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Abstract

Efficient estimation of the regression coefficients in longitudinal data anal-

ysis requires a correct specification of the covariance structure. Existing ap-

proaches usually focus on modeling the mean with specification of certain co-

variance structures, which may lead to inefficient or biased estimators of pa-

rameters in the mean if misspecification occurs. In this paper, we propose a

data-driven approach based on semiparametric regression models for the mean

and the covariance simultaneously, motivated by the modified Cholesky de-

composition. A regression spline based approach using generalized estimating
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equations is developed to estimate the parameters in the mean and the covari-

ance. The resulting estimators for the regression coefficients in both the mean

and the covariance are shown to be consistent and asymptotically normally dis-

tributed. In addition, the nonparametric functions in these two structures are

estimated at their optimal rate of convergence. Simulation studies and a real

data analysis show that the proposed approach yields highly efficient estimators

for the parameters in the mean, and provides parsimonious estimation for the

covariance structure.

Some Keywords: Covariance misspecification; Efficiency; Generalized estimating equa-

tion; Longitudinal data; Modified Cholesky decomposition; Semiparametric models.

1 Background

Longitudinal data arise frequently in the biomedical, epidemiological, social and eco-

nomical fields. A salient feature of longitudinal studies is that subjects are measured

repeatedly over time. Thus, observations for the same subject are intrinsically cor-

related, though observations from different subjects may be independent. Regression

methods for such data sets accounting for within-subject correlation is abundant in

the literature. See, for example, book-length expositions by Diggle et al. (2002) and

Wu and Zhang (2006), and references therein. Within the framework of generalized

linear models (GLM), the technique of generalized estimating equations (GEE, Liang

and Zeger, 1986) is widely used for dealing with longitudinal data. GEE makes the

use of a working correlation model to estimate the mean parameters in the marginal

specification of the regression. Although consistency of the mean parameter esti-

mators is not affected, misspecification of the correlation may result in a great loss
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of efficiency (Wang and Carey, 2003). On the other hand, the correlation structure

itself may be of scientific interest (Diggle and Verbyla, 1998). Therefore, there is

a great need to model the covariance structure. However, modeling the correlation

matrix is more challenging than modeling the mean as there are usually much more

parameters in the former and the positive definiteness of the covariance matrix has

to be assured. This calls for effective methods for modeling the covariance matrices.

Prentice and Zhao (1991) proposed a moment based approach to parametrize the cor-

relation matrix. More recently, in a series of important papers, Pourahmadi (1999,

2000) proposed a modified Cholesky decomposition to decompose the covariance ma-

trix. This decomposition is attractive as it leads automatically to positive definite

covariance matrices. In addition, the decomposition is appealing as the parameters

in it are related to well founded statistical concepts, as can be seen later. Thereafter,

the parameters in this decomposition can be modeled via regression techniques, en-

abling model based inference for the parameters in the mean and the covariances. See

also Pan and MacKenzie (2003) for a related discussion. More recently, Ye and Pan

(2006) further proposed to use GEE to model the parameters in this decomposition.

By formulating several sets of parametric estimating equations, they showed that the

approach yields efficient estimators for both the mean and the covariance parameters.

There is a clear need to relax the parametric assumption posed in Ye and Pan

(2006), as model misspecification may result in biased estimation, a problem even

more severe than misspecification of the covariance. Fully nonparametric models are

desirable for low dimensional covariates, but may suffer from the curse of dimensional-

ity when the dimensionality is high. As a compromise, the semiparametric regression

model, or the partly linear model (PLM, Härdle, Liang and Gao, 2000) is more at-
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tractive, as it retains the flexibility of the nonparametric model and avoids the need

to model a fully nonparametric model. In this approach, the main covariates of in-

terest may be modeled in a parametric form while the other scalar covariate (usually

time) is treated nonparametrically. At other times, the semiparametric model arises

naturally due to categorical covariates (e.g., treatment effects). Existing applications

of PLM to longitudinal data accounting for within-subject dependence mainly focus

on regression analysis of the mean. The covariance is usually assumed known up to

a few parameters. For example, Lin and Carroll (2001) considered the generalized

partial linear model in a general case with the profile-kernel estimating equations.

Wang (2003) and Wang, Carroll and Lin (2005) further proposed a semiparametric

estimation method in marginal partly linear models. This estimation achieves the

semiparametric efficiency if the covariance is correctly specified. He, Zhu and Fung

(2002) considered a robust semiparametric model for the mean by ignoring the depen-

dence structure. Furthermore, He, Fung and Zhu (2005) proposed a robust estimation

method accounting for correlation using the techniques of GEE and regression splines.

Welsh et al. (2002) showed that regression splines can also result in better efficiency

over kernel methods in nonparametric regression models with longitudinal data. Lin

and Carroll (2006) considered a wide class of semiparametric problems for the mean

structure.

Compared to the models for the mean in longitudinal data analysis, model based

analysis for the covariance is much less studied. To address this issue, we propose

semiparametric models for the mean and the covariance structure for longitudinal

data. Our formulation builds on the modified Cholesky decomposition advocated by

Pourahmadi (1999) such that the entries in this decomposition can be modeled by
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semiparametric regression models. We adopt the regression spline method for the

nonparametric part as it is theoretically sound and computationally convenient (He

and Shi, 1996). On the one hand, our model retains the flexibility of the nonparamet-

ric approach, compared to that in Ye and Pan (2006). On the other hand, it avoids the

problem of dimensionality due to the partly linear form of the regression functions. At

the same time, the positive definiteness of the variance matrices is assured. There are

also related works in this regard. Wu and Pourahmadi (2003) proposed nonparamet-

ric estimates of the covariance matrix, but their method does not deal with irregular

observed measurements. Fan, Huang and Li (2007) and Fan and Wu (2008) studied

a different semiparametric model for the covariance structure. They estimated the

marginal variance via kernel smoothing and proposed a parametric model for the cor-

relation matrix. Similar to the method in Fan, Huang and Li (2007), our approach

can handle irregularly and possibly subject-specific times points. We show that the

resulting estimators for the regression coefficients in the mean and the variance are

consistent and asymptotically normally distributed. Furthermore, the nonparametric

parts are estimated at the optimal convergence rate. An iterative algorithm, which

is simple to implement, is also developed for computing the estimates.

The rest of the paper is organized as follows. Section 2 introduces the models and

estimation methods. Theoretical properties of the proposed estimators are given in

Section 3. Extensive simulations and data analysis are presented in Section 4. Section

5 gives some concluding remarks. All the proofs are relegated to the Appendix.
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2 The Models and The Estimation Methods

2.1 The models

Let yi = (yi1, · · · , yini
)′ be the ni repeated measurements at time points ti = (ti1, · · · , tini

)′

on the ith subject (i = 1, · · · ,m), for a total of n =
∑m

i=1 ni observations. Note that

tij may be the time or any time-dependent covariate which is modeled nonpara-

metrically. Without loss of generality, we assume that all {tij} are scaled into the

interval [0, 1]. Furthermore, we assume that the first two moments of the response

satisfy E(yij|xij, tij) = µ0
ij and V (yi|xi, ti) = Σ0i, where xij is a p-vector covariate and

xi = (xi1, ..., xini
)′ is the covariate matrix for the ith subject. To guarantee the posi-

tive definiteness of the matrices Σ0i, an explicit way of modeling Σ0i is via its modified

Cholesky decomposition as ΦiΣ0iΦ
′
i = D0i, where Φi is a lower triangular matrix with

1’s on its diagonal, and D0i is a diagonal matrix. As indicated by Pourahmadi (1999),

this decomposition has a clear statistical interpretation. The below-diagonal entries

of Φi are the negatives of the autoregressive coefficients φijk defined in

ŷij = µij +

j−1∑

k=1

φijk(yik − µik). (1)

That is, the autoregressive coefficients are the population regression coefficients of

the linear regression of yij on its predecessors yi(j−1), · · · , yi1. The diagonal entries

σ2
0ij of D0i can be seen as the innovation variance σ2

0ij = var(εij), for εij = yij − ŷij.

Clearly, the modified Cholesky decomposition is advantageous in that φ and log(σ2)

are unconstrained, rather than a constrained parameter Σ0i that must be positive

definite. To use the semiparametric regression tools, we postulate three sets of models

for µ, φ and σ as follows

g(µ0
ij) = x′ijβ0 + f0(tij), φijk = w′

ijkγ0, log(σ2
0ij) = z′ijλ0 + f1(tij), (2)
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where xij, wijk and zij are the p×1, q×1 and d× 1 vectors of covariates respectively;

β0 is the regression coefficients in the marginal mean; f0(·) and f1(·) are unknown

smooth functions. The known link function g(·) is assumed to be monotone and

differentiable. The covariates xij, wijk and zij may contain the baseline covariates,

the time and the associated interactions. etc. The idea of using (2) reflects the belief

that regression models for the autoregressive coefficients and innovation variances

are as important as that for the mean. Furthermore, model based analysis of these

parameters permit more accessible statistical inference. This technique was also used

by Ye and Pan (2006), but they assumed parametric models for g(µ0
ij) and log(σ2

0ij).

Thus, the parametric models in Ye and Pan (2006) can be seen as a special case of

the model studied in this paper. As discussed earlier, the semiparametric estimating

equations are more flexible and can be less biased if the parametric assumption is

violated.

2.2 The estimating equations

The two nonparametric functions f0 and f1 are parametrized by regression splines,

as splines can provide optimal rates of convergence for both the parametric and the

nonparametric components in PLM with a small number of knots (Heckman 1986; He

and Shi 1996). Additionally, any computational algorithm developed for GLM can be

used for fitting a semiparametric extension of GLM, since they treat a nonparametric

function as a linear function with the basis functions as covariates. We follow He et

al. (2002) and He and Shi (1996) by approximating f0 and f1 using the following

regression splines representation. For simplicity, we assume that f0 and f1 have the

same smoothness property. Let 0 = s0 < s1 < · · · < skn < skn+1 = 1 be a partition of
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the interval [0, 1]. Using {si} as the internal knots, we have K = kn + l normalized

B-spline basis functions of order l that form a basis for the linear spline space. We use

the B-spline basis functions because they have bounded support and are numerically

stable (Schumaker, 1981). Thus f0(t) and f1(t) are approximated by π′(t)α and

π′(t)α̃ respectively, where π(t) = (B1(t), · · · , BK(t))′ is the vector of basis functions

and α, α̃ ∈ RK . Let πij = π(tij). With this notation, the nonlinear regression models

in (2) can be linearized as following:

g(µij) = x′ijβ + π′(tij)α = b′ijθ, log(σ2
ij) = z′ijλ + π′(tij)α̃ := h′ijρ, (3)

where b′ij = (x′ij, π
′
ij), h′ij = (z′ij, π

′
ij), θ = (β′, α′)′ and ρ = (λ′, α̃′)′. We then let

µi = (µi1, · · · , µini
)′, Bi = (bi1, · · · , bini

)′ and define xi, πi, zi and Hi in a similar

fashion. Throughout this paper, a scalar function acting on a vector is set to be the

vector of the function on each component, for example, g(µi) = (g(µi1), · · · , g(µini
))′.

Using the GEE method from Liang and Zeger (1986), we construct the estimating

equations for θ, γ and ρ as follows

S1(θ) =
m∑

i=1

B′
i∆iΣ

−1
i (yi − µi(Biθ)) = 0,

S2(γ) =
m∑

i=1

V ′
i D

−1
i (ri − r̂i) = 0,

S3(ρ) =
m∑

i=1

H ′
iDi(Hiρ)W−1

i (ε2
i − σ2

i (Hiρ)) = 0,

(4)

where ∆i = ∆i(Biθ) = diag{ġ−1(b′ijθ), · · · , ġ−1(b′ini
θ)} and ġ−1(·) is the derivative

of the inverse function g−1(·); ri and r̂i are the ni × 1 vectors with jth components

rij = yij − µij and r̂ij = E(rij|ri1, · · · , ri(j−1)) =
∑j−1

k=1 φijkrik (j = 1, · · · , ni). Note

that when j = 1 the notation
∑0

k=1 means zero throughout this paper. It can be

shown that Di = diag{σ2
i1, · · · , σ2

ini
} in S2(γ) is actually the covariance matrix of ri−r̂i

and that V ′
i = ∂r̂′i/∂γ is the q × ni matrix with jth column ∂r̂ij/∂γ =

∑j−1
k=1 rikwijk.
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On the other hand, ε2
i and σ2

i in S3(λ) are the ni × 1 vectors with jth components

ε2
ij and σ2

ij (j = 1, · · · , ni), respectively, where εij = yij − ŷij and ŷij are given in (1).

Obviously, we have E(ε2
i ) = σ2

i . In addition, Wi is the covariance matrix of ε2
i , that

is, Wi = var(ε2
i ). The solutions of these generalized estimating equations, θ̂, γ̂ and

ρ̂ say, are termed the GEE estimators of θ, γ and ρ. As suggested by Ye and Pan

(2006), a sandwich ‘working’ covariance structure Wi = A
1/2
i Ri(δ)A

1/2
i can be used

to approximate the true Wi’s, where Ai = 2diag{σ4
i1, · · · , σ4

ini
} and Ri(δ) mimic the

correlation between ε2
ij and ε2

ik (i 6= k) by introducing a new parameter δ. Typical

structures for Ri(δ) include compound symmetry (exchangeable) and AR(1). As

with the conventional generalized estimating equations for the mean, the parameter

δ may have very little effect on the estimators of γ and ρ. Our real data analysis and

simulation studies reported in later sections confirm this point very well.

The three GEE equations in (4) can be seen as a generalization of the conventional

GEE for the mean parameters. If we use a working covariance structure for Σi in S1(θ)

and ignore S2(γ) and S3(ρ), we have the PLM for the mean. The modified Cholesky

decomposition allows us to proceed a step further to impose (unconstrained) partly

linear structures for the variance components as well.

2.3 The main algorithm

The solutions of θ, γ and ρ satisfy the equations in (4). These parameters can be

solved iteratively by fixing the other parameters. For example, for fixed values of

θ and γ, ρ can be computed via the third equation in (4). An application of the

quasi-Fisher scoring algorithm on equation (4) directly yields the numerical solutions

for these parameters. More specifically, given Σi, θ can be updated by the iterative
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procedure

θ(k+1) = θ(k) +





[
m∑

i=1

B′
i∆iΣ

−1
i ∆iBi

]−1 m∑
i=1

B′
i∆iΣ

−1
i (yi − µi(Biθ))





∣∣∣
θ=θ(k)

. (5)

On the other hand, given θ and ρ, the generalized autoregressive parameters γ

can be updated approximately through

γ(k+1) =





[
E

m∑
i=1

V ′
i D

−1
i Vi

]−1 m∑
i=1

V ′
i D

−1
i ri





∣∣∣
γ=γ(k)

. (6)

Finally, given θ and γ, the innovation variance parameters ρ can be updated using

ρ(k+1) = ρ(k) +





[
m∑

i=1

H ′
iDiW

−1
i DiHi

]−1 m∑
i=1

H ′
iDiW

−1
i (ε2

i − σ2
i )





∣∣∣
ρ=ρ(k)

, (7)

Equation (5)-(7) indicate that, iteratively, the parameters can be estimated using

weighted generalized least squares. We summarize the algorithm as follows

1. Initialization step: given a starting value ζ(0) = (θ(0)′ , γ(0)′ , ρ(0)′)′, use the model

(2) to form the lower triangular matrices T
(0)
i and diagonal matrices D

(0)
i . Set

k = 0 to obtain Σ
(0)
i , the starting values of Σi;

2. Iteration step: use equation (5) − (7) to calculate the estimators θ(k+1), γ(k+1)

and ρ(k+1);

3. Updating step: replace θ(k), γ(k) and ρ(k) with the estimators θ(k+1), γ(k+1) and

ρ(k+1). Repeat Steps 2-3 until a desired convergence criterion is met.

A good starting value of Σ
(0)
i can be simply chosen as Ii, the identity matrix for the

ith subject. This initial value of Σi guarantees the consistency of the initial estimators

in the mean, which in return guarantees consistency of the autoregressive parameters

and innovative parameters after the first iteration. In the analysis presented in this

10



paper, the convergence criterion is met as long as the successive difference in the

Euclidean norm is less than 10−6. Our numerical experience shows that this iterative

algorithm converges very quickly, usually in fewer than 5 iterations.

2.4 Knot selection

Knot selection is an important issue in spline smoothing. The number of knots plays

the same role as the smoothing parameter in the smoothing spline models and the

bandwidth parameter in kernel smoothing. Intuitively, the number of distinct knots

kn has to increase with n =
∑m

i=1 ni for asymptotic consistency. On the other hand,

too many knots would increase the variance of estimators. Thus, an objective choice

on the optimal number of the knots is needed. In this article, we follow the spline

literature (He, et al. 2005) and use the sample quartiles of {tij, i = 1, · · · ,m, j =

1, · · · , ni} as knots. For example, if we use three internal knots, they are taken to be

the three quartiles of the observed {tij}. We use cubic splines (splines of order 4) in

the numerical simulation section, and the number of internal knots is taken to be the

integer part of n1/5, where n is the sample size. This particular choice is consistent

with the asymptotic theory of Section 3. According to our empirical experience, this

choice works well in a wide variety of problems. A data adaptive procedure is to use

the leave-one-subject-out cross validation method, which is usually computationally

demanding. Theoretical justification of the leave-one-subject-out cross validation is

possible but is already beyond the scope of the paper. We will address this issue in

a follow-up work.
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3 Asymptotic Properties

Here and throughout, ‖ · ‖ for a vector denotes its Euclidean norm, and for any

square matrix A, ‖A‖ denotes its modulus of the largest singular value of A. To

study the rates of convergence for β̂, γ̂, λ̂ and f̂0, f̂1, we first give a set of regularity

conditions. If the estimating equation (4) has multiple solutions, then only a sequence

of consistent estimator (θ̂, γ̂, ρ̂) is considered in this section. A sequence (θ̂, γ̂, ρ̂) is said

to be a consistent sequence if (β̂′, γ̂′, λ̂′)′ → (β′0, γ
′
0, λ

′
0)
′ and supt |π′(t)α̂− f0(t)| → 0,

supt |π̃′(t) ˆ̃α − f1(t)| → 0 in probability as m → ∞. The fact that our iterative

algorithm starts from consistent estimators of the parameters ensures that the final

estimators are also consistent. Our basic conditions are as follows:

(A1) The dimensions p, q and d of covariates xij, wijk and zij are fixed; m → ∞

and max
i
{ni} is bounded, and the distinct values of tij form a quasi-uniform sequence

that grows dense on [0, 1]. We also assume that the first four moments of the response

exist.

(A2) The sth derivative of f0 and f1 are bounded for some s ≥ 2.

(A3) The covariates wijk and the matrices W−1
i are all bounded, which means

that all the elements of the vectors and matrices are bounded. The function g−1(·)

has bounded second derivatives.

(A4) The parametric space Θ is a compact subset of Rp+q+d, and the parameter

value ϑ0 = (β′0, γ
′
0, λ

′
0)
′ is in the interior of the parameter space Θ.

We can see that n = O(m) from (A1) where n =
∑m

i=1 ni. The existence of the first

four moments of the response is needed for consistently estimating the parameters

in the variance. The smoothness conditions on f0 and f1 given by Condition (A2)

determine the rate of convergence of the spline estimates. Condition (A3) is satisfied
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as t is bounded. Assumption (A4) is routinely made in linear models.

To study the asymptotic properties of estimators, some assumptions on the co-

variates x, t and z are needed. The dependence between xij and tij is the common

issue in semiparametric inference. We assume that

xijk = gk(tij) + δijk, k = 1, · · · , p. (8)

zijl = g̃l(tij) + δ̃ijl, l = 1, · · · , d; i = 1, · · · ,m; j = 1, · · · , ni; (9)

where δijk’s and δ̃ijl’s are mean zero random variables independent of the corre-

sponding random errors and of one another. We let Λn and Λ̃n be the n × p

and n × d matrices whose kth column are δk = (δ11k, · · · , δ1n1k, · · · , δmnmk)
′ and

δ̃k = (δ̃11k, · · · , δ̃1n1k, · · · , δ̃mnmk)
′ respectively. We also make the following assump-

tion:

(A5) (1) EΛn=0, supn
1
n
E‖Λn‖2 < ∞; EΛ̃n=0, supn

1
n
E‖Λ̃n‖2 < ∞;

(2) kn(M ′Σ0M) and knM ′W 0M are nonsingular for sufficiently large n, and

the eigenvalues of M ′Σ0Mkn/n and M ′W 0Mkn/n are bounded away from 0 and

infinity, where M = (π′1, · · · , π′m)′, Σ0 = diag{Σ0
1, · · · , Σ0

m} with Σ0
i = ∆0iΣ

−1
0i ∆0i =

∆i(η
0
i )Σ

−1
0i ∆i(η

0
i ), and W 0 are defined in a similar fashion respectively.

Condition (2) of (A5) is a property of the B-spline basis functions and is expected

to hold under rather general design conditions. The dimension of the approximating

B-spline space must increase with n for asymptotic consistency. The number of knots

must be chosen properly to balance between the bias and variance. For the optimal

rate of convergence, we choose kn = O(n1/(2s+1)).

The asymptotic properties of (β̂, γ̂, λ̂) involve computation of the covariance ma-
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trix ∆m = (δkl
m)k,l=1,2,3 of (S̃ ′1, S̃

′
2, S̃

′
3)
′/
√

m, where S̃1, S̃2 and S̃3 are defined by

S̃1 =
m∑

i=1

X∗
i
′∆0iΣ

−1
0i (yi − µ0i),

S̃2 =
m∑

i=1

V 0
i
′
D−1

0i (r0i − r̂0i),

S̃3 =
m∑

i=1

Z∗
i
′D0iW

−1
0i (ε2

0i − σ2
0i).

(10)

Here X∗ = (I−P )X with P = M(M ′Σ0M)−1M ′Σ0; r0i = yi−µ0i, r̂0i = (r̂0i1, · · · , r̂0ij,

· · · , r̂0ini
)′ with r̂0ij =

j−1∑
k=1

r0ikw
′
ijkγ0; V 0

i = (0, r0i1w
′
i21, · · · ,

∑j−1
k=1 r0ikw

′
ijk)

′; and Z∗ =

(I − P )Z. We make the following assumption, similar to the assumption (11) in Ye

and Pan (2006).

(A6) The covariance matrix ∆m is positive definite, and

∆m =




δ11
m δ12

m δ13
m

δ21
m δ22

m δ23
m

δ31
m δ32

m δ33
m


 → ∆ =




δ11 δ12 δ13

δ21 δ22 δ23

δ31 δ32 δ33


 , (11)

as m →∞. Here ∆ is a positive definite matrix.

Theorem 1. If Assumptions (A1) to (A6) hold and the number of knots satisfies

kn = O(n1/(2s+1)), then

1

n

m∑
i=1

ni∑
j=1

{
f̂0(tij)− f0(tij)

}2

= Op(n
−2s/(2s+1)) (12)

1

n

m∑
i=1

ni∑
j=1

{
f̂1(tij)− f1(tij)

}2

= Op(n
−2s/(2s+1)) (13)

where f̂0(t) = π′(t)α̂ and f̂1(t) = π′(t)̂̃α.

As pointed out by He et al. (2005), (12) and (13) imply that

∫
(f̂i(t)− fi(t))

2dt = Op(n
−2s/(2s+1)) (i = 0, 1)

under some general conditions (see, e.g., Lemmas 8 and 9 in Stone 1985). This is

the optimal rate of convergence for estimating f0 and f1 under the smoothness con-

dition (A2) above. For the parametric parameters, we have the following asymptotic

normality results.
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Theorem 2. Under conditions (A1)-(A6), the generalized estimating equation esti-

mator (β̂′m, γ̂′m, λ̂′m)′ is
√

m-consistent and asymptotically normal, that is

√
m




β̂m − β0

γ̂m − γ0

λ̂m − λ0


 → N





0,




δ11 0 0

0 δ22 0

0 0 δ33



−1 


δ11 δ12 δ13

δ21 δ22 δ23

δ31 δ32 δ33







δ11 0 0

0 δ22 0

0 0 δ33



−1





in distribution as m →∞.

The asymptotic variance reduces to a diagonal matrix when the response variable

is normally distributed. This is due to the fact that δkl = 0 when k 6= l. This is the

semiparametric analog to Theorem 2 by Ye and Pan (2006).

For statistical inference, we use a robust estimator of the covariance matrix of β̂m,

i.e.,

V (β̂m) = M−1
0 M1M

−1
0 , (14)

where

M0 =
m∑

i=1

X∗
i
′∆̂iΣ̂i∆̂iX

∗
i , M1 =

m∑
i=1

X∗
i
′∆̂iΣ̂i(yi − µ̂i)(yi − µ̂i)

′∆̂iX
∗
i .

The estimated covariance matrices of γ̂m and λ̂m can be obtained in a similar way,

and the covariances δkl(k 6= l) can also be estimated by their sample versions.

4 Numerical Study

4.1 Real data analysis

We apply the proposed estimation method to the CD4 cell study. This data set was

analyzed by many authors, see Ye and Pan (2006), Zeger and Diggle (1994) for ex-

ample. This data set comprises CD4 cell counts of 369 HIV-infected men with six

covariates including time since seroconversion (tij), age (relative to arbitrary origin,
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xij1), packs of cigarettes smoked per day (xij2), recreation drug use (xij3), number

of sexual partners (xij4), cesd (mental illness score, xij5). Altogether there are 2,376

values of CD4 cell counts, with multiple repeated measurements taken for each indi-

vidual at different times, covering a period of approximately eight and a half years.

The number of measurements for each individual varies from 1 to 12 and the time are

not equally spaced. Thus, the CD4 cell data are highly unbalanced. We use square

root transformation on the response by the suggestion in Zeger and Diggle (1994),

where further details about the design and the medical implications of the study can

be found.

The object of our analysis is to model jointly the mean and covariance structures

for the CD4 cell data. For that, we propose to use the following mean model

yij = xij1β1 + xij2β2 + xij3β3 + xij4β4 + xij5β5 + f(tij) + eij,

where i = 1, · · · , 369; j = 1, · · · , ni,
∑369

i=1 ni = 2376. We take covariates for the

autoregressive components as wijk = (1, tij − tik, (tij − tik)
2, (tij − tik)

3) following the

arguments in Ye and Pan (2006), and for the innovation variances as zij = xij. The

latter specification allows us to examine whether the innovations are dependent on

the covariates. Finally the number of knots is taken to be [(2356)1/5] = 7, which is

also the optimal number of knots according to the leave-one-subject-out cross valida-

tion. Table 1 lists the results for β by our modified Cholesky decomposition method,

where a normal working AR(1) model with δ = 0.2 is used for the innovation. For

comparison, we also list the conventional GEE method for the mean using differ-

ent working correlations, including independent, AR(1) and exchangeable structures.

The results show that our method gives estimators with generally smaller standard

errors. For our approach, smoking and drug use are highly significant variables, while
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mental illness score is marginally significant. The significance of smoking is missed

by GEE using AR(1) covariance structure, while that of drug use is missed by GEE

using either AR(1) or exchangeable variance structure. Finally, GEE using the in-

dependent working correlation indicates that mental score is not significant at all,

which contradicts with the GEE results using other working correlations.

Figure 1 displays the three fitted curves for f0, φ as a function of w and f1, when

Ri(δ) is specified by AR(1) with δ = 0.2. The asymptotic pointwise 95% confidence

intervals are also provided. The trajectory of the mean curve is consistent with that

in Zeger and Diggle (2002). The autoregressive curve is decreasing with the time lag

and the innovation curve seems to fluctuate around a constant. These observations

basically agree with those in Ye and Pan (2006).

Table 1 is about here.

Figure 1 is about here.

4.2 Simulation study

We conduct extensive numerical studies to assess the finite sample performance of the

proposed method. We also test the asymptotic covariance formula in Theorem 2 and

compare the proposed approach with conventional GEE using a working correlation

matrix.

Study 1. We first consider the following model

yij = xij1β1 + xij2β2 + f0(tij) + εij, i = 1, · · · ,m; j = 1, · · · , ni,

for m = 100. We use the sample scheme similar to that in Fan, Huang and Li (2007)

such that the observation times are regularly scheduled but may be randomly missed

in practice. More precisely, we generate the observation times in the following way.
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Each individual has a set of scheduled time points {0, 1, 2, ..., 12}, and each scheduled

time, except time 0, has a 20% probability of being skipped. The actual observation

time is a random perturbation of a scheduled time: a uniform [0, 1] random variable is

added to a nonskipped scheduled time. This results in different observed time points

tij per subject, and then tij is transformed onto [0, 1].

We take xij1 = tij + δij, where δij follows the standard normal distribution and let

xij2 follows a Bernoulli distribution with success probability 0.5. Thus xij1 is time-

varying. For the nonparametric function in the mean, we take f0(t) = cos(tπ). The

error (εin1, · · · , εini
)′ is generated to follow a multivariate normal distribution with

mean 0 and covariance Σi satisfying ΦiΣiΦ
′
i = Di, where Φi and Di are described in

Section 2.1 with wijk = (1, tij − tik)
′, zij = xij, and f1(t) = sin(πt). We consider two

kinds of correlation structures: compound symmetry (exchangeable) and AR(1) for

Ri(δ) in Wi = A
1/2
i Ri(δ)A

1/2
i the working covariance structure of ε2

i . In each case the

parameter δ, measuring the correlation between ε2
ij = (yij− ŷij)

2 and ε2
ik = (yik− ŷik)

2,

takes four different values, δ = 0, 0.2, 0.5, 0.8, so that the effect of misspecification of

Ri(δ) on the GEE estimators β, γ, and λ can be studied. We take two specifications

of the parametric coefficients as (1) β = (1, 0.5)′, γ = (0.2, 1.5)′ and λ = (−0.5, 1.5)′;

(2) β = (1, 0)′, γ = (0.2, 0)′, and λ = (−0.5, 0)′. For each setting, one hundred data

sets are simulated such that the expected sample size is about 1060. The number of

the knots is taken to be 4 ≈ 10601/5. Numerical experiments show that the results

are not very sensitive to the number of the knots.

Table 2 shows that our semiparametric methods literally yield unbiased estimates

for the parameters. Additionally, the parameter δ used in the working covariance

structure for the innovations has little effect on the estimation of β, γ and λ, and
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the estimated mean square error for f0 and f1, when the structure for Ri(δ) is based

on AR(1). The results obtained based on the compound symmetry structure are

very similar and thus are omitted. These results imply that the semiparametric GEE

estimators are robust against misspecification of the structure of Ri(δ). Figure 2

displays the true and fitted curves for nonparametric function f0 and f1 when Ri(δ)

is specified by AR(1) with δ = 0.2. The three curves f̂5, f̂50 and f̂95 represent the

fits which are 5%, 50% and 95% best in terms of the mean squred errors in 100

runs, respectively. They show a close agreement with the true functions. Note that

the longitudinal observations are highly irregular and some of {ni} are less than the

number of the parameters in the same subject.

Table 2 is about here.

Figure 2 is about here.

Study 2. We use this example to illustrate the performance of the asymptotic

covariance formula in Theorem 2. Here the simulation setup is the case (1) in Study

1 but the number of runs is increased to 1,000. In Table 3, “SD” represents the

sample standard deviation of 1,000 estimates of β, γ and λ, which can be viewed as

the true standard deviation of the resulting estimates. “SE” represents the sample

average of 1,000 estimated standard errors using formula (14), and “Std” represents

the standard deviation of these 1,000 standard errors. Table 3 demonstrates that the

standard error formula works well for different AR(1) correlation structures.

Table 3 is about here.

Study 3. In this example, we study the effect of misspecification of the working

covariance structure Σi on the estimation of β. Again, we repeat the experiment 100

times. For comparison, we apply GEE with independent, exchangeable and AR(1)
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working correlation. The results are summarized in Table 4, in which the third col-

umn is based on the estimation of Σi by the modified Cholesky decomposition method

proposed in this paper, under AR(1) structure with δ = 0.2. Other choices of δ are

tried and they yield similar results. The fourth column to the last column is based on

GEE using conventional working covariance structure of Σi and they represent the re-

sults by using the working independent, exchangeable and AR(1) working correlation

matrix, respectively. Not surprisingly, all methods give almost unbiased estimates for

β. However, the standard error of our semiparametric method is much smaller than

those of the other methods, implying that our estimator is more efficient. Further-

more, for the nonparametric part f0 in the mean, our semiparametric approach gives

estimates with significantly smaller mean square errors. Taken together, the study

shows that the semiparametric approach is more accurate in estimating the mean.

Table 4 is about here.

5 Discussion

We have proposed semiparametric mean-covariance models for longitudinal data anal-

ysis. The modified Cholesky decomposition is adopted such that partly linear re-

gression models can be applied to the autoregressive coefficients and log innovation

variances. On the one hand, our approach extends the semiparametric model for the

mean in longitudinal analysis. On the other hand, our approach relaxes the paramet-

ric assumption made by Ye and Pan (2006) on the innovation variances. For future

research, it would be interesting to extend the semiparametric approach to nonnormal

longitudinal data analysis.
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Appendix: sketch of proofs

The following lemma, which follows easily from Theorem 12.7 of Schumaker (1981),

is stated for easy reference.

Lemma 1. Under Assumptions (A1) and (A2), there exists constants C0 and C1

such that

sup
t∈[0,1]

|f0(t)− π′(t)α0| ≤ C0k
−s
n , sup

t∈[0,1]

|f1(t)− π′(t)α̃0| ≤ C1kn
−s.

Proof of Theorem 1

Equation (12) can be obtained directly from He et al (2005). Here we only give a

proof of equation (13) when all Wi are known, denoted by W0i. Similar asymptotic

results hold when all W0i are replaced by consistent estimates. Let

Tm =

(
A
−1/2
m −A

−1/2
m H ′W 0M(M ′W 0M)−1

0 k
1/2
n Q−1

m

)
,

where Am = H∗′W 0H∗ =
∑m

i=1 H∗
i
′W 0

i H∗
i , Q2

m = knM
′W 0M . Obviously, condition

(A6) implies that Am/m → A > 0 in probability for some positive matrix A as m →

∞. From the definition of Tm, it is easy to know that Tm

∑m
i=1 H ′

iD0iW
−1
0i D0iHiT

′
m =

Id+K , where Id+K is (d + K)× (d + K) identity matrix.

We further let

ζ(ρ) =

(
ζ1

ζ2

)
= (T ′

m)−1(ρ−ρ0) =

(
A

1/2
m (λ− λ0)

k
−1/2
n Qm(α̃− α̃0) + k

1/2
n Q−1

m M ′W 0H(λ− λ0)

)

(A.1)

and

ζ̂ =

(
ζ̂1

ζ̂2

)
= ζ(λ̂, ̂̃α). (A.2)
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From Lemma 1, it is easy to know that for sufficiently large n,

1

n

m∑
i=1

ni∑
j=1

{
f̂1(tij)− f1(tij)

}2

≤ 2

n

m∑
i=1

ni∑
j=1

(π′ij(̂̃α− α̃0))
2 + 2C0k

−2s
n , (A.3)

and ‖A−1/2
m (λ̂− λ0)‖ ≤ ‖ζ̂‖,

[ 1

n

m∑
i=1

ni∑
j=1

(π′ij(̂̃α− α̃0))
2
]1/2

= n−1/2‖M(̂̃α− α̃0)‖ ≤ Cn−1/2‖k−1/2
n Qn(̂̃α− α̃0)‖

≤ Cn−1/2‖ζ̂‖+ Cλ−1/2
n ‖λ̂− λ0‖ sup

‖a‖=1,‖b‖=1

|n−1a′M ′W 0Hbk1/2
n |,

where λn is the minimum eigenvalue of knM
′W 0M/n. Then by lemma 6.2 of He and

Shi (1996) it suffices to show that ‖ζ̂‖ = Op(k
1/2
n ). To do so, let Rmi = πiα̃0 − f1(ti),

η0
i = Hiλ0 + f1(ti), and ςi = H̃iζ + Rmi, where H̃i = HiT

′
m = (H∗

i A
−1/2
m , πiQ

−1
m k

1/2
n ).

Then it’s easy to see that

Hiζ = η0
i + ςi, σ2

i = exp(η0
i + ςi),

and the third estimating equation of (4) can be rewritten as

Sζ(ζ) =
m∑

i=1

H ′
iDi(η

0
i + ςi)W

−1
0i (ε2

i − exp(η0
i + ςi)) = 0. (A.4)

Multiply Tm to equation (A.4) and we get

Ψ(ζ) = TmSζ(ζ) =
m∑

i=1

H̃ ′
iDi(η

0
i + ςi)W

−1
0i (ε2

i − exp(η0
i + ςi)) = 0. (A.5)

It is easy to known that both (A.4) and (A.5) give the same root for ζ by conditions

(A4) and (A5). Let a ∈ Rd+K̃ , satisfying a′a = 1. We expand a′Ψ(ζ) in a Taylor

series,

a′Ψ(ζ) =
m∑

i=1

a′H̃ ′
iDi(η

0
i + ςi)W

−1
0i (ε2

i − exp(η0
i + ςi))

=
m∑

i=1

a′H̃ ′
iD0iW

−1
0i (ε2

i − σ2
0i)−

m∑
i=1

a′H̃ ′
iD0iW

−1
0i D0iςi
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+
m∑

i=1

ς ′i
∂a′H̃ ′

iDi

∂ςi

∣∣∣
ςi=0

W−1
0i (ε2

i − σ2
0i) + R∗

m(ς∗), (A.6)

where R∗
m(ς∗) =

∑m
i=1 R∗

mi(ς
∗
i ) and R∗

mi(ς
∗
i ) = 1

2
ς ′i[∂

2a′H̃ ′
iDiW

−1
0i (ε2

i−σ2
i )/∂ςi∂ς ′i|ςi=ς∗i ]ςi

for ς∗i = η0
i + τiςi (i = 1, · · · ,m) with 0 < τi < 1.

Further, let

Φ(ζ) =
m∑

i=1

H̃ ′
iD0iW

−1
0i (ε2

0i − σ2
0i)− ζ, (A.7)

where ε0i = yi − µ0i. Denote the solution of Φ as ζ̃, that is,

ζ̃ =

(
ζ̃1

ζ̃2

)
=

m∑
i=1

H̃ ′
iD0iW

−1
0i (ε2

0i − σ2
0i). (A.8)

From (A.6) and (A.7) the difference between a′Ψ(ζ) and a′Φ(ζ) can be expressed as

a′(Ψ(ζ) − Φ(ζ)) =
m∑

i=1

a′H̃ ′
iD0iW

−1
0i (ε2

i − ε2
0i)−

m∑
i=1

a′H̃ ′
iD0iW

−1
0i D0iRmi

+
m∑

i=1

ς ′i
∂a′H̃ ′

iDi

∂ςi

∣∣∣
ςi=0

W−1
0i (ε2

i − σ2
0i) + R∗

m(ς∗)

=: In0 − In1 + In2(ζ) + R∗
m(ς∗). (A.9)

By Cauchy-Schwarz inequality, the definition of H̃ and kn = O(n1/(2s+1)), we have

E(In0)
2 ≤

m∑
i=1

a′H̃ ′
iD0iW

−1
0i D0iH̃ia

m∑
i=1

E(ε2
i − ε2

0i)
′W−1

0i (ε2
i − ε2

0i)

=
m∑

i=1

E(D̃(∇µi)ε0i + (∇µi)
2)′W−1

0i (D̃(∇µi)ε0i + (∇µi)
2)

=
m∑

i=1

trace{D̃(∇µi)W
−1
0i D̃(∇µi)Σ0i}+

m∑
i=1

{(∇µi)
2}′W−1

0i (∇µi)
2

≤ C

m∑
i=1

[‖∇µi‖2 +
m∑

i=1

ni∑
j=1

[∇µij]
4 = Op(kn), (A.10)

where ∇µi = (µi1 − µ0i1, · · · , µini
− µ0ini

)′ and D̃(∇µi) = diag{µi1 − µ0i1, · · · , µini
−

µ0ini
} with µi = µi(Biθ̂) = g−1(Biθ̂). The last inequality in (A.10) can be obtained

easily by He et al (2005). Thus

|In0| = Op(k
1/2
n ). (A.11)
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For In1, Obviously,

|In1| =
∣∣∣

m∑
i=1

a′H̃ ′
iD0iW

−1
0i D0iRmi

∣∣∣ = |a′H̃W 0Rm|

= {a′H̃ ′W 0H̃a}1/2{R′
mΣ0Rm}1/2 = O(n1/2k−s

n ) = O(k1/2
n ), (A.12)

where Rm = (Rm1, · · · , Rmnm)′.

For In2(ζ), write

In2(ζ) =
m∑

i=1

ζ ′H̃ ′
iG0,i +

m∑
i=1

R′
miG0,i =: I

(1)
n2 (ζ) + I

(2)
n2 , (A.13)

where G0,i =
∂a′H̃′

iDi

∂ςi

∣∣∣
ςi=0

W−1
0i (ε2

i − σ2
0i). Let ẽi = W−1

0i (ε2
i − σ2

0i) = (ẽi1, · · · , ẽini
)′.

It is easy to know that G0i = diag{σ2
0i1ẽ1i, · · · , σ2

0ini
ẽini

}H̃ia =: A(ẽi)H̃ia. Then by

Cauchy-Schwarz inequality, we have

(
I

(1)
n2

)2

=

(
m∑

i=1

ζ ′H̃ ′
iA(ẽi)H̃ia

)2

=

(
d̄∑

k=1

ξk

m∑
i=1

1′kH̃
′
iA(ẽi)H̃ia

)2

≤ ‖ξ‖2

d̄∑

k=1

(
m∑

i=1

1′kH̃
′
iA(ẽi)H̃ia

)2

≤ ‖ξ‖2

d̄∑

k,j=1

(
m∑

i=1

1′kH̃
′
iA(ẽi)H̃i1j

)2

,

where d̄ = d + K and 1k = (0, · · · , 0, 1, 0, · · · , 0)′ is a d̄ vector with 1 as its kth

element and 0 elsewhere. By conditions (A1),(A3), (A5) and (A6), we have

E(I
(1)
n2 )2 ≤ C‖ζ‖2

d̄∑

k,j=1

m∑
i=1

E
(
1′kH̃

′
iA(ẽi)H̃i1j

)2

≤ C‖ζ‖2

d̄∑

k,j=1

m∑
i=1

1′kH̃
′
iH̃i1kE‖A(ẽi)H̃i1j‖2

≤ C‖ζ‖2 sup
i

d̄∑

k=1

1′kH̃
′
iH̃i1k

m∑
i=1

d̄∑

k=1

1′kH̃
′
iH̃i1kO(kn)

= C‖ζ‖2 sup
i

trace{H̃iH̃
′
i}trace{

m∑
i=1

H̃iH̃
′
i}O(kn)

≤ C‖ζ‖2kn sup
i

trace{H∗
i A−1

m H∗
i
′ + knπiQ

−2
m π′i}O(kn)

= O(k3
n‖ζ‖2/n),
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where the constant C, independent of n, may vary from line to line. Therefore, for

sufficiently large L, we have

sup
‖ζ‖≤Lk

1/2
n ,a′a=1

|I(1)
n2 (ζ)| = Op(n

−1/2k2
n). (A.14)

Similarly,

sup
a′a=1

|I(2)
n2 | = O(k1−s

n ). (A.15)

Combining (A.14) and (A.15) and kn = O(n1/(2s+1)), we obtain

sup
a′a=1

|In2| = Op(k
1/2
n ). (A.16)

For R∗
m(ς∗), let F ∗

i = (∂2a′H̃ ′
iDiW

−1
0i (ε2

i − σ2
i )/∂ςi∂ς ′i)|ςi = ς∗i , we see that

R∗
m(ς∗) =

1

2

m∑
i=1

ζ ′H̃ ′
iF

∗
i H̃iξ +

m∑
i=1

R′
miF

∗
i H̃iζ +

1

2

m∑
i=1

R′
miF

∗
i Rmi

= I
(1)
n3 (ζ) + I

(2)
n3 (ζ) + I

(3)
n3 (ζ).

By assumptions (A3), (A5) and (A6), we have that sup1≤i≤m,a′a=1 ‖F ∗
i ‖ = Op(n

−1/2k
1/2
n ).

Hence

sup
‖ζ‖≤Lk

1/2
n ,a′a=1

|I(1)
n3 (ξ)| = Op(n

−1/2k5/2
n ),

sup
‖ζ‖≤Lk

1/2
n ,a′a=1

|I(2)
n3 (ξ)| = Op(k

3/2−s
n ),

sup
‖ζ‖≤Lk

1/2
n ,a′a=1

|I(3)
n3 (ξ)| = Op(n

1/2k1/2−2s
n ),

sup
‖ζ‖≤Lk

1/2
n ,a′a=1

|R∗
n(ς∗)| = Op(k

1/2
n ).

Putting all the approximations together, we have

sup
‖ζ‖≤Lk

1/2
n

‖Ψ(ζ)− Φ(ζ)‖ = Op(k
1/2
n ),

and for sufficient large C, direct calculations give

E‖ζ̃‖2 =
m∑

i=1

E[(ε2
0i − σ2

0i)
′W−1

0i D0iH
∗
i A−1

m H∗
i
′D0iW

−1
0i (ε2

0i − σ2
0i)
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+kn(ε2
0i − σ2

0i)
′W−1

0i D0iπiQ
−2
m π′iD0iW

−1
0i (ε2

0i − σ2
0i)]

≤ Ctrace{H∗A−1
m H∗′ + knMQ−2

m M ′} = O(kn).

Therefore,

sup
‖ζ‖≤Lk

1/2
n

‖Ψ(ζ)− ζ‖ ≤ sup
‖ζ‖≤Lk

1/2
n

‖Ψ(ζ)−Φ(ζ)‖+ ‖ζ̃‖ = LOp(k
1/2
n ) + Op(k

1/2
n ), (A.17)

which implies that sup‖ζ‖≤Lk
1/2
n
‖Ψ(ζ)−ζ‖ ≤ Lk

1/2
n in probability for sufficiently large

L. Thus Brouwer’s fixed-point theorem ensures that the map ζ 7→ ζ − Ψ(ζ) has a

fixed point ζ̂ that is a zero of Ψ(ζ) with ‖ζ̂‖ = Op(k
1/2
n ).

Lemma 2. Under conditions (A1)-(A6), Let (β̂′m, α̂′m, γ̂′m, λ̂′m, ̂̃α′m)′ be the root of

generalized estimating equation (4), then

‖ξ̂1 − ξ̃1‖ = op(1), ‖√m(γ̂m − γ0)− γ̃‖ = op(1), ‖ζ̂1 − ζ̃1‖ = op(1). (A.18)

where ξ̂1 = C
1/2
m (β̂m−β0), ξ̃1 = C

1/2
m S̃1 with Cm = X∗′Σ0X∗; γ̃ = [

∑m
i=1 V 0

i
′
D−1

0i V 0
i /m]−1 1√

m
S̃2;

ζ̂1 and ζ̃1 are given by (A.2)and (A.8) respectively.

Proof. First, we show that ‖ζ̂1 − ζ̃1‖ = op(1). Similar to the arguments of the proof

of Theorem 1, we have that

sup
‖ζ1‖≤L,‖ζ2‖≤k

1/2
n

‖Ψ1(ζ1, ζ2)− Φ(ζ1, ζ2)‖ = op(1), ‖ζ̂1‖ = Op(1),

thus,

‖ζ̃1 − ζ̂1‖ = op(1).

Similarly, ‖ξ̂1− ξ̃1‖ = op(1). To prove ‖√m(γ̂m−γ0)− γ̃‖ = op(1), it suffices to prove

this claim when all Di are known to be D0i. Let B̃m =
∑m

i=1 V ′
i D

−1
0i Vi/m. By (4) we

have

√
m(γ̂m − γ0) = B̃−1

m

1√
m

m∑
i=1

V ′
i D

−1
0i (ri − r̂i).
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Obviously, B̃m can be written as follows by Kronecker product,

B̃m =
1

m

m∑
i=1

(r′0i ⊗ Iq + (∇µi)
′ ⊗ Iq)Ω

′
iD

−1
0i Ωi(r0i ⊗ Iq +∇µi ⊗ Iq)

=
1

m

m∑
i=1

(r′0i ⊗ Iq)Ω
′
iD

−1
0i Ωi(r0i ⊗ Iq) +

1

m

m∑
i=1

(r′0i ⊗ Iq)Ω
′
iD

−1
0i Ωi(∇µi ⊗ Iq)

+
1

m

m∑
i=1

(∇µi)
′ ⊗ Iq)Ω

′
iD

−1
0i Ωi(r0i ⊗ Iq) +

1

m

m∑
i=1

((∇µi)
′ ⊗ Iq)Ω

′
iD

−1
0i Ωi(∇µi ⊗ Iq)

=:
1

m

m∑
i=1

(r′0i ⊗ Iq)Ω
′
iD

−1
0i Ωi(r0i ⊗ Iq) + J1 + J2 + J3, (A.19)

where Ωi is a lower triangular matrix with 0’s on its diagonal and the j row is

(ω′ij1, · · · , ω′ij(j−1), 0, · · · , 0). Since for any a ∈ Rq satisfying ‖a‖ = 1, by the proof of

theorem 1, we have

(Ea′J1a)2 =

{
1

m
E

m∑
i=1

a′(r′0i ⊗ Iq)Ω
′
iD

−1
0i Ωi(∇µi ⊗ Iq)a

}2

=
1

m

m∑
i=1

Ea′(r′0i ⊗ Iq)Ω
′
iD

−1
0i Ωi(r0i ⊗ Iq)a · 1

m

m∑
i=1

Ea′((∇µi)
′ ⊗ Iq)Ω

′
iD

−1
0i Ωi(∇µi ⊗ Iq)a

≤ C
1

m

m∑
i=1

‖∇µi‖2 = o(n−(2s−1)/(2s+1)).

That is J1 → 0 in probability. Similarly we can show that J2 → 0 and that J3 → 0 in

probability. Thus Bm− 1
m

∑m
i=1 V 0

i
′
D−1

0i V 0
i → 0 in probability. Similarly, we can prove

that 1√
m

∑m
i=1 V ′

i D
−1
0i (ri − r̂i)− 1√

m
S̃2 → 0 in probability. The proof is completed by

an application of Slutsky theorem.

Proof of Theorem 2

By Lemma 2, we only need to show the asymptotic normality of (ξ̃′1, γ̃
′, ζ̃ ′1)

′/
√

m.

This is equivalent to the asymptotic normality of (S̃ ′1, S̃
′
2, S̃

′
3)
′/
√

m. Note that Con-

ditions (A1), (A3), (A4) and (A6) imply that

E0

[
ψ′

{
X∗

i
′∆0iΣ

−1
0i (yi − µ0i)

}
+ ω′

{
V0iD

−1
0i (r0i − r̂0i)

}
+ ϕ′

(
Z∗

i
′D0iW

−1
0i (ε2

0i − σ2
0i)

}]3
< κ,
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for any ψ ∈ Rp+K , ω ∈ Rq and ϕ ∈ Rd+K′
, where κ is a constant independent of i.

Furthermore, we have

1

m

m∑
i=1

V ar
[
ψ′

{
X∗

i
′∆0iΣ

−1
0i (yi − µ0i)

}
+ ω′

{
V0iD

−1
0i (r0i − r̂0i)

}
+ ϕ′

(
Z∗

i
′D0iW

−1
0i (ε2

0i − σ2
0i)

}]

= (ψ′, ω′, ϕ′)
1

n
∆n(ψ′, ω′, ϕ′)′ → (ψ′, ω′, ϕ′)∆(ψ′, ω′, ϕ′)′ > 0.

Therefore the asymptotic normality of (S̃ ′1, S̃
′
2, S̃

′
3)
′/
√

m is easily proved by multivari-

ate Liapounov central limit theorem. Therefore,

√
m




β̂m − β0

γ̂m − γ0

λ̂m − λ0


 =




(Am/m)−1 0 0

0 (Bm/m)−1 0

0 0 (Cm/m)−1







S̃1/
√

m

S̃2/
√

m

S̃3/
√

m




→ N





0,




δ11 0 0

0 δ22 0

0 0 δ33



−1 


δ11 δ12 δ13

δ21 δ22 δ23

δ31 δ32 δ33







δ11 0 0

0 δ22 0

0 0 δ33



−1





.

in distribution as m →∞. The proof of Theorem 2 is completed.
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Table 1: CD4 cell data. The estimates of parameters based on AR(1) structure and

square root CD4 cell numbers, with standard errors in parentheses.

Cholesky (δ = 0.2) Generalized Estamating Equations

Normal Independence AR(1) Exchangable

β1 0.005(0.030) 0.015(0.035) 0.016(0.034) 0.002(0.032)

β2 0.768(0.130) 0.981(0.184) 0.262(0.190) 0.596(0.136)

β3 0.821(0.345) 1.075(0.528) 0.471(0.350) 0.494(0.358)

β4 0.044(0.038) -0.064(0.059) 0.050(0.041) 0.060(0.043)

β5 -0.030(0.014) -0.031(0.021) -0.046(0.014) -0.048(0.015)
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Figure 1: The CD4 cell data. The fitted curves of (A) nonparametric part in mean

against time, (B) the generalized autoregressive parameters against lag and (C) the

nonparametric part in (log) innovation variances against time based on AR(1) struc-

ture with δ = 0.2 and square root CD+ cell numbers. Dashed curves represent

asymptotic 95% confidence intervals.
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Table 2: Simulation results for Study 1 over 100 replications with standard errors in

parentheses.

True δ = 0 δ = 0.2 δ = 0.5 δ = 0.8
β1 1.0 1.00 1.00 1.00 1.00

(2.27×10−3) (2.27×10−3) (2.27×10−3) (2.27×10−3)
β2 0.5 0.51 0.51 0.51 0.51

(4.83× 10−3) (4.83× 10−3) (4.83× 10−3) (4.84× 10−3)

γ1 0.2 0.20 0.20 0.20 0.20
(7.68×10−4) (7.68×10−4) (7.69×10−4) (7.71×10−4)

γ2 1.0 1.0 1.00 1.00 1.00
(2.85×10−3) (2.86×10−3) (2.86×10−3) (2.86×10−3)

λ1 -0.5 -0.50 -0.50 -0.50 -0.50
(1.30×10−2) (1.28×10−2) (1.23×10−2) (1.18×10−2)

λ2 1.5 1.51 1.51 1.51 1.51
(1.72×10−2) (1.71×10−2) (1.76×10−2) (1.78×10−2)

MSE(f̂0) 0.0457 0.0457 0.0459 0.0462
(0.0641) (0.0646) (0.0654) (0.0666)

MSE(f̂1) 0.0119 0.0126 0.0150 0.0218
(0.0080) (0.0089) (0.0115) (0.0175)

β1 1.0 1.00 1.00 1.00 1.00
(2.98× 10−3) (2.98× 10−3) (2.98× 10−3) (2.99× 10−3)

β2 0 1.42× 10−3 1.42× 10−3 1.54× 10−3 1.95× 10−3

(5.98×10−3) (5.98×10−3) (5.99×10−3) (6.0×10−3)

γ1 0.2 0.20 0.20 0.20 0.20
(1.79×10−3) (1.79×10−3) (1.79×10−3) (1.79×10−3)

γ2 0 8.45×10−3 8.43×10−3 8.42×10−3 8.46×10−3

(4.74×10−3) (4.75×10−3) (4.75×10−3) (4.76×10−3)

λ1 -0.5 -0.51 -0.50 -0.50 -0.50
(2.03×10−2) (2.02×10−2) (1.96×10−2) (1.83×10−2)

λ2 0 7.38×10−3 8.49×10−3 9.57×10−3 9.57×10−3

(1.70×10−2) (1.71×10−2) (1.77×10−2) (1.81×10−2)

MSE(f̂0) 0.0187 0.0188 0.0189 0.0191
(0.0228) (0.0231) (0.0233) (0.0238)

MSE(f̂1) 0.0105 0.0103 0.0111 0.0146
(0.0081) (0.0076) (0.0078) (0.0105)
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Figure 2: Nonparametric function f0 and f1 and their fitted curves f̂5, f̂50, f̂95, for

AR(1) structure with δ = 0.2.
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Table 3: Assessment of the standard errors using formula (14).

δ = 0 δ = 0.2 δ = 0.5 δ = 0.8

β1

SD 0.0240 0.0240 0.0241 0.0241

SE(Std) 0.0230(0.0030) 0.0230(0.0030) 0.0230(0.0030) 0.0230(0.0030)

β2

SD 0.0518 0.0519 0.0519 0.0522

SE(Std) 0.0481(0.0056) 0.0481(0.0056) 0.0481(0.0056) 0.0482(0.0057)

Table 4: Simulation results for Study 3 with standard errors in parentheses.

Cholesky (δ = 0.2) Generalized Estamating Equations

True Normal Independence Exchangeable AR(1)

β1 1.0 1.00 1.03 1.05 1.01

(2.27×10−3) (4.09×10−2) (3.41×10−2) (1.29×10−2)

β2 0.5 0.51 0.49 0.54 0.54

(4.83× 10−3) (8.29×10−2) (6.53×10−2) (2.55×10−2)

MSE(f0) 0.0457(0.0646) 2.3851(3.8551) 2.1978(3.6879) 1.8847(3.5348)

36


