIx and QJx are two classes

of positive excess, then we can separate them from each other. We note that we like

to use this result to obtain a better description of an A-annihilated primitive class

in H∗QS
n with n > 0, i.e. we always choose x = gn which is an A-annihilated class.

Hence we restrict our attention to classes of the form QIgn of positive excess with I

an admissible sequence with only odd entries. Finally we comment on that how this

one can be modified to obtain an analogous result in H∗Q0S
0. We like to draw the

reader’a attention that this result also can be seen as a result about a special class

of operations in the Dyer-Lashof algebra R.

First, let QIgn and QJgn be two classes which are of positive excess, with l(I) =

l(J) = r of the same dimension. Suppose these classes are not A-annihilated, only

for the following reasons; 2ik+1 − ik > 2ρ(ik+1) for some 1 6 k 6 r, and 2jk′+1 − jk′ >

2ρ(jk′+1) for some 1 6 k′ 6 r. Choose least k and denotes it with k0, and similarly

choose k′0. Notice that Sq2
ρ(ik0+1)+k0

∗ is the least operation which does not annihilate,

QIgn, and similarly Sq2
ρ(j

k′0+1
)+k′0

∗ is the least operation which does not annihilate

QJgn. We have already considered the case with k0 = k′0. So, assume k0 < k′0. One

can check that Sq2
ρ(ik0+1)+k0

∗ will not annihilate QIgn, where it annihilates QJgn. This

is still quite general and we may replace gn with any A-annihilated class in H∗X with

X path connected.

The only case that we need to resolve is the following. Assume that QIgn and

QJgn are given, with l(I) = l(J) = r. Suppose these classes are not A-annihilated
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for the following reason. For QIgn, there exists k such that 2ik+1 − ik > 2ρ(ik+1), and

QJgn is not A-annihilated because excess(QJgn) > 2ρ(j1). Similar to previous cases

let k0 to be the least among k’s. In this case we have two different situations. k0 > 1,

k0 = 1. If k0 > 1, then we let m = min(2ρ(j1), 2ρ(ik0+1)+k0). Then the operation Sqm
∗

will annihilate one and will not annihilate the other one, depending what m is. We

could resolve previous cases like this as well, however the way that we already did is

quite adequate. Now assume k0 = 1. Then we have

Sq2ρ(i2)+1

∗ QIgn = Qi1−2ρ(i1)
Qi2−2ρ(i2)

Qi3 · · ·Qirgn,

Sq2ρ(j1)

∗ QJgn = Qj1−2ρ(j1)
Qi2 · · ·Qirgn.

We only need to consider the case ρ(j1) = ρ(i2) + 1. Then

Sq2ρ(i2)+1

∗ QIgn = Sq2ρ(j1)

∗ QJgn,

if and only if i1−2ρ(i2) = j1−2ρ(j1), i2−2ρ(i2) = j2 which implies that j1 = i1+2ρ(i2),

j2 = i2 − 2ρ(i2). However, we have

j1 − 2j2 = i1 − 2ρ(i2) + 2ρ(i2)+1 + 2ρ(i2) > 2ρ(i2),

which implies that (j1, j2) is not admissible. This contradicts the fact that J is

admissible.

This completes our verification of the fact that any two distinct indecomposable

classes in homology of H∗QX which are not A-annihilated can be separated by an

operation. This also completes the proof of Corollary 6.

Remark 3.22. Observe that we concentrated on indecomposable terms, i.e. QIx with

excess(QIx) > 0. In fact shows that any two operation QI and QJ of positive excess

which are not A-annihilated can be separated by some operation. This also may be

seen as a proof of [C75, Theorem 6.3] in odd degrees. However, this is not true if we

allow operation or terms of trivial excess, i.e. square terms which eliminates claim

of [C75, Theorem 6.3] to be true in even degrees. We refer the reader to see [W82,

Remark 11.26] for counterexample. We have discussed this example Note 5.27.

The proof of Lemma 10 is quite clear. If ξ ∈ H∗+1QΣX is a spherical class, then it

is in the image of the homology suspension σ∗ : H∗QX → H∗+1QΣX. Notice that σ∗
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kills the decomposable terms, and sends QIx to QIΣx. This implies that the terms

QIΣx, with excess(QIΣx) > 0 are the only terms which survive after one suspension.

The last proof of this chapter is the proof of Theorem 17. That is we show that

it is impossible to have a spherical class ζ2t ∈ H∗QS
n with n > 0, and t > 1. Here

we do the proof for n > 1. The cases n = 1 and n = 0 will be discussed later.

Assume that ξn = ζ4 ∈ H4dQS
n is spherical. Notice that ξ = Q2dQdζ, ζ =

∑
QIgn

with (2d, d, I) admissible, where d = dim ζ. This then pulls back to a spherical class

of the form ξn−1 = Q2dQdζ ′ +D ∈ H4d−1QS
n−1 where ζ ′ =

∑
QIgn−1 and D denotes

the decomposable part. Notice that Q2dQdζ ′ is sum of primitive classes, hence D a

decomposable primitive. This implies that D must be a square which is impossible

as it is an odd dimensional class. This implies that D = 0. Hence,

ξn−1 =
∑

Q2dQdζ ′.

Applying Sq1
∗ we obtain

Sq1
∗ξn−1 =

( ∑
Qdζ ′

)2 6= 0.

This shows that ξn−1 is not A-annihilated, giving us the contradiction that we were

looking for, and hence proving the claim. A similar method works for higher powers

of 2. This method also can be employed to prove Lemma 19 as well, when n > 1.

We leave the proof of Lemma 13 and Theorem 21 to the next chapter as these

proofs have a different nature to the proofs in this chapter.



Chapter 4

Proof of Technical Lemmata

This chapter is dedicated to the proof of two technical lemmata. The first one is the

proof of Lemma 13. The other proof is the proof of Theorem 21 which provides us

with the inductive step in our approach to the Curtis conjecture.

We start by proving Lemma 13 which seems to be the most generalised case

of this observation. More precisely, suppose ξ ∈ π2nQS
k, k > 0, with hξ = ξ

′2
n

where ξ′n ∈ HnQS
k. Then the adjoint mapping S2n+1 → QΣSk is detected by the

primary operation Sqn+1 on σ∗(ξ
′
n + O) in its mapping cone, where O refers to the

indeterminacy which is a sum of terms of the same weight as ξn and of lower excess.

The proof of this will use the homology of certain stable James-Hopf invariants,

namely j2t : QX → QD2tX. To state the result we note that for a class ξ of

dimension d we have Qiξ = Qi+dξ. One then may consider iterated operations in

lower indices, denoted by QI . The following result is due to Kuhn [K83, Proposition

2.7] which tell us how to calculate the homology of the stable James-Hopf invariants.

Proposition 4.1. Suppose x ∈ H∗X is primitive, with X path connected, and I =

(i1, . . . , ir) is a nondecreasing sequence. Then, (jq)∗QIx = 0 unless q = 2t with t 6 r.

If t 6 r, let I = (K, J) with l(J) = t. Then

(j2t)∗QIx = QK(QJx)

modulo terms of the form QK′(QJ ′x) such that l(K) = l(K ′), l(J ′) = l(J), J ′ is

nondecreasing, and if j′1 < j1 = ir−t+1.

61
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Remark 4.2. We recall that For an iterated operation QI = Qi1 · · ·Qir , the excess is

i1. In lower indices, a nondecreasing sequence I will mean admissible in our sense,

where we allow ij > 0. Here, by (QJx) we mean image of QJx in H∗D2tX under the

projection map given by the Snaith splitting (1.1). Notice that the above theorem

does not imply that (K ′, J ′) is admissible. The above proposition in the case q = 2t

with operations written in upper indices reads as

(j2t)∗Q
Ix = QK(QJx)

modulo terms of the form QK′
(QJ ′x) such that l(K) = l(K ′), l(J ′) = l(J), J ′ admis-

sible with 0 6 excess(J ′) < excess(J).

We are interested in finding the images of square A-annihilated classes under the

James-Hopf invariants. Notice that square terms are of the form ζ2t
with t > 0. The

following example resolves the cases with t > 1. Although we will not use this at all.

Example 4.3. Let ξ = ζ2t ∈ H∗QX with ξ = QIx, x ∈ H∗X primitive, I = (i1, . . . , ir)

admissible. For simplicity we assume t = 2. Consider the James-Hopf map j2r−1 :

QX → QD2r−1X. Notice that in this case I = (i1, J) with QJx = ζ2, a square

term, i.e. excess(QJx) = 0. Hence if there is any class QJ ′x with excess(QJ ′x) <

excess(QJx) = 0 it must be trivial. This means that there is no indeterminacy. Hence

(j2)∗ξ = (ζ2)2.

The above example is an easy application of Kuhn’s result. The situation is

slightly different when t = 1. Notice that any spherical class ξ ∈ H∗QS
n, n > 0, is

a square or it will become a square after finitely many suspensions, where according

to Theorem 17 it will not be a higher power of 2. We give an example to show how

Kuhn’s result, together with being A-annihilated, enables us to do calculations with

some control of the indeterminacy.

Example 4.4. Consider the class ξ = (Q19Q11g5)
2 ∈ H70QS

5. This is an A-annihilated

class. We wish to calculate (j4)∗ξ. Kuhn’s results says that

(j4)∗ξ = ((Q19Q11g5))
2
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modulo terms of the form Qk′(QJ ′g5), where

excess(QJ ′g5) < excess(Q19Q11g5) = 3.

We observe that classes with k′ > dimQJ ′g5, k
′ even, are excluded, and cannot take

part as terms of (j4)∗ξ. This can be shown just by use of Sq1
∗. We already know that

(j4)∗ξ is A-annihilated. If there is an even k′, then we may apply Sq1
∗ to show that

Sq1
∗(j4)∗ξ 6= 0 which is a contradiction. Taking these to account, we may calculate

that

(j4)∗ξ = ((Q19Q11g5))
2 + λ4Q

37(Q17Q11g5) +

λ8Q
39(Q16Q10g5) + λ12Q

41(Q15Q9g5) +

λ16Q
43(Q14Q8g5) + λ20Q

45(Q13Q7g5) +

λ24Q
47(Q12Q6g5),

with λi ∈ Z/2 modulo terms of the formQk′(QJ ′g5) with k′ = dimQJg5 = dimQJ ′g5 =

35, i.e Qk′(QJ ′g5) = ((QJ ′g5))
2. We like to evaluate the coefficients λi and show that

they do vanish. To do so, recall that we have a commutative diagram,

ΣQS5
j′4 //

��

QΣD4S
5

��
QS6 j4 // QD4S

6

where the map at top row, is adjoint of j4 : QS5 → QD4S
5. The vertical map

QΣD4S
5 → QD4S

6 is the infinite loop map obtained from the mapping induced by

the evaluation mapping ΣQS5 → QS6.

Applying homology to the above diagram, shows that λi = 0. More precisely,

notice that ξ = (Q19Q11g5)
2 dies under the homology suspension σ∗ : H∗QS

5 →

H∗+1QS
6. Hence it maps trivially into H∗QD4S

6. This shows that (j4)∗ξ must die

under the evaluation map H∗QD4S
5 → H∗+1QD4S

6. The first term is a square, and

hence maps trivially. Other terms will map trivially if and only if λi = 0. Hence,

(j4)∗ξ = ((Q19Q11g5))
2 +

∑
J ′ λJ ′((Q

J ′g5))
2

where λJ ′ ∈ Z/2. The important fact for us is that this class dies after suspending

once, i.e. σ∗(j4)∗ξ = 0. Notice that if f : S70 → QS5 is a mapping with hf = ξ, then

j4f : S70 → QD4S
5
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is a mapping whose image is a square. This mean that the adjoint of j4f , i.e.

S71 → QΣD4S
5

is detected by Sq36 on σ∗((Q
19Q11g5))+

∑
J ′ λJ ′((Q

J ′g5)). Applying homology to the

above class implies that the mapping

S71 → QD4S
6

is also detected by Sq36 on (Q19Q11g6) +
∑

J ′ λJ ′σ∗(Q
J ′g5). Then naturality implies

that the mapping

S71 → QS6

is detected by Sq36 on Q19Q11g6 + λJ ′σ∗Q
J ′g5. Note that excess(J ′) < excess(J ′).

This means that after finitely many times suspensions, say k times, the class σ∗Q
J ′g5

will die before QJg6. Hence the mapping

S71+k → QS6+k

will be detected by Sq36 on QJg6+k.

The following lemma is analogous to this example.

Lemma 4.5. Let QIgn = (QJgn)2 ∈ H∗QS
n, with n > 0, excess(QJgn) > 0, and

l(J) = r, be an A-annihilated class. Then,

(j2r)∗Q
Ign = ((QJgn))2 +O2

where O is the indeterminacy which is an A-annihilated sum of admissible terms

of the form QJ ′gn with J ′ admissible such that excess(QJ ′gn) < excessQJgn.

Note 4.6. Notice that if O is odd dimensional, then we may assume that it is sum of

A-annihilated terms.

Proof. Notice that the class QIgn = (QJgn)2 ∈ H∗QS
n dies under suspension. Con-

sider the commutative diagram [K82, Theorem 1.2]

ΣQSn //

��

QΣD2rSn

e′

��
QSn+1 // QD2rSn+1.
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This implies that in homology

e′∗(j2r)∗Q
Ign = 0.

Our claim is that this is the same as saying that

(j2r)∗Q
Ign = ((QJgn))2

modulo square terms. To see this notice that the mapping e′ : QΣD2rSn → QD2rSn+1

is an infinite loop map, obtained in the following manner. Recall that the Barrat-

Eccles’ Γ-functor provides a simplicial model for infinite loop spaces. We have the

evaluation mapping

e : ΣΓX → ΓΣX,

where X is an arbitrary path connected space. The space ΓX is a filtered space, i.e.

there are spaces ΓkX such that

ΓX = colim (· · · ⊆ ΓrX ⊆ Γr+1X ⊂ · · · ).

This satisfies

DrX ' ΓrX/Γr−1X,

i.e. we have cofibration sequences

Γr−1X → ΓrX → DrX.

The evaluation mapping e : ΣΓX → ΓΣX restricts to the filtered spaces and gives

mappings

ΣΓrX → ΓrΣX.

This induces mappings

ΣDrX → DrΣX.

The mapping e′ in the above diagram is infinite loop extension of this map. This

means that to understand e′ in homology, we only need to calculate the homology of

ΣDrX → DrΣX, which is already induced by the evaluation mapping. Notice that
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these mappings fit into a commutative diagram as following

ΣΓX
ejr //

e

��

ΓΣDrX

e′

��
ΓΣX

jr // ΓDrΣX

where j̃r : ΣΓX → ΓΣDrX in the top row is the adjoint of the r-th James-Hopf

invariant jr : ΓX → ΓDrX. In particular, choosing X = Sn and replacing r with 2r

gives the diagram at the beginning of the proof.

As a consequence of this, we can extract enough information out of this to say

more about the indeterminacy above. Notice that this description completely de-

termines ker e′∗. More precisely, a class QK(QJgn) belongs to ker e′∗ if and only if

excess(QK(QJgn)) = 0 or excess(QJgn) = 0. One can check that in particular if

ξ ∈ H∗QX belongs to the kernel of the evaluation H∗QX → H∗+1QΣX, then (jr)∗ξ

belongs to the kernel of e′∗. In our case, this implies that the indeterminacy must be

a square. To be more precise, notice that the non-square part of the indeterminacy

is a sum of terms of the form,

Qk′(QJ ′gn),

with k′ > dimQJ ′gn and J ′ admissible. Application of Sq1
∗, similar to the previous

example, shows that k′ must be odd. On the other hand k′+dimQJ ′gn = 2 dimQJgn.

Hence dimQJ ′gn must be odd, which in particular implies that QJ ′gn is not a square,

i.e. excess(QJgn) 6= 0. Hence QJ ′gn is an indecomposable term. According to

our observation on ker e′∗, the term Qk′(QJ ′gn) maps nontrivially to Qk′(QJ ′gn+1) ∈

H∗QD2rSn under e′∗. But this gives contradiction to the fact that j2rσ∗ξ
2 = 0. This

is what we were looking for.

It is also quite straightforward to see that O is an A-annihilated sum of admissible

terms. Noitce that ((QJgn))2 is A-annihilated, ((QJgn))2 + O2 is supposed to be

A-annihilated. Hence O2, and consequently O must be A-annihilated, where

O =
∑

QJ ′gn

with J ′ admissible, and dimQJgn = dimQJ ′gn. This completes the proof of the

Lemma.
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We have some comments in order. First, notice that if Conjecture 9, the unique-

ness conjecture, holds then the indeterminacy will be trivial, i.e. O = 0. Second,

Note that excess(QJgn) = 0, does not imply that QK(QJgn) is a decomposable. This

class is an indecomposable in H∗QD2rSn where r = l(J).

Remark 4.7. The above lemma holds in a greater generality. One may replace Sn by

ΣnX where X is any space and n > 0, and the proof will be analogous. Notice that

the key point is that having a suspension ensures that any homology class is primitive.

The full general form of this lemma has the following form. Suppose x ∈ H∗X is

primitive with QIx = (QJx)2 chosen to be A-annihilated, and excess(QJx) > 0, and

l(J) = r, where X is path connected. Then

(j2r)∗Q
Ix = ((QJx))2 +O2,

where O is an A-annihilated sum of termsQJ ′x of lower excess, i.e. excess(QJ ′x) <

excess(QJx). Here (QJx) ∈ H∗D2rX is the image of QJx ∈ H∗QX under the James-

Hopf map.

Now we are ready to carry on with the proof of Lemma 13. We recall that

our object is to prove that given f ∈ π2nQS
k, k > 0, with hf = ξ = ξ

′2
n where

ξ′n ∈ HnQS
k. Then the adjoint mapping S2n+1 → QΣSk is detected by the primary

Sqn+1 on σ∗(ξ
′
n +O) in its mapping cone, where O refers to the indeterminacy which

is a sum of terms of the same weight as ξn and of lower excess. The proof is as

following.

Proof. Consider the composite

S2n // QSk j2r // QD2rSk.

According to Lemma 4.5 we have

(j2r)∗ξ = ((QJgk))
2 +O2,

where O2 denotes the indeterminacy of square terms, with O a sum of terms of excess

less than excess(QJgk). The adjoint mapping

S2n+1 // ΣQSk j2r // QΣD2rSk
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is detected by Sqn+1 on Σ(QJgk) + σ∗O ∈ Hn+1QΣD2rSk. Recall that we have a

commutative diagram

ΣQSk //

��

QΣD2rSk

��
QSk+1 // QD2rSk+1.

In homology, this implies that the class Σ(QJgk)+σ∗O maps to (QJgk+1)+ j2rσ∗O ∈

Hn+1QD2rSk+1, i.e. the mapping

S2n+1 → QD2rSk+1,

is detected by Sqn+1 on (QJgk+1)+j2rσ∗O. Notice that here the indeterminacy, to be

detected by this operation, is trivial. Then the naturality implies that the mapping

S2n+1 → QSk+1

is detected by Sqn+1 on (QJgk+1) + σ∗O.

Finally observe that O is sum of terms of the same dimension as QJgk and of lower

excess, then after finitely many suspensions it will die, while QJgk will survive. This

means that there exists m > 0 such that the mapping

S2n+m → QSk+m

will be detected by Sqn+1 on QJgk+m. This completes the proof.

Remark 4.8. Notice that the proof of Lemma 13 heavily depends on the homology of

the James-Hopf invariant j2r . As we pointed out in Remark 4.7 the homology of these

maps on square terms could be obtained in a wider range of spaces, i.e. Lemma 4.5

can be stated in a wider generality. As a consequence Lemma 13 also can be stated

in a wider generality. More precisely, in Lemma 13 we may assume ξ ∈ H2mQΣnX,

n > 0 is spherical, and result similar to Lemma 13 holds.The proof in general case is

analogous to the special case with X = S0.

Now we move on to prove Theorem 21. First, we explain the motivation behind

this theorem. Suppose f ∈ π∗QS
n such that hf = QiQjgn + O, where O denotes

other terms of lower excess. Notice that here ∗ = i + j + n. After finite number of
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suspensions, say k times, we will have an element fk ∈ π2iQS
n+k which will map to

(Qjgn+k)
2. Now fk : S2i → QSn+k is a mapping whose image in homology is a square.

Lemma 13 then implies that after adjointing another times, fk+1 ∈ π2i+1QS
n+k+1

will be detected by the primary operation Sqi+1 on Qjgn+k+1 + O′ where O′ is a

sum of terms of lower excess. The adjoint mapping fk+2 : S∗+2 → QSn+k+1 can be

decomposed as

e ◦ Σfk+1 : S∗+2 → ΣQSn+k+1 → QSn+k+2,

where e denotes the evaluation map. By natuarlity of the primary operations, the

mapping Σfk+1 is detected by Sqi+1 on Σ(Qjgn+k+1 +O′). We also have

e∗Σ(Qjgn+k+1 +O′) = Qjgn+k+2 + σ∗O
′.

This equality together with the naturality of the functional operations implies [MT68,

Page 157] that fk+2 is detected by Sqi+1 on Qjgn+k+2 + σ∗O
′. The indeterminacies

here will be trivial. We may continue to carry on with the same procedure, i.e.

suspending finite number of times, say k′ times, where fk+k′ ∈ πn+k+k′QS
n+k+k′ is

detected by a primary operation, on the class g2
n+k+k′ , where this class dies after

another suspension. The natural guess could be that this class is detected by a sec-

ondary operation. Theorem 21 verifies this claim. Recall that according to Theorem

21, if f : S2n+k−1 → QSn is detected by Sqk on g2
n, not detected by any operation

on gn, with k least such number, then the adjoint mapping will be detected by a sec-

ondary operation arising from the Adem relation corresponding to the pair SqkSqn+1

with k < 2(n+ 1). Now we are ready to prove Theorem 21.

Proof of Theorem 21. First, we need to consider the factorisation of f through

the Kahn-Priddy map, λn : QΣnP → QSn, given by

S2n+k−1
f ′ // QΣnP

λn // QSn.

The mapping λn satisfies the following relations

Sqi
λn
gn = Σnai−1, for all 2 6 i 6 n,
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and

(λn)∗(Σ
nai) = Qign, for all i > n.

In particular Σnan maps to g2
n under λn in homology. Then the naturality argument

shows that f ′ is detected by Sqk on Σngn modulo indeterminacy which in this case

is given by image of

f ′∗ : H2n+k−1QΣnP → H2n+k−1S2n+k−1.

Notice that f ′∗ is nontrivial if and only if

f ′∗ : H2n+k−1S
2n+k−1 → H2n+k−1QΣnP

is nontrivial. We do the proof of the proposition in two different cases: when the

image of f ′∗ is trivial in homology, and when f ′∗ is not trivial in homology.

Case f ′∗ = 0.

This implies that f ′ is detected by Sqk on Σnan. Notice that SqkΣnan = λ∗Sqkg2
n = 0

in H∗QΣnP , hence the functional operation Sqk
f ′ on Σnan is defined.

The adjoint of f is given by the composite

g : S2n+k g′ // QΣn+1P
λn+1 // QSn+1.

where the mapping g′ is detected by Sqk
g′ on Σn+1an, and λn+1, which is delooping of

λn, is detected by

Sqi
λn+1

gn+1 = Σn+1ai−1 for all i 6 n+ 1,

and

(λn+1)∗(Σ
n+1ai) = Qign+1 for all i > n+ 1.

Notice that k 6 2n < 2(n+ 1). So we may consider the Adem relation

SqkSqn+1 =

[k/2]∑
j=0

(
n− j
k − 2j

)
Sqk+n+1−jSqj.

We want to show that the secondary relation corresponding to this relation, applied

to gn+1 detects g. The class Sqjgn+1 is in dimension n+ 1 + j. Since [k/2] > j, then
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k − j > [k/2] > j which implies that k + n+ 1− j > n+ 1 + j.

Notice that k = 2s for some s > 0. In this case in the Adem relation above, applied to

gn+1 all terms Sqk+n+1−jSqjgn+1 vanish for dimensional reasons with j 6= [k/2] = k/2

vanish and the Adem relation above applied to gn+1 reduces to

SqkSqn+1gn+1 = εSqk/2+n+1Sqk/2gn+1.

Regardless the coefficient ε, the right hand side of this term also vanishes. To see

this notice that the mapping g is detected by a secondary operation related to this

operation if the above Adem relation gives rise to a contradiction in the double

mapping cone. More precisely, assuming that g is null homotopic we may consider a

coextension of λn+1 to a mapping

λ′n+1 : QΣn+1P ∪g′ e
2n+k+1 → QSn+1,

where the double mapping cone is the cone of λ′n+1. The double mapping cone is

given by QSn+1 ∪λ′n+1
C(QΣn+1P ∪g′ e

2n+k+1). Consider the collapse mapping

QSn+1 ∪λ′n+1
C(QΣn+1P ∪g′ e

2n+k+1)→ Σ(QΣn+1P ∪g′ e
2n+k+1).

In the right hand side of the Adem relation SqkSqn+1gn+1 = εSqk/2+n+1Sqk/2gn+1

one has Sqk/2gn+1 = Σn+2ak/2−1. Then the relation Sqk/2+n+1Sqk/2gn+1 takes place

in Σ(QΣn+1P ∪g′ e
2n+k+1). Hence,

Sqk/2+n+1Sqk/2gn+1 = Sqk/2+n+1Σn+2ak/2−1

= Σ(Sqk/2+n+1Σn+1ak/2−1) = 0,

where the last equation vanishes for dimensional reasons.

This then implies that Adem relation arising from the non-admissible term SqkSqn+1,

applied to gn+1, detects g. This completes the proof of the proposition in the case of

f ′∗ = 0.

Case f ′∗ 6= 0.

First observe that f is detected by Sqk
f on g2

n. This implies that k 6 2n and

f∗ = 0 : H2n+k−1S
2n+k−1 → H2n+k−1QS

n.
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Suppose f ′∗ : H2n+k−1S
2n+k−1 → H2n+k−1QΣnP is nontrivial in homology with terms

of the form QIΣnai in its image, with I admissible, where Σnai is a basis element of

H∗Σ
nP . Notice that I cannot be the empty sequence. If I = φ then i+n = 2n+k−1,

i.e. i = n + k − 1 > n. In this case, Σnai maps to Qn+k−1gn ∈ H2n+k−1QS
n

under (λn)∗ : H2n+k−1QΣnP → H2n+k−1QS
n. This implies that f∗ 6= 0 which is a

contradiction. It is impossible to have I of length more than 1, as in this case the

dimension of QIΣnai exceeds 4n, where we know 2n+ k − 1 < 4n.

Therefore, l(I) = 1 is the only case that f ′∗ can be nontrivial. In this case we may

write

hf ′ =
∑
QiΣnaj,

where this is A-annihilated.

A term of the form QiΣnaj is nontrivial only if i > j + n. If i = j + n, then

i+ j+n = 2n+k−1 implies that 2n+k−1 = 2(n+ j). This implies that k = 2j+1,

where our assumption on minimality of k shows that k = 2s for some s > 0. So this

case cannot happen, i.e. we may write

hf ′ =
∑

i>j+nQ
iΣnaj,

Having i+ j + n = 2n+ k− 1 implies that 2j < k− 1 < 2n, and hence j < n. Recall

that a class of the form QiΣnaj maps to QiQjgn ∈ H∗QS
n. The fact that j < n

implies that hf ′ maps trivially under λ∗.

The sum
∑

i>j+nQ
iΣnaj is supposed to be A-annihilated. Applying Sq1

∗ shows that

i cannot be even. Now suppose we have two terms, Qi1Σnaj1 and Qi2Σnaj2 . To start,

let aj1 and aj2 both be not-A-annihilated. Assume j1 < j2, and let t be the least

integer such that Sq2t

∗ aj1 6= 0. Then we obtain immediately that

Sq2t+1

∗ (Qi1Σnaj1 +Qi2Σnaj2) 6= 0.

Notice that this holds for n > 0. This implies that when n > 0, then hf ′ can have

at most one term of the form QiΣnaj with aj not-A-annihilated. As, hf ′ is supposed

to be A-annihilated, hence in the case of existence a term of this we need a term ( or
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terms ) of the form Qi1Σna2q−1 which is not A-annihilated, and

QiΣnaj +Qi1Σna2q−1

is A-annihilated. If j < 2q − 1, then it is straightforward to see that Sq2ρ(j)+1

∗ does

not kill the above sum. So assume j > 2q − 1. In this case, we have i1 > i,

and as Qi1Σna2q−1 is not A-annihilated, then i1 − (n + 2q − 1) > 2ρ(i1). Let ρ =

min(ρ(i1), ρ(j) + 1). Then the above some is not A-annihilated under Sq2ρ

∗ .

Hence hf ′ is a sum of A-annihilated terms, i.e. we may write

hf ′ =
∑

QiΣna2q−1,

where 0 < i− (n+ 2q − 1) < 2ρ(i), and i is odd. This implies that n is also odd.

We like to show that this latter possibility also cannot happen. We do this by showing

that in this case it is possible to show that there is an integer k′ < k such that f is

detected by Sqk′ on a class of weight 2.

Consider the mapping λn : QΣnP → QSn. Notice that in the cone of this map we

have

Sq2q

∗ (Σn+1a2q−1) = gn.

We look for an operation, say Sqk′ , to detect a connection between the cells marked

with QiΣn+1a2q−1 and Qign in the cone of QΣnP → QSn. We examine Sq2q+1

∗ on

QiΣn+1a2q−1. Then by Nishida relation we have

Sq2q+1

∗ QiΣn+1a2q−1 = Qi−2q
Sq2q

∗ Σn+1a2q−1 +O

6= 0,

where O denotes other terms. The only difficulty is that this is a relation in Q(Sn ∪

CΣnP ). But we are looking for a relation in QSn ∪ CQΣnP . Consider the following

commutative diagram

QΣnP // QSn //

��

Q(Sn ∪ CΣnP )

QSn ∪ CQΣnP

w

55
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But we notice that here the mapping w respects this relation, which implies that

Sq2q+1

∗ QiΣn+1a2q−1 = Qi−2q
Sq2q

∗ Σn+1a2q−1 +O

= Qi−2q
gn +O

as a relation in QSn ∪ CQΣnP , where O denotes the other terms.

Now the naturality of the primary operations implies that the mapping f is detected

by Sq2q+1
on Qi−2q

gn. Notice that 2j < k − 1, implies that 2q+1 = 2j 6 k. We

only need to resolve the case 2j = 2q+1 = k. Notice that in this case i + n + j =

2n+k−1 = 2n+2j−1 which implies that i = n+j−1. But we have already assumed

that i > n + j. Hence 2j = 2q+1 < k. But this contradicts minimality of k. This

completes verifying indeterminacy problem, and hence the proof of the proposition. �

Notice that we already know the elements of 2π
S
∗ which are detected by secondary

operations, namely the Kervaire invariant classes, and Mahowald’s ηi family. Accord-

ing to the construction [M77, Theorem 2], the family ηi does not give rise to a spherical

class in H∗Q0S
0. According to Madsen [M70, Theorem 7.3] the Kervaire invariant one

elements in dimension 2i+1 − 2 give rise to spherical classes (p′2i−1)
2 ∈ H2i+1−2Q0S

0

which die under the homology suspension. Hence we see that, it is not possible to

have a spherical class ξ ∈ H∗QS
n, n > 0, such that it involves a term QIgn with

l(I) = 2. This proves the Lemma 25. We will discuss this more in the next chapter.

Notice that it is possible to handle this case, just based on our knowledge on the type

of A-annihilated classes QIg1 with l(I) = 2 which was provided by Lemma 4. We

have the following example.

Example 4.9. Suppose f ∈ π∗QS1 with nonzero Hurewicz image where its minimum

weight is 4, i.e. there exists I with l(I) = 2 such that QIg1 is a term of hf =
∑
QIg1.

According to Lemma 6 the class QIg1 must be A-annihilated. First of all notice that

when l(I) 6 2 then it is clear that such I is unique, in the following sense. Lemma

4 implies that there is at most one sequence I of length 2 in each dimension such

that QIg1 A-annihilated, and if there is J of length 2 and QJg1 is A-annihilated then

dimQIg1 6= dimQJg1.
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There are three possible cases which we analyse separately.

(1) QIg1 = g4
1. This then implies that f ∈ π4QS

1. Recall that for ν ∈ π4QS
1 we have

hν = Q3g1 + g4
1. In this case we obtain h(f + ν) = Q3g1. The mapping ν + f pulls

back to π3Q0S
0, and hence h(ν + f) pulls back to p3 = x3 + x1x2 + x3

1 ∈ H3Q0S
0

as a spherical class. However, this class is not A-annihilated, as we can see that

Sq1
∗p3 = x2

1. This is a contradiction.

(2) QIg1 = (Q2α−1g1)
2 = Q2α

Q2α−1g1. Hence f ∈ π2α+1QS1. This implies that the

adjoint mapping S2α+1+1 → QS2 is detected by Sq2α+1 on Q2α−1g2. Observe that

Sq2α+1 = Sq1Sq2α
. Hence the adjoint mapping is detected by Sq1 on Sq2α

(Q2α−1g2)

which implicitly means that Sq2α
(Q2α−1g2) 6= 0 in H∗QS

2. One can check that later

claim is not true for dimensional reasons. Hence this case also will not arise.

(3) QIg1 = Q2α+2j−1Q2α−1g1 with 1 6 j 6 α− 1. This means that

f : S2α+1+2j−1 → QS1.

We observe that after adjointing f , 2j − 1 times, we obtain a mapping

g : S2α+1+2j+1−2 → QS2j

,

with hg = (Q2α−1g2j)2. We claim that

g′ = j2 ◦ g : S2α+1+2j+1−2 → QS2j → QΣ2j

P2j ,

satisfies hg′ = (Σ2j
a2α−1)

2, i.e. there is no indeterminacy. In this case, and according

to Lemma 13, the adjoint mapping g̃′ : S2α+1+2j+1−1 → QΣ2j+1P2j will be detected

by Sq2j+2α
on Σ2j+1a2α−1 in its mapping cone. We want to show that this leads to a

contradiction. Notice that j < α which means that, similar to the case (2), we may

consider the Adem relation,

Sq2j
Sq2α

=
∑

t

(
2α−1−t
2j−2t

)
Sq2j+2α−tSqt

=
∑j−1

t=0 Sq
2j+2α−2t

Sq2t
+ Sq2j+2α

.

Hence we use,

Sq2j+2α
= Sq2j

Sq2α
+

∑j−1
t=0 Sq

2j+2α−2t
Sq2t

.
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Applying both sides of the equation to Σ2j+1a2α−1 we obtain,

Sq2j+2α
Σ2j+1a2α−1 = 0 +

∑j−1
t=0 Sq

2j+2α−2t
Σ2j+1a2α+2t−1,

where the first term vanishes for dimensional reasons. Notice that for dimensional

reasons we have Sq2j+2α−2t
a2α+2t−1 = 0 in H∗P . Hence the terms of the above sum

have some chance to be nontrivial in the mapping cone. Notice that here 1 6 t 6 j−1.

Assume there exists a t such that Sq2j+2α−2t
Σ2j+1a2α+2t−1 6= 0 in the mapping cone.

Hence the stable adjoint of g′

g′S : S2α+1+2j+1−1 6→ Σ2j+1P2j ,

is detected by Sq2j+2α−2t
Σ2j+1a2α+2t−1 6= 0 in the stable mapping cone. Hence,

desuspending 2t+1 times, the stable mapping

g′S : S2α+1+2j+1−2t+1−1 6→ Σ2j−2t+1+1P2j ,

is detected by Sq2j+2α−2t
Σ2j−2t+1+1a2α+2t−1 6= 0 in the stable mapping cone. This

means that the stable adjoint of this mapping

g̃′S : S2α+1+2j+1−2t+1−2 → QΣ2j−2t+1

P2j ,

in homology will have (Σ2j−2t+1
a2α+2t−1)

2 in its image, which dies after suspending

once more. This contradicts the fact that hg 6= 0. Hence this case also cannot

happen.

Now we return to our claim about the indeterminacy. Notice that according to

Lemma 4.2 we have

hg′ = (Σ2j

a2α−1)
2 +O2,

where in this case O2 is a sum of terms of the form Σ2j
aq, of lower excess, and O is

A-annihilated. Notice that Σ2j
aq is in the right dimension if and only if q = 2α − 1,

which is not of lower excess. This implies that O = 0. This completes the proof for

this case.
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4.1 Complementary Notes

We wish to have a generalised version of Theorem 21, namely Conjecture 26. Suppose

there exists a mapping f : Sm → QSk which is detected by an operation of order

r, say Φr, on a class ξ2
n ∈ H2nQS

k. The mapping f has a decomposition via the

Kahn-Priddy map as

λkf
′ : Sm → QΣkP → QSk.

Notice that the mapping λk : QΣkP → QSk satisfies the following relations

Sqi
λk
gn+1 = Σkai−1, for all i 6 k,

and

(λk)∗(Σ
kai) = Qigk, for all i > k.

Hence if we have k > n, then we have ensured that λk is trivial in homology in

dimensions 6 n. This will then satisfies the conditions mentioned in Remark 16.

Hence we may deloop, or adjoint the mapping λk, where they both will be detected

by Sqn+1 on σ∗(ξn+O). This later fact, implies that in term of the Postnikov systems

we have

P1(QS
k+1)

��

Sqn+1
// K(Z/2, 2n+ 1)

ΣQΣkP
f0 //

f1

88qqqqqqqqqqq
QSk+1 // K(Z/2, n+ 1)

where f0 is the adjoint of λk, and the composite Sqn+1f1 is nontrivial. Here Sqn+1 :

P1(QS
n+1) → K(Z/2, 2n + 1) is the class obtained from Sqn+1 : K(Z/2, n + 1) →

K(Z/2, 2n+ 2) and is the first k-invariant of the above Postnikov system.

On the other hand recall that higher order operations also satisfy naturality property.

The naturality implies that the mapping f ′ is detected by Φ, modulo indeterminacies.

Given that the mapping f ′ is detected by an operation of order r implies that in the

Postnikov system for QΣkP the mapping f ′ lifts to Pr(QΣkP ) and does not lift to
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Pr+1(QΣkP ). That is we have a tower of fibrations

Pr(QΣkP )

��

kr // Kr

...

.

��
P1(QΣkP )

��

k1 // K1

Sm
f ′ //

f ′1
::tttttttttt

f ′r

GG��������������������������
QΣkP // K(Z/2, 2n).

In this tower Pi(QΣkP ) → Pi−1(QΣkP ) is the fibrations induced by the k-invariant

ki−1 : Pi−1(QΣkP ) → Ki−1. Here Ki is an Eilenberg-MacLane space depending on

the admissible sequence of fibrations used to define Φ. Now adjointing any of the

fibrations, we obtain a tower of maps (not necessarily fibrations)

ΣPr(QΣkP )

��

kr // Ω−1Kr

...

.

��
ΣP1(QΣkP )

��

k1 // Ω−1K1

Sm+1
ef ′ //

ef ′1 88qqqqqqqqqqq

ef ′r

FF
QΣk+1P.

Here Ω−1Ki is the obvious delooping of an Eilenberg-MacLane space. On the other

hand notice that f1 : QΣk+1P → P1(QS
k+1) induces a mapping of towers

ΣPi(QΣkP )→ Pi+1(QS
k+1).

This still does not complete the proof. We have to say that in the stable range the

adjointed tower above can be thought of as a tower for QΣk+1P [MT68, Chapter

18, Proposition 5]. That is in a range of dimensions we may think of Pi(QΣk+1P )

as the same as ΣPi(QΣkP ). Notice that the approximation in [MT68, Chapter 18,

Proposition 5] is stated for an Adams resolution, but it still ought to be true in our

setting. Of course we have not proved this, and this can be identified as one of the

gaps in argument as well! Indeed the mapping of towers that we have constructed
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are genuine maps and exist, and at least will induce maps of degree 1 in terms of

some unstable Adams spectral sequence.

I believe that one might be able to show that the mapping Sm+1 → ΣPr(QΣkP )→

Pr+1(QS
k+1) will not be lifted any more, and this would complete the proof that the

adjoint mapping Sm+1 → QSk+1 is detected by an operation of order r+ 1. We refer

the reader to [H02, Section 4.3] for more details on the higher order operations.

Finally, recall that according to [L81, Theorem 1.1] the Kahn-Priddy map induces

a mapping

Es,t
2 P → Es+1,t+1

2 S0,

where E∗,∗
2 is the E2-term of the classical Adams spectral sequence. Lin derives this

by constructing a mapping from the r-th stage of the Adams resolution for P to the

(r + 1)-stage of the Adams resolution for S0. Observe that the mapping of towers

that we constructed above is an unstable version of the mapping constructed by Lin.

This concludes this chapter!



Chapter 5

Spherical Classes in H∗Q0S
0

I would like to dedicate this chapter to some discussion on the Curtis conjecture on the

spherical classes in H∗Q0S
0, and its relation to the Eccles conjecture on the spherical

classes in H∗QX for an arbitrary path connected space X. I will also present what

I believe to be a resolution to the Curtis conjecture verifying Curtis’s claim on the

spherical classes in H∗Q0S
0. This will require us to recall some well known results

on the primitive classes in H∗Q0S
0 which are due to Madsen [M70, Proposition 6.7],

[M75, Proposition 5.1].

My intention in this chapter is to record some of calculations that I have done.

Perhaps such calculations have been well known for experts. I also will mention some

partial results on the type of primitive classes in H∗QP and H∗QCP . All these will

fit together when we consider various transfer maps among suitable spaces.

Let me first mention the two conjectures that we are going to discuss.

The Curtis Conjecture. A positive dimensional class ξ ∈ H∗Q0S
0 is spherical,

if and only if it is a Hopf invariant one element, or a Kervaire invariant one element.

Suppose ξ ∈ H∗Q0S
0 is given with hf = ξ where f ∈ π∗Q0S

0. Moreover, let

fS ∈ πS
∗ be the stable adjoint of f . Recall from introduction that a class ξ ∈ H∗Q0S

0

is a Hopf invariant one element if fS is detected by the Hopf invariant, i.e. fS is

detected by a primary operation in its stable mapping cone. Similarly, we say ξ is a

Kervaire invariant one element if fS is detected by the Kervaire invariant.

Now suppose that X is a path connected space. Then the Eccles conjecture reads

80
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as following.

The Eccles Conjecture. A positive dimensional class ξ ∈ H∗QX is spherical,

if and only if it is either a stably spherical class, or is a Hopf invariant one element.

Suppose that f ∈ π∗QX with hf = ξ, then ξ is called stably spherical if fS is

detected by homology, i.e. hSf 6= 0. We say ξ is a Hopf invariant one element if

hf = ξ, then fS is detected by a primary operation in its mapping cone.

The two conjecture are related in a very interesting way. First we show how

assuming truth of the Curtis’ conjecture, one can obtain the Eccles’ conjecture for

X = S1.

Let us assume that Curtis’s conjecture holds, and let ξ ∈ H∗Q0S
0 with hf = ξ,

i.e. it is spherical. Then the stable mapping fS is detected either by homology,

by Hopf invariant, or by Kervaire invariant. We ignore the cases when ξ is stably

spherical, as it is quite straightforward, and focus on the last two cases. Recall that

only the classical cases η, ν, σ are the elements of 2π
S
∗ which have Hopf invariant one.

We already know that the stable adjoint of these classes give rise to spherical classes

in H∗+1QS
1 [E80, Proposition 3.4], namely

hη = Q1g1;

hν = Q3g1 +Q2Q1g1;

hσ = Q7g1 +Q4Q3g1.

These pull back to unique primitive elements in H∗Q0S
0, where one has

hη = p1 ∈ H1Q0S
0;

hν = p3 +Q2x1 ∈ H3Q0S
0;

hσ = p7 +Q6x1 ∈ H7Q0S
0.

Shortly the reader will see that the classes p2n+1 are generators of the submodules

of primitives in H∗Q0S
0. According to Madsen [M70, Theorem 7.3], later on proved

in various similar and equivalent forms by Eccles [E81, Proposition 4.1] and Snaith-

Tornehave [ST82, Theorem A], there is a manifold of Kervaire invariant one if and

only if (p2s−1+Q
2s−2x1)

2 ∈ H2s+1−2Q0S
0 is spherical. Such a class is a square, and dies

under the homology suspension H∗Q0S
0 → H∗+1QS

1. Thus only the Hopf invariant
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one elements survive under the homology suspension σ∗ : H∗Q0S
0 → H∗+1QS

1.

Now, if there is a spherical class in H∗+1QS
1, then it pulls back to a spherical class in

H∗Q0S
0. The above explanation then implies that this class must be a Hopf invariant

one element, and this in fact proves the Eccles conjecture for H∗QS
n with n > 0.

I suspect that if the Curtis conjecture holds, then it is possible to prove the Eccles

conjecture for X = P . This will be an inductive argument. Notice that the Curtis

conjecture implies the Eccles conjecture for QSn with n > 0. Regarding S1 as P 1,

we may consider the (quasi-)fibration sequence

QSn → QP n → QP n+1 → QSn+1.

Now the inductive hypothesis tells that QP n satisfies the Eccles conjecture. This

together with our assumption on QSn should help to prove the Eccles conjecture

for QP n+1 completing the inductive step. This will prove the Eccles conjecture for

X = P .

Now suppose that the Eccles conjecture holds, at least forX = P . Let ξ ∈ H∗Q0S
0

be a spherical class, i.e. ξ = hf for some f ∈ 2π∗Q0S
0. According to the Kahn-

Priddy theorem, there exists f ′ ∈ π∗QP such that f = λf ′ where λ : QP → Q0S
0

is the Kahn-Priddy map. Assuming that hf 6= 0 implies that hf ′ = ξP ∈ H∗QP

is a spherical class such that λ∗ξP = ξ. According to the Eccles conjecture, if ξP is

spherical, then f ′S is either detected by homology or by a primary operation in its

mapping cone. On the other hand, one may observe that the stable Kahn-Priddy

map P 6→ S0 is an extension of η : S1 → S0, and is detected by any operation Sqi+1,

i > 0, in its mapping cone [E81, Proposition 4.6]. This fact together with the second

Peterson-Stein formula [PS59, Theorem 6.3] implies that f = λf ′ is either detected by

the Hopf invariant, or by the Kervaire invariant. Hence we get the Curtis conjecture

as a result.
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5.1 Some notes on the work of Ed Curtis

The calculation of the stable homotopy groups may be based on the Adams spectral

sequence [A58, Theorem 2.1]. The E2-term of this spectral sequence is given by

Es,t
2 (X) = Exts,t

A (Z/2, H∗X),

where the Ext is calculated in the category of A-modules, and A is the mod 2 Steenrod

algebra. This may be reformulated as

Es,t
2 (X) = Exts,t

A∗
(Z/2, H∗X)

where this later Ext-term is in the category of A∗-comodules [R86, Chapter 2, Section

2]. This spectral sequence converges to 2π
S
∗X.

There is a similar machinery for calculating the unstable homotopy groups, i.e.

a spectral sequence which converges to 2π∗X, provided X is a “nice” space, which

agrees with the Adams spectral sequence in the stable range. Such spectral sequences

are known as unstable Adams spectral sequences. For example one may consider a

spectral sequence constructed by Massey and Peterson [MP67, Theorem 23.1], or its

modified version due to Bousfield and Curtis [BC70, Theorem 2.1]. By analogy the

E2-term of this spectral sequence is given by

unstableEs,t
2 (X) = Exts,t

U (Z/2, H∗X),

where this Ext-term is in the category of unstable comodules over the Steenrod

algebra, denoted by U . However, in our case H∗QS
n is too huge and it does not

seem to be practical to simply put this homology in the above formula and calculate

the Ext-term and then prove some collapse! (which in fact does not collapse!) One

instead needs some reductions in order to be able to do some calculations. According

to [BC70, Theorem 5.2] if one can find a module over the Steenrod algebra, say M

such that

H∗X ' U(M)

as unstable comodules over the Steenrod algebra, then one has

unstableEs,t
2 (X) = Exts,t

A (Z/2,M).
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The functor U above is the free unstable A-comodule functor, and the Ext-term

is in the category of A-modules. Hence if one can succeed to find M such that

H∗Q0S
0 ' U(M), then it is possible to use the above machinery. Curtis [C75,

Proposition 3.1] constructs an A-module M , and claims that it has the property that

H∗Q0S
0 ' U(M). However, according to [W82, Proposition 2.5] this statement does

not hold, i.e. the unstableE2-page is not identified correctly.

In this approach one then looks at the 0-line which filters the Hurewicz homomor-

phism. Those classes which survive to unstableE∞-page will be the only candidates to

be spherical. So the permanent cycles of the 0-line in this unstable spectral sequence

are the only candidates to be spherical. This was the approach taken by Curtis to

identify spherical classes in H∗Q0S
0.

Curtis [C75, Page 235] has a more general approach to this by constructing A-

modules M(ΩnSn+k) and Wellington’s argument only identifies mistakes for the case

k = 0. However, it is not clear to me whether if

H∗QS
k ' U(M(Ω∞S∞+k)),

where k 6= 0 as A-comodules. Definition of M(Ω∞S∞+k) [C75, Last pargraph on

page 235] suggests that the free R-module generated by M(Ω∞S∞+k) is isomorphic

to H∗QS
k as A-modules. It also seems correct that the map commutes with the

action of Sqr
∗ and this suggests that the above isomorphism stands some chance to

hold in the category of A-comodules. But it is not clear at all that if this object, the

free R-module generated M(Ω∞S∞+k), is the same as the free A-comodule generated

by M(Ω∞S∞+k). Wellington also states that the argument for the case k 6= 0 also is

not convincing, of course without presenting a proof! I believe that a proof of this

claim or disprove of it needs to be written down by showing that there is, or there

is not, a map inducing such an isomorphism. We urge the reader to not confuse this

with Wellington [W82, Page 163]. The homology algebra H∗Ω
nSn+k, when n < ∞

is a truncated polynomial algebra, and is seems a correct to claim that for the cases

n < ∞ the algebra H∗Ω
nSn+k does not have a free A-comodule structure, and for

this reason the spectral sequence does not collapse.
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We recall that earlier in Note 3, we mentioned another failure in Curtis’s argument,

which again seemed to fail only for the case k = 0 in even dimensions, and the odd

dimensional cases seem to be correct, as our Lemma 6 suggests which is the statement

of Theorem 5.23.

Another fact about Curtis’s claim is a collapse claim of the spectral sequence, and

that most potential classes identified by use of our Theorem 2 and Note 3 do not give

rise to permanent cycles in the spectral sequence [C75, Proposition 6.5]. We already

had a discussion on this earlier in Note 3, where our Theorem 17, and Lemma 19

seem to eliminate the cases of [C75, Proposition 6.5(3)]. We refer the reader to Note

20 for more discussion on this.

We recall that the Adams spectral sequence is the spectral sequence associated

with a tower of fibrations of spectra known as the Adams resolution [R86]. In a similar

fashion the unstable Adams spectral sequence is the spectral sequence associated with

a tower of fibrations of spaces, expressed in terms of the Postnikov systems [MP67].

Finally, it seems that most ambiguity about this comes from the confusion about,

and complexity of working with H∗Q0S
0, while one does not have such a problem

while working with H∗QX where X is a path connected space.

5.2 Primitives in H∗QX, and H∗Ω0QX

We start this section by recalling some basic facts about Hopf algebras of finite type.

These are to be found in Milnor-Moore’s paper [MM65].

Let H = ⊕iHi be a Hopf algebra of finite type over k = Z/2. Here by finite

type we mean Hi is finitely generated for each i. Moreover, we assume that Hi = 0

for i < 0. We say H is connected if the unit map k → H0 is an isomorphism. We

say that H is bicommutative if it is both commutative and cocommutative. We

note that it is possible to see cocommutativity of H as commutativity condition for

H∗ where H∗ = Homk(H, k). Let PH and QH denote the submodule of primitive

elements, and the quotient module of indecomposable elements in H, respectively.

For commutative Hopf algebras we may relate the functors P,Q via the Frobenius
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homomorphism sH : H → H given by sH(h) = h2. Notice that sH(hg) = sH(h)sH(g),

and sH(h + g) = sH(h) + sH(g). Let us use k(S) to denote the submodule of H

generated by S where S ⊆ H. Notice that if H is a Hopf algebra of finite type, then

H∗ is also a Hopf algebra and has a Frobenius homomorphism, sH∗ : H∗ → H∗. Let

sH∗ = im(sH∗ : H∗ → H∗), and let k(rH) = (k(sH∗))∗. Then we have the following

result [MM65, Propositon 4.23].

Proposition 5.1. Suppose H is a connected bicommutative Hopf algebra of finite

type over k = Z/2. Then there is an exact sequence of the following form

0→ Pk(sH)→ PH → QH → Qk(rH)→ 0.

For Hopf algebras of finite type we may define rH : H → H to be dual of sH∗ :

H∗ → H∗. The homomorphism r = rH behaves like the square root homomorphism,

where it maps h2 to h and acts trivially otherwise. Bearing in mind that we are

working in the graded world we have to point out that sH maps Hn into H2n. Hence

k(sHH) = 0 in odd degrees. Similar argument together with duality shows that

k(rHH) = 0 in odd degrees. Hence by the above exact sequence we have PH ' QH

in odd degrees.

This proposition is the main tool in calculating the primitive elements in certain

Hopf algebras arising as homology of loop spaces. We note that in these cases the

homology algebras are over Z/2, and all have finite type. Moreover, notice that in

the case of infinite loop spaces the Pontrjagin product is commutative, which means

that homology algebra of such spaces are bicommutative associative Hopf algerbas.

This implies that these algebras satisfy Borel’s structure theorem [W78, Thm.8.11].

According to Borel’s theorem such algebras are tensor product of certain algebras,

which are either polynomial over one generator, or truncated polynomial over one

generator.

Now assume that X is a path connected space, with an additive homogeneous

basis {xα} for H∗X. Recall that the homology ring H∗QX is given as

H∗QX ' Z/2[QIxα : excess(QIxα) > 0, I admissible].
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Notice that given any space, one may define the Frobenius homomorphism s : H∗X →

H∗X as before, i.e. s(x) = x2. One then has the following [G04, Lemma 7.2] .

Lemma 5.2. The cohomology algebra H∗Q0X is a polynomial algebra if s : H∗X →

H∗X is injective. Here Q0X denotes the base point component of QX.

Remark 5.3. We have a list of interesting spaces satisfying the above conditions, such

as X = S0, P, P+,CP,CP+. In general any space with polynomial cohomology will

satisfy the above lemma. Such information will be very useful when one wants to cal-

culate the homology ring H∗Ω0QX, where Ω0QX denotes the base point component

of ΩQX.

One of the main tools in calculating the homology of loop spaces is the Eilenberg-

Moore spectral sequence. We recall the following [G04, Proposition 7.3].

Proposition 5.4. Let X be simply connected, with H∗X polynomial. Then H∗ΩX

is an exterior algebra, and the suspension

σ∗ : QH∗ΩX → PH∗X

is an isomorphism, and the Eilenberg-Moore spectral sequence

E2 = CotorH∗X(Z/2,Z/2)⇒ H∗ΩX

collapses. In particular,

H∗ΩX ' EZ/2(σ
−1
∗ PH∗X),

where EZ/2(σ
−1
∗ PH∗X) denotes the exterior algebra over Z/2 generated by σ−1

∗ PH∗X

This theorem provides the main tool to calculate the homology rings H∗Q0S
−1

and H∗Ω0QP , where one chooses X = Q0S0, QP . Here Y denotes the universal cover

of a given space Y . We refer the reader to [G04] for the proof of the machinery

provided above. We recall the calculation of H∗Q0S
−1.

Example 5.5. First, notice that the squaring map H∗S0 → H∗S0 is injective. This

implies that H∗Q0S
0 is polynomial. Recall from Appendix D that Q0S

0 = P ×Q0S0.

Hence H∗Q0S0 is polynomial as well. On the other hand notice that QS−1 = ΩQ0S
0,
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which implies that Q0S
−1 = ΩQ0S0. Now putting X = Q0S0 in Proposition 5.4

implies that H∗Q0S
−1 is an exterior algebra, with σ∗ : QH∗Q0S

−1 → PH∗Q0S
0 an

isomorphism, i.e.

H∗Q0S
−1 = EZ/2(σ

−1
∗ PH∗Q0S

0).

This is due to Cohen-Peterson [CP89, Theorem 1.1].

Remark 5.6. One may feel a bit uneasy about applying Lemma 5.2 to X = S0, as it is

not path connected. However, there is another way to see that H∗Q0S
0 is polynomial.

First notice that we can apply Lemma 5.2 to X = P . On the other hand, notice that

the Kahn-Priddy map λ : QP → Q0S
0 induces an epimorphism in homology [KP78,

Theorem 3.1]. This implies that λ∗ : H∗Q0S
0 → H∗QP is a monomorphism. Notice

that λ∗ respects the multiplication. This implies that squaring map of H∗Q0S
0 is

injective. Notice that H∗Q0S
0 is a bicommutative Hopf algebra, and according to

the Borel’s structure theorem [W78, Thm.8.11] it is a tensor product of polynomial

algebras, or truncations of polynomial algebras. It is not possible to have truncation

in this case as it contradicts injectivity of the squaring map on H∗Q0S
0. This shows

that H∗Q0S
0 is a polynomial algebra.

Example 5.7. Let X = P,CP . Then the Frobenius homomorphisms H∗X → H∗X is

injective. Hence one obtains the following isomorphisms,

H∗Q0Σ
−1P ' EZ/2(σ

−1
∗ PH∗QP )

H∗Q0Σ
−1CP ' EZ/2(σ

−1
∗ PH∗QCP ).

We will provide the reader with three different descriptions of generating sets for the

primitive submodules in H∗Q0S
0, H∗QP and H∗QCP . Each of these descriptions

will give a presentation of the above homology algebras, some easier to work with,

where other ones are ideal and a bit difficult to understand very clearly.

Remark 5.8. The coproduct of the Dyer-Lashof algebra R→ R ⊗ R sends the oper-

ation Qi to
∑

j Q
i−j ⊗Qj. The coproduct of Qix ∈ H∗QX is given by

Qix 7→
∑

(Qi−j ⊗Qj)(
∑

x′ ⊗ x′′) =
∑

Qi−jx′ ⊗Qjx′′,

where (∆X)∗x =
∑
x′⊗x′′, and ∆X : X → X ×X is the diagonal map. This implies

that if x is primitive, then Qix is primitive, and vice versa. A very quick outcome
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of this is that in H∗QΣX every class QIΣx is primitive. The is immediate as the

suspension kills the cup product. Therefore, we restrict our attention to cases where

X is not a suspension such as X = S0, P,CP , and try to calculate the primitive

classes in H∗Q0X.

5.3 Homology of Q0S
0

Recall that π0QS
0 ' Z. Given n : S0 → QS0 we let [n] ∈ H0QnS

0 be the image

of image of 1 ∈ H0S
0, the generator of the non-base-point component in H0QS

0

under the Hurewicz map π0QS
0 → H0QS

0. Notice that in dimension 0 both π0QS
0

and H0QS
0 are groups under the loop sum and the Hurewicz map respects this

operation. One then has that [n] ∗ [m] = [n+m]. Notice that n : S0 → QS0 extends

to an infinite loop map n : QS0 → QS0, providing necessary maps for homotopy

equivalence between different path components of QS0. The homology ring H∗Q0S
0

is given by [CLM76, Part I, Lemma 4.10]

H∗Q0S
0 ' Z/2[QIxi : excess(QIxi) > 0, (I, i) admissible],

where xi = Qi[1] ∗ [−2]. Here ∗ denotes the loop sum in H∗QS
0. Notice that xi is

an indecomposable in H∗Q0S
0, where it is a decomposable in H∗QS

0. The class xi

maps to Qig1 ∈ Hi+1QS
1 under the homology suspension σ∗ : H∗Q0S

0 → H∗+1QS
1

[CLM76, Page 47, first line]. Hence according to the Kudo transgression theorem

[CLM76, Part I, Theorem 1.1 (7)] σ∗Q
Ixi = QIQig1. This implies that QIxi belongs

to kerσ∗ if and only if excess(QIxi) = 0.

Notice that different components of QS0 have the same homotopy type, and hence

the same homology. This means that the translation by ∗[j] : Q0S
0 → Qi+jS

0 gives

the homology ring for H∗QjS
0 for j ∈ Z. Notice that [j] = [1]∗j for all j > 0 where

[1]∗j denotes j-fold ∗-product of [1] with itself. Similarly, [j] = [−1]∗(−j) for j < 0.

This implies that [S09, Page 33]

H∗QS
0 ' H∗Q0S

0[[1], [−1]],
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where the right hand side denotes the ring of Laurent polynomials in [1] and [−1]

with coefficients in H∗Q0S
0.

Now assume that Qixj is given such that (i, j) is not admissible. Then we have

Qixj = Qi(Qj[1] ∗ [−2])

= QiQj[1] ∗ [−4] +
∑

k>0Q
i−kQj[1] ∗Qk[−2]

(5.1)

Let us first deal with the second sum. All terms in this sum will give rise to decom-

posable terms. To see this notice that calculating these terms reduces to computing

Qk[−2], where one has

Qk[−2] =

 (Qn[−1])2 if k = 2n,

0 if k = 2n+ 1.

We use a result of Priddy [P75, Lemma 2.1] computing Qn[−1].

Lemma 5.9. For n > 0,

Qn[−1] =
∑

(λ1, . . . , λn)(Q1[1])λ1 ∗ · · · ∗ (Qn[1])λn ∗ [−2λ− 2],

where the summation is taken over all sequences (λ1, · · · , λn) such that
∑
iλi = n

and λ =
∑
λi. The coefficients are given by

(λ1, . . . , λn) =
λ!

λ1! · · ·λn!
.

Writing the above sum in terms of xi’s we obtain

Qn[−1] =
∑

(λ1, . . . , λn)xλ1
1 · · ·xλn

n ∗ [−2].

Hence,

Q2n[−2] =
∑

(λ1, . . . , λn)x2λ1
1 · · ·x2λn

n ∗ [−4].

This means that the second sum in (5.1), any single term with k = 2n has the form

Qi−kQj[1] ∗Qk[−2] =
∑

(λ1, . . . , λn)Qi−kQj[1] ∗ [−4] ∗ x2λ1
1 · · ·x2λn

n ,

where one can calculate Qi−kQj[1] ∗ [−4] in terms of Qsxt for some s, t. Notice that

Qi−kQj[1] ∗ Qk[−2] = 0 if k is odd. Hence all the terms in the second part are de-

composable.
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The first summand in (5.1), namely QiQj[1] ∗ [−4] may or may not give an indecom-

posable term, which will depend on the Adem relation for QiQj. More precisely, if

the Adem relation for QiQj =
∑
QaQb 6= 0, then modulo decomposable terms we

have the following equality

QiQj[1] ∗ [−4] =
∑
QaQb[1] ∗ [−4]

=
∑
Qaxb.

And if QiQj = 0, then clearly we are left just with the second summand in (5.1).

This completes the proof of the following observation.

Lemma 5.10. Let Qixj ∈ H∗Q0S
0 be given with i > 2j together with the Adem

relation QiQj =
∑
QaQb. Then modulo decomposable terms, we have

Qixj =
∑

Qaxb.

Moreover, if QiQj = 0, then Qixj will be a sum of decomposable terms.

For instance, one may calculate that modulo decomposable terms

Q6x2 = Q5x3.

We like to conclude this section by an observation on the form of indecomposable

A-annihilated primitive classes ξ ∈ H∗Q0S
0. But first we recall some facts about the

square root map r : H∗Q0S
0 → H∗Q0S

0. Using the Nishida relations, one can verify

that

rQ2n = Qnr, (5.2)

rQ2n+1 = 0. (5.3)

Recall that in homology the Kahn-Priddy λ : QP → Q0S
0 is given by λ∗ai = xi

[KP78, Theorem 3.1]. Combining this with the action of square root map rP : H∗P →

H∗P we obtain

rx2i = xi,

rx2i+1 = 0.

These observations completely determine the action of the square root map r :

H∗Q0S
0 → H∗Q0S

0. We will use this in the proof of the next lemma.
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Lemma 5.11. Suppose ξ0 ∈ H∗Q0S
0 is an A-annihilated primitive class with σ∗ξ0 6=

0. Then

ξ0 =
∑

QIx2i+1

modulo decomposable terms, where (I, 2i+ 1) runs over certain admissible sequences

of positive excess.

Proof. The fact that σ∗ξ0 6= 0 implies that modulo decomposable terms

ξ0 =
∑

QIxn

where (I, n) is admissible with excess(QIxn) > 0. The fact that ξ0 is an indecom-

posable primitive implies that indecomposable part of ξ0 belongs to the kernel of

the square root map r : H∗Q0S
0 → H∗Q0S

0. Notice that if we have two distinct

admissible sequences (J, j) and (K, k) with only even entries, then rQJxj 6= rQKxk.

Hence the decomposable part of ξ0 belongs to the kernel of r if and only if every QIxn

belong to the kernel. We show that assuming n 6= 2i+ 1 leads to a contradiction.

Assume that n is even. Since QIxn belong to ker r, then I must have at least one

odd entry. Let s0 = max(s : 1 6 s 6 r, is is odd). Then is0+1 is even. Notice that if

s0 = r, then we have xn with n even. In this case one applies Sq2s0

∗ to ξ0. According

to our explanations in Remark 3.22 all terms of the form QIxn with excess(QIxn) > 0

are separated under the action of this operation from each other. Moreover, notice

that

excess(Sq2s0

∗ QI0xn) = excess(QI0xn) > 0,

which implies that the outcome is not a decomposable, and hence is separated from

any other decomposable term. This implies that Sq2s0

∗ ξ0 6= 0 which contradicts the

fact that ξ0 must be A-annihilated. Hence n must be odd. This implies that modulo

decomposable terms

ξ =
∑

QIx2i+1,

with (I, 2i+ 1) admissible.
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5.4 Primitive Classes in H∗Q0S
0 and applications

We are interested in primitive classes of H∗Q0S
0 for three different reasons. First, a

simple description allows us to prove Theorem 17 for the case n = 1. Second, recall

from Proposition 5.4 and Example 5.7 that our presentation of H∗Q0S
−1 depends

on our description of PH∗Q0S
0. This means that there is a matter of choice in

presenting H∗Q0S
−1. There is a tension between choosing the nicest description, and

choosing a workable description. We discuss three slightly different generating sets

for PH∗Q0S
0 which yields three different, but related, presentations of H∗Q0S

−1.

Finally, reviewing the description of PH∗Q0S
0 will make it easy to understand the

analogous computations of PH∗QCP and PH∗QP . Notice that these later results

effectively calculate the homology rings H∗QΣ−1CP and H∗QΣ−1P .

The useful and workable description for us is due to Madsen [M70, Proposition 6.7].

This will be the second set of generators that we will describe.

First Description. Let ai ∈ HiP be the generator, dual to ai where H∗P '

Z/2[a]. The class ai maps to xi under λ∗ : HiQP → HiQ0S
0, where λ is the Kahn-

Priddy map [KP78, Theorem 3.1]. This makes it easy to see that xi almost behaves

like ai ∈ HiP . One has that

∆∗xi =
∑

j

xi−j ⊗ xj,

where ∆∗ is the coproduct homomorphism. The action of the Steenrod algebra on xi

is also similar to its action on ai and is given by

Sqk
∗xi =

(
i− k
k

)
xi−k.

The fact that xi is indecomposable in H∗Q0S
0 implies that in odd degrees there exists

a unique primitive in H∗Q0S
0 corresponding to this indecomposable term, i.e.

p2n+1 = x2n+1 +D2n+1

where D2n+1 denotes the decomposable terms. The submodule of primitives in

H∗Q0S
0 is spanned by terms of the form QIp2n+1. The proof of this, explained

below, is by induction on the length of I. Notice that here we may take I to be
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admissible but we don’t require (I, 2n+ 1) to be admissible.

This is straightforward once we use the Milnor-Moore exact sequence. Notice that

any primitive class p ∈ H∗Q0S
0 can be either a square of a primitive, or has an

indecomposable term QIxi which belongs to the kernel of the square root map

r : H∗Q0S
0 → H∗Q0S

0. According to relations (5.2) and (5.3) an indecompos-

able class of the form QIxi belongs to ker r only if I has at least one odd entry, or i

is odd.

Recall that QaQb is admissible if a 6 2b. If a > 2b, then it can be written a sum

of admissible sequences using the Adem relations given by

QaQb =
∑

a+b63t

(
t− b− 1

2t− a

)
Qa+b−tQt.

If we have an admissible pair Qi1Qi2 with i1 odd and i2 even, then we have the Adem

relation

Q2i2Qi1−i2 = Qi1Qi2 +O′, (5.4)

where O′ is a sum of admissible terms of lower excess.

Example 5.12. We may calculate that

Q32Q5 = Q21Q16 +Q20Q17 +Q19Q18,

where the sum of terms of lower excess is given by Q20Q17 +Q19Q18. We then obtain

Q21Q16 = Q32Q5 +Q20Q17 +Q19Q18.

Notice that on the right hand side we have Q19Q18. In this case we may apply the

above Adem relation to obtain Q19Q18 = Q36Q1. Hence we obtain

Q21Q16 = Q32Q5 +Q20Q17 +Q36Q1.

According to Lemma 5.10 this implies that

Q21x16 = Q32x5 +Q20x17 +Q36x1.

modulo decomposable terms. The fact that we obtain admissible terms O′ of lower

excess implies that the above process ends after a finite number of steps. This is

explained below.
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Remark 5.13. Let Qi1Qi2Qi3 be admissible with i1 the only odd entry of (i1, i2, i3).

We may apply the above Adem relation to obtain

Qi1Qi2Qi3 = (Q2i2Qi1−i2 +O)Qi3

= Q2i2Qi1−i2Qi3 +O′,

where O and O′ are admissible terms of lower excess. The term Qi1−i2Qi3 is admissible

with i1 − i2 odd, and i3 even. Hence we may apply the above Adem relation again

to obtain

Qi1Qi2Qi3 = Q2i2Q2i3Qi1−i2−i3 +O′′,

Notice that Q2i2Q2i3 is admissible. This implies that we may make iterated use of the

above Adem relation. We observe that if Ir = (i1, i2, . . . , ir) is an admissible sequence

with i1 the only odd entry, then modulo admissible terms of lower excess we have

QIr = Q2i2Q2i3 · · ·Q2irQd,

where d = i1 − (i2 + · · · + ir). Notice that Q2i2Q2i3 · · ·Q2ir is admissible. Finally

observe that because the difference includes only terms of lower excess, this means

this process ends after a finite number of steps.

The above explanations imply if QIQi is an admissible term with i even and I

with one odd entry, then we may write it as a sum of terms QJQj with j odd. Hence

a term which belongs to the kernel of the square map, can always be written in

terms of QIx2n+1 or more precisely in terms of QIp2n+1. This proves our claim that

any primitive class in H∗Q0S
0 is a sum of certain terms of the form QIp2n+1 with I

admissible.

Note 5.14. It is possible to give an explicit description of the decomposable part of

p2n+1, namely D2n+1. Notice that given p2n+1 we obtain another class by squaring,

namely p2
2n+1. Hence, one may put p2n = p2

n [W82, Lemma 5.2]. Then D2n+1 is

determined using the Newton polynomials [W82, Definition 5.1] as

D2n+1 =
2n∑
i=1

xip2n+1−i.
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The above description will be useful, when we describe the primitives in other

homology rings such as H∗QCP , and H∗Q0S
−1.

Notice that it could happen to have a term QIp2n+1 with I admissible and (I, 2n+

1) not admissible. However, if (I, 2n + 1) is an admissible sequence, then the fact

that p2n+1 = x2n+1 modulo decomposable terms, allows one to have the following.

Lemma 5.15. If (I, 2n+ 1) is admissible, then modulo decomposable terms

QIp2n+1 = QIx2n+1.

Due to this, we may write excess(QIp2i+1) to denote excess(QIx2i+1). Hence if

excess(QIp2i+1) > 0 it refers to a primitive class with an indecomposable term, where

excess(QIp2i+1) = 0 means that QIp2i+1 is a decomposable primitive, and so it is a

square. We then the following result.

Corollary 5.16. Let ξ0 ∈ H∗Q0S
0 be A-annihilated primitive class with σ∗ξ0 6= 0.

Then

ξ0 =
∑

QIp2i+1

with (I, 2i+1) admissible modulo decomposable terms. If ξ0 is odd dimensional, then

the decomposable part is trivial. If ξ0 is even dimensional, then the decomposable part

is either trivial or square of a primitive.

Proof. Notice that ξ0 =
∑
QIx2i+1 modulo decomposable terms. Previous lemma

allows us to replace QIx2i+1 with QIp2i+1 modulo decomposable terms. Therefore

ξ0 =
∑
QIp2i+1 modulo decomposable terms. However this decomposable part is

primitive, hence it must be square. If ξ0 is an odd dimensional class, then the de-

composable part is trivial. If ξ0 is even dimensional then it is either square or trivial.

This completes the proof.

This later observation gives more information on the type of admissible sequences

I in the expression for an A-annihilated primitive class. Moreover, recall from Corol-

lary 6 that we really need to focus on sequences I with l(I) > 1. We have the

following lemma.
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Lemma 5.17. Suppose ξ0 =
∑
QIp2i+1 is an odd dimensional A-annihilated primi-

tive class, then each entry of I must be odd.

Proof. The proof of this is quite analogous to the proof of Corollary 3.16. For example

applying Sq1
∗ shows that i1 cannot be even. Notice that in odd dimensional we

don’t have any decomposable, so terms QIp2i+1 with excess(QIp2i+1) = 1 will not be

annihilated by any other term under the action of Sq1
∗. Similar technique applies to

the other terms. Moreover, during this process we don’t get to the stage of applying

an operation on p2i+1’s, i.e. we are not worried about these classes. This completes

the proof.

Notice that we know what happens when there exists a term QIp2i+1 with l(I) = 0

as it corresponds to a Hopf invariant one element. On the other hand this proof will

not work, as in this case we directly deal with terms x2i+1, Q
2ix1 and the decompos-

able terms, where when l(I) > 0 we do not touch these terms we only play with the

operations QI .

Remark 5.18. It is still possible to use Sq1
∗ in even dimensions to show that in any

term QIp2i+1 with excess(QIp2i+1) has to start with i1 chosen to be odd, however we

cannot go further, for reasons stated in 3.2 and the counter example given by Note

5.27.

Our description of primitive classes also allows us to complete the proof of Theo-

rem 17 for the case n = 1. The result reads as following.

Lemma 5.19. Let ξ ∈ H∗QS
1 be a spherixal class. Then it is not possible to have

ξ = ζ2t
for t > 1.

Proof. We do the proof for t = 2, and the other cases are similar. Assume ξ1 = ζ4

with ζ =
∑
QIQig1 and (I, i) admissible. Hence ξ1 = Q2dQdζ where d = dim ζ. The

class ξ1 pulls back to a spherical class ξ0 ∈ H4d−1Q0S
0. Therefore we may apply

Lemma 5.16 to write

ξ =
∑

QJp2j+1,
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with (J, 2j+1) admissible. The class ξ1 can have a term of the form Q2dQdQIQig1 if

and only if ξ0 has a term QJp2j+1 such that σ∗Q
Jp2j+1 = Q2dQdQIQig1 which implies

that (J, 2j + 1) = (2d, d, I, i), i.e. J = (2d, d, I). However, according to Lemma 5.17,

J cannot have any even entry. This gives the contradiction that we were looking for,

and completes the proof.

Using a similar technique, one may complete the proof of Lemma 19 for the case

n = 1. We have the following.

Lemma 5.20. Let ξ = ζ2 ∈ H2dQS
1 be spherical. Then d must be odd.

Proof. Using the method of proof in previous lemma, one can show that if d is even,

then pull back of ξ0 ∈ H2d−1QS
1 will not be A-annihilated.

Madsen’s Description. This is the second description of the submodules of

primitives in H∗Q0S
0, and it slightly differs from the first one. However, its behavior

under the action of the Steenrod operations is more in our favor.

Notice that p1 = x1 is a primitive class, hence p′2n+1 = p2n+1 + Q2nx1 will be a

primitive class. Letting p′1 = p1 = x1 we obtain another set of primitives {p′2n+1 :

n > 0} which is in one to one correspondence with {p2n+1 : n > 0}. One observes

that {QIp′2n+1 : I admissible , n > 0} also generates the submodules of primitives in

H∗Q0S
0. This is the set of generators identified by Madsen [M70, Proposition 6.7].

The primitive class p′2n+1 belongs to the image of

SO
J // Q1S

0
∗[−1] // Q0S

0,

where J : SO → Q1S
0 is the J-homomorphism. More precisely, assuming that

pSO
2n+1 ∈ H2n+1SO is the unique primitive, then its image in H∗Q0S

0 under the

above composite is given by p′2n+1 = p2n+1 + Q2nx1 [E80, Lemma 3.6]. Notice that

Q2nx1 = Qn+1xn modulo decomposable terms. This later equality comes from the

Adem relation Q2nQ1 = Qn+1Qn together with Lemma 5.10.

The action of the Steenrod algebra on H∗SO is given by

Sqk
∗p

SO
2n+1 =

(
2n+ 1− k

k

)
pSO

2n+1−k.
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This makes it easy to see that the primitive classes p′2n+1 behave similar to x2n+1

under the action of the Steenrod algebra, i.e.

Sqk
∗p

′
2n+1 =

(
2n+ 1− k

k

)
p′2n+1−k.

Note that the above action is trivial when k is odd.

Note 5.21. One may use the action of the Steenrod algebra on p′2n+1 to obtain the

action of the Steenrod algebra on p2n+1. For instance Sq1
∗p
′
2n+1 = 0, hence we obtain

Sq1
∗p2n+1 = Sq1

∗Q
2nx1 = Q2n−1x1.

Consider the Adem relation

Q2n−1Q1 =

 QnQn if n is odd,

0 if n is even.

This, together Lemma 5.10, implies that modulo decomposable terms,

Q2n−1x1 =

 x2
n if n is odd,

0 if n is even.

According to the mixed Cartan formula for the operations Sqi
∗, the action of the

Steenrod operation maps primitive classes to primitive classes. Therefore, we obtain

Sq1
∗p2n+1 =

 p2
n if n is odd,

p2 if n is even,

where p is a primitive class arising from decomposable terms. This maybe summarised

as,

Sq1
∗p2n+1 = p2n.

We refer the reader to [W82, Lemma 5.2] to see that

Sqk
∗pn =

(
n− k − 1

k

)
pn−k.

Notice that mod 2, we have(
2i− 2k

2k

)
=

(
2i− 2k + 1

2k

)
.
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This implies that p2n+1, and p′2n+1 behave in the same way under the operations Sq2k
∗ .

However, the primitive classes p′2n+1 are annihilated under the operations Sq2k+1
∗

whereas the primitive classes p2n+1 have chance to survive under these operation, e.g.

Sq1
∗p3 = x2

1.

Remark 5.22. We like to draw the reader’s attention to the behavior of QIp2n+1,

and QIp′2n+1 under the homology suspension. First let I = φ. Recall that modulo

decomposable terms,

p2n+1 = x2n+1,

p′2n+1 = x2n+1 +Q2nx1.

We then obtain,

σ∗p2n+1 = Q2n+1g1,

σ∗p
′
2n+1 = Q2n+1g1 + (Qng1)

2.

Now suppose I = (i1, . . . , ir) is a sequence with ir odd such that (I, 2n + 1) is

admissible. The equations (3.11) and (3.12) imply that

σ∗Q
IQ2nx1 = QIQ2ng2

1 = QI(Qng1)
2 = 0.

In fact we don’t need to restrict to ir, similar statement holds if we assume only I

has at least one odd entry.

Notice that QIQ2nx1 is a primitive class, which can be written in terms of QJxj

modulo decomposable terms, where (J, j) is admissible. Any class QJxj with (J, j)

dies under suspension, if and only if excess(QJxj) = 0, i.e. QJxj is decomposable.

Hence QIQ2nx1 is a decomposable primitive, and hence a square term. We then

observe that if we choose I to be even dimensional, then QIQ2nx1 is odd dimensional

which makes it impossible to be a square, hence QIQ2nx1 = 0. In this case we have

σ∗Q
Ip′2n+1 = QIQ2n+1g1 = σ∗Q

Ip2n+1,

as well as

QIp2n+1 = QIp2n+1.

The above remark tell us how the primitive classes behave under the homology

suspension. We like to combine this with Lemma 5.17. We restrict our attention to

the classes QIp2i+1 with l(I) > 0. The result reads as following.
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Lemma 5.23. Suppose ξ0 ∈ H∗Q0S
0 is an odd dimensional A-annihilated primitive

class. Then

ξ0 =
∑

QIp′2i+1,

with (I, 2i+ 1) admissible.

Proof. According to Lemma 5.8, we have ξ0 =
∑
QIp2i+1 with (I, 2i+ 1) admissible,

and I having only odd entries. Notice that modulo decomposable terms p2i+1 =

p′2i+1 +Q2ix1. Hence we may write

ξ0 =
∑
QIp2i+1 =

∑
QI(p′2i+1 +Q2ix1) =

∑
QIp′2i+1,

where according to previous remark QIQ2ix1 is trivial. This completes the proof.

The advantage of this description is that the primitive classes p′2i+1 have the same

behavior as x2i+1 under the Steenrod operations, where they also take care of the

decomposable parts. In the light of this observation we may see QIp′2i+1 like QIQi

and apply our observation at Remark 3.22 to this situation. The result reads as

following.

Theorem 5.24. Suppose ξ0 ∈ H∗Q0S
0 is an odd dimensional spherical class. Then

ξ0 =
∑

QIp′2i+1,

with (I, 2i+ 1) admissible, and any QIp′2i+1 is A-annihilated.

Notice that this is not true with QIp′2i+1 replaced with QIx2i+1. We note that

this claim does hold for any A-annihilated primitive classes. This does not imply

that each QIp2i+1 is A-annihilated, however all of these terms magically must add to

an A-annihilated class. This has the immediate corollary which completes proof of

Lemma 12.

Corollary 5.25. Suppose ξ1 ∈ H∗QS
1 is an even dimensional spherical class . Then

ξ1 =
∑

QIg1,

where I is admissible, excess(QIg1) > 0, and each term is A-annihilated.
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Next we turn our attention to even dimensions where we are given anA-annihilated

primitive class ξ ∈ H∗Q0S
0 with σ∗ξ 6= 0. According to Corollary 5.16 modulo de-

composable terms we have

ξ =
∑

QIp2i+1,

with (I, 2i+1) admissible. Recall from Remark 5.18 that in the above expression i1 is

ought to be odd which implies that QIQ2ix1 is either trivial, or square of a primitive

class. A result similar to Theorem 5.12 holds.

Theorem 5.26. Suppose ξ ∈ H∗Q0S
0 is an even dimensional A-annihilated primitive

class with σ∗ξ 6= 0. Then

ξ =
∑

QIp′2i+1 + P 2,

where (I, 2i + 1) is admissible, with excess(I, 2i + 1) > 0. Here P 2 refers to the

decomposable primitive part. Moreover, I has only odd entries and (I, 2i+1) satisfies

condition 3 of Theorem 2, i.e.

0 < 2ij+1 − ij < 2ρ(ij+1),

where I = (i1, . . . , ir) and ir+1 = 2i+ 1.

Proof. The first part of the claim is quite clear. We only note that σ∗ξ 6= 0 is an A-

annihilated primitive class of odd dimension living inH∗QS
1. Lemma 12, then implies

that every QIp′2i+1 involved in the above expression for ξ must satisfy condition 3 of

Theorem 2.

Note 5.27. For reasons explained in Section 3.2 we cannot claim that every term

QIp′2i+1 of an even dimensional A-annihilated primitive class ξ ∈ H∗Q0S
0 will be

A-annihilated. We provide the reader with an example. Recall from [W82, Remark

11.26] that the class

(Q2062Q1031Q519Q263Q135Q71Q39)2 +Q4120Q2062Q1031Q519Q263Q135Q71Q39

is an A-annihilated term in the Dyer-Lashof algebra, R. This implies that

(Q2062Q1031Q519Q263Q135Q71p′39)
2 +Q4121Q2061Q1031Q519Q263Q135Q71p′39
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is an A-annihilated primitive in H∗Q0S
0. However, each term is not A-annihilated

under the action of Sq2
∗.

Next, we move on to our third description of primitive classes in H∗Q0S
0. Al-

though the above results and remarks shows that the first two descriptions are ade-

quate for most of our purposes, i.e. eliminating potential spherical classes in H∗Q0S
0;

however the following description will be useful in describing homology of H∗Q0S
−1

in a relation free fashion.

An alternative description of PH∗Q0S
0. There is an alternative way to de-

scribe primitive classes in PH∗Q0S
0. Notice that any indecomposable class QIxi

with i odd or I with at least one odd entry corresponds to a unique primitive class

modulo decomposable terms. Let Ir denote an admissible sequence (i1, . . . , ir) such

that i1 is the only is odd entry of I. Let pIr,i be the primitive class corresponding

to the indecomposable term QIrxi where i is even. We retain p2n+1 to denote the

primitive class corresponding to x2n+1. Then any of primitive class in H∗Q0S
0 will

be linear combination of terms of the form QJpIr,i and QKp2k+1 with (J, Ir, i), and

(K, 2k + 1) admissible. Such a generating set seems to be more convenient when

we consider the problem of finding a generating set for H∗Q0S
−1 with no relations

among its generators.

It is possible to rewrite primitives expressed in previous generators in this setting. For

instance, consider to Q4x1 = Q4p1. One then has Q4x1 = Q3x2 modulo decomposable

terms, i.e.

Q4x1 = p(3),2.

5.5 Primitive Classes in H∗QP

This section verifies Proposition 27. The calculations here are in the same line as for

H∗Q0S
0. We first concentrate on odd degrees, and then try to generalise the situation

to even degrees.

Notice that in odd degrees we have indecomposable terms a2n+1 ∈ H2n+1QP .
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Therefore, we obtain unique primitive class

pP
2n+1 = a2n+1 +DP

2n+1

where DP
2n+1 denotes the decomposable terms. Similar to Q0S

0 we may define pP
2n =

(pP
n )2, and

DP
2n+1 =

2n∑
i=1

aip
P
2n+1−i.

Clearly, the elements QIpP
2n+1 generate a submodule of primitive elements in H∗QP .

Notice that

λ∗Q
IpP

2n+1 = QIp2n+1,

where λ : QP → Q0S
0 is the Kahn-Priddy map. Moreover, and similar to Q0S

0, we

may consider to primitive classes pP
2n+1 + Q2na1 which behave like a2n+1 under the

action of the Steenrod algebra and map to p′2n+1 = p2n+1 + Q2nx1. Hence λ∗ is an

epimorphism PH∗QP → PH∗Q0S
0.

Apart from the above elements, we may consider indecomposable terms of the form

Q2i+1a2j which belong to the kernel of the square root map rP : H∗QP → H∗QP .

Hence we obtain another set of primitive classes

pP
i,j = Q2i+1a2j +DP

i,j,

where as before DP
i,j denotes the decomposable part. Now we show that the R-

module generated by pP
2n+1 and pP

i,j contains all primitive classes of H∗QP which is

the statement of Proposition 27.

Proof of Proposition 27. This an obvious analogue to the the proof of the similar

statement about PH∗Q0S
0 and is based on induction on the length. First notice that

given a decomposable primitive, we can write it as a square of primitives of lower

length, where one can use the inductive hypothesis. So we need to prove this for the

indecomposable primitives. Such a primitive class must belong to the kernel of the

square root map rP : H∗QP → H∗QP . The fact that

rQ2n = Qnr,

rQ2n+1 = 0,
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together with the action of rP onH∗P mentioned above implies that a sum of the form

QIai+Q
Jaj belongs to the kernel of rP if and only if the both terms belong to ker rP .

However, our calculations above has determined all termsQIai which belong to ker rp.

This completes the proof. �

Notice that the generators provided by the above proposition provide a splitting

of the PH∗QP into the primitives submodules generated by QIpP
2n+1 and QKpP

i,j.

Also notice that we may replace pP
2n+1 with pP

2n+1 +Q2na1 and obtain a similar state-

ment as following.

Corollary 5.28. Any primitive class in H∗QP belongs to the R-module generated by

pP
2n+1 +Q2na1, p

P
i,j, i.e. any primitive class in H∗QP will be a linear combination of

elements of the form QI(pP
2n+1 +Q2na1) and QKpP

i,j.

Remark 5.29. Consider the Kahn-Priddy map λ : QP → Q0S
0. The class pP

i,j maps

to a primitive in H∗Q0S
0 under λ∗. Let (2i+ 1, 2j) be admissible. Then

λ∗p
P
i,j = λ∗Q

2i+1a2j = Q2i+1x2j 6= 0.

Recall that given (i1, i2) admissible, we have the Adem relation Qi1Qi2 = Q2i2Qi1−i2

modulo admissible terms of lower excess. This allows us to have

λ∗p
P
i,j = λ∗Q

2i+1a2j = Q2i+1x2j

= Q4jx2i+1−2j,

modulo decomposable terms, and indecomposable terms of lower excess. One may

replace x2i+1−2j by p2i+1−2j modulo decomposable terms. Hence we may write

λ∗p
P
i,j = Q4jp2i+1−2j

modulo decomposable terms and admissible terms of lower excess. That is we may

write

λ∗p
P
i,j = Q4jp2i+1−2j +O +D,

where O represents the sum of admissible terms of lower excess and D denotes the

decomposable part. In a given specific example, depending on the coefficients in the
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Adem relation for the non admissible pair (4j, 2i+1− 2j), one may work out O+D.

However, a term of the form λ∗p
P
i,j will not be of interest for us as it is not A-

annihilated which can be seen by applying Sq1
∗. We also note that if (2i + 1, 2j) is

not admissible, then λ∗p
P
i,j may or may not be trivial. This again will depend on the

Adem relation for the pair (2i+ 1, 2j).

Note 5.30. Recall that we established an alternative generating set for PH∗Q0S
0. By

analogy we may consider the primitive elements pP
2k+1, p

P
Ir,i defined in a similar way.

Then any primitive class in H∗QP can be written as a linear combination of terms

of the form QKpP
2k+1, Q

JpIr,i with K, (J, Ir) admissible. Notice that if we choose

(K, 2k + 1) and (J, Ir, i) admissible then we have,

λ∗Q
KpP

2k+1 = QKp2k+1,

λ∗Q
JpP

Ir,i = QJpIr,i,

where as usual λ denotes the Kahn-Priddy map.

5.6 Primitive Classes in H∗QCP

Similar to H∗QP , we are able to have a similar performance here, and give a complete

description of the primitive classes in H∗QCP . This will give the proof of Proposition

28.

First, we fix our notation. Notice that H∗CP ' Z/2[c : deg c = 2], where

c ∈ H2CP is the Z/2-reduction of the first universal Chern class. Hence, we obtain

an additive basis for H∗CP with generators c2i ∈ H2iCP such that 〈c2i, c
j〉 = δij.

This allows us to represent H∗QCP as

Z/2[QIc2i : excess(QIc2i) > 0, I admissible].

The situation here is different from H∗QP as the indecomposable classes c2i are in

even dimensions. However, notice that the square root map rCP : H∗QCP → H∗QCP

on generators c2i is given as following,

rCP c2ki =

 c2k−1i if k > 1

0 otherwise
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where k in the is the highest power of 2 in 2ki, i.e. i is odd. This implies that if n

is odd, then c2n belongs to the kernel of the square root map. Therefore we obtain

unique primitives

pCP
4n+2 = c4n+2 +DCP

4n+2 ∈ H4n+2QCP.

Observe that CP really looks like P , but in a larger scale, i.e. we may do similar

stuff as we did with QP . Let pCP
4n = (pCP

2n )2. Then we have,

DCP
4n+2 =

2n∑
i=1

c2ip
CP
4n+2−2i.

Remark 5.31. Notice that one may define a homomorphismHiP → H2iCP by sending

ai to c2i. This induces a mapping H∗P → H∗CP which does not respect grading.

However, this map is an isomorphism of coalgebras, formalising what we did above,

and what follows. Notice that we are not claiming that this is an isomorphism

H∗QP → H∗QCP .

Now consider QIc2j with j even. Such a class belongs to the kernel of the square

root map if I has at least one odd entry. Hence, when j is even, we obtain another

set of primitives

pCP
i,j = Q2i+1c2j +DCP

i,j ∈ H2i+2j+1QCP.

Proposition 28 claims that the R-module spanned by the two sets of primitives above

captures all of the primitive classes in H∗QCP . The rest of the proof is analogous

to the proof of a similar claim about the primitive classes in H∗QP , and is based on

induction on the length. We leave the details to the reader.

Note 5.32. Similar to the cases of Q0S
0 and QP we may define an alternative gen-

erating set for primitive in H∗QCP . In this case, modulo decomposable terms, we

have

pCP
4k+2 = c4k+2 (5.5)

pCP
Ir,i = QIrc2i, (5.6)

where i is chosen to be even.
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5.7 The Complex Transfer and H∗Q0S
−1

The space QS−n is defined to be the n-th loop space of QS0. It also can be seen as

the infinite loop space associated with the n-th desuspension of the sphere spectrum.

The homology of these spaces, and their geometry still is not completely understood.

In fact we only know about the ring structure of H∗Q0S
−1 [CP89, Theorem 1.1],

and partially know about the homology of Q0S
−2 [CP89, Theorem 1.2]. However,

it is possible to identify particular subrings of H∗QS
−2 by giving a reasonably good

description of its “generators”. We guess that this is a general pattern, i.e. every

H∗Q0S
−n will have a subring whose generators are obtained in similar way that one

obtains generators for H∗Q0S
−1. Moreover, this subring is going to contain pull back

of spherical classes of H∗Q0S
0. We will inform the reader about our thoughts on this.

Previously, some knowledge of H∗Q0S
0 allowed us to prove partial results on

the type of possible spherical classes in H∗+1QS
1, namely Theorem 17 in the case

n = 1. Similarly, we shall use our description of specific subrings of H∗QS
−2 to prove

Theorem 17 for the case n = 0.

As we mentioned earlier in Example 5.7, the homology ring H∗Q0S
−1 is known to

be an exterior algebra [CP89, Theorem 1.1]. We combine this with homology of the

complex transfer to give a description of generators of H∗Q0S
−1, and determine the

structure of H∗Q0S
−1 as an R-module, as well as its A-module structure. However,

as we have seen earlier there are different choices of generating sets for the submod-

ule of primitives PH∗Q0S
0. This means that there are different ways of representing

H∗Q0S
−1. We will give all of these three descriptions. The workable description,

will enable us to do some calculations. Although in such a description there are

some relations in the algebra, which we shall explain. We have succeeded in identi-

fying a subring of H∗Q0S
−1 which contains a pull back of any spherical class from

H∗Q0S
0. Applying the machinery of the Eilenberg-Moore spectral sequence allows

one to calculate H∗QΣ−1P , and H∗QΣ−1CP , and to consider the homology of the

looped transfer maps. These results may be well known for experts, but we are not

aware of them stated anywhere in the literature.
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The S1-transfer is a map λC : QΣCP+ → QS0. The homology of this map is

known based on the work of Mann-Miller-Miller [MMM86, Lemma 7.4]. However, we

will make some observations, which shortens calculation of the homology of λC.

The complex transfer factors through the complex J-homomorphism

JC : U → Q1S
0.

Using the translation map ∗[−1] we then will land in Q0S
0. The reader will need

to take this to account to avoid confusion about our homological calculations while

comparing to the result of Mann-Miller-Miller[MMM86, Lemma 7.4]. We urge the

reader to notice that the map λC is an infinite loop map, obtained as the infinite loop

extension of the following composite,

ΣCP+
// U // Q1S

0 // Q0S
0.

The mapping λC may be viewed as an extension of ν : S3 6→ S0 where S3 sits as the

bottom cell of ΣCP , and the inclusion maps g3 to Σc2 in homology. Hence Σc2 maps

to x3 +O3. Using this, and the action of Steenrod algebra on ΣCP , one may observe

that Σc2i maps to x2i+1+O2i+1. On the other hand, notice that Σci is primitive. Also,

the image must have the same behavior under the action of the Steenrod algebra as

Σc2i. Hence we obtain,

(λC)∗Σc2i = p2i+1 +Q2ix1 = p′2i+1.

Moreover, notice that Σc0 maps to x1 = p1 = p′1 where c0 is the generator coming

from the disjoint base point. This then allows one to calculate (λC)∗ : H∗QΣCP+ →

H∗Q0S
0. Notice that this in particular implies that (λC)∗ : PH∗QΣCP+ → PH∗Q0S

0

is an epimorphism.

Remark 5.33. The above equations allows us to calculate that

(λC)∗(Σc2i +Q2iΣc0) = p2i+1.

Recall from Example 5.7 that σ∗ : QH∗Q0S
−1 → PH∗Q0S

0 is an isomorphism.

Also notice that σ∗ : QH∗QCP+ → PH∗QΣCP+ is an isomorphism. This makes it
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easy to see that (ΩλC)∗ : QH∗QC+P → QH∗Q0S
−1 is an epimorphism. These fit

into a commutative diagram as following

PH∗QΣCP+
(λC)∗ // PH∗Q0S

0

QH∗−1QCP+

σ∗

OO

(ΩλC)∗// QH∗−1Q0S
−1

σ∗

OO

which is the observation of [G04, Diagram 1.3].

Before proceeding further, we establish our notation for H∗Q0S
−1. Recall from

Proposition 5.4 that σ∗ : QH∗Q0S
−1 → PH∗Q0S

0 is an isomorphism, andH∗Q0S
−1 '

EZ/2(σ
−1PH∗Q0S

0). We note that there will be a matter of choice here, and depend-

ing on the choice of a basis for PH∗Q0S
0 we get a presentation forH∗Q0S

−1. However,

in this case we observe that the complex transfer allows us to have a natural choice

for the generators of H∗Q0S
−1 providing us with a type of “geometric” meaning for

these generators. We shall investigate cases for each choice of a basis that we make.

First we consider the primitive classes p′2i+1 ∈ H∗Q0S
0 and the R-module spanned

by these elements which captures PH∗Q0S
0. We may consider unique elements

w′2i ∈ QH2iQ0S
−1 with σ∗w

′
2i = p′2i+1. However, the fact that (λC)∗Σc2i = p′2i+1

allows one to define

(ΩλC)∗c2i = w′2i.

Notice that the space Q0S
−1 is an infinite loop space, and hence we may consider

terms of the form QIw′2i ∈ H∗Q0S
−1 which satisfy σ∗Q

Iw′2i = QIp′2i+1. The fact that

elements of the form QIp′2i+1 generate all primitives in H∗Q0S
0 implies that elements

of the form QIw′2i generate QH∗Q0S
−1, and therefore H∗Q0S

−1 is the exterior algebra

generated by QIw′2i with I admissible. This also determines the action of the Dyer-

Lashof algebra on the homology ring H∗Q0S
−1. Moreover, our definition of the

generators w′2i allows us to derive the action of the Steenrod operation on these

classes, namely we have

Sq2k
∗ w

′
2i =

(
i− k
k

)
w′2i−2k.

This together with the Nishida relations describes the action of the Steenrod algebra

on the generators QIw′2i, and hence completely determines the action of the Steenrod
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algebra on the homology ring H∗Q0S
−1.

Although we have identified generators of H∗Q0S
−1, however there are some relations

among these generators. For example consider Q3x1 = x4
1 = Q2Q1x1 ∈ H4Q0S

0.

Hence in H∗Q0S
−1 we have

Q3w0 = Q2Q1w0.

Notice that in this case the above equality strictly holds as it happens in an odd

dimension. The ambiguity about this comes from the description of primitives in

H∗Q0S
0. Notice that PH∗Q0S

0 is generated by QIp′2n+1, however we don’t assume

any admissibility condition on the pair (I, 2n+1). For instance Q4x1 = Q3x2 modulo

decomposable terms. In this case, the left side pulls back to Q4w0, however we don’t

have good description of the pull back of the right hand side of the equation. We

sum up the above discussion as following.

Theorem 5.34. The homology algebra H∗Q0S
−1 as an R-module is given by

EZ/2(Q
Iw′2i : I admissible, dim I > 2i),

with w′2i = (ΩλC)∗c2i which satisfies σ∗w
′
2i = p2i+1. Two generators QIw′2i and QJw′2j

may be identified if and only if they map to the same element in H∗Q0S
0 under the

homology suspension σ∗ : H∗−1Q0S
−1 → H∗Q0S

0. The behavior of generators w′2i

under the Steenrod operation is very much like c2i ∈ H2iCP , i.e.

Sq2k
∗ w

′
2i =

(
i− k
k

)
w′2i−2k.

This together with the Nishida relations completely determines the A-module structure

of H∗Q0S
−1.

Remark 5.35. One may choose to work with p2i+1. In a similar fashion we obtain

indecomposable terms w2i ∈ H2iQ0S
−1. Moreover, since (λC)∗(Σc2i+Q

2iΣc0) = p2i+1,

then we may define w2i by the following equation

(ΩλC)∗(c2i +Q2ic0) = w2i.

We then observe that H∗Q0S
−1 will be an exterior algebra over the generators QIw2i

where σ∗Q
Iw2i = QIp2i+1. In some cases, it is more convenient to use this description.
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Observe that w0 = w′0, and w2i = w′2i +Q
2iw0 which give a one to one correspondence

between the two set of “generators”. Finally notice that Q
I
w2i can be identified with

QIw2i.

Note 5.36. We can determine the action of the Steenrod algebra on the generators

QKw2k. This can be done by using the above definition, i.e. the equation

(ΩλC)∗(c2k +Q2kc0) = w2k.

This will allow us to calculate the action of the Steenrod algebra on w2k as,

Sq2r
∗ w2k = (ΩλC)∗(Sq

2r
∗ c2k + Sq2r

∗ Q
2kc0)

= (ΩλC)∗
(

k−r
r

)
c2k−2r +

(
2k−2r

2r

)
Q2k−2rc0)

=
(

k−r
r

)
w2k−2r.

Next we like to calculate Sq2r+1
∗ w2k. But we deal with it in a slightly different way,

and we note that the previous calculation also can be done in this way. We perform

as following. Observe that w2k maps to p2k+1 under the homology suspension. Recall

that

Sq2r+1
∗ p2k+1 =

(
2k−2r−1

2r+1

)
p2k−2r =

(
2k−2r−1

2r+1

)
p2φ(2k−2r)

2m+1

=
(
2k−2r−1

2r+1

)
p2k−2r =

(
2k−2r−1

2r+1

)
Q2φ(2k−2r)−1(2m+1) · · ·Q2m+1p2m+1,

where 2φ(n) is the largest power of 2 in n. The above equation implies that

Sq2r+1
∗ w2k =

(
2k − 2r − 1

2r + 1

)
Q2φ(2k−2r)−1(2m+1) · · ·Q2m+1w2m.

This really motivates one to work with the generators w′2k since they have much

better behavior under the Steenrod operations.

So far we have used two set of generators for PH∗Q0S
0 together with the S1-

transfer to identify two sets of generators for H∗Q0S
−1, namely {QIw′2i} and {QIw2i}.

However, there are some relations among the generators in both of these sets. It is

possible to give an alternative description of generators of H∗Q0S
−1 which does not

seem to have the above problem, i.e. there are no relations among its generators. To

do this, we may use our alternative description of the primitive classes in H∗Q0S
0,
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namely primitives pIr,i and p2k+1. These give rise to unique classes generators w2k ∈

QH∗Q0S
−1, and wIr,i−1 ∈ QH∗Q0S

−1 such that

σ∗w2k = p2k+1,

σ∗wIr,i−1 = pIr,i.

Equations of type (5.2) allows one to see the action of the Kudo-Araki operations in

these generators. Moreover, as we have assumed admissibility in the construction of

pIr,i, p2k+1 it completely makes sense to define excess as following,

excess(QJwIr,i−1) = j1 − (j2 + · · ·+ jt + dimwIr,i−1),

excess(QKw2k) = excess(K)− 2k,

where J = (j1, . . . , jt). The fact that σ∗ : QH∗Q0S
−1 → PH∗Q0S

0 is an isomorphism

implies the following.

Proposition 5.37. As an R-module H∗Q0S
−1 is given by the exterior algebra gener-

ated by elements QKw2k, Q
JwIr,i−1 of positive excess where (K, 2k + 1), (J, Ir, i) are

admissible.

This description gives complete information about the R-module structure of

H∗Q0S
−1. We note that it is possible to identify the generators wIr,i in a “geo-

metric” way and provide the reader with a natural choice for these generators. This

is of course can be done if we know which element of H∗QΣCP+, say σ∗cIr,i, maps

to pIr,i. Notice that our basic knowledge on λC is that (λC)∗Σc2i = p′2i+1. Hence

to calculate cIr,i we first need to write pIr,i in terms of QJp′2j+1 which may involve

iterated application of Adem relations of the form (5.4). This suggest that σ∗cIr,i will

not be a single term. For the time being short and the fact that we will not use this

description we leave the rest of this to the reader to investigate.

The action of the Steenrod operations on the generators wIr,i−1 does not seems

very clear. Although one may try to suspend this class to get an primitive class in

H∗Q0S
0, namely pIr,i. According to the diagonal Cartan formula, performing any

Steenrod operation on a primitive class will result in a primitive class. One then

may pull back the resulting class to H∗−1Q0S
−1. However, this requires a tedious

application of the Nishida relations which I have not yet done!
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The fact that there are no relations among the generators provided by Proposi-

tion 5.37 makes such a description much clearer, rather than considering an exterior

algebra over generators QIw2i with (I, 2i+ 1) not necessarily admissible.

Note 5.38. Our previous results on the odd dimensional spherical classes ensures that

any odd dimensional spherical class pulls back to a spherical class whose indecom-

posable part falls into the subalgebra

EZ/2(Q
Kw2k : (K, 2k + 1) admissible, excess(QKw2k > 0).

Hence, for the sake of calculating pull back of spherical classes from H∗Q0S
0 into

H∗−1Q0S
−1 it is enough to work with the description provided by Theorem 5.34

whereas the fact that (K, 2k + 1) ensures that this falls into a part of algebra that

there is not relation among its generators.

Note 5.39. Notice that usually the homology of a space becomes larger after looping.

However, based on this description the homology of the Q0S
−1 is smaller than the

homology of Q0S
0. This is evident from the fact that

QH∗Q0S
−1 ' PH∗Q0S

0 � H∗Q0S
0.

One may conclude that there exists a monomorphism of Abelian groups HnQ0S
−1 →

Hn+1Q0S
0. Notice that the fact that H∗QS

−1 is an exterior algebra implies that

PH∗Q0S
−1 injects in QH∗Q0S

−1 ' PH∗−1Q0S
0. This implies that H∗Q0S

0 and

H∗−1Q0S
−1 have the same spherical classes.

Remark 5.40. It is possible to identify specific subalgebras of H∗QS
−1. To do so,

we use η ∈ πS
0 S

−1 ' π0QS
−1 ' Z/2. The classes 0, η ∈ π0QS

−1 map to [0], [η] ∈

H0QS
−1 under the Hurewicz homomorphism π0QS

−1 → H0QS
−1. This makes it

straightforward to see that [0] ∗ [η] = [0 + η] = [η] and

Q0[η] = [η] ∗ [η] = [2η] = [0] = [0] ∗ [0] = Q0[0].

Here ∗ denotes the Pontryagin product arising from the loop sum on QS−1. Applying

the Adem relation to Qi([0]∗ [0]) implies that Qi[0] = 0 for all i > 0. This observation

together with the Adem relations applied to Qi([η]∗ [0]) shows that Qi[η]∗ [0] = Qi[η].
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Indeed this is we should have expected that [0] will play the role of a unit in H∗QS
−1.

On the other hand, the mapping η : S0 → QS−1 extends to an infinite loop map

η : QS0 → QS−1. On the level of π0, or equivalently on the level of H0, this induces

the projection η∗ : Z→ Z/2, i.e.

η∗[n] =

 [η] if n is odd,

[0] if n is even.

Hence one may work out the image of η∗ : H∗QS
0 → H∗QS

−1 as following

η∗xi = η∗(Q
i[1] ∗ [−2])

= η∗Q
i[1] ∗ η∗[−2]

= Qi[η] ∗ [0]

= Qi[η].

Applying the homology suspension we obtain

σ∗Q
i[η] = η∗σ∗xi = η∗Q

ig1 = Qix1 6= 0,

which shows that Qi[η] 6= 0. Notice that Qix1 depends on the Adem relation for

QiQ1, and will be trivial or maybe nontrivial modulo decomposable terms. However,

the decomposable part always has nontrivial terms, for example Q3x1 = x4
1. In fact,

as x1 is primitive, Qix1 is primitive. If QiQ1 = 0, then the decomposable part of

Qix1 is the square of a primitive and one may work out what this primitive is.

The above calculation allows us to calculate the image of η∗ : H∗QS
0 → H∗QS

−1

completely. Moreover, observe that

(η∗xi)
2 = (Qi[η])2 = Q2i([η] ∗ [η]) = Q2i[0] = 0,

and this calculations is consistent with the fact that H∗QS
−1 is an exterior algebra.

This together with induction on length, and the fact that (Qiξ)2 = Q2iξ2 implies that

(QI [η])2 = 0 for any I. Hence the subalgebra obtained in this way will be the exterior

algebra over the generators QI [η] with I admissible. This also verifies that ker η∗ is

not very small.

In particular, putting i = 1 we obtain η∗x1 = Q1[η]. Notice that

σ∗(Q
1[η]) = η∗σ∗x1 = η∗g

2
1 = x2

1 = p′21 ,
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where this class is related to the Kervaire invariant one element η2 ∈ πS
2 . Hence the

Hurewicz image of η2 ∈ π1QS
−1 is given by Q1[η] ∈ H1QS

−1.

Indeed this is picture of a general pattern. Recall that Q2kQ1 = Qk+1Qk, and

Q2k−1Q1 =

 QkQk if k is odd,

0 if k is even.

The class xi suspends to Qig1 which is a primitive class. Hence η∗Q
ig1 will be a

primitive class. If i = 2k, then

η∗Q
ig1 = Q2kx1 = x2

k +D.

If i = 2k − 1, then modulo decomposable terms one has

η∗Q
2k−1g1 = Q2k−1x1

=

 Qkxk if k is odd,

0 if k is even.

Hence Q2k−1[η] maps to x2
k under σ∗ modulo decomposable terms. Recall that x2

k,

with k odd, gives a primitive (p′k)
2. Hence, a spherical class involving x2

k will pull

back to a term in H∗QS
−1 which will involve Q2k−1[η]. Of interest will be classes

with k = 2s − 1 which may give rise to the possible Kervaire invariant one classes.

This also gives another set of relations among the generators of H∗Q0S
−1, namely

Q2k−1[η] = Q2i+1w′2i,

where k = 2i+ 1. We note that here [η] plays the role of w0 = w′0.

Notice that Qi[η] lives in the component Q2ηS
−1 = Q0S

−1. This means that the

subalgebra generated by QI [η] is a subalgebra of H∗Q0S
−1. The fact that QS−1 is an

infinite loop space implies that QηS
−1 and Q0S

−1 have the same homology induced

by the homotopy equivalence ∗[η] : Q0S
−1 → QηS

−1. This allows us to consider the

subalgebra generated by QI [η] ∗ [η] of H∗QηS
−1. We then obtain a subalgebra of

H∗QS
−1 given by polynomials in [η] and [0] with coefficients of the form QI [η].

Finally, we note that this subalgebras does not seem to capture all of the homology

rings H∗Q0S
−1 and H∗QS

−1 respectively.
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Note 5.41. The above remark provides us with the motivating example to identify

important subalgebras of H∗QS
−n. The start point is to consider π0QS

−n ' πS
n

together with the Hurewicz homomorphism

h : π0QS
−n → H0QS

−n.

For any α ∈ πS
n , we may define [α] = hα ∈ H0QS

−n. Then it is clear that [α] ∗ [β] =

[α+β] for α, β ∈ π0QS
−n, where ∗ denotes the product induces by the loop sum. One

then may try to work out the action of the Dyer-Lashof algebra on the subalgebra

generated by symbols QI [α] as we did before. In particular, applying the Cartan

formula implies that Qi[0] = 0 for all i > 0. In practice this does not seem possible

for all n, as we are still far from having a complete description of πS
n . But, on the other

hand any calculation of H∗QS
−n using any other method will be quite interesting, if

we can couple it with this observation.

More interesting cases will appear when π0QS
−n has more than one component.

Consider QS−9 with π0QS
−9 ' Z/2 ⊕ Z/2 ⊕ Z/2. Having different components in

π0QS
−9 shows the sort of the geometric complications that may appear in study of

these spaces. Suppose γi, i = 1, 2, 3, denote the generators for the first, second and

third copies of Z/2 in π0QS
−9 respectively. We let [γi] = hγi. Notice that in this case

Q0S
−9 has 8 components of the same homotopy type. Notice that γ2

i = 0. We know

that terms of the form Qi[γi] live in the component Q2γi
S−9 = Q0S

−9. Hence, we

may consider the subalgebras of H∗Q0S
−9 generated by the symbols of the following

forms,

QI1 [γ1], I1 admissible

QI2 [γ2], I2 admissible

QI3 [γ3], I3 admissible.

The fact that there are no relations among the generators γi implies that there are no

multiplicative relations among the three set of generators provided above. These are

the only pieces that we get. This can be seen as an evidence for some stable splitting

of the space Q0S
−9. We observe that QJ [γi + γj] = QJ([γi] ∗ [γj]) with i 6= j can be

calculated using the Cartan formula.
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We can apply similar techniques as we did before and use the translation maps

∗[γi] : Q0S
−9 → Qγi

S−9 and ∗[γi + γj] : Q0S
−9 → Qγi+γj

S−9 to obtain subalgebras of

the other components, and hence a subalgebra of H∗QS
−9.

Finally we note that we used the word “subalgebra” as we still don’t know the type

of the algebraic structure of H∗Q0S
−9. However, one still will be able to calculate

the R-module structure as well as the A-module structures as we did for H∗QS
−1.

I postpone pursuing this way for future work (if I secured a job)! We note that the

spaces that we have considered in this note are infinite loop spaces of the form QS−n

with n > 0 which makes their homology algebras, the homology of the base point

components, to be bi-associative and and bi-commutative Hopf algebras. This means

that in these cases we may apply Borel’s structure theorem which says that these

algebras are tensor product of polynomial algebras and their truncations.

5.8 Homology of QΣ−1CP and Q0S
−2

Through this section we will work with the generators w′2i ∈ H2iQ0S
−1. Recall that

(ΩλC)∗c2i = w′2i. This allowed us to calculate

Sq2j
∗ w

′
2i =

(
i− j
j

)
w′2i−2j.

Similarly, the co-product in H∗Q0S
−1 is given by

∆∗w
′
2i =

∑
k

w′2i−2k ⊗ w′2k,

Next, we need to determine the primitive classes in H∗Q0S
−1. We use the homology

of ΩλC together with naturality to calculate the square root map,

rS−1 : H∗Q0S
−1 → H∗Q0S

−1,

on the generators w′2i. Notice that all odd dimensional classes belong to the kernel of

this. Moreover, given an even dimensional class ξ of dimensional 2n, then rξ = Sqn
∗ ξ.

Hence, to calculate rS−1w′2i we need to calculate Sqi
∗w2i, and then see if this yields

a trivial or nontrivial class in QH∗Q0S
−1. This implies that the class w′2i belongs
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to the kernel of the square root map QH∗Q0S
−1 → QH∗Q0S

−1, if i is odd. Hence,

analogous to H∗QCP we obtain a set of primitives,

pS−1

4n+2 = w′4n+2 +DS−1

4n+2 ∈ H4n+2QS
−1.

Here, and similar to previous cases, we have

DS−1

4n+2 =
2n∑
i=1

w′2ip
S−1

4n+2−2i.

On the other hand, having QIw′2i with i even, such a class belongs to the kernel of

the square root map if I has at least one odd entry. According to this, we obtain

another set of primitives,

pS−1

i,j = Q2i+1w′2j +DS−1

i,j ∈ H2i+2j+1QS
−1,

where j is an even number. Then one may check that any primitive element in

H∗Q0S
−1 is a linear combination of terms of the formQLpS−1

4n+2 andQKpS−1

i,j . The proof

of this claim is similar to the proof of similar claims on primitive classes in H∗QCP

and H∗QP . Notice that, in homology, we have the following obvious relations

(ΩλC)∗p
CP
4n+2 = pS−1

4n+2,

(ΩλC)∗p
CP
i,j = pS−1

i,j .

Our description of primitive classes in H∗QCP , provided by Proposition 28 and

proved in section 5.6, allows us to apply the Eilenberg-Moore spectral sequence ma-

chinery, described by Proposition 5.4, to describe H∗QΣ−1CP . Notice that here,

similar to H∗Q0S
−1, there is a matter of choice ranging from the workable descrip-

tion to the ideal ones. We choose pCP
4n+2 and pCP

i,j to work with and obtain unique

indecomposable classes vCP
4n+1 ∈ QH4n+1QΣ−1CP and vCP

i,j−1 ∈ QH2i+2jQΣ−1CP such

that

σ∗v
CP
4n+1 = pCP

4n+2,

σ∗v
CP
i,j−1 = pCP

i,j .

This yields the following presentation.

Proposition 5.42. As an R-module H∗QΣ−1CP is given by the exterior algebra over

the generators QIvCP
4n+1 and QLvCP

i,j−1 with I and L admissible, and dim I > 4n + 1
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and dimL > 2i + 2j. The generators QIvCP
4n+1 are independent from each other for

different choices of admissible I. Two generators of the form QLvCP
i,j−1 are identified

if they map to the same class in H∗QCP under the homology suspension.

It is possible to work out the action of the Steenrod algebra and give the A-module

structure of H∗QΣ−1CP . Although such a description and its consequences can be

of its own interest, we like to use this to obtain some information on some subrings

of H∗QS
−2 as R-modules. In order to do this, we define v4n+1 ∈ H4n+1QS

−2 and

vi,j−1 ∈ H2i+2jQS
−2 by the following equations

v4n+1 = (Ω2λC)∗v
CP
4n+1,

vi,j−1 = (Ω2λC)∗v
CP
i,j−1.

The fact that H∗QΣ−1CP is an exterior algebra, implies that image of (Ω2λC)∗ is also

an exterior algebra. So we may consider the following subalgebra of H∗QS
−2 given

by

EZ/2(Q
Iv4n+1, Q

Lvi,j−1 : I, L admissible).

Consider the following commutative diagram

H∗QCP (ΩλC)∗ // H∗Q0S
−1

H∗−1Q0Σ
−1CP

σ∗

OO

(Ω2λC)∗// H∗Q0S
−2.

σ∗

OO

Notice that we demonstrated that (ΩλC)∗ is an epimorphism when restricted to the

submodule of primitives, which implies that primitive classes H∗QS
−1 pull back to

H∗QS
−2. Notice that σ∗ : QH∗−1QΣ−1CP → PH∗QCP is an isomorphism. The way

that we defined v4n+1, vi,j−1 ∈ H∗QS
−2 implies that

σ∗v4n+1 = pS−1

4n+2,

σ∗vi,j−1 = pS−1

i,j .

One then can apply Kudo’s transgression theorem to obtain

σ∗Q
Iv4n+1 = QIpS−1

4n+2,

σ∗Q
Lvi,j−1 = QLpS−1

i,j .
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Important Note. We like to draw the reader’s attention to the fact that according

to the above equations any given primitive class in H∗Q0S
−1 definitely pulls back to

H∗Q0S
−2.

Now we are in a position to complete the process of elimination of spherical classes.

We have the following.

Theorem 5.43. Let ξ = ζ2t ∈ H∗Q0S
0 be a spherical class with σ∗ζ 6= 0. Then it is

impossible to have t > 1.

Proof. We do the proof for t = 2, i.e. ξ = ζ4 = Q2dQdζ where d = dim ζ. The

approach is similar to our proof of the analogous theorem for H∗QS
n with n > 0, but

with a little bit more complication. The fact that ξ is an A-annihilated primitive,

implies that ζ is also an A-annihilated primitive class. Hence we may write ζ =∑
QIp′2i+1 +P 2 with (I, 2i+1) admissible, and P a primitive. According to Theorem

5.24 if ζ is odd dimensional, then P 2 = 0 and all terms QIp′2i+1 in the expression for

ζ are A-annihilated. On the other hand, if ζ is even dimensional then according to

Theorem 5.26 we know that I has only odd entries with (I, 2i+1) satisfying condition

3 of Theorem 2. Notice that we don’t know very much about P 2. But still we know

that we may write ζ as a sum, QJp′2j+1 where J is admissible but (J, 2j + 1) is not

necessarily admissible. Hence we may write

ξ =
∑

Q2dQdQLp′2l+1,

with L admissible, taking all of the above terms into one big sum, where some (L, 2l+

1) are admissible and some are not. Such a class pulls back to a 4d− 1 dimensional

class ξ−1 ∈ H4d−1Q0S
−1 given by

ξ−1 =
∑

Q2dQdQLw′2l +D−1,

where D−1 denotes the decomposable part. This is an odd dimensional primitive

class, i.e. its indecomposable part must belong to the kernel of the square root map.

Hence either d is odd, L has at least one odd entry, or l is odd. Hence we may rewrite

the above class as

ξ−1 =
∑
l odd

Q2dQdQLw′2l +
∑
l even

Q2dQdQLw′2l +D−1.
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We have already calculated the set of primitive classes in H∗QS
−1, hence we write

ξ−1 =
∑
l odd

Q2dQdQLpS−1

2l +
∑
l even

Q2dQKpS−1

k,l +D−1,

where D−1 is an odd dimensional decomposable primitive class. Hence D−1 = 0, i.e.

ξ−1 =
∑
l odd

Q2dQdQLpS−1

2l +
∑
l even

Q2dQKpS−1

k,l .

Notice that QdQLpS−1

2l and QKpS−1

k,l are of dimension 2d − 1. We plan make use of

Sq1
∗, but not here as in this exterior algebra Sq1

∗ξ−1 will be a square which is trivial

in the exterior algebra. Instead we desuspend once more. In this case the spherical

class ξ−1 pulls back to a spherical class ξ−2 ∈ H4d−2Q0S
−2. Notice that this class

is unique, while we fix the homotopy class that maps to ζ4 under the Hurewicz

homomorphism. On the other hand, recall that (ΩλC)∗ : H∗QCP → H∗QS
−1 is an

epimorphism, when restricted to the primitive submodules. Applying the Eilenberg-

Moore spectral sequence machinery shows that this gives rise to a unique class in

ξCP
−2 ∈ QH∗QΣ−1CP . We then obtain a set of classes ξCP

−2 + DCP
−2 ∈ H∗QΣ−1CP

where DCP
−2 runs over decomposable terms, such that

(ΩλC)∗σ∗(ξ
CP
−2 +DCP

−2 ) = ξ−1.

This implies that ξ−2 = (Ω2λC)∗(ξ
CP
−2 +DCP

−2 ) for any choice of DCP
−2 . Hence ξ−2 is in

the exterior subalgebra generated by im(Ω2λC)∗. Hence, we may write

ξ−2 =
∑
l odd

Q2dQdQLv2l−1 +
∑
l even

Q2dQKvk,l−1 +D−2.

where D−2 denotes the decomposable part. The classes QdQLv2l−1 and QKvk,l−1

are of dimension 2d − 2. Although one may decide to rewrite this sum in terms of

primitives, however this form is enough for our claim. Observe that

Sq1
∗ξ−2 =

∑
l odd

Q2d−1QdQLv2l−1 +
∑
l even

Q2d−1QKvk,l−1 + Sq1
∗D−2.

Notice that Sq1
∗D−2 is a decomposable. On the other hand terms Q2d−1QdQLv2l−1

and Q2d−1QKvk,l−1 are separated under this action as the map to distinct terms

under the homology suspension, which also shows that these classes do not belong to
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kerσ∗. This shows that Sq1
∗ξ−2 6= 0. But this is a contradiction. This completes the

proof.

Remark 5.44. The above calculation is based on explicit knowledge of the type of

primitive classes in H∗Q0S
−1. However, we may have a less detailed proof. Notice

that in the above lemma ξ = Q2dQdp for some A-annihilated primitive class p ∈

HdQ0S
0. According to Example 5.7, the class p has a unique pull back in q−1 ∈

QHd−1Q0S
−1. This implies that if f ∈ π4dQ0S

0 with hf = ξ, then its isomorphic pull

back satisfies f−1 ∈ πd−1Q0S
−1 with ξ−1 = hf−1 = Q2dQdq−1 modulo decomposable

classes. The fact that ξ−1 is primitive implies that either q−1 is in ker rS−1 or d is

odd.

If q−1 ∈ ker rS−1 , then q−1 = p−1 modulo decomposable terms, for some p−1 ∈

PH∗Q0S
−1. This then implies that ξ−1 = Q2dQdp−1 modulo decomposable primitives.

However, ξ−1 lives in odd dimensions which implies that the decomposable part has

to be trivial. Hence

ξ−1 = Q2dQdp−1.

Such a class pulls back to H4d−2Q0S
−2 to a spherical class ξ−2. We may write ξ−2 =

Q2dQdq−2 modulo decomposable terms. Notice that ξ−2 is a spherical class and hence

A-annihilated. Similar to the previous proof, applying Sq1
∗ shows that Sq1

∗ξ−2 6= 0

which is a contradiction for ξ being A-annihilated.

If it happens that q−1 6∈ ker rS−1 , then d has to be odd. Hence Qdq−1 = p−1 modulo

decomposable terms, for some p−1 ∈ PH∗Q0S
−1. We then have ξ−1 = Q2dp−1 modulo

decomposable terms. Similarly, for dimensional reasons the decomposable part is

trivial. In this case, ξ−1 pulls back to a spherical class ξ−2 ∈ H4d−2Q0S
−2 with

ξ−2 = Q2dq−2 modulo decomposable terms. Applying Sq1
∗ will give the contradiction

that we were looking for. This completes the proof.
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5.9 The Curtis Conjecture

This section contains the ideas that I believe proves the Curtis conjecture, or at

least provides a reasonable, and fruitful, approach towards identifying the spherical

classes in H∗Q0S
0. I will sketch a hand wavy argument which I believe can lead to a

complete proof of the Curtis conjecture. The main idea is to do the same as we did

in the proof of Theorem 5.43. This section tries to justify that these ideas do work

and this is the right attitude to tackle the conjecture. This also proves to be fruitful,

and one obtains other results that are interesting on their own.

Throughout this section we will distinguish between a homology class and its

cohomology dual. We also distinguish between π∗ and 2π∗, but we keep H∗ to denote

the homology with Z/2-coefficients.

Observe that the main idea in the proof of Theorem 5.43 was to write a spherical

class in terms of primitive classes, and pull it back twice and use some Steenrod

operation to prove the theorem. We would like to follow the same line, write classes

in terms of primitives and pull them back as much as we need and then apply some

Steenrod operation. The calculations may seem more hand wavy, but the right ma-

nipulation shows that these are justifiable arguments.

One of the tools that we use is the Milnor-Moore exact sequence to get some idea

about primitive classes in our homology algebras. Notice that QSn is an infinite loop

space for n ∈ Z. This implies that the Pontrjagin product in H∗QS
n is commutative.

Moreover, the co-product inH∗QS
n comes from the cup product in cohomology which

is already commutative. Hence, H∗QS
n is a bicommutative Hopf algebra and we can

apply Milnor-Moore exact sequence to study primitive classes in these algebras.

The calculation of the homology algebra H∗QS
n is based on applying a suitable

spectral sequence to the path-loop fibration

QSn → PQSn → QSn+1

and using our knowledge of the homology algebra H∗QS
n+1. Having said this, our

objective is not to calculate H∗QS
n for n < 0, nor do we want to calculate spherical

classes in H∗QS
n for n < 0. We only wish to obtain some information to use in
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our approach to eliminate the rest of the unwanted potential classes in H∗Q0S
0 from

being spherical in H∗Q0S
0. More precisely, we would like to use this technique to

show that only the Hopf invariant, and the Kervaire invariant elements give rise to

spherical classes in H∗Q0S
0.

Let me explain what we mean by the unwanted potential classes. First recall that

according to Lemma 5.11 any A-annihilated primitive class ξ ∈ H∗Q0S
0 with σ∗ξ 6= 0

can be written as

ξ =
∑

QIx2i+1

modulo decomposable terms, where (I, 2i+1) runs over certain admissible sequences.

Now, let θ ∈ H∗Q0S
0 be a spherical class. Then we have two separate cases: σ∗θ = 0,

and σ∗θ 6= 0.

If σ∗θ 6= 0, then we may assume that θ =
∑
QIx2i+1 modulo decomposable terms.

From Lemma 4 and Remark 5 we know that if there exists I = φ in the above

expression for θ, then θ corresponds to a Hopf invariant one element. Hence, if

θ =
∑
QIx2i+1 ∈ H∗Q0S

0 is a spherical class with σ∗θ 6= 0, which is not a Hopf

invariant one element, then l(I) > 0 for any I involved in the expression for θ, i.e.

min(l(I)) > 0.

If σ∗θ = 0, then θ = ξ2t
for some t > 0, and σ∗ξ 6= 0. According to Theorem 17 we

have t = 1, i.e. θ = ξ2 with ξ =
∑
QIx2i+1 modulo decomposable terms. Moreover,

Lemma 19 tells us that ξ must be an odd dimensional class. Similar to the previous

case, if there exists I = φ, then combining Remark 5 and Lemma 13 will imply that

θ corresponds to a Kervaire invariant one element. Hence in this case, and similar to

the previous case, the classes which are not Kervaire invariant one elements are those

A-annihilated primitive classes θ will be those ones with min l(I) > 0. Notice that if

l(I) > 0, we then may apply Theorem 5.24 to the class ξ. This implies that we may

write ξ =
∑
QIp′2i+1 with every QIp′2i+1 in the sum being an A-annihilated class.

The following theorem summarises the above discussion, which classifies the type of

classes that we want to be eliminate from being spherical.

Theorem 5.45. Let θ ∈ H∗Q0S
0 be a spherical class which is not a Hopf invariant



Chapter 5. The Curtis Conjecture 126

one class, neither a Kervaire invariant one class. Then θ satisfies one of the the

following cases.

1- If σ∗θ 6= 0 and θ is an odd dimensional class, then

θ =
∑

QIp′2i+1,

with l(I) > 1 such that each of terms QIp′2i+1 in the above sum is A-annihilated.

2- If σ∗θ 6= 0 and θ is an even dimensional class, then

θ =
∑

QIp′2i+1 + P 2,

with l(I) > 1 where I has only has odd entries. In this case (I, 2i + 1) satisfies

condition 3 of Theorem 2, i.e. 0 < 2ij+1−ij < 2ρ(ij+1) for 1 6 j 6 r with ir+1 = 2i+1.

Moreover, excess(QIp′2i+1) − 1 < 2ρ(i1) for every QIp′2i+1 involved in the above sum.

Here P is a primitive term. If P 6= 0, then it is of odd dimension. If P = 0, then

each term in the above expression for θ is A-annihilated.

3- If σ∗θ = 0, then θ = ξ2, with ξ an odd dimensional A-annihilated primitive class,

i.e.

θ = (
∑

QIp′2i+1)
2,

with l(I) > 0 such that each of terms QIp′2i+1 in the above sum is A-annihilated.

In all of the above cases (I, 2i+ 1) is supposed to be admissible.

Proof. Part 1 is the statement of Theorem 5.24. Part 3 follows from discussions above

together with Theorem 5.24.

We focus on part 2. The first half is the statement of Theorem 5.26. Notice that

in this case θ suspends to the odd dimensional spherical class σ∗θ =
∑
QIQ2i+1g1 ∈

H∗QS
1, and hence according to Lemma 12 each of terms QIQ2i+1g1 must be A-

annihilated. In particular this implies that excess(QIQ2i+1g1) < 2ρ(i1). The fact that

excess(QIQ2i+1g1) = excess(QIp′2i+1)− 1 shows that excess(QIp′2i+1)− 1 < 2ρ(i1).

Now, we only need to show that if P 6= 0, then it is an odd dimensional class, and if

P = 0 then each term in the above sum is A-annihilated.
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First, assume that P 6= 0. Then we may write

θ =
∑

QIp′2i+1 +QdP,

where d = dimP . Similar to the proof of Theorem 5.43, we can show that this class

pulls back to a spherical class ξ−1 ∈ H2d−1Q0S
−1, which may be written as

ξ−1 =
∑

QIw′2i +Qdq−1,

modulo decomposable terms, where σ∗q−1 = P . The fact that ξ−1 is an odd dimen-

sional class implies that it belongs to the kernel of the square root map. We note that

our assumption that l(I) > 0 with I only having odd entries implies that
∑
QIw′2i

belongs to this kernel. Hence we need to have Qdq−1 to belong to this kernel. This

means that either q belongs to this kernel, or d is odd. Assuming that d is even,

implies that q−1 has to belong to this kernel. Hence we get a unique primitive class

p−1 corresponding to q−1 modulo decomposable terms. A trick similar to the one

in the proof of Theorem 5.43 implies that ξ−1 pulls back to a spherical class ξ−2 in

H∗Q0S
−2. Now applying Sq1

∗ leads to a contradiction. This shows that d cannot be

even.

Next, assume that P = 0. In this case we have an A-annihilated sum of terms QIp′2i+1

of positive excess. Remark 3.22 now implies that each of the terms QIp′2i+1 must be

A-annihilated.

The above theorem sets the target for us and identifies the classes that we were

looking for to eliminate from being spherical in H∗Q0S
0. In particular eliminating

all cases mentioned by the above theorem will verify Curtis’s conjecture. As we men-

tioned earlier, at the beginning of this section, our approach to do this elimination will

be similar to the proof of Theorem 5.43. Notice that there is a narrow distinction

between Hopf invariant and Kervaire invariant classes and other potential classes.

The Hopf invariant one and the Kervaire invariant one elements do exist, if p′2s−1 and

(p′2s−1)
2 are spherical in H∗Q0S

0. We know that every spherical class ought to be

A-annihilated. In the case of Hopf invariant and Kervaire invariant classes we end up

with A-annihilated classes only for numerical reasons. More precisely, in these cases
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the action of the Steenrod algebra on p′2s−1 and (p′2s−1)
2 depends on the coefficients

of the form
(
2s−1−t

t

)
≡ 0 mod 2.

However, in the cases other than the Hopf invariant and Kervaire invariant one ele-

ments there is kind of a dimensional reason. According to the above theorem in other

cases we deal with classes of the form QIp′2i+1 with excess(QIp2i+1) < 2ρ(i1), square

of such terms, or terms QIp′2i+1 with excess(QIp′2i+1) − 1 < 2ρ(i1). Our approach is

to show that the assumption of such a class being spherical will imply that it can

be desuspended enough times to a class which is not A-annihilated, hence giving

a contradiction. We may gain this goal if we succeed to show that a given primi-

tive class QIp′2i+1 ∈ H∗Q0S
0 desuspends to a class of the form Qi1q−(2ρ(i1)+1) where

q−(2ρ(i1)+1) ∈ H∗−(2ρ(i1)+1)Q0S
−(2ρ(i1)+1). Then it is quite straightforward to see that

Sq2ρ(i1)

∗ Qi1q−(2ρ(i1)+1) = Qi1−2ρ(i1)

q−(2ρ(i1)+1) 6= 0

which will give us the contradiction that we were looking for. Of course we know

that in general a spherical class can be a sum of primitive terms QIp′2i+1, and hence

we have to choose the right term to work with and pursue the above approach.

Finally, notice that having a spherical classes θ ∈ HnQ0S
0, we obtain f ∈ 2πnQ0S

0

with hf = θ. It is possible to have different elements in 2πnQ0S
0 mapping to θ under

the Hurewicz homomorphism. However, we fix f at the beginning. We use f−k to

denote the unique desuspension of f into 2πn−kQ0S
−k. Notice that f desuspends

as far as f−n ∈ 2π0Q0S
−n with σn

∗hf−n = θ. This implies that σk
∗hf−n 6= 0 for

1 6 k 6 n, which in return defines unique desuspensions of θ into spherical classes

θ−k ∈ Hn−kQ0S
−k. Notice that this can be thought of an obstruction for being

spherical. More precisely, if θ−i for some i > 0 does not desuspend to Hn−i−1Q0S
−i−1,

then θ cannot be spherical in HnQ0S
0.

In order to follow this line, we need to identify subalgebras of H∗Q0S
−k which will

contain pull back of a spherical class θ ∈ H∗Q0S
0.

Remark 5.46. Recall that a given primitive class in H∗Q0S
0 does pull back to a class

in H∗Q0S
−1. Similarly, according to the Important Note before Theorem 5.43, a

given primitive class in H∗Q0S
−1 does pull back to a class in H∗Q0S

−2. Such pull
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back classes give rise to nontrivial classes in the quotient module of indecomposables.

So we may talk about the primitive classes they may give rise to, depending on their

action under the square root map. However, it is not clear that at each stage a

primitive class in H∗Q0S
−k will pull back to a class in H∗−1Q0S

−k−1.

We proceed based on the assumptions that primitives pull back, and examine the

implications. We also give clear description, and prove the truth of a such claim

in some special cases, verified by Remark 5.52. Notice that claiming that a give

primitive class in H∗X pulls back to a class in H∗−1ΩX is the same as claiming that

there is a surjection

QH∗−1ΩX � PH∗X.

Remark 5.47. Previously, the use of the complex transfer λC : QΣCP+ → Q0S
0

allowed us to give a geometric meaning to generators w2i ∈ H2iQS
−1 and define

them uniquely. However, we lack such a tool in general case. Although it seems

possible to use the quaternionic transfer λH : QHP τ → Q0S
0 to obtain geometric

description for generators of H∗QS
−3. Here HP τ is James’s quasi-projective space

[A61, Proposition 5.3].

Usually, the spaces QS−n for n > 0 are not path connected. The reason is that

π0QS
−n ' πS

n which is not always trivial. This implies that QS−n ' πS
n × Q0S

−n.

Notice that here we only work with loop structure arising from the loop sum on

these spaces. Now consider the path connected space Q0S
−n with π1Q0S

−n ' πS
n+1.

Notice that the groups πS
n+1 are Abelian. Moreover, the space Q0S

−n is an infinite

loop space, in particular it is an associative H-space. Hence according to [CLM76,

Part I, Lemma 4.7] there is a map K(πS
n+1, 1)→ Q0S

−n inducing the weak homotopy

equivalence

Q0S−n ×K(πS
n+1, 1)→ Q0S

−n,

We may loop this equivalence to get the following weak homotopy equivalence

ΩQ0S−n × πS
n+1 → ΩQ0S

−n = QS−n−1,

where QS−n denotes a suitable model of the universal cover for a space QS−n. Notice

that QS−n−1 ' Q0S
−n−1×πS

n+1. Restricting to the base point components then gives
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the weak homotopy equivalence

ΩQ0S−n → Q0S
−n−1.

Notice that according to [CLM76, Part I, Lemma 4.8] Q0S−n is an infinite loop space

and the inclusion map Q0S−n → Q0S
−n is a map of infinite loop spaces. This then

induces an infinite loop structure on Q0S
−n−1. Regarding the application of spectral

sequences to calculate Q0S
−n−1 the equivalence ΩQ0S−n → Q0S

−n−1 then tells us to

apply a suitable spectral sequence to the following fibration

Q0S
−n−1 → PQ0S−n → Q0S

−n,

where the base space is simply connected, which eases the calculations. Notice that

if a primitive class in H∗Q0S
−n pulls back to H∗−1Q0S

−n−1, then we may look at

the suspension homomorphism in the Eilenberg-Moore spectral sequence associated

with the above fibration. Notice that we may continue doing the above argument

and inductively conclude that Q0S
−n = ΩnQ0S

0〈n〉 where Q0S
0〈n〉 denotes the n-

connected cover of Q0S
0.

Remark 5.48. Notice that it is easy to derive the equivalence ΩQ0S
−n → Q0S

−n−1.

This can be obtained once we observe that Q0S−n by the fibration sequence

Q0S−n → Q0S
−n → K(πS

n+1, 1).

We then may loop the above fibration, and see that ΩQ0S−n and Q0S
−n−1 have

the same homotopy groups. We also like to note that we have note claimed that

Q0S−n × K(πS
n+1, 1) → Q0S

−n, is an equivalence of H-spaces, nor general infinite

loop spaces.

Now we return to our main problem. If we assume that the primitive classes of

H∗Q0S
−n at any stage pulls back to some classes in H∗Q0S

−n−1, we then are following

an inductive argument. We have done the base case of this induction in Section 5.7

where we fixed a basis for PH∗Q0S
0. Let us quickly review that work, without using

the complex transfer.
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5.9.1 Homology of Q0S
−1 without the complex transfer!

We fix p′2i+1 as a basis for primitives in H∗Q0S
0. According to our discussion in

Remark 5.46, assuming that p′2i+1 to H∗Q0S
−1 (which in this case we know it will

definitely do), we obtain an indecomposable class w′2i ∈ QH2iQ0S
−1 with σ∗w

′
2i =

p′2i+1. The fact that Q0S
−1 is an infinite loop space allows us to consider QIw2i with

σ∗Q
Iw′2i = QIp2i+1. Notice that QIp2i+1 is a primitive class, and hence there is a

class qS−1

I,2i ∈ QH∗Q0S
−1 with σ∗q

S−1

I,2i = QIp2i+1. This implies that QIw′2i = qS−1

I,2i

mod kerσ∗. Although in this case the fact that σ∗ : QH∗Q0S
−1 → PH∗Q0S

0 is an

isomorphism implies that QIw′2i = qS−1

I,2i . But we don’t know whether this holds in

general. However, we choose to work with QIw′2i while we do the rest of the work.

Now, a given class
∑
QIp2i+1 ∈ H∗Q0S

0 will pull back to a class of the form∑
QIw′2i modulo decomposable terms. Such a class ought to be primitive. This

implies that
∑
QIw′2i belong to the kernel of the square root map rS−1 : QH∗Q0S

−1 →

QH∗Q
−1
S . Recall from relations (5.2) and (5.3) that rQ2i = Qir and rQ2i+1 = 0,

where r denotes the square root map. Hence, we only need to calculate rS−1w′2i. On

the other hand recall that for a given 2n dimensional class ξ we have rξ = Sqn
∗ ξ

[W82, Definition 2.1]. This observation together with the stability of the Steenrod

operations allows us to redo the calculation of rS−1w′2i as following,

σ∗rS−1w′2i = σ∗Sq
i
∗w

′
2i

= Sqi
∗p
′
2i+1

=
(

i+1
i

)
pi+1 =

 0 if i is odd,

pi+1 if i is even.

This implies that modulo kerσ∗ we have,

rS−1w′2i =

 0 if i = 2k + 1,

w′2k if i = 2k.

Recall from Proposition 5.4 and Example 5.5 that σ∗ : QH∗Q0S
−1 → PH∗Q0S

0 is

an isomorphism. This implies that w′2i belongs to the kernel of rS−1 : QH∗Q0S
−1 →

QH∗Q0S
−1 only if i = 2k + 1 for some k. Of course, we validated that this point in

section 5.7 using the complex transfer.



Chapter 5. The Curtis Conjecture 132

Now assume that θ =
∑
QIp′2i+1 with (I, 2i + 1) admissible, and I only formed of

odd entries. If we suppose that that θ is a spherical class, it then must pull back

to a spherical class whose image in QH∗Q0S
−1 is given by

∑
QIw′2i modulo kerσ∗.

The fact that θ−1 is a primitive class implies that
∑
QIw′2i ∈ ker rS−1 . Notice that

w′2i 6∈ ker rS−1 for i even. However, having I = (i1, . . . , ir) formed only of odd entries,

we know that Qirw′2i ∈ ker rS−1 . Similarly, if i is odd and w′2i 6∈ ker rS−1 , we may

then consider to Qirw′2i ∈ ker rS−1 . In these cases, modulo decomposable terms, we

obtain primitive elements,

pS−1

2i = w′2i if i = 2k + 1;

pS−1

i,j = Q2i+1w′2j if j = 2k.

Hence, modulo decomposable classes, the image of θ−1 in H∗Q0S
−1 belongs to the

R-module spanned by pS−1

2i and pS−1

i,j .

We now apply Lemma 5.46 to the primitive classes pS−1

2i and pS−1

i,j , and work out

their pull backs into classes in QH∗Q0S
−2. Similarly, the spherical class θ−2 must

be primitive. On then can apply naturlaity of the Steenrod operations to work out

the action of the square root map. The fact that θ−2 is primitive forces its image in

QH∗Q0S
−2 to belong to the kernel of the square root map

rS−2 : QH∗Q0S
−2 → QH∗Q0S

−2.

We have the following observation on the primitive classes in H∗Q0S
−2.

Lemma 5.49. Let θ ∈ H∗Q0S
0 be a spherical class. Then, modulo the kernel of

σ∗ : H∗Q0S
−2 → H∗Q0S

−1 this class pulls back to a primitive class belonging to the

R-submodule of H∗Q0S
−2 generated by the primitive classes pS−2

2i−1, p
S−2

i,j−1 and pS−2

f,i,j−1

such that

σ∗p
S−2

2i−1 = pS−1

2i ,

σ∗p
S−2

i,j−1 = pS−1

i,j ,

σ∗p
S−2

f,i,j−1 = Q2f+1pS−1

i,j .

In particular, modulo decomposable terms, we have

σ∗p
S−2

f,i,j−1 = Q2f+1Q2i+1w′2j.



Chapter 5. The Curtis Conjecture 133

Proof. Let v2i−1 ∈ QH∗Q0S
−2 be a class with σ∗v2i−1 = pS−1

2i . This is an odd dimen-

sional class, and hence belongs to the kernel of rS−2 . Hence we obtain

pS−2

2i−1 = v2i−1 mod decomposable terms.

On the other hand, let vi,j−1 ∈ H2i+2jQ0S
−2 be a class such that σ∗vi,j−1 = pS−1

i,j .

Notice that this class is defined if j = 2k. We need to apply Sqi+j
∗ to this class. This

yields the following modulo decomposable terms,

σ∗rS−2vi,j−1 = σ∗Sq
i+j
∗ vi,j−1

= Sqi+j
∗ pS−1

i,j

= Sqi+j
∗ Q2i+1w′2j

=
(

i−j+1
i−j

)
Qi+1Sqj

∗w
′
2j

=

 Qi+1w′2k if i = 2l;

0 if i = 2l + 1;

where j = 2k. Notice that according to the above calculation, if j = 2k then

Sqi+j
∗ pS−1

i,j =

 pS−1

l,k if i = 2l;

0 if i = 2l + 1;

The above calculations also show that vS−2

i,j−1 can fall into ker rS−2 , if i = 2l+1. Hence,

modulo decomposable terms, we obtain the following set of primitive classes,

pS−2

i,j−1 = vi,j−1 if i = 2l + 1 and vi,j−1 ∈ ker rS−2 ;

pS−2

f,i,j−1 = Q2f+1vi,j−1 if i = 2l + 1 and vi,j−1 6∈ ker rS−2 ;

pS−2

f,i,j−1 = Q2f+1vi,j−1 if i = 2l.

Now having a spherical class θ =
∑
QIp2i+1, it pulls back to a class which belongs

to the R module spanned by the primitives which suspends to p2i+1’s. Applying the

Lemma 5.46 then implies the lemma.

Remark 5.50. Let 2i + 1 be an odd number which is not of the form 2α − 1. Then

2i + 1 = 2ρ+1N + 2ρ − 1 for some integer N > 0 with ρ = ρ(2i + 1). The fact

2i + 1 = 2ρ(2N + 1) − 1 implies that i = 2ρ−1(2N + 1) − 1. Assuming that ρ > 1,

implies that i is of the form 2k + 1. Notice that an A-annihilated term, QIp′2i+1 will
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have most entries which are not of the form 2α−1. This comes from the constructions

that we have provided in Appendix C. In fact most of the sequences I satisfying

condition 3 of Theorem 2 have this property. This means that in practice we will not

have so many primitive classes of the second and third form above involved in the

expression for a spherical class.

We hope that the above lemma illustrates the pattern that we claim to happen

while we desuspend a spherical class θ ∈ H∗Q0S
0. However, the calculation become

more delicate and tedious. The reason being that during these calculations we need

to find out about the action of the square root map. However, as we observed to do

this we need to use the homology suspension. We lack this part of information, and

calculation after this involves indeterminacies up to kerσ∗.

Of course for our purpose this is not that bad. More precisely, if the kernel becomes

very huge then it may imply that we cannot pull back further which as we noted,

before Lemma 5.46, is an obstruction for being spherical. On the other hand if kerσ∗

does behave in our favorite manner, then we can continue with our calculations

and finish the proof. We like to present one more example to illustrate the heavy

calculations that has to be carried out.

Example 5.51. Let θ ∈ H∗Q0S
0 be a spherical class. Then we like to calculate, mod-

ulo the kernel of σ∗ : H∗Q0S
−3 → H∗Q0S

−2, the subalgebra of H∗Q0S
−3 which will

contain the pull back of a spherical class θ ∈ H∗Q0S
0.

Lemma 5.49 implies that a spherical θ ∈ H∗Q0S
0 pulls back to a class which,

modulo the kernel of σ∗ : H∗Q0S
−2 → H∗Q0S

−1, belongs to the R-module gen-

erated by the primitive classes pS−2

2i−1 ∈ H2i−1Q0S
−2, pS−2

i,j−1 ∈ H2i+2jQ0S
−2, and

pS−2

f,i,j−1 ∈ H2f+2i+2j+1Q0S
−2 such that

σ∗p
S−2

2i−1 = pS−1

2i ,

σ∗p
S−2

i,j−1 = pS−1

i,j ,

σ∗p
S−2

f,i,j−1 = Q2f+1pS−1

i,j .

Based on the assumption that such classes do pull back, we obtain indecomposable

classes qS−3

2i−2 ∈ QH2i−2Q0S
−3, qS−3

i,j−2 ∈ QH2i+2j−1Q0S
−3, and qS−3

f,i,j−2 ∈ QH2f+2i+2jQ0S
−3
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such that

σ∗q
S−3

2i−2 = pS−2

2i−1,

σ∗q
S−3

i,j−2 = pS−2

i,j−1,

σ∗q
S−3

f,i,j−2 = pS−2

f,i,j−1.

The class qS−3

i,j−2 is odd dimensional, and so gives rise to a primitive class pS−3

i,j−2.

These other two classes are even dimensional. Hence, we need to look at the action

of the square root map rS−3 : H∗Q0S
−3 → H∗Q0S

−3 on these classes. First, we

deal with qS−3

2i−2 which is of dimension 2i− 2, and we consider the action of Sqi−1
∗ on

this coupled with the action of homology suspension H∗Q0S
−3 → H∗Q0S

−2. Then,

modulo decomposable terms, we have

σ∗Sq
i−1
∗ qS−3

2i−2 = Sqi−1
∗ σ∗q

S−3

2i−2

= Sqi−1
∗ pS−2

2i−1

= Sqi−1
∗ v2i−1.

At this point we need to re-use the homology suspension to calculate Sqi−1
∗ v2i−1.

Notice that in this case v2i−1 suspends to pS−1

2i where is defined for i = 2k + 1. This

yields, modulo decomposable terms, the following

σ∗Sq
i−1
∗ v2i−1 = Sqi−1

∗ pS−1

2i

= Sqi−1
∗ w′2i

=
(

i+1
i−1

)
w′i+1

= (i+1)i
2
w′i+1

= (2k+2)(2k+1)
2

w′i+1

=

 0 if k odd;

w′i+1 if k even.

This implies that rS−3qS−3

2i−2 6= 0 if i = 2k+1 with k is even. Hence, qS−3

2i−2 may belong to

ker rS−3 only if i = 2k+1 and k is odd. Hence, we obtain the following corresponding

primitive classes which modulo decomposable terms are given by

qS−3

2i−2 if i = 2k + 1 and k is odd, with qS−3

2i−2 ∈ ker rS−3 ;

qS−3

2i−2 if i = 2k + 1 and k is odd, with qS−3

2i−2 6∈ ker rS−3 ;

Q2f+1qS−3

2i−2 if i = 2k + 1 and k is even.
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We note that this will be the largest possible set of primitives that one can get out

of qS−3

2i−2, and perhaps knowing more about the kernel of σ∗ : H∗Q0S
−3 → H∗Q0S

−2

will eliminate some of these cases. Previously the fact that σ∗ : QH∗Q0S
−1 →

PH∗Q0S
0 being an isomorphism helped us to get lower number of indecomposables.

This fact also helped us to calculate the action of the Steenrod operations Sqi
∗ on

indecomposable terms w′2i up to a smaller indeterminacy.

Finally we note that one may employ similar methods to calculate the action of rS−3

on indecomposable classes qS−3

f,i,j−2 ∈ QH2f+2i+2jQ0S
−3. This class suspends to pS−2

f,i,j−1

which suspends to Q2f+1Q2i+1w′2j modulo decomposable terms. Recall that such a

class is defined when j is even. We need to calculate Sqi+j+f
∗ qS−3

f,i,j−2 and see when it

possibly vanishes and when it does not vanish. Similar to what we did before, we

look at Sqi+j+f
∗ Q2f+1Q2i+1w′2j. Recall that here j is even, and i can be either odd or

even. We have the following, up to decomposable terms,

Sqi+j+f
∗ Q2f+1Q2i+1w′2j =

(
f−i−j+1

f−i−j

)
Qf+1Sqi+j

∗ Q2i+1w′2j

=

 Qf+1Sqi+j
∗ Q2i+1w′2j if f, i both even, or both odd;

0 if f, i have different parity.

Moreover, recall that

Sqi+j
∗ Q2i+1w′2j =

(
i−j+1

i−j

)
Qi+1Sqj

∗w
′
2j

=

 Qi+1w′2k if i = 2l;

0 if i = 2l + 1;

This implies that

Sqi+j+f
∗ Q2f+1Q2i+1w′2j =

 Qf+1Qi+1w′2k if f, i both even;

0 otherwise.

This means that the class qS−3

f,i,j−2 can belong to ker rS−3 only if i = 2l+ 1 or f is odd

and i is even. Analysing different combinations will give at most five possible sets of

primitives. We really like to leave the rest to the reader to verify for himself/herself.

We have to say that, perhaps applying some of the number theory used in describing
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A-annihilated classes will help to eliminate some of these cases. It is also possible to

do more calculations, and identify some of these classes and show that they can be

defined uniquely. We investigate this in the next remark. This concludes this long

example!

Remark 5.52. It is still possible to show uniqueness of some primitive classes in

H∗Q0S
−2 and H∗Q0S

−3 and the indecomposable classes that they project to. We

follow a pattern similar to Remark 5.40. In this case, we consider to ν ∈ πS
3 '

πS
1 S

−2 ' πS
0 S

−3. This will give rise to infinite loop maps, denoted with ν,

ν : QS1 → Q0S
−2,

ν : Q0S
0 → Q0S

−3.

One may use this to identify specific subalgebras, as we did in Remark 5.40 and

discussed in Note 5.41. But we like to show how these can be used to show that

specific generators are uniquely determined, i.e. the suspension homomorphism on

these generators is monomorphism.

First, notice that ν : QS3 → Q0S
0 sends g3 ∈ H3QS

3 to p′3 ∈ H3Q0S
0. This is an

infinite loop map, so it sends Qig3 to Qip′3. If we choose i > 6, then Qip′3 will not be

admissible. Applying Lemma 5.10 implies that we need to use the Adem relation for

the pair QiQ3.

If we choose i ≡ 1 mod 4, i.e. i = 4k + 1 for some k, then we have

QiQ3 = Q2k+3Q2k+1.

This implies that, modulo terms of lower excess, we may write

ν∗(Q
4k+1g3) = Q4k+1p′3 = Q2k+3p′2k+1

where now the right hand side is admissible. Now we desuspend once, and consider

ν : QS2 → Q0S
−1. We know that σ∗ν∗g2 = ν∗g3 = p′3. We also know that g2

is primitive. This implies that ν∗g2 = pS−1

2 , and that σ∗ν∗(Q
4k+1g2) = Q2k+3p′2k+1.

Again, notice that Q4k+1g2 is primitive. Taking these to account, we have

ν∗(Q
4k+1g2) =

 Q2k+3pS−1

2k if k = 2l + 1;

pS−1

k+1,k if k = 2l.
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We now can play the same game and desuspend once more to work with ν : QS1 →

Q0S
−2. This bit gives new information. In particular, we know that σ∗ν∗g1 = pS−1

2 .

The fact that g1 is primitive, implies that ν∗g1 = v1 = pS−2

1 , and that

σ∗ν∗(Q
4k+1g1) =

 Q2k+3pS−1

2k if k = 2l + 1;

pS−1

k+1,k if k = 2l.

Combining this with the primitivity of Q4k+1g1 implies that

ν∗(Q
4k+1g1) =

 Q2k+3pS−2

2k if k = 2l + 1;

pS−2

k+1,k−1 if k = 2l.

which uniquely defines pS−2

2k−1, as well as pS−2

k+1,k−1.

In other cases, when we can do similar job, provided we know the “right” Adem

relation. For instance, one can check that for i = 4k+ 3 we have the following Adem

relation

Q4k+3Q3 =

 Q2k+3Q2k+3 if k is even,

0 if k is odd.

This implies that modulo terms of lower excess

ν∗(Q
4k+3g3) = Q4k+3p′3 =

 Q2k+3p′2k+3 if k is even,

0 or p2 if k is odd,

where p is a primitive! We may desuspend once to see that if k is even,

ν∗(Q
4k+3g2) = Q2k+3pS−1

2k+2.

In this case we obtain,

ν∗(Q
4k+3g1) = Q2k+3pS−2

2k+1,

which in return uniquely defines v2k+1 ∈ QH2k+1Q0S
−2.

We note that if i = 4k+ 2, then in the Adem relation for QiQ3 we will have terms of

the form Q2aQb whereas we know this will not appear in the expression for a spherical

class. So, we will not consider them here.

We may play a similar game, and use the map ν : Q0S
0 → Q0S

−3 to identify some

of primitive classes in H∗Q0S
−3 in a unique way. Notice that the primitive classes in
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H∗Q0S
0 which map to Q4k+1g1 and Q4k+3g1 are p4k+1 and p4k+3 provided by our first

description of primitive classes in H∗Q0S
0 (see section 5.4 for this description). This

implies that,

ν∗(p4k+1) =

 Q2k+3pS−3

2k−1 if k = 2l + 1,

pS−3

k+1,k−2 if k = 2l.

Similarly, if k is even we have

ν∗(p4k+3) = Q2k+3pS−3

2k .

This later one, uniquely defines qS−3

2k with k even. The first two also give unique

identification of primitive and indecomposable classes considered in Example 5.51.

Finally, we like to note similar job can be done using σ ∈ πS
7 . We leave this as an

exercise to the very diligent reader! We note that this will give unique identification

of some important primitive classes in H∗Q0S
−n for n < 8. We also recommend that

the relation between these and the way that the homology suspension acts would be

of interest, especially when we consider calculating the suspension homomorphism

arisen from the Eilenberg-Moore spectral sequence.

5.9.2 The Curtis conjecture continued

The discussion in previous section shows the pattern that happens while we desuspend

a primitive class to a primitive class. We may summarise it as following.

There are two basic types of primitive classes in H∗Q0S
−k. The first type of these

classes are those ones which pull back to an indecomposable qS−k−1 ∈ QH∗Q0S
−k−1

with trivial image under the square root map QH∗Q0S
−k−1 → QH∗Q0S

−k−1 which

straight away gives rise to a unique primitive class in pS−k−1 ∈ H∗Q0S
−k−1. In this

case,

σ∗p
S−k−1

= pS−k

.

The second type of primitive classes are those primitive classes pS−k ∈ H∗Q0S
−k which

pull back to an indecomposable class qS−k−1 ∈ QH∗Q0S
−k−1 with a nontrivial action

under the square root map QH∗Q0S
−k−1 → QH∗Q0S

−k−1. In this case, applying an

operation Q2i+1 to qS−k−1
will give rise to a class Q2i+1qS−k−1

with the trivial action
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under the square root map. This gives rise to a primitive class pS−k−1

2i+1 ∈ H∗Q0S
−k−1

which modulo decomposable terms is defined by

pS−k−1

2i+1 = Q2i+1qS−k

.

In this case

σ∗p
S−k−1

2i+1 = Q2i+1pS−k

.

On the other side, having a primitive class pS−k

2i+1 ∈ H∗Q0S
−k which pulls back to an

indecomposable class qS−k−1

2i+1 ∈ QH∗Q0S
−k−1 with the trivial action under the square

root map QH∗Q0S
−k−1 → QH∗Q0S

−k−1, gives rise to a primitive class pS−k−1

2i+1 with

σ∗p
S−k−1

2i+1 = pS−k

2i+1.

Now let l(I) = r with I = (2i1 + 1, J) an admissible sequence of odd numbers.

By analogy we may consider primitive classes which modulo decomposable terms are

given by one of the following equations

pS−k−1

I = qS−k−1

I ,

pS−k−1

I = Q2i1+1qS−k−1

J ,

respectively satisfying one of the following equations,

σ∗p
S−k−1

I = pS−k

I ,

σ∗p
S−k−1

I = Q2i1+1pS−k

J .

In either of the cases the following identity holds

σk+1
∗ pS−k−1

I = QIp.

The above discussion, combined with Theorem 5.45, is summarised in the follow-

ing proposition.

Proposition 5.53. Let θ−k ∈ H∗Q0S
−k be a spherical class with θ = σk

∗θ−k 6= 0

which is not a Hopf invariant class nor a Kervaire invariant class. Then modulo

the kernel of σ∗ : H∗Q0S
−k → H∗Q0S

−k+1 the class θ−k can be written as a linear

combination of primitive terms of the following forms

QJpS−k

K , QLpS−k

2l+1−k,
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where (I, 2i+ 1) = (J,K) = (L, 2l + 1) with I, J,K, L being admissible and J can be

the empty sequence. Here θ has either one of the following forms,

θ =
∑
QIp2i+1 modulo decomposable terms

θ = (
∑
QIp2i+1)

2

satisfying one of the cases identified by Theorem 5.45, (I, 2i+1) admissible if excess(I, 2i+

1) > 0.

Now we consider to the action of the Steenrod algebra on the primitive classes

discussed above. If pS−k−1

I = Q2i1+1qS−k−1

J is given modulo decomposable terms,

then we may calculate action of the Steenrod algebra using the Nishida relations,

provided that we understand the action of the Steenrod operations on qS−k−1

J . No-

tice that the action of the Steenrod operations on qS−k−1

J can be calculated by

using the suspension argument as we did before, of course modulo the kernel of

σ∗ : H∗Q0S
−k−1 → H∗Q0S

−k. Although in our approach, explained after the proof

of Theorem 5.45, after we desuspended enough times we will need not to know about

the action of the Steenrod algebra on qS−k−1

J and only the Nishida relations together

with the right choice of the operation will finish off the proof of the Curtis conjecture.

Moreover, having given the primitive classes pS−k−1

I = Q2i1+1qS−k−1

I modulo decom-

posable terms, the fact that qS−k−1

I will suspend (probably iterated suspensions) to

Qi1ξ for some ξ allows us to treat Sqa
∗q

S−k−1

I in the same way as we treat Sqa
∗ξ−k−1

for some ξ−k−1 modulo the kernel of the (iterated) suspension.

Finally, notice that having QIp2i+1 ∈ HnQ0S
0 with excess(QIp2i+1) > 0 implies that

l(I, 2i + 1) < n. Recall that if θ ∈ HnQ0S
0 is a spherical class satisfying Theorem

5.45, then either θ =
∑
QIp2i+1 mod decomposable terms with (I, 2i+ 1) admissible

for terms with excess(I, 2i + 1) > 0, or it will be the square of terms of the form∑
QIp2i+1 modulo decomposable terms with (I, 2i + 1) admissible. The fact that

l(I, 2i+1) < n implies that for some entries of I or 2i+1 we need to have ρ(ij) to be

large enough. Recall from Remark 5.50 and Example 5.51 that having ρ small could

prevent a class from pulling back enough times.

I like to conclude this section with the following conjecture which I believe is a
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corollary of Proposition 5.53.

Conjecture 5.54. It is impossible to have a spherical class satisfying one of the cases

provided by Theorem 5.45.

Notice that this claim proves the Curtis conjecture. I believe that the following

sketchy proof will lead to the complete resolution of the above conjecture. The

only gap here will be a reasonable description of the kernel of the suspension map

H∗Q0S
−n−1 → H∗Q0S

−n. In fact, it is enough to know which indecomposable classes

survive under this homomorphism. Such an information, will then complete the proof.

Sketch of Proof. Let θ ∈ HnQ0S
0 be a spherical class which satisfies one of the cases

identified by Theorem 5.45. First assume that θ is odd dimensional. Theorem 5.45

implies that

θ =
∑

QIp′2i+1,

with all terms A-annihilated. We know that θ must pull back to a spherical class

θ−n ∈ H0Q0S
−n, i.e. θ admits n pull backs to A-annihilated primitive classes. Having

sequences I = (i1, . . . , ir) with l(I) = r > 1 given by the above sum, let I0 =

(i01, . . . , i
0
r0

) be the sequence whose i1 has the least ρ(i1), and let QI0
p2i0+1 be the term

related to this sequence in the above sum. Notice that for any sequences (I, 2i+1) in

the above sum we have 2ρ(i1) < i1 < n. This means that we can consider θ
−2ρ(i01)−1

∈

Hn−2ρ(i1)−1Q0S
−2ρ(i1)−1 with i01 chosen as above. We know that this class will suspend

to θ. Hence, we can apply Proposition 5.53 to this class, and predict its form. In

particular, we like to see how the class QI0
p2i0+1 pulls back. Proposition 5.53 implies

that we may write θ
−2ρ(i01)−1

as a linear combination of terms of the form

QJpS−k

K , QLpS−k

2l+1−k.

In particular we need to have a term in one of the following forms

QJ0
pS−k

K0 , QL0
pS−k

2l0+1−k,

with (J0, K0) = (L0, 2l0 + 1) = (I0, 2i0 + 1). If any of the above primitive classes
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appear in the sum for θ
−2ρ(i01)−1

, then one of the following equalities will hold respec-

tively,

σ2ρ(i01)+1
∗ QJ0

pS−k

K0 = QI0
p2i0+1

σ2ρ(i01)+1
∗ QL0

pS−k

2l0+1−k = QI0
p2i0+1.

Let us denote such a class in H
n−2ρ(i01)−1

Q0S
−2ρ(i01)−1 with P (I0). Notice that in the

above sum for θ all sequences (I, 2i+ 1) are admissible. This allows us to define the

notion of excess for classes of the form QJ0
pS−k

K0 with

excess(QJpS−k

K ) = excess(J,K)− k.

Notice that in this case such a term will be trivial if it is of negative excess. Notice that

we have chosen I0 with i01 having the least ρ(i1). This implies that applying Sq2ρ(i01)

∗ to

the class θ
−2ρ(i01)−1

all terms apart from the term suspending to QI0
p2i0+1 will vanish.

Moreover, excess(Sq2ρ(i01)

∗ P (I0)) = 1 which shows that this class is nontrivial, and is

not a decomposable. My claim is that this proves that

Sq2ρ(i01)

∗ θ
−2ρ(i01)−1

6= 0.

This contradicts the fact this θ
−2ρ(i01)−1

is spherical, and completes the proof in this

case.

The proof for the other cases mentioned in Theorem 5.45 is similar. I believe this

concludes the proof. �

5.10 Homology of Q0Σ
−1P

In this section we turn our attention to the homology ring of Q0Σ
−1P := Ω0QP . This

will be done in a similar way as we did for Q0S
−1. The Frobenius homomorphism

H∗P → H∗P is given by the squaring map, and is a monomorphism. Therefore

H∗QP is a polynomial algebra. This allows one to apply Proposition 5.4 to the case

with X = QP , the universal cover of QP . Notice that Ω0QP = ΩQP . Hence, one

obtains that

H∗Ω0QP ' EZ/2(σ
−1
∗ PH∗QP ).
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We have determined the submodule of primitive classes in H∗QP . Hence we only

need to fill in the gaps by determining the action of the Dyer-Lashof algebra on

H∗Q0Σ
−1P . Recall that we had two sets of generators for PH∗QP , namely the

submodules spanned by terms of the form QIpP
2i+1 and QJpP

j,k. This uniquely de-

termines elements wΣ−1P
2i ∈ QH2iQ0Σ

−1P , and wΣ−1P
j,k ∈ QH2i+2jQ0Σ

−1P . Notice

that the homology of Q0Σ
−1P is an exterior algebra, so terms are either indecom-

posable, or product of indecomposable terms. The action of the Dyer-Lashof al-

gebra R also can be determined in a similar way as we did for H∗Q0S
−1. We set

excess(QIwΣ−1P
2i ) = excess(I) − 2i, and excess(QJpΣ−1P

j,k ) = excess(J, j) − 2k. Then

we have the following.

Theorem 5.55. The R-module structure of H∗Q0Σ
−1P is given by

EZ/2(Q
IwΣ−1P

2i , QJpΣ−1P
j,k : excess(QIwΣ−1P

2i ) > 0, excess(QJpΣ−1P
j,k ) > 0),

where I and J run over admissible sequences. Two generators QIwΣ−1P
2i and QJpΣ−1P

j,k

maybe identified, if they may to the same element under the homology suspension

σ∗ : H∗Q0Σ
−1P → H∗QP .

Our next objective is to determine the action of the Steenrod algebra on this

ring. Previously, we used the homology of ΩλC to ease the calculation of the action

of the Steenrod operations on H∗Q0S
−1. We may use a similar trick here. Recall

that we have the transfer map tS1 : QΣCP+ → QP+ associated with the S1-fibration

S1 → P → CP . In homology we have,

(tS1)∗Σc2i = pP
2i+1.

Hence, we conclude that

(Ωt)∗c2i = wΣ−1P
2i +D.

This determines the action of the Steenrod algebra on the generators given by wΣ−1P
2i ,

where together with the Nishida relations one obtains the action of the Steenrod

algebra on terms of the form QIwΣ−1P
2i . Regarding the generators wΣ−1P

j,k , we are not

able to perform such a calculation. The reason being that the class wΣ−1P
j,k suspends
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to Q2j+1a2k modulo decomposable terms. But Q2j+1a2j is not in the image of t∗

which prevents wΣ−1P
j,k from being in the image of (ΩtS1)∗ : H∗QCP+ → H∗Q0Σ

−1P .

However, we are able to follow a more direct path, namely we combine our knowledge

of the A-module structure of H∗QP , with the fact σ∗ : QH∗−1Q0Σ
−1P → H∗QP is an

isomorphism, to understand the A-module structure of H∗Q0Σ
−1P . More precisely,

we need to study the action of Sqr
∗ on the generators wΣ−1P

j,k . Such information

together with the Nishida relations determines the action of the Steenrod algebra on

the classes of the form QIwΣ−1P
j,k . We have the following result on about the action

of the Steenrod algebra on terms of the form wΣ−1P
j,k .

Lemma 5.56. Let r = 2r′ be a positive integer. Then the action Sqr
∗ on wΣ−1P

j,k is

given as following

Sqr
∗w

Σ−1P
j,k =

∑
t′

(
2j+1−r
r−2(2t′)

)(
2k−2t′

2t′

)
wΣ−1P

j+t′−r′,k−t′

+
∑

t′′

(
2j+1−r

r−2(2t′′+1)

)(
2k−(2t′′+1)

2t′+1

)
Q2j+1−r+2t′+1wΣ−1P

2k−2t′′−2.

Proof. To see the action of Sqr
∗ on wΣ−1P

j,k notice that the class wΣ−1P
j,k maps to the

primitive class in H∗QP involving Q2j+1a2k. The Nishida relations imply

Sqr
∗Q

2j+1a2k =
∑

t

(
2j+1−r

r−2t

)
Q2j+1−r+tSqta2k

=
∑

t

(
2j+1−r

r−2t

)(
2k−t

t

)
Q2j+1−r+ta2k−t.

The later sum splits into to sums, depending on parity of t, resulting in the following

relation,

Sqr
∗Q

2j+1a2k =
∑

t′

(
2j+1−r
r−2(2t′)

)(
2k−2t′

2t′

)
Q2j+1−r+2t′a2k−2t′+∑

t′′

(
2j+1−r

r−2(2t′′+1)

)(
2k−(2t′′+1)

2t′+1

)
Q2j+1−r+2t′+1a2k−(2t′′+1).

Such a class pulls back into H∗−1Q0Σ
−1P . This proves the lemma.

Remark 5.57. Observe that our main interest is in the classes of the form wΣ−1P
2i

as spherical classes in H∗Q0S
−1 will pull back to homology classes involving wΣ−1P

2i .

However, the action of the Steenrod algebra on the classes of the form QIwΣ−1P
j,k is

interesting, and perhaps tells us that the space Q0Σ
−1P will not (stably) split.



Chapter 5. The Curtis Conjecture 146

5.11 Finkelstein-Kahn-Priddy Theorem

The Barratt-Eccles Γ+ functor provides one with a simplicial model for infinite loop

spaces. That is having a connected simplicial complex X, the space |Γ+X| has

the same homotopy type as Q|X|, where |X| denotes the topological realisation of

X. Using this model, Finkelstein has generalised the Kahn-Priddy theorem. The

following is the topological version of his result.

Let A be an infinite loop space, path connected and of finite type. Then there is

a composite of maps given by

QA
(θA,j2)// A×QD2A // QA.

This composite induces an isomorphism in homology [F77, Theorem 3.2], and an

equivalence on 2π∗-homotopy [F77, Corollary 6.8]. Here θA : QA→ A is the structure

map of A, and j2 is the 2nd stable James-Hopf map. Kuhn has generalised this to

odd primes [K84, Theorem 1.1].

An example of this is obtained by taking A = S1. Recall form the introduction

that D2S
1 ' ΣP . Hence one has the 2π∗-equivalence

QS1 → S1 ×QΣP → QS1.

Notice that QS1 ' S1 ×QS1. Hence looping the above composite we obtain,

Z× ΩQS1 → Z×QP → Z× ΩQS1.

Notice that ΩQS1 ' Q0S
0. This recovers the Kahn-Priddy theorem, by restricting

the above composite to the base point components, as

Q0S
0 → QP → Q0S

0.

Now we are ready to complete the proof of Lemma 13, and carry on with its proof

for the case k = 0. We prove the following.

Lemma 5.58. Suppose we have a mapping f : S2n → Q0S
0 with hf = ξ2

n. Then

the adjoint mapping S2n+1 → QS1 is detected by the primary operation Sqn+1 on

σ∗(ξn +O) where O denotes a sum of terms of lower excess.
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Proof. Our explanations above, imply that the 2π∗-equivalence Q0S
0 → QP → Q0S

0

given by the Kahn-Priddy theorem can be delooped once, i.e. the mapping t : Q0S
0 →

QP is a loop map. This means that t∗ respects products, in particular t∗ξ
2
n = (t∗ξn)2.

Notice that according to the Kahn-Priddy theorem t∗ is an injection which means

t∗ξ
2
n = (t∗ξn)2 6= 0. On the other hand, recall that according to Lemma 19, σ∗ξn 6= 0.

According to the above calculations, we have a commutative diagrams in homology

H∗+1QS
1

(j2)∗ // H∗+1QΣP

H∗Q0S
0

σ∗

OO

t∗ // H∗QP.

σ∗

OO

We can use this diagram to calculate t∗ξn, up to some indeterminacy given by de-

composable terms. Notice that ξn =
∑
QIxi modulo decomposable terms, with (I, i)

admissible. Hence we have

σ∗t∗ξn = (j2)∗σ∗ξn

= (j2)∗
∑
QIQig1

=
∑
QIΣai +O,

where O denotes a sum of terms of lower excess, given by homology of j2. Observe

that the suspension homomorphism σ∗ : H∗QP → H∗QΣP kills decomposable terms,

and is injective on the other terms. Hence we can deduce that

t∗ξn =
∑
QIai,

modulo other term of lower excess and possible decomposable terms. Now one may

apply a technique similar to Lemma 13, in cases k > 0, to verify the claim in this

case. We do this by showing that the adjoint mapping S2n+1 → QΣP is detected by

a primary operation. The naturality of primary operations then would imply that

the mapping S2n+1 → QS1 is detected by a primary operation.

Notice that t∗hf = (
∑
QIai + O)2, where O denotes a sum of decomposable terms

and terms of lower excess. Choose I with maximum length, say l(I) = r. Consider

j2r : QP → QD2rP . We claim that

(j2r)∗t∗hf = ((
∑

QIai))
2,
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modulo terms of lower excess, where (
∑
QIai) denotes the image of

∑
QIai ∈ H∗QP

under

(j2r)∗ : H∗QP → H∗QD2rP.

First observe that according to Proposition 4.1 all terms QJaj with l(J) < l(I) die

under (j2r)∗. We have to be careful as here ai’s, i 6= 1, are not primitive. However,

we may use a trick. To obtain the other terms, notice that we have diagrams similar

to those ones in the proof of Lemma 4.5. More precisely, we have

H∗+1QΣP // H∗+1QD2rΣP

H∗QP

σ∗

OO

// H∗QD2rP

e′∗

OO

which shows that
∑
QIai +O maps to (

∑
l(I)=r Q

Iai +O) modulo ker e′∗. Recall that

the proof of Lemma 4.5 tells us what can be known about ker e′∗. This implies that

(j2r)∗t∗hf = (j2r)∗(
∑
QIai +O)2

= ((
∑

l(I)=r Q
Iai +O))2 +O′,

where by (
∑

l(I)=r Q
Iai +O) we mean the image of

∑
QIai +O under the James-Hopf

invariant j2r : QP → QD2rP . The term O′ is also another sum of terms of lower

excess. Analysis similar to what we did in in the proof of Lemma 4.5 shows that

this must be a square as well. This means that Hurewicz image of j2rf : S2n →

QP → QD2rP will be a square, say α2 where α ∈ H2nD2rP . Applying Lemma 13,

then implies that the adjoint mapping S2n+1 → QΣD2rP is detected by a primary

operation on σ∗α. One then can verify that this implies that the adjoint mapping

S2n+1 → QΣP is detected by a primary operation on σ∗t∗ξn. The Kahn-Priddy map

send the class class t∗ξn ∈ H∗QP to ξn ∈ H∗Q0S
0 modulo terms of lower excess.

Finally, the naturality of the primary operations implies that the adjoint mapping

S2n+1 → QS1 is detected by a primary operation on σ∗(ξn +O) where O denotes sum

of terms of lower excess. This completes the proof.

We can obtain further examples of application of Finkelstein’s result. Notice that
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π1Q0S
0 ' π1QP ' Z/2. Hence we have homotopy equivalences as,

Q0S
0 ' P ×Q0S0,

QP ' P ×QP.

Notice that Q0S
−1 ' ΩQ0S0, and Q0Σ

−1P := Ω0QP ' ΩQP . This implies that

looping the above equivalence, we obtain

Z/2×Q0S
−1 → Z/2×Q0Σ

−1P → Z/2×Q0S
−1.

Similarly, restricting to the base point component we obtain,

Q0S
−1 → Q0Σ

−1P → Q0S
−1,

inducing a 2π∗-isomorphism. This means that the mapping Q0S
−1 → QΣ−1P is a

double loop map.

Remark 5.59. Notice that P itself is an infinite loop space of finite type, hence we

have 2π∗-equivalence

QP → P ×QD2P → QP,

where after looping, we have the 2π∗-equivalence

Z/2×Q0Σ
−1P → Z/2×QΣ−1D2P → Z/2×Q0Σ

−1P.

We restrict to the base point which gives the 2π∗-equivalence

Q0Σ
−1P → QΣ−1D2P → Q0Σ

−1P.

Hence we end up with the following 2π∗-equivalence

Q0S
−1 → Q0Σ

−1P → QΣ−1D2P → Q0Σ
−1P → Q0S

−1.

However, we will not use this.
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Further projects

The followings are some problems that, I think, are related to the subject of this

thesis, one may help the other one to be solved.

The Problem in ju- and jo-theory. Let ku denote the connective K-theory

spectrum. Let ju be the fibre of ψ3− 1 : ku→ ku where ψ3 is the Adams operation.

It is known [S02, Theorem 4.2] that if f ∈ 2π
S
2n+1−2P maps nontrivially under

hju : 2π
S
2n+1−2 → ju2n+1−2P

then under the Kahn-Priddy map λ : πS
∗ P → 2π

S
∗ the class f will map to an element

in 2π
S
2n+1−2 which is detected by the Kervaire invariant.

In a similar fashion one may define jo as the fibre of ψ3−1 : ko→ ko where ko denotes

the connective real K-theory. Let JO denote the base point component of Ω∞jo. In

fact JO can be thought of fibre of ψ3 − 1 : BO → BO regarded as a map of infinite

loop spaces, with respect to the tensor product of bundles, where BO = Ω∞ko. Then

it is well known [S79, Diagram 7.3] that a solution to the Adams conjecture [Q71,

Theorem 1.1] gives a mapping JO → SG making the following diagram commutative

SO
J //

��

SG

JO

<<yyyyyyyy

where SG denotes Q1S
0 with infinite loop space structure arising from the composi-

tion of maps of degree 1. This diagram is almost equivalent to the Adams conjecture.

150
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This later claim can be derived from [A78, Theorem 5.1.1]. It is quite striking to

me, to see in what extent we can relate the problem of finding spherical classes in

H∗Q0S
0 to finding spherical classes in jo∗. The above result on ju2n+1−2P provides

some evidence that jo, or more precisely ju is doing the same work as the infinite

loop structure is doing, and the question is why this happens? If we can find a map

between H∗Q0S
0 and jo∗ then this might be helpful in giving a shorter proof of the

Curtis conjecture.

Geometry and homology of Q0S
−n. Our work on identifying primitive classes in

H∗Q0S
−n for n > 0 was quite fun, as we fed in a good amount of the information

coming from the classical homotopy theory to derive more insight into these spaces.

This was done while we did Remark 5.40, Note 5.41 and Remark 5.52. I would like to

do more calculation in homology to get a better picture about these spaces. I believe

that this homology will reveal more information about the geometry of these spaces.
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Nishida relations, Adem relations

We include this short chapter to verify that applying the Nishida relations and Adem

relations results in terms of lower excess.

Let ξ ∈ H∗QX be an n dimensional class, and consider Qaξ with a > n. The

Nishida relations yields the following

Sqr
∗Q

aξ =
∑
t>0

(
a− r
r − 2t

)
Qa−r+tSqt

∗ξ.

We have previously noted that it is not guaranteed that every term Qa−r+tSqt
∗ξ is

admissible. In any case we have

excess(Qa−r+tSqt
∗ξ) = a− n− (r − 2t).

Notice that to have nontrivial coefficients in the Nishida relations we need r−2t > 0.

Hence we have

excess(Qa−r+tSqt
∗ξ) 6 excess(Qaξ).

If we assume that ξ = QJx is such that Qa−r+tSqt
∗ξ is not admissible, then we have to

use the Adem relations to rewrite this term in admissible form. Recall that if QaQb

is a non admissible, i.e. a > 2b, then we have

QaQb =
∑

a+b63t

(
t− b− 1

2t− a

)
Qa+b−tQt.

To have a nontrivial binomial coefficient in the Adem relation we need t > b which

implies that

excess(Qa+b−tQt) = a+ b− 2t < a− b = excess(QaQb).
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This implies that applying the Adem relations reduces the excess. This together with

the previous observation on the Nishida relations implies that applying the Nishida

relations, and then the Adem relations, we will end up with terms of lower excess. We

have used this fact during the text. Thought, Lemma 3.2 is a much sharper result.
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Comments on Lemma 3.2

We said that Lemma 3.2 is obtained by [C75, Lemma 6.2], and also can be obtained

by combining [W82, Weillington, Theorem 7.11], [W82, Theorem 7.12] and [W82,

Lemma 12.5]. We like to show how one can see this.

We the definition of the Λ-algebra. Let F be the free graded associated algebra

over Z/2 generated with generators λi in grading i. We then have that the Λ-algebra

is the quotient of this algebra by the ideal generated by the Adem relations. We

keep λi ∈ Λi to denote the generators of this quotient algebra. We then have that

the Dyer-Lashof algebra is the quotient of the Λ-algebra by the ideal generated by

all terms λI with excess(I) < 0. The action of the Steenrod algebra on both of these

algebras is given by the Nishida relations. Chapter 3 demonstrated how we can use

these relations. We refer the reader to [W82, Chapter 7] for more discussion on this

material.

The first result [W82, Weillington, Theorem 7.11] is about the differential in the Λ

algebra. We mentioned the part related to prime p = 2. For the moment we respect

the notation of Wellington as he lets the Steenrod operations act from right, and the

admissibility is defined in the reverse order.

Theorem B.1. The differential ∂ of the Λ-algebra is related to the Steenrod opera-

tions when excess(I) > 0 and I is admissible by

∂λI =
∑
j>1

(λISq
j
∗)λj−1.
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The second result [W82, Theorem 7.12] shows how the differential of the Λ-algebra

gives information about A-module structure of the Dyer-Lashof algebra R.

Theorem B.2. Let I be admissible, excess(I) > 0, and suppose that

∂λI =
∑

K admissible

αKλK

where αK ∈ Z/2. Then the following relation holds in R,

λISq
j
∗ =

∑
αKλK′

where K = (K ′, j − 1) and excess(K ′) > 0.

This is in fact a natural consequence of the theorem above. We note that here

we have used the same symbol λI for elements of the Λ-algebra and the Dyer-Lashof

algebra R. The final result [C75, Lemma 6.2], [W82, Lemma 12.5] that we need reads

as following.

Lemma B.3. Let λI be given with excess(I) > 0 such that I = (s1, . . . , sr) satisfies

2sj − 2ρ(sj) < sj+1 for 1 6 j 6 m− 1. Assume

∂λI =
∑

K admissible

αKλK ,

then for those K = (K ′, k) with excess(K ′) > 0 we have that

excess(K ′) 6 excess(I)− 2ρ(sr).

We note that there is misprint in [W82, Lemma 12.5(i)] in direction of sign at the

inequality above.

Now for I = (s1, . . . , sr) we let Ireverse = (i1, . . . , ir) where ij = sr−(j−1). Moreover,

let QIreverse
= λI and let Sqr

∗Q
Ireverse

= λISq
r
∗. Notice that Ireverse is admissible in our

sense if λI is admissible in Wellington’s definition. Lemma 3.2 of ours now follows.



Appendix C

Constructing A-annihilated

sequences

Theorem 2 on A-annihilated classes of the form QIx ∈ H∗QX with excess(QIx) > 0

has two fundamental parts; namely our understanding of A-annihilated classes in

H∗X, and the existence of sequences of positive integers I satisfying conditions 2-3

of Theorem 2. The aim of this section is to give a construction of sequences which

satisfy only condition 3 of Theorem 2. This construction, at least in theory, will

determine all such sequences in a unique way. I would like to see this as a proof for

the uniqueness conjecture that I have mentioned, however I am not confident that

this construction gives a complete proof, for reasons to be explained.

Let I = (i1, . . . , ir) be a sequence satisfying condition 3, i.e.

0 6 2ij+1 − ij 6 2ρ(ij+1).

Notice that given an integer n, then we may write

n = 2ρ(n)+1Nn + 2ρ(n) − 1,

for some Nn > 0. Suppose we are given a pair of integers (m,n), m > n, such that

0 6 2n−m < 2ρ(n).

This is the same as assuming

2n− 2ρ(n) < m 6 2n.

156



Appendix C. Constructing A-annihilated sequences 157

This implies that

ρ(m) 6 ρ(n).

To construct a sequence I of length r, consider an r-tuple of nondecreasing positive

integers,

ρ1 6 ρ2 6 · · · 6 ρr.

Choose a nonnegative integer Nr, and let ir = 2ρr+1Nr + 2ρr − 1. We want to find

ir−1 = 2ρr−1+1Nr−1 + 2ρr−1 − 1 such that

2ir − 2ρr < ir−1 6 2ir.

Plugging in the value of ir−1, ir, gives the boundary conditions on Nr−1,

2ρr+2Nr + 2ρr − 1 < 2ρr−1+1Nr−1 + 2ρr−1 6 2ρr+2Nr + 2ρr+1 − 1.

This can be refined as

2ρr+2Nr + 2ρr 6 2ρr−1+1Nr−1 + 2ρr−1 < 2ρr+2Nr + 2ρr+1.

Hence we have,

2ρr−ρr−1+1Nr + 2ρr−ρr−1−1 6 Nr−1 +
1

2
< 2ρr−ρr−1+1Nr + 2ρr−ρr−1 .

As Nr−1 is an integer, hence one has

2ρr−ρr−1+1Nr + 2ρr−ρr−1−1 6 Nr−1 < 2ρr−ρr−1+1Nr + 2ρr−ρr−1 .

This means that there are 2ρr−ρr−1−1 choices for Nr−1.

Continuing in this way we can construct such sequences which only will satisfy con-

dition 3 of Theorem 2. Notice that

2ρi−ρi−1+1Ni + 2ρi−ρi−1−1 6 Ni−1

for any 1 6 i < r. This then implies that having fixed a nondecreasing r-tuple of

positive integers,

ρ : ρ1 6 ρ2 6 · · · 6 ρr,
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then different choices for Ni will give different sequences in different dimensions.

However, it is possible to have two different sequences, say ρ, ρ′, but giving two r-

tuples in the same dimensions. As an example, let r = 2. Then (17, 15) and (21, 11)

both are sequences with satisfy conditions 3, and both are in dimension 32. Notice

that

ρ(17) = 1 < ρ(15) = 4

ρ(21) = 1 6 ρ(11) = 3.

Now we give some specific examples of constructing such sequences which seem to be

more applicable.

Example C.1. This is the simplest possible case when we choose

ρ : ρ1 = ρ2 = · · · = ρr.

Let choose an specific fixed value for ρi, say ρi = 2. However in this case we don’t

restrict ourselves to some specific length. We have ir = 23Nr + (23 − 1). Let us

choose Nr = 1, then ir = 11. Now set ir−1 = 2ir − (22 − 1), and inductively set

ir−j = 2ii−j+1− (22− 1). Then it is easy to see that ij ≡ 22− 1 mod 23. For example

continuing in this way for 3 times we obtain the sequence

(67, 35, 19, 11).

This automatically satisfies conditions 2-3 of Theorem 2, i.e. Q67Q35Q19Q11 is an

A-annihilated class in the Dyer-Lashof algebra R. This also implies that

Q67Q35Q19p′11, Q67Q35Q19p′11

are A-annihilated classes in H∗Q0S
0. Notice that Q67Q35Q19p′11 is a primitive A-

annihilated class.

As an other example let choose ρi = ρ = 3, then ij = 24Nj + (23 − 1). Let choose

Nr = 2, then ir = 39. Now let ij = 2ij+1 − (23 − 1). If we look for a sequence I such

that excess(I) < 2ρ = 8 we then obtain the sequence

(1031, 519, 263, 135, 71, 39)
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which means Q1031Q519Q263Q135Q71Q39 is an A-annihilated class in the Dyer-Lashof

algebra. This is the sequence used in [W82, Remark 11.26] to construct a sum of

even degree which is A-annihilated, but its terms are not. We analysed this example

in Note 5.27.

Finally notice that in general we have an observation similar to the last part of

Lemma 4 as following.

Lemma C.2. Suppose Qi1Qi2 · · ·Qirx ∈ H∗QX is A-annihilated, then Qi2 · · ·Qirx ∈

H∗QX is not A-annihilated.

The above lemma implies that if we want to obtain an A-annihilated class by

applying operation Qi to another A-annihilated class ξ, then we need at least two

operations to achieve this.

One can see that our construction here is the most general one, obtained by

properties of sequences I satisfying condition 3 of Theorem 2. One observes that

condition 2, i.e. excess(QIx) < 2ρ(i1) tells us when the construction has to terminate.
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Geometric decompositions

In most of the Chapter 5, we used various decompositions of spaces into product of

two spaces. Here we like to give a brief background on what we did.

Suppose X is given such that π0X ' G is an Abelian group, and X an H-space.

LetXg denote the component corresponding to g ∈ G. Then we have a decomposition

of X as X0 ×G, where X0 denotes the base point component of X.

Now assume X is path connected. In general, an unstable decomposition X ' Y ×Z

may be obtained by a pair of mappings Y ← X → Z with X → Y × Z inducing an

isomorphism on homotopy groups. If X is an H-space, we may think of pair of maps

Y → X ← Z where Y × Z → X induces a π∗-isomorphism.

Example D.1. Consider QS0, where π0QS
0 ' Z gives the decomposition QS0 '

Z×Q0S
0. One observes that π1Q0S

0 ' πS
1 ' Z/2, giving rise to a mapping Q0S

0 →

K(Z/2, 1) ' P . Notice that the fibre of this map is Q0S0 the universal cover of Q0S
0.

On the other side, the Kahn Priddy map P → Q0S
0 provides us with a splitting

P ×Q0S0 → Q0S
0.

Recall that if X is an infinite loop space, then X is an infinite loop space and

the inclusion X → X is a map of infinite loop spaces [CLM76, Lemma 4.8], where X

is a suitable model for the universal cover of X. This may be generalised to higher

n-connected covers of an infinite loop space.

A wide range of examples is provided by connected infinite loop spaces. Let X be
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such a space with structure map θX : QX → X and let X ′ denote its fibre. As we

mentioned previously this is also an infinite loop space. The inclusion, also known as

the suspension map, E : X → QX has the property [BEa74, Definition 3.7], [BEb74,

Proposition 3.1] that θX ◦ E = 1X . This then gives the splitting

X ′ ×X → QX.

Example D.2. Let θ : QK(Z/2, n)→ K(Z/2, n) be the structure map which induces

an isomorphism on πn, and its fibre can be viewed as QK(Z/2, n)〈n〉, the n-connected

cover of QK(Z/2, n) with first nontrivial homotopy group in dimension n + 1. The

inclusion K(Z/2, n)→ QK(Z/2, n) then gives the splitting

K(Z/2, n)×QK(Z/2, n)〈n〉 → QK(Z/2, n).

There are interesting and familiar example of this decomposition. If we choose n = 1,

we obtain

P ×QP → QP.

Of course one may replace Z/2 with any Abelian group. For instance we may choose

to work with Z. In this case for n = 1 we obtain,

S1 ×QS1 → QS1

where looping this equivalence gives QS0 ' Z × ΩQS1 which implies that Q0S
0 '

ΩQS1. Another related example for us is given by the case of K(Z, 2) where we

obtain the splitting

CP ×QCP 〈2〉 → QCP.

If we loop the above splitting we get the following splitting

S1 × ΩQCP 〈2〉 → QΣ−1CP.
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