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Summary

In this paper, we propose a penalized maximum likelihood method for variable
selection in joint mean and covariance models for longitudinal data. Under certain
regularity conditions, we establish the consistency and asymptotic normality of the
penalized maximum likelihood estimators of parameters in the models. We further
show that the proposed estimation method can correctly identify the true models, as
if the true models would be known in advance. We also carry out real data analysis
and simulation studies to assess the small sample performance of the new procedure,
showing that the proposed variable selection method works satisfactorily.

Some key words: Cholesky decomposition; Joint mean-covariance models; Longitudi-
nal data; Penalized maximum likelihood; Variable selection.

1 Introduction

In longitudinal studies, one of the main objectives is to find out how the average
value of the response varies over time and how the average response profile is affected
by different treatments or various explanatory variables of interest. Traditionally the
within-subject covariance matrices are treated as nuisance parameters or assumed to
have a very simple parsimonious structure, which inevitably leads to a misspecifica-
tion of the covariance structure. Although the misspecification may not affect the
consistency of the estimators of the parameters in the mean, it can lead to a great
loss of efficiency of the estimators. In some circumstances, for example, when missing
data are present, the estimators of the mean parameters can be severely biased if the
covariance structure is misspecified. Therefore, correct specification of the covariance
structure is really important.
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On the other hand, the within-subject covariance structure itself may be of scien-
tific interest, for example, in prediction problems arising in econometrics and finance.
Moreover, like the mean, the covariances may be dependent on various explanatory
variables. A natural constraint for modelling of covariance structures is that the
estimated covariance matrices must be positive definite, making the covariance mod-
elling rather challenging. Chiu et al. (1996) proposed to solve this problem by using
a matrix logarithmic transformation, defined as the inverse of the matrix exponential
transformation by taking the spectral decomposition of the covariance matrix. Since
there are no constraints on the upper triangular elements of the matrix logarithm, any
structures of interest may be imposed on the elements of the matrix logarithm. But
the limitation of this approach is that the matrix logarithm is lack of clear statistical
interpretation. An alternative method to deal with the positive definite constraint of
covariance matrices is to work on the modified Cholesky decomposition advocated by
Pourahmadi (1999, 2000) and use regression formulations to model the unconstrained
elements in the decomposition. The key idea is that any covariance matrix can be
diagonalized by a unique lower triangular matrix with 1’s as its diagonal elements.
The elements of the lower triangular matrix and the diagonal matrix enjoy a very
clear statistical interpretation in terms of autoregressive coefficients and innovation
variances. Ye and Pan (2006) proposed an approach for joint modelling of mean
and covariance structures for longitudinal data within the framework of generalized
estimation equations, which does not require any distribution assumptions and only
assumes the existence of the first four moments of the responses. However, a challeng-
ing issue for modelling of joint mean and covariance structures is the high-dimensional
problem, which arises frequently in many fields such as genomics, gene expression,
signal processing, image analysis and finance. For example, the number of explana-
tory variables may be very large. Intuitively, all these variables should be included in
the initial model in order to reduce the modelling bias. But it is very likely that only
a small number of these explanatory variables contribute to the model fitting and the
majority of them do not. Accordingly, these insignificant variables should be excluded
from the initial model to increase prediction accuracy and avoid overfitting problem.
Variable selection thus can improve estimation accuracy by effectively identifying the
important subset of the explanatory variables, which may be just tens out of several
thousands of predictors with a sample size being in tens or hundreds.

There are many variable selection criteria existing in the literature. Traditional
variable selection criteria such as Cp, AIC and BIC all involve a combinatorial opti-
mization problem, with computational loads increasing exponentially with the number
of explanatory variables. This intensive computation problem hampers the use of tra-
ditional procedures. Fan and Li (2001) discussed a class of penalized likelihood based
methods for variable selection, including the bridge regression by Frank and Friedman
(1993), Lasso by Tibshirani (1996) and smoothly clipped absolute deviation by Fan
and Li (2001). They further studied oracle properties for non-concave penalized like-
lihood estimators in the setting of finite parameters. Fan and Peng (2004) extended
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the results by letting the number of parameters have the order o(n1/3) and showed
that the oracle properties still hold in this case. Zou (2006) proposed an adaptive
Lasso in a finite parameter setting and showed that the Lasso does not have oracle
properties as conjectured by Fan and Li (2001), but the adaptive Lasso does.

In this paper we aim to develop an efficient penalized likelihood based method
to select important explanatory variables that make a significant contribution to the
joint modelling of mean and covariance structures for longitudinal data. We show that
the proposed approach produces good estimation results and can correctly identify
zero regression coefficients for the joint mean and covariance models, simultaneously.
The rest of the paper is organized as follows. In Section 2, we first describe a repa-
rameterisation of covariance matrix through the modified Cholesky decomposition
and introduce the joint mean and covariance models for longitudinal data. We then
propose a variable selection method for the joint models via penalized likelihood func-
tion. Asymptotic properties of the resulting estimators are considered. The standard
error formula of the parameter estimators and the choice of the tuning parameters
are provided. In Section 3, we study the variable selection method and its sample
properties when the number of explanatory variables tends to infinity with the sam-
ple size. In Section 4, we illustrate the proposed method via a real data analysis.
In Section 5, we carry out simulation studies to assess the small sample performance
of the method. In Section 6, we give a further discussion on the proposed variable
selection method. Technical details on calculating the penalized likelihood estimators
of parameters are deferred to Appendix A, and theoretical proofs of the theorems
that summarize the asymptotic results are presented in Appendix B.

2 Variable Selection via Penalized Maximum Likelihood

2.1 Joint mean and covariance models

Suppose that there are n independent subjects and the ith subject has mi repeated
measurements. Let yij be the jth measurement of the ith subject and tij be the time
at which the measurement yij is made. Throughout this paper we assume that yi =
(yi1, · · · , yimi

)T is a random sample of the ith subject from the multivariate normal
distribution with the mean µi and covariance matrix Σi, where µi = (µi1, · · · , µimi

)T

is an (mi×1) vector and Σi is an (mi×mi) positive definite matrix (i = 1, · · · , n). We
consider the simultaneous variable selection procedure for the mean and covariance
structures using penalized maximum likelihood estimation methods.

To deal with the positive definite constraint of the covariance matrices, we design
an effective regularization approach to gain statistical efficiency and overcome the
high dimensionality problem in the covariance matrices. We actually use a statisti-
cally meaningful representation that reparameterizes the covariance matrices by the
modified Cholesky decomposition advocated by Pourahmadi (1999, 2000). Specifi-
cally, any covariance matrix Σi (1 ≤ i ≤ n) can be diagonalized by a unique lower
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triangular matrix Ti with 1’s as its diagonal elements. In other words,

TiΣiT
T
i = Di, (2.1)

where Di is a unique diagonal matrix with positive diagonal elements. The elements
of Ti and Di have a very clear statistical interpretation in terms of autoregressive
least square regressions. More precisely, the below-diagonal entries of Ti = (−φijk)
are the negatives of the regression coefficients of ŷij = µij +

∑j−1
k=1 φijk(yik − µik), the

linear least square predictor of yij based on its predecessors yi1, ..., yi(j−1), and the
diagonal entries of Di = diag(σ2

i1, ..., σ
2
imi

) are the prediction error variances σ2
ij =

var(yij − ŷij) (1 ≤ i ≤ n, 1 ≤ j ≤ mi). The new parameters φijk’s and σ2
ij’s are

called generalized autoregressive parameters and innovation variances, respectively.
By taking log transformation to the innovation variances, the decomposition (2.1)
converts the constrained entries of {Σi : i = 1, ..., n} into two groups of unconstrained
autoregressive regression parameters and innovation variances, given by {φijk : i =
1, ..., n; j = 2, ..., mi; k = 1, ..., (j − 1)} and {log σ2

ij : i = 1, ..., n, j = 1, ...,mi},
respectively.

Based on the modified Cholesky decomposition, the unconstrained parameters µij,
φijk and log σ2

ij are modelled in terms of the linear regression models

µij = xT
ijβ, φijk = zT

ijkγ and log σ2
ij = hT

ijλ, (2.2)

where xij, zijk and hij are (p×1), (q×1) and (d×1) covariates vectors, and β, γ and λ
are the associated regression coefficients. The covariates xij, zijk and hij may contain
baseline covariates, polynomials in time and their interactions, etc. For example, when
modelling stationary growth curve data using polynomials in time, the explanatory
variables may take the forms xij = (1, tij, t

2
ij, ..., t

p−1
ij )T , zijk = (1, (tij − tik), (tij −

tik)
2, ..., (tij − tik)

q−1)T and hij = (1, tij, t
2
ij, ..., t

d−1
ij )T . An advantage of the model

(2.2) is that the resulting estimators of the covariance matrices can be guaranteed to
be positive definite. In this paper we assume that the covariates xij, zijk and hij may
be of high dimension and we would select the important subsets of the covariates
xij, zijk and hij, simultaneously. We first assume all the explanatory variables of
interest, and perhaps their interactions as well, are already included into the initial
models. We then aim to remove the unnecessary explanatory variables from the
models.

2.2 Penalized maximum likelihood

Many traditional variable selection criteria can be considered as a penalized likelihood
which balances modelling biases and estimation variances (Fan and Li, 2001). Let
`(θ) denote the log-likelihood function. For the joint mean and covariance models
(2.2), we propose the penalized likelihood function

Q(θ) = `(θ)− n
p∑

i=1

pτ (1)(|βi|)− n
q∑

j=1

pτ (2)(|γj|)− n
d∑

k=1

pτ (3)(|λk|), (2.3)
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where θ = (θ1, · · · , θs)
T = (β1, · · · , βp; γ1, · · · , γq; λ1, · · · , λd)

T with s = p + q + d and
pτ (l)(·) is a given penalty function with the tuning parameter τ (l) (l = 1, 2, 3). Here we
use the same penalty function p(·) for all the regression coefficients but with different
tuning parameters τ (1), τ (2) and τ (3) for the mean parameters, generalized autoregres-
sive parameters and log-innovation variances, respectively. The function form of pτ (·)
determines the general behavior of the estimators. Antoniadis (1997) defined the
hard thresholding rule for variable selection by taking the hard thresholding penalty
function as Pτ (|t|) = τ 2 − (|t| − τ)2I(|t| < τ), where I(.) is the indicator function.
The penality function pτ (·) may also be chosen as Lp penalty. Especially, the use of
L1 penalty, defined by pτ (t) = τ |t|, leads to the least absolute shrinkage and selection
operator (LASSO) proposed by Tibshirani (1996). Fan and Li (2001) suggested using
the smoothly clipped absolute deviation (SCAD) penalty function, which is defined
by

pτ (|t|) =





τ |t| if 0 ≤ |t| < τ
−(|t|2 − 2aτ |t|+ τ 2)/{2(a− 1)} if τ ≤ |t| < aτ
(a + 1)τ 2/2 if |t| ≥ aτ

(2.4)

for some a > 2. This penalty function is continuous, symmetric and convex on (0,∞)
but singular at the origin. It improves the LASSO by avoiding excessive estimation
biases. Details of penalty functions can be found in Fan and Li (2001).

The penalized maximum likelihood estimator of θ, denoted by θ̂, maximizes the
function Q(θ) in (2.3). With appropriate penalty functions, maximizing Q(θ) with
respect to θ leads to certain parameter estimators vanishing from the initial models
so that the corresponding explanatory variables are automatically removed. Hence,
through maximizing Q(θ) we achieve the goal of selecting important variables and ob-
taining the parameter estimators, simultaneously. In the Appendix A, we provide the
technical details and an algorithm for calculating the penalized maximum likelihood
estimator θ̂.

2.3 Asymptotic properties

In this subsection we consider the consistency and asymptotic normality of the penal-
ized maximum likelihood estimator θ̂. To emphasize its dependence on the subject
number n, we also denote it by θ̂n. We assume that the number of the parameters,
s = p + q + d, is fixed in the first instance. In the next section we will consider the
case when s is a variable tending to infinity with n. Denote the true value of θ by θ0.
Without loss of generality, we assume that θ0 = ((θ

(1)
0 )T , (θ

(2)
0 )T )T where θ

(1)
0 and θ

(2)
0

are the nonzero and zero components of θ0, respectively. Otherwise the components
of θ0 can be reordered. Denote the dimension of θ

(1)
0 by s1. In what follows we first

show that the penalized maximum likelihood estimator θ̂n exists and converges to θ0

at the rate Op(n
−1/2), implying that it has the same consistency rate as the ordinary

maximum likelihood estimator. We then prove that the
√

n-consistent estimator θ̂n
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has the asymptotic normal distribution and possesses the oracle property under cer-
tain regularity conditions. The results are summarized in the following two theorems
and the detailed proofs are deferred to the Appendix B.

Theorem 2.1 Let an = max1≤j≤s{p′τn
(|θ0j|) : θ0j 6= 0} and bn = max1≤j≤s{|p′′τn

(|θ0j|)| :
θ0j 6= 0} where θ0 = (θ01, ..., θ0s)

T is the true value of θ, and τn is equal to either τ (1)
n ,

τ (2)
n or τ (3)

n , depending on whether θ0j is a component of β0, γ0 or λ0 (1 ≤ j ≤ s).
Assume an = Op(n

−1/2), bn → 0 and τn → 0 as n →∞. Under the conditions (A1)-
(A3) in Appendix B, with probability tending to 1 there must exist a local maximizer
θ̂n of the penalized likelihood function Q(θ) in (2.3) such that θ̂n is a

√
n-consistent

estimator of θ0.

We now consider the asymptotic normality property of θ̂n. Let

An = diag(p
′′
τn

(|θ(1)
01 |), · · · , p

′′
τn

(|θ(1)
0s1
|)),

cn = (p
′
τn

(|θ(1)
01 |)sgn(θ

(1)
01 ), · · · , p′τn

(|θ(1)
0s1
|)sgn(θ

(1)
0s1

))T ,

where τn has the same definition as that in Theorem 2.1, and θ
(1)
0j is the jth component

of θ
(1)
0 (1 ≤ j ≤ s1). Denote the Fisher information matrix of θ by In(θ).

Theorem 2.2 Assume that the penalty function pτn(t) satisfies

lim inf
n→∞ lim inf

t→0+

p
′
τn

(t)

τn

> 0

and Īn = In(θ0)/n converges to a finite and positive definite matrix I(θ0) as n →∞.
Under the same mild conditions as these given in Theorem 2.1, if τn → 0 and

√
nτn →

∞ as n → ∞, then the
√

n-consistent estimator θ̂n = (θ̂(1)T
n , θ̂(2)T

n )T in Theorem 2.1
must satisfy θ̂(2)

n = 0 and

√
n(Ī(1)

n )−1/2(Ī(1)
n + An)

{
(θ̂(1)

n − θ
(1)
0 ) + (Ī(1)

n + An)−1cn

}
→ Ns1(0, Is1)

in distribution, where Ī(1)
n is the (s1×s1) submatrix of Īn corresponding to the nonzero

components θ
(1)
0 and Is1 is the (s1 × s1) identity matrix.

Note for the SCAD penalty we can show

p
′
τn

(t) = τn

{
I(t ≤ τn) +

(aτn − t)+

(a− 1)τn

I(t > τn)

}
,

p
′′
τn

(t) =
1

1− a
I(τn < t ≤ aτn)

for t > 0, where a > 2 and (x)+ = xI(x > 0). Since τn → 0 as n → ∞, we then
have an = 0 and bn = 0 so that cn = 0 and An = 0 when the sample size n is large
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enough. It can be verified that in this case the conditions in Theorems 2.1 and 2.2
are all satisfied. Accordingly, we must have

√
n(Ī(1)

n )1/2(θ̂(1)
n − θ

(1)
0 ) → Ns1(0, Is1)

in distribution. This means that the estimator θ̂(1)
n shares the same sampling property

as if we would know θ
(2)
0 = 0 in advance. In other words, the penalized maximum like-

lihood estimator of θ based on the SCAD penalty can correctly identify the true model
as if we would know it in advance. This property is the so-called oracle property by
Fan and Li (2001). Similarly, the parameter estimator based on the hard threshold-
ing penalty also possesses the oracle property. For the LASSO penalty, however, the
parameter estimator does not have the oracle property. A brief explanation for this
is given as follows. Since pτn(t) = τnt for t > 0 and then p′τn

(t) = τn, the assumption
of an = Op(n

−1/2) in Theorem 2.1 implies τn = Op(n
−1/2), leading to

√
nτn = Op(1).

On the other hand, one of the conditions in Theorem 2.2 is
√

nτn → ∞ as n → ∞,
which conflicts the assumption of

√
nτn = Op(1). Hence the oracle property cannot

be guaranteed in this case.

2.4 Standard error formula for θ̂(1)
n

As a consequence of Theorem 2.2, the asymptotic covariance matrix of θ̂(1)
n is

Cov(θ̂(1)
n ) =

1

n
(Ī(1)

n + An)−1Ī(1)
n (Ī(1)

n + An)−1 (2.5)

so that the asymptotic standard error for θ̂(1)
n is straightforward. However, Ī(1)

n and

An are evaluated at the true value θ
(1)
0 , which is unknown. A natural choice is to

evaluate Ī(1)
n and An at the estimator θ̂(1)

n so that the estimator of the asymptotic
covariance matrix of θ̂(1)

n is obtained through (2.5).
Corresponding to the partition of θ0, we assume θ = (θ(1)T , θ(2)T )T . Denote

`′(θ(1)
0 ) =

[
∂`(θ)

∂θ(1)

]

θ=θ0

and `′′(θ(1)
0 ) =

[
∂2`(θ)

∂θ(1)∂θ(1)T

]

θ=θ0

where θ0 = (θ
(1)T
0 , 0)T . Also, let

Στn(θ
(1)
0 ) = diag





p′
τ
(1)
n

(|θ(1)
01 |)

|θ(1)
01 |

, · · · ,
p′

τ
(s1)
n

(|θ(1)
0s1
|)

|θ(1)
0s1
|





.

Using the observed information matrix to approximate the Fisher information matrix,
the covariance matrix of θ̂(1)

n can be estimated through

Ĉov(θ̂(1)
n ) =

{
`′′(θ̂(1)

n )− nΣτn(θ̂(1)
n )

}−1
Ĉov

{
`
′
(θ̂(1)

n )
} {

`′′(θ̂(1)
n )− nΣτn(θ̂(1)

n )
}−1

,

where Ĉov{`′(θ̂(1)
n )} is the covariance of `′(θ(1)) evaluated at θ(1) = θ̂(1)

n .
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2.5 Choosing the Tuning Parameters

The penalty function pτ (l)(·) involves the tuning parameter τ (l) (l = 1, 2, 3) that con-
trols the amount of penalty. We may use K-fold cross-validation or generalized cross-
validation (Fan & Li, 2001; Tibshirani, 1996) to choose the most appropriate tuning
parameters τ ’s. For the purpose of fast computation, we prefer the K-fold cross-
validation approach, which is described briefly as follows. First, we randomly split
the full dataset D into K subsets which are of about the same sample size, denoted by
Dv (v = 1, ..., K). For each v, we use the data in D −Dv to estimate the parameters
and Dv to validate the model. We also use the log-likelihood function to measure
the performance of the cross-validation method. For each τ = (τ (1), τ (2), τ (3))T , the
K-fold likelihood based cross-validation criterion is defined by

CV(τ) =
1

K

K∑

v=1





∑

i∈Iv

log(|Σ̂−v
i |) +

∑

i∈Iv

(yi −Xiβ̂
−v)T (Σ̂−v

i )−1(yi −Xiβ̂
−v)



 ,

where Iv is the index set of the data in Dv, and β̂−v and Σ̂−v
i are the estimators of the

mean parameter β and the covariance matrix Σi obtained by using the training dataset
D − Dv. We then choose the most appropriate tuning parameter τ by minimizing
CV(τ). In general, we may choose the number of data subsets as K = 5 or K = 10.

3 Variable Selection When the Number of Parameters s = sn →∞

In the previous section, we assume that the numbers of the parameters β, γ and λ,
i.e., p, q and d and therefore s, are fixed. In some circumstances, it is not uncommon
that the number of explanatory variables may increase with the sample size. In this
section we consider the case that the number of parameters sn is a variable, which
goes to infinity as the sample size n tends to infinity. In what follows, we study the
asymptotic properties of the penalized maximum likelihood estimator in this case.

As before, we assume that θ0 = (θ
(1)T
0 , θ

(2)T
0 )T is the true value of θ where θ

(1)
0

and θ
(2)
0 are the nonzero and zero components of θ0, respectively. Also, we denote the

dimension of θ0 by sn, which increases with the sample size n this time. Similar to
the previous section, we first show that there exists a consistent penalized maximum

likelihood estimator θ̂n that converges to θ0 at the rate Op(
√

sn/n). We then show

that the
√

n/sn-consistent estimator θ̂n has an asymptotic normal distribution and
possesses the oracle property.

Theorem 3.1 Let a∗n = max1≤j≤sn{p′τn
(|θ0j|) : θ0j 6= 0} and b∗n = max1≤j≤sn{|p′′τn

(|θ0j|)| :
θ0j 6= 0} where θ0 = (θ01, ..., θ0sn)T is the true value of θ, and τn is equal to either τ (1)

n ,
τ (2)
n or τ (3)

n , depending on whether θ0j is a component of β0, γ0 or λ0 (1 ≤ j ≤ s).
Assume a∗n = Op(n

−1/2), b∗n → 0, τn → 0 and s4
n/n → 0 as n → ∞. Under the
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conditions (A1)-(A5) in Appendix B, with probability tending to 1 there exists a lo-
cal maximizer θ̂n of the penalized likelihood function Q(θ) in (2.3) such that θ̂n is a√

n/sn-consistent estimator of θ0.

In what follows we consider the asymptotic normality property of the estimator
θ̂n. Denote the number of nonzero components of θ0 by s1n(≤ sn). Let

A∗
n = diag(p

′′
τn

(|θ(1)
01 |), · · · , p

′′
τn

(|θ(1)
0s1n

|)),
c∗n = (p

′
τn

(|θ(1)
01 |)sgn(θ

(1)
01 ), · · · , p′τn

(|θ(1)
0s1n

|)sgn(θ
(1)
0s1n

))T ,

where τn is equal to either τ (1)
n , τ (2)

n or τ (3)
n , depending on whether θ0j is a component

of β0, γ0 or λ0 (1 ≤ j ≤ s), and θ
(1)
0j is the jth component of θ

(1)
0 (1 ≤ j ≤ s1n).

Denote the Fisher information matrix of θ by In(θ).

Theorem 3.2 Assume that the penalty function pτn(t) satisfies

lim inf
n→∞ lim inf

t→0+

p
′
τn

(t)

τn

> 0.

and Īn = In(θ0)/n converges to a finite and positive definite matrix I(θ0) as n →∞.
Under the same mild conditions as these in Theorem 3.1, if τn → 0, s5

n/n → 0 and

τn

√
n/sn → ∞ as n → ∞, then the

√
n/sn-consistent estimator θ̂n = (θ̂(1)T

n , θ̂(2)T
n )T

in Theorem 3.1 must satisfy θ̂(2)
n = 0 and

√
nMn(Ī(1)

n )−1/2(Ī(1)
n + A∗

n)
{
(θ̂(1)

n − θ
(1)
0 ) + (Ī(1)

n + A∗
n)−1c∗n

}
→ Nk(0, G)

in distribution, where Ī(1)
n is the (s1n × s1n) submatrix of Īn corresponding to the

nonzero components θ
(1)
0 , Mn is an (k×s1n) matrix satisfying MnMT

n → G as n →∞,
G is an (k × k) positive definite matrix, and k(≤ s1n) is a constant.

The technical proofs of Theorems 3.1 and 3.2 are provided in Appendix B. Similar
to the finite parameters setting, for the SCAD penalty and hard thresholding penalty
functions, it can be verified that the conditions in Theorems 3.1 and 3.2 are all
satisfied. In this case, we have

√
nMn(Ī(1)

n )1/2(θ̂(1)
n − θ

(1)
0 ) → Nk(0, G)

in distribution. That means the estimator θ̂(1)
n shares the same sampling property

as if we would know θ
(2)
0 = 0 in advance. In other words, the estimation procedures

based on the SCAD and hard thresholding penalty have the oracle property. However,
the L1-based penalized maximum likelihood estimator like LASSO does not have the
property. Based on Theorem 3.2, similar to the finite parameters case the asymptotic
covariance estimator of θ̂(1) can also be constructed but the details are omitted.
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4 Real Data Analysis

In this section, we apply the proposed procedure to the well known CD4+ cell data
analysis, of which the data details can be found in Diggle et al. (2002). The human
immune deficiency virus (HIV) causes AIDS by reducing a person’s ability to fight
infection. The HIV attacks an immune cell called the CD4+ cell which orchestrates
the body’s immunoresponse to infectious agents. An uninfected individual usually
has around 1100 cells per millilitre of blood. When infected, the CD4+ cells decrease
in number with time and an infected person’s CD4+ cell number can be used to
monitor the disease progression. The data set we analyzed consists of 369 HIV-
infected men. Altogether there are 2376 values of CD4+ cell numbers, with several
repeated measurements being made for each individual at different times covering a
period of approximately eight and a half years.

For this unbalanced longitudinal data set, information from several explanatory
variables is recorded, including X1 =time, X2 =age, X3 =smoking habit (the num-
ber of packs of cigarettes smoked per day), X4 =recreational drug use (1, yes; 0,
no), X5 =number of sexual partners, and X6 =score on center for epidemiological
studies of depression scale. The objectives of our analysis are: a) to identify covari-
ates that really affect the CD4+ cell numbers in the sense that they are statistically
significant in either the mean or covariance models, and b) to estimate the average
time course for the HIV-infected men by taking account of measurement errors in
the CD4+ cell collection. Ye an Pan (2006) analyzed the CD4+ count data with a
focus on the second objective and did not include the explanatory variables except
the time. Following Ye an Pan (2006), we propose to use three polynomials in time,
one of degree 6 and two cubics, to model the mean µij, the generalized autoregres-
sive parameters φijk and the log-innovation variances log σ2

ij. In the meantime, the
explanatory variables X2, · · · , X6 above and the intercept X0 are also included in the
initial models for the selection purpose. The ordinary maximum likelihood estimation
and the penalized maximum likelihood estimation methods using the SCAD, LASSO
and Hard-thresholding penalty functions are all considered. The unknown tuning
parameters τ (l) (l = 1, 2, 3) of the penalty functions are estimated through using the
5-fold cross-validation principle described in §2.5, and the resulting estimators are
summarized in Table 1. It is noted that the SCAD penalty function given in (2.4)
also involves another parameter a. Here we choose a = 3.7 as suggested by Fan and
Li (2001).

Table 1: Estimated tuning parameters
parameters SCAD LASSO Hard-thresholding

τ (1) 0.42 0.01 0.79

τ (2) 0.21 0.01 0.46

τ (3) 0.84 0.04 0.88
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For the mean, generalized autoregressive parameters and log-innovation variances,
the estimated regression coefficients and their associated standard errors, in paren-
theses, by different penalty estimation methods, are presented in Tables 2-4. It is
noted that in Table 3 γ1, ..., γ4 correspond to the coefficients of the cubic polynomial
in time lag, γ5 is associated with the time-independent covariate X2, and the other co-
efficients γ6, ..., γ13 correspond to the time-dependent covariates X3, ..., X6 measured
at two different time points, denoted by (X31, X32),...,(X61, X62).

Table 2: Estimators of the mean parameters β
coefficient MLE SCAD LASSO Hard-thresholding

β1(X0) 776.60(20.96) 776.68(20.31) 775.35(20.96) 776.60(20.96)

β2(X1) -209.05(14.24) -209.10(9.40) -209.04(14.25) -209.05(14.24)

β3(X2
1 ) -14.47(8.36) -14.49(8.04) -14.51(8.37) -14.47(8.36)

β4 (X3
1 ) 32.68(5.93) 32.74(2.17) 32.72(5.93) 32.68(5.93)

β5 (X4
1 ) -1.97(1.05) -1.97(1.02) -1.96(1.05) -1.97(1.05)

β6 (X5
1 ) -1.84(0.57) -1.84(0.21) -1.85(0.55) -1.84(0.57)

β7 (X6
1 ) 0.25(0.08) 0.26(0.02) 0.26(0.08) 0.25(0.08)

β8(X2) 0.88(1.34) 0.88(0.007) 0.88(1.35) 0.88(1.34)

β9(X3) 61.27(5.36) 61.32(6.35) 61.04(6.30) 61.27(6.36)

β10(X4) 45.70(18.84) 45.71(18.71) 45.61(18.84) 45.70(18.84)

β11(X5) -3.61(2.09) -3.60(2.09) -3.64(2.09) -3.61(2.09)

β12(X6) -2.24(0.80) -2.30(0.82) 0(-) -2.24(0.80)

Table 3: Estimators of the generalized autoregressive parameters γ
coefficient MLE SCAD LASSO Hard-thresholding

γ1(X0) 0.29(0.06) 0.29(0.02) 0.29(0.06) 0.29(0.06)

γ2(X1) -0.33(0.09) -0.33(0.02) -0.33(0.09) -0.33(0.09)

γ3(X2
1 ) 0.20(0.04) 0.20(0.01) 0.20(0.04) 0.20(0.04)

γ4 (X3
1 ) -0.03(0.004) -0.03(0.002) -0.03(0.003) -0.03(0.004)

γ5 (X2) -0.001(0.0008) 0(-) 0(-) 0(-)

γ6 (X31) -0.01(0.008) -0.01(0.005) -0.01(0.007) -0.01(0.007)

γ7 (X32) 0.007(0.008) 0(-) 0(-) 0(-)

γ8(X41) -0.01(0.02) 0.01(0.06) 0.01(0.01) 0.01(0.02)

γ9(X42) 0.02(0.02) 0.02(0.07) 0.02(0.01) 0.02(0.02)

γ10(X51) 0.001(0.002) 0(-) 0(-) 0(-)

γ11(X52) -0.005(0.003) 0(-) 0(-) 0(-)

γ12(X61) 0.004(0.0009) 0(-) 0(-) 0(-)

γ13(X62) 0.006(0.001) 0(-) 0(-) 0(-)

From Tables 2-4, it is clear that for the mean structure the estimated regression
coefficients of the 6th power polynomial in time are statistically significant. For the
generalized autoregressive parameters and the innovation variances, the estimated
regression coefficients of cubic polynomials in time are significant. This confirms the
conclusion drawn by Ye and Pan (2006). Furthermore, Table 2 shows that there is
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Table 4: Estimators of the log-innovation variance parameters λ

coefficient MLE SCAD LASSO Hard-thresholding

λ1(X0) 11.64(0.07) 11.63(0.04) 11.63(0.08) 11.64(0.07)

λ2(X1) -0.22(0.03) -0.22(0.01) -0.22(0.03) -0.22(0.03)

λ3(X2
1 ) -0.03(0.01) -0.03(0.04) -0.03(0.01) -0.03(0.01)

λ4 (X3
1 ) -0.02(0.003) -0.02(0.001) -0.02(0.004) -0.02(0.003)

λ5(X2) -0.005(0.004) 0(-) 0(-) 0(-)

λ6(X3) 0.21(0.02) 0.21(0.01) 0.21(0.02) 0.21(0.02)

λ7(X4) -0.12(0.07) -0.12(0.005) -0.12(0.06) -0.12(0.07)

λ8(X5) -0.02(0.008) -0.02(0.004) -0.02(0.008) -0.02(0.009)

λ9(X6) -0.006(0.003) 0(-) 0(-) 0(-)

little evidence for the association between age and immune response, but the smoking
habit and the use of recreational drug have significant positive effects on the CD4+
numbers. In addition, the number of sexual partners seems to have little effect on
the immune response, although it shows some evidence of negative association. Also,
there is a negative association between depression symptoms (score) and immune
response.

Interestingly, Table 3 clearly indicates that except the cubic polynomial in time lag
all other covariates do not have significant influences to the generalized autoregressive
parameters, implying that the generalized autoregressive parameters are characterized
only by the cubic polynomial in time lag. For the log-innovation variances, however,
Table 4 shows that in addition to the cubic polynomial in time, the smoking habit, the
use of recreational drug, and the number of sexual partners do have significant effects,
implying that the innovation variances and therefore the within-subject covariances
are not homogeneous and are actually dependent on covariates of interests. Finally,
we notice that in this data example the SCAD, LASSO and Hard thresholding penalty
based methods perform very similarly in terms of the selected variables.

5 Simulation study

In this section we conduct a simulation study to assess the small sample performance
of the proposed procedures. We simulate 100 subjects, each of which has 5 observa-
tions drawn from the multivariate normal distribution N5(µi, Σi), where the mean µi

and the within-subject covariance matrix Σi are formed by the joint models (2.2) in
the framework of the modified Cholesky decomposition. We choose the true values of
the parameters in the mean, generalized autoregressive parameters and log-innovation
variances to be β = (3, 0, 0,−2, 1, 0, 0, 0, 0,−4)T , γ = (−4, 0, 0, 2, 0, 0, 0)T and λ =
(0, 1, 0, 0, 0,−2, 0)T , respectively. We form the mean covariates xij = (xijt)

10
t=1 by

drawing random samples from the multivariate normal distribution with mean 0 and
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covariance matrix of AR(1) structure with σ2 = 1 and ρ = 0.5 (i = 1, 2, ..., 100; j =
1, 2, ..., 5). We then form the covariates zijk = (xijt − xikt)

7
t=1 and hij = (xijt)

7
t=1 for

the generalized autoregressive parameters and the log-innovation variances. Using
these values, the mean µi and covariance matrix Σi are constructed through the mod-
ified Cholesky decomposition. The responses yi are then drawn from the multivariate
normal distribution N(µi, Σi) (i = 1, 2, ..., 100).

In the simulation study, 1000 repetitions of random samples are generated by using
the above data generation procedure. For each simulated data set, the proposed es-
timation procedures for finding out the ordinary maximum likelihood estimators and
penalized maximum likelihood estimators with SCAD, LASSO and Hard-thresholding
penalty functions are considered. The unknown tuning parameters τ (l), l = 1, 2, 3 for
the penalty functions are chosen by a 5-fold cross-validation criterion in the sim-
ulation. For each of these methods, the average of zero coefficients over the 1000
simulated data sets is reported in Table 5. Notes that ‘True’ in Table 5 means the
average number of zero regression coefficients that are correctly estimated as zero,
and ‘Wrong’ depicts the average number of non-zero regression coefficients that are
erroneously set to zero. In addition, the non-zero parameter estimators, and their
associated standard errors as well, are provided in Table 6. From those simulation
results, it is clear that the SCAD penalty method outperforms the LASSO and Hard
thresholding penalty approaches in the sense of correct variable selection rate, which
significantly reduces the model uncertainty and complexity.

Table 5: Average number of zero regression coefficients

SCAD LASSO Hard-thresholding

Parameter True Wrong True Wrong True Wrong

β 5.42 0.00 4.76 0.00 4.92 0.00

γ 4.18 0.06 3.28 0.08 3.55 0.21

λ 4.53 0.00 3.70 0.00 4.06 0.00

6 Discussion

Within the framework of joint modelling of mean and covariance structures for longi-
tudinal data, we proposed a variable selection method based on penalized likelihood
approaches. Like the mean, the covariance structures may be dependent on various
explanatory variables of interest so that simultaneous variable selection to the mean
and covariance structures becomes fundamental to avoid the modelling biases and
reduce the model complexities.

We have shown that under mild conditions the proposed penalized maximum like-
lihood estimators of the parameters in the mean and covariance models are asymptot-
ically consistent and normally distributed. Also, we have shown that the SCAD and
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Table 6: Estimators of non-zero regression coefficients

coefficient True value SCAD LASSO Hard-thresholding

β1 3 3.08(0.95) 3.08(0.95) 3.09(0.93)

β4 -2 -1.94(0.68) -1.93(0.63) -1.95(0.65)

β5 1 0.95(0.32) 0.96(0.39) 0.97(0.39)

β10 -4 -4.12(1.65) -4.13(1.74) -4.14(1.75)

γ1 -4 -4.13(1.88) -4.07(2.14) -4.10(2.14)

γ4 2 1.77(0.79) 1.71(0.85) 1.75(0.85)

λ2 1 1.05(0.05) 1.03(0.06) 1.03(0.06)

λ6 -2 -2.20(0.83) -2.11(0.81) -2.11(0.82)

Hard thresholding penalty based estimation approaches have the oracle property. In
other words, they can correctly identify the true models as if the true models would
be known in advance. In contrast, the LASSO penalty based estimation method does
not share the oracle property. We also considered the case when the number of ex-
planatory variables goes to infinity with the sample size and obtained similar results
to the case with finite number of variables.

We are currently studying semiparametric modelling of the mean, generalized
autoregressive parameters and log-innovation variances. We are also considering the
variable selection issue within the framework of semiparametric models of mean and
covariance structures. Details will be reported in a follow-up paper.
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Appendix A

Penalized maximum likelihood estimation

Firstly, note the first two derivatives of the log-likelihood function `(θ) are con-
tinuous. Around a given point θ0, the log-likelihood function can be approximated
by

`(θ) ≈ `(θ0) +

[
∂`(θ0)

∂θ

]T

(θ − θ0) +
1

2
(θ − θ0)

T

[
∂2`(θ0)

∂θ∂θT

]
(θ − θ0).

Also, given an initial value t0 we can approximate the penalty function p
′
r(t) by a

quadratic function (Fan and Li, 2001)

[pτ (|t|)]′ = p
′
τ (|t|)sgn(t) ≈ p

′
τ (|t0|)t

t0
, for t ≈ t0.

14



In other words,

pτ (|t|) ≈ pτ (|t0|) +
1

2
p
′
τ (|t0|)

t2 − t20
|t0| , for t ≈ t0.

Therefore, the penalized likelihood function (2.3) can be locally approximated, apart
from a constant term, by

Q(θ) ≈ `(θ0) +

[
∂`(θ0)

∂θ

]T

(θ − θ0) +
1

2
(θ − θ0)

T

[
∂2`(θ0)

∂θ∂θT

]
(θ − θ0)− n

2
θT Στ (θ0)θ,

where

Στ (θ0) = diag
{p

′
τ (1)(|β01|)
|β01| , · · · , p

′
τ (1)(|β0p|)
|β0p| ,

p
′
τ (2)(|γ01|)
|γ01| , · · · , p

′
τ (2)(|γ0q|)
|γ0q| ,

p
′
τ (3)(|λ01|)
|λ01| , · · · , p

′
τ (3)(|λ0d|)
|λ0d|

}
,

where θ = (θ1, · · · , θs)
T = (β1, · · · , βp, γ1, · · · , γq, λ1, · · · , λd)

T and θ0 = (θ01, · · · , θ0s)
T =

(β01, · · · , β0p, γ01, · · · , γ0q, λ01, · · · , λ0d)
T . Accordingly, the quadratic maximization prob-

lem for Q(θ) leads to a solution iterated by

θ1 ≈ θ0 +

{
∂2`(θ0)

∂θ∂θT
− nΣτ (θ0)

}−1 {
nΣτ (θ0)θ0 − ∂`(θ0)

∂θ

}
.

Secondly, as the data are normally distributed the log-likelihood function `(θ) can
be written as

−2`(θ) =
n∑

i=1

log |Σi|+
n∑

i=1

(yi −Xiβ)T Σ−1
i (yi −Xiβ),

=
n∑

i=1

log |Di|+
n∑

i=1

(ri − Ziγ)T D−1
i (ri − Ziγ),

=
n∑

i=1

mi∑

j=1

log σ2
ij +

n∑

i=1

mi∑

j=1

(rij − r̂ij)
2

σ2
ij

,

where

ri = yi −Xiβ = (ri1, · · · , rimi
)T ,

r̂ij =
j−1∑

k=1

φijkrik, (j = 2, · · · ,mi)

Zi = (zi1, · · · , zimi
)T ,

zij =
j−1∑

k=1

rikzijk, (j = 2, · · · ,mi)

Xi = (xi1, · · · , ximi
)T , (i = 1, · · · , n).

15



Therefore, the resulting score functions are

U(θ) =
∂`(θ)

∂θ
= (UT

1 (β), UT
2 (γ), UT

3 (λ))T

where

U1(β) =
n∑

i=1

XT
i Σ−1

i (yi −Xiβ),

U2(γ) =
n∑

i=1

ZT
i D−1

i (ri − Ziγ),

U3(λ) =
1

2

n∑

i=1

HT
i D−1

i (ε2
i − σ2

i ),

where

Hi = (hi1, · · · , himi
)T ,

ε2
i = (ε2

i1, · · · , ε2
imi

)T ,

ε2
ij = (rij − r̂ij)

2, (j = 1, · · · ,mi)

σ2
i = (σ2

i1, · · · , σ2
imi

)T .

According to Ye & Pan (2006), the Fisher information matrix In(θ) must be of block
diagonal. In other words, In(θ) = diag(I11, I22, I33), where

I11 =
n∑

i=1

XT
i Σ−1

i Xi,

I22 =
n∑

i=1

E(ZT
i D−1

i Zi),

I33 =
1

2

n∑

i=1

HT
i Hi.

By using the Fisher information matrix to approximate the observed information
matrix, we obtain the following iteration solution

θ1 ≈ θ0 +

{
∂2`(θ0)

∂θ∂θT
− nΣτ (θ0)

}−1 {
nΣτ (θ0)θ0 − ∂`(θ0)

∂θ

}

≈ θ0 + {In(θ0) + nΣτ (θ0)}−1 {U(θ0)− nΣτ (θ0)θ0}
= {In(θ0) + nΣτ (θ0)}−1 {U(θ0) + In(θ0)θ0} .

Since In(θ) is block diagonal, the above iteration solution is equivalent to

β1 =

{
n∑

i=1

XT
i Σ−1

i Xi + nΣτ (1)(β0)

}−1 {
n∑

i=1

XT
i Σ−1

i yi

}
,
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γ1 =

{
n∑

i=1

ZT
i D−1

i Zi + nΣτ (2)(γ0)

}−1 {
n∑

i=1

ZT
i D−1

i ri

}
,

λ1 =

{
n∑

i=1

HT
i Hi + 2nΣτ (3)(λ0)

}−1 {
n∑

i=1

HT
i D−1

i (ε2
i − σ2

i + Di log σ2
i )

}
,

where all the relevant quantities on the right hand side are evaluated at θ = θ0, and

Στ (1)(β0) = diag{p
′
τ (1)(|β01|)
|β01| , · · · , p

′
τ (1)(|β0p|)
|β0p| },

Στ (2)(γ0) = diag{p
′
τ (2)(|γ01|)
|γ01| , · · · , p

′
τ (2)(|γ0q|)
|γ0q| },

Στ (3)(λ0) = diag{p
′
τ (3)(|λ01|)
|λ01| , · · · , p

′
τ (3)(|λ0d|)
|λ0d| }.

Finally, the following algorithm summarizes the computation of the penalized
maximum likelihood estimators of the parameters in the joint mean and covariance
models.

Algorithm:
0. Take the ordinary least squares estimators (without penalty) β(0), γ(0) and λ(0)

of β, γ and λ as their initial values.
1. Given the current values {β(s), γ(s), λ(s)}, update

r
(s)
i = yi −Xiβ

(s), φ
(s)
ijk = zT

ijkγ
(s), log[(σ2

ij)
(s)] = hT

ijλ
(s),

and then use the above iteration solutions to update γ and λ until convergence.
Denote the updated results by γ(s+1) and λ(s+1).

2. For the updated values γ(s+1) and λ(s+1), form

φ
(s+1)
ijk = zT

ijkγ
(s+1), and log[(σ2

ij)
(s+1)] = hT

ijλ
(s+1),

and construct
Σ

(s+1)
i = (T

(s+1)
i )−1D

(s+1)
i [(T

(s+1)
i )T ]−1.

Then update β according to

β(s+1) =

{
n∑

i=1

XT
i (Σ

(s+1)
i )−1Xi + nΣτ (1)(β(s))

}−1 {
n∑

i=1

XT
i (Σ

(s+1)
i )−1yi

}
.

3. Repeat Step 1 and Step 2 above until certain convergence criteria are satisfied.
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Appendix B

Proofs of Theorems

To prove the theorems in the paper, we require the following regularity conditions:
(A1) The covariate vectors xij, zijk and hij are fixed. Also, for each subject the number
of repeated measurements, mi, is fixed (i = 1, ..., n; j = 1, ..., mi; k = 1, ..., j − 1).
(A2) The parameter space is compact and the true value θ0 is in the interior of the
parameter space.
(A3) The design matrices Xi, Zi and Hi in the joint models are all bounded, meaning
that all the elements of the matrices are bounded by a single finite real number.
(A4) The dimensions of the parameter vectors β, γ and λ, that is, pn, qn and dn, have
the same order as sn.
(A5) The nonzero components of the true parameters θ

(1)
01 , ..., θ

(1)
0s1

satisfy

min
1≤j≤s1




|θ(1)

0j |
τn



 →∞ (as n →∞)

where τn is equal to either τ (1)
n , τ (2)

n or τ (3)
n , depending on whether θ

(1)
0j is a component

of β0, γ0 and λ0 (j = 1, ..., s1).

Proof of Theorem 2.1. Note that pτn(0) = 0 and pτn(·) > 0. Obviously, we have

Q(θ0 + n−1/2u)−Q(θ0)

≤ [`(θ0 + n−1/2u)− `(θ0)]− n
s1∑

j=1

[pτn(|θ0j + n−1/2uj|)− pτn(|θ0j|)]

= K1 + K2.

We consider K1 first. By using Taylor expansion, we know

K1 = `(θ0 + n−1/2u)− `(θ0)

= n−1/2uT `
′
(θ0) +

1

2
n−1uT `

′′
(θ∗)u

= K11 + K12,

where θ∗ lies between θ0 and θ0 + n−1/2u. Note the fact that n−1/2‖`′(θ0)‖ = Op(1).
By applying Cauchy-Schwartz inequality, we obtain

K11 = n−1/2uT `
′
(θ0) ≤ n−1/2‖`′(θ0)‖‖u‖ = Op(1).

According to Chebyshev’s inequality, we know that for any ε > 0,

P
{

1

n
‖`′′(θ0)− E`

′′
(θ0)‖ ≥ ε

}
≤ 1

n2ε2
E





s∑

j=1

s∑

l=1

(
∂2`(θ0)

∂θj∂θl

− E
∂2`(θ0)

∂θj∂θl

)2


 ≤ Cs2

nε2
= o(1)
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so that n−1‖`′′(θ0)− E`
′′
(θ0)‖ = op(1). It then follows directly that

K12 =
1

2
n−1uT `

′′
(θ∗)u =

1

2
uT{n−1[`

′′
(θ0)− E`

′′
(θ0)− In(θ0)]}u[1 + op(1)]

= −1

2
uTI(θ0)u[1 + op(1)].

Therefore we conclude that K12 dominates K11 uniformly in ‖u‖ = C if the constant
C is sufficiently large.

We then study the term K2. It follows from Taylor expansion and Cauchy-
Schwartz inequality that

K2 = −n
s1∑

j=1

[pτn(|θ0j + n−1/2uj|)− pτn(|θ0j|)]

= −
s1∑

j=1

{n1/2p
′
τn

(|θ0j|)sgn(θ0j)uj +
1

2
p
′′
τn

(|θ0j|)u2
j [1 + op(1)]}

≤ √
s1n

1/2‖u‖ max
1≤j≤s

{p′τn
(|θ0j|) : θ0j 6= 0}+ 2‖u‖2 max

1≤j≤s
{|p′′τn

(|θ0j|)| : θ0j 6= 0}
=

√
s1n

1/2‖u‖an + 2‖u‖2bn.

Since it is assumed that an = Op(n
−1/2) and bn → 0, we conclude that K12 dominates

K2 if we choose a sufficiently large C. Therefore for any given ε > 0, there exists a
large constant C such that

P

{
sup
‖u‖=C

Q(θ0 + n−1/2u) < Q(θ0)

}
≥ 1− ε,

implying that there exists a local maximizer θ̂n such that θ̂n is a
√

n-consistent esti-
mator of θ0. The proof of Theorem 2.1 is completed.

Proof of Theorem 2.2. First, we prove that under the conditions of Theorem 2.2, for
any given θ(1) satisfying θ(1) − θ

(1)
0 = Op(n

−1/2) and any constant C > 0, we have

Q{((θ(1))T , 0T )T} = max
‖θ(2)‖≤Cn−1/2

Q{((θ(1))T , (θ(2))T )T}.

In fact, for any θj (j = s1 + 1, ..., s), using Taylor’s expansion we obtain

∂Q(θ)

∂θj

=
∂`(θ)

∂θj

− np
′
τn

(|θj|)sgn(θj)

=
∂`(θ0)

∂θj

+
s∑

l=1

∂2`(θ∗)
∂θj∂θl

(θl − θ0l)− np
′
τn

(|θj|)sgn(θj)

where θ∗ lies between θ and θ0. By using the standard argument, we know

1

n

∂`(θ0)

∂θj

= Op(n
−1/2) and

1

n

{
∂2`(θ0)

∂θj∂θl

− E

(
∂2`(θ0)

∂θj∂θl

)}
= op(1).
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Note ‖θ − θ0‖ = Op(n
−1/2). We then have

∂Q(θ)

∂θj

= nτn{−τ−1
n p

′
τn

(|θj|)sgn(θj) + Op(n
−1/2τ−1

n )}.

According to the assumption in Theorem 2.2, we obtain

lim inf
n→∞ lim inf

t→0+

p
′
τn

(t)

τn

> 0 and n−1/2τ−1
n = (

√
nτn)−1 → 0,

so that

∂Q(θ)

∂θj

{
< 0, for 0 < θj < Cn−1/2;
> 0, for − Cn−1/2 < θj < 0.

Therefore Q(θ) achieves its maximum at θ = ((θ(1))T , 0T )T and the first part of
Theorem 2.2 has been proved.

Second, we discuss the asymptotic normality of θ̂(1)
n . From Theorem 2.1 and the

first part of Theorem 2.2, there exists a penalized maximum likelihood estimator
θ̂(1)

n that is the
√

n-consistent local maximizer of the function Q{((θ(1))T , 0T )T}. The
estimator θ̂(1)

n must satisfy

0 =
∂Q(θ)

∂θj

∣∣∣∣
θ=(θ̂

(1)
n
0 )

=
∂`(θ)

∂θj

∣∣∣∣
θ=(θ̂

(1)
n
0 )
− np

′
τn

(|θ̂(1)
nj |)sgn(θ̂

(1)
nj )

=
∂`(θ0)

∂θj

+
s1∑

l=1

{
∂2`(θ0)

∂θj∂θl

+ op(1)

}
(θ̂

(1)
nl − θ

(1)
0l )

−np
′
τn

(|θ(1)
0j |)sgn(θ

(1)
0j )− n{p′′τn

(|θ(1)
0j |) + op(1)}(θ̂(1)

nj − θ
(1)
0j ).

In other words, we have
{
− ∂2`(θ0)

∂θ(1)∂(θ(1))T
+ nAn + op(1)

}
(θ̂(1)

n − θ
(1)
0 ) + cn =

∂`(θ0)

∂θ(1)

Using the Liapounov form of the multivariate central limit theorem, we obtain

1√
n

∂`(θ0)

∂θ(1)
→ Ns1(0, I(1))

in distribution. Note that

1

n

{
∂2`(θ0)

∂θ(1)∂(θ(1))T
− E

(
∂2`(θ0)

∂θ(1)∂(θ(1))T

)}
= op(1),

it follows immediately by using Slustsky’s theorem that

√
n(Ī(1)

n )−1/2(Ī(1)
n + An)

{
(θ̂(1)

n − θ
(1)
0 ) + (Ī(1)

n + An)−1cn

}
→ Ns1(0, Is1)
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in distribution. The proof of Theorem 2.2 is complete.

Proof of Theorem 3.1. Let αn = (n/sn)−1/2. Note pτn(0) = 0 and pτn(·) > 0. We then
have

Q(θ0 + αnu)−Q(θ0) ≤ [`(θ0 + αnu)− `(θ0)]− n
s1n∑

j=1

[pτn(|θ0j + αnuj|)− pτn(|θ0j|)]

= K1 + K2.

Using Taylor’s expansion, we obtain

K1 = `(θ0 + αnu)− `(θ0)

= αnu
T `

′
(θ0) +

1

2
α2

nu
T `

′′
(θ∗0)u

= K11 + K12,

where θ∗0 lies between θ0 and θ0 + αnu. Note that ‖`′(θ0)‖ = Op(
√

nsn). By using
Cauchy-Schwartz inequality, we conclude that

|K11| = |αnu
T `

′
(θ0)| ≤ αn‖`′(θ0)‖‖u‖ = Op(αn(nsn)1/2)‖u‖ = Op(nα2

n)‖u‖.
According to Chebyshev’s inequality, for any ε > 0 we have

P{
∥∥∥∥
sn

n

(
`
′′
(θ0)− E`

′′
(θ0)

)∥∥∥∥ ≥ ε}

≤ 1

ε2
E

(∥∥∥∥
sn

n

(
`
′′
(θ0)− E`

′′
(θ0)

)∥∥∥∥
2
)

=
s2

n

n2ε2
E





sn∑

j=1

sn∑

l=1

(
∂2`(θ0)

∂θj∂θl

− E
∂2`(θ0)

∂θj∂θl

)2




≤ Cs4
n

nε2
= o(1),

which implies that sn

n

∥∥∥`′′(θ0)− E`
′′
(θ0)

∥∥∥ = op(1). It then follows that

K12 =
1

2
α2

nu
T `

′′
(θ∗0)u =

1

2
nα2

nu
T

{
[
1

n
(`
′′
(θ0)− E`

′′
(θ0))− In(θ0)]

}
u[1 + op(1)]

= −1

2
nα2

nu
TI(θ0)u[1 + op(1)].

Therefore we know that K12 dominates K11 uniformly in ‖u‖ = C for a sufficiently
large constant C.

We now turn to K2. It follows from Taylor’s expansion that

K2 = −n
s1n∑

j=1

[pτn(|θ0j + αnuj|)− pτn(|θ0j|)]
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= −
s1n∑

j=1

{nαnp
′
τn

(|θ0j|)sgn(θ0j)uj +
1

2
nα2

np
′′
τn

(|θ0j|)u2
j [1 + op(1)]}

≤ √
s1nnαn‖u‖ max

1≤j≤sn

{p′τn
(|θ0j|) : θ0j 6= 0}

+2nα2
n‖u‖2 max

1≤j≤sn

{|p′′
τ
(j)
n

(|θ0j|)| : θ0j 6= 0}
≤ √

snnαn‖u‖a∗n + 2nα2
n‖u‖2b∗n

= nα2
n‖u‖Op(1) + 2nα2

n‖u‖2b∗n.

Since b∗n → 0 as n −→ 0, it is clear that K12 dominates K2 if a sufficiently large
constant C is chosen. In other words, for any given ε > 0 there exists a large constant
C such that

P

{
sup
‖u‖=C

Q(θ0 + αnu) < Q(θ0)

}
≥ 1− ε

as long as n is large enough. This implies that there exists a local maximizer θ̂n in

the ball {θ0 + αnu : ‖u‖ ≤ C} such that θ̂n is a
√

n/sn-consistent estimator of θ0.
The proof of Theorem 3.1 is completed.

Proof of Theorem 3.2. The proof of Theorem 3.2 is similar to that of Theorem 2.2. In
what follows we only give a very brief proof. First, it is easy to show that under the
conditions of Theorem 3.2, for any given θ(1) satisfying ‖θ(1)− θ

(1)
0 ‖ = Op((n/sn)−1/2)

and any constant C, the following equality holds

Q{((θ(1))T , 0T )T} = max
‖θ(2)‖≤C(n/sn)−1/2

Q{((θ(1))T , (θ(2))T )T}.

Based on this fact and Theorem 3.1, there exists an
√

n/sn-consistent estimator θ̂(1)
n

that is the local maximizer of Q{((θ(1))T , 0T )T}. Let Ī(1)
n = I(1)

n /n. Similar to the
proof of Theorem 2.2, we can show that

(Ī(1)
n + A∗

n)(θ̂(1)
n − θ

(1)
0 ) + c∗n =

1

n

∂`(θ0)

∂θ(1)
+ op(

1√
n

),

so that
√

nMn(Ī(1)
n )−1/2(Ī(1)

n + A∗
n){(θ̂(1)

n − θ
(1)
0 ) + (Ī(1)

n + A∗
n)−1c∗n}

=
1√
n

Mn(Ī(1)
n )−1/2∂`(θ0)

∂θ(1)
+ op(Mn(Ī(1)

n )−1/2).

By using Lindeberg-Feller central limit theorem, we can show that

1√
n

Mn(Ī(1)
n )−1/2∂`(θ0)

∂θ(1)

has an asymptotic multivariate normal distribution. The result in Theorem 3.2 follows
immediately according to Slustsky’s theorem. The proof of Theorem 3.2 is complete.
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