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1 Introduction

A commonly recurring approximation to real rate processes is of the form:

Ṅ = −mN

where m is some positive rate constant and N(t) measures the current value of
some property relevant to the process—radioactive decay is our typical student
example. The simplest stochastic version addresses the situation where N(t) is
the size of the current population and the rate constant depends on the distri-
bution of properties in the population—so different sections decay at different
rates. Then the interest lies in the evolution of the distribution of properties
and of the related statistical features like entropy, mean and variance, for given
initial distribution. We show that there is a simple closed solution for an exam-
ple of an epidemic in which the latency and infectivity are distributed properties
controlled by a bivariate gamma distribution.

We consider a class of simple stochastic rate processes where a population
N is classified by a smooth family of probability density functions {Pt, t ≥ 0}
with random variable a ≥ 0, having mean Et(a) and variance σ2(t). Karev [4]
formulated this situation in the form

N(t) =
∫ ∞

0

lt(a) da and Pt(a) =
lt(a)
N(t)

(1)

l̇t(a) = −alt(a) so lt(a) = l0(a)e−at (2)

from which he obtained a large range of general solutions. We summarise as
follows

N(t) = N(0)L0(t) where L0(t) =
∫ ∞

0

P0(a)e−at da (3)

Ṅ = −Et(a)N where Et(a) =
∫ ∞

0

a lt(a) da = −d logL0

dt
(4)

Ėt(a) = −σ2(t) = (Et(a))2 − Et(a2) (5)

Pt(a) = e−at
P0(a)
L0(t)

and lt(a) = e−atL0(t) (6)

Ṗt(a) = Pt(a)(Et(a)− a). (7)
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Figure 1: Part of the family of McKay bivariate gamma probability density
functions f(x, y) with correlation coefficient ρ = 0.6 and α1 = 5.

The elegance of Karev’s approach lies in the fact that L0(t) is the Laplace trans-
form of the initial probability density function P0(a) and so conversely P0(a)
is the inverse Laplace transform of the population (monotonic) decay solution
N(t)
N(0) . He gave the particular solutions for the cases of initial distributions that
were Poisson, gamma or uniform.

2 Entropy dynamics

It is easy to deduce the rate process for entropy from Karev’s model. The
Shannon entropy at time t is

St = −Et (logPt(a)) = −Et
(

log
P0(a)e−at

L0(t)

)
(8)

which reduces to
St = S0 + logL0(t) + Et(a) t. (9)

By using Ėt(a) = −σ2(t), the decay rate is then

dSt
dt

= −σ2(t) t. (10)

This result shows how the variance controls the entropy change during quite
general inhomogeneous population processes. In fact equation (10) and further
related results were given also in a subsequent paper Karev [5]. We note that
the reverse process of population growth may have applications in constrained
disordering type situations [3].
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Figure 2: Correlation coefficient ρ from equation (15) for McKay probablity
density functions, in terms of α1, α2. This represents correlation between latency
and infectivity periods.

3 Epidemic model

This example adds to the work of Britton and Lindenstrand [2] in which they
use independent univariate gamma distributions for the periods of latency and
infectivity in an epidemic model that they illustrated with data from the SARS
outbreak [6]. Our contribution is to use a bivariate gamma distribution which
allows possible correlation between the random variables representing the pe-
riods of latency x and infectivity y. We obtain a closed analytic solution and
show that the same qualitative features persist in the presence of correlation.

The family of McKay bivariate gamma density functions M, is defined on 0 <
x < y < ∞ with parameters α1, σ12, α2 > 0 and probability density functions,
Figure 1,

f(x, y;α1, σ12, α2) =
( α1
σ12

)
(α1+α2)

2 xα1−1(y − x)α2−1e
−
√

α1
σ12

y

Γ(α1)Γ(α2)
. (11)

Here σ12 is the covariance of x and y and f(x, y) is the probability density for the
two random variables x and y = x+ z where x and z both have gamma density
functions. Thus z is the period during which infection occurs and it controls the
rate process as we see in the sequel. We obtain the means, standard deviations
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Exponential growth rate of infectivity r
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Figure 3: Plot of the Malthusian parameter r against the coefficients of variation
of latency τx and infectivity τy with means µx = 3, µy = 2 and R0 = 2.2 from
the SARS data. So the exponential growth rate of infectivity decreases with
variability in latency (τx) but increases with variability in infectivity (τy).

and coefficients of variation by direct integration:

Mean : µx =
√
α1σ12, µy =

(α1 + α2)
√
σ12√

α1
, µz =

α2
√
σ12√
α1

(12)

SD : σx =
√
σ12, σy =

√
σ12(α1 + α2)

α1
, σz =

√
α2σ12

α1
(13)

CV : τx =
1
√
α1
, τy =

1√
α1 + α2

, τz =
1
√
α2

(14)

The correlation coefficient, and marginal probability density functions,of x
and y are given by

ρ =
√

α1

α1 + α2
> 0 (15)

f1(x) =
( α1
σ12

)
α1
2 xα1−1e

−
√

α1
σ12

x

Γ(α1)
, x > 0 (16)

f2(y) =
( α1
σ12

)
(α1+α2)

2 y(α1+α2)−1e
−
√

α1
σ12

y

Γ(α1 + α2)
, y > 0 (17)

Figure 2 shows a plot of the correlation coefficient from equation (15). The
marginal probability density functions of latency x and infectivity y are gamma
with shape parameters α1 and α1 +α2, respectively. It is not possible to choose
parameters such that both marginal functions are exponential, so the two ran-
dom variables cannot both arise from Poisson processes.
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Exponential growth rate of infectivity r
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Figure 4: Plot of the Malthusian parameter r against the means of latency µx
and infectivity µy with coefficients of variation τx = τy = 4/7 and R0 = 2.2
from the SARS data. So the exponential growth rate of infectivity decreases
with mean latency (µx) and with mean infectivity (µy).
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Figure 5: Contour plot of the infectivity rate λ against the coefficients of vari-
ation of latency τx and infectivity τy with mean latency µx = 3 and r = 0.053
from the SARS data. The levels are λ = 1.1 dotted, λ = 1.5 dashed, λ = 3 thin
and λ = 10 thick.
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Figure 6: Contour plot of the infectivity rate λ against the McKay parameters
α1 and α2 with mean latency µx = 3 and r = 0.053 from the SARS data. The
levels are λ = 1.02 dotted, λ = 1.04 dashed, λ = 1.06 thin and λ = 1.1 thick.

We follow the method of Britton and Lindenstrand [2] §3.2, to compute the
initial exponential growth rate of the epidemic from their equation (3.4) which
we write for bivariate x, y in the form

∫ ∞
0

∫ x

y

e−r(y−x) λ f(x, y) dy dx = 1 (18)

Here, from [2], R0 = λµx for the average number of infections per infective, so
λ is the contact rate; this gives the Malthusian parameter as

r =
1

µxτ2
x

((
R0

µy

)τ2
y

− 1

)
(19)

Thus, r is monotonically decreasing with µx, µy and τx but increasing with τy;
this is illustrated in Figure 3 and Figure 4 using typical values from the SARS
epidemic [6]. Figure 5 and Figure 6 show contour plots of the infectivity rate λ
using typical values from the SARS epidemic [6].

We turn next to the evolution of the distribution of z = y−x, the interval of
actual infection as the population N(t) of uninfected individuals declines with
time t. From §1 above, this corresponds to the case when P0(z) is a gamma
distribution and by the result of Karev [4]

Pt(z) =
P0(z)
L0(t)

e−zt =
(s+ t)k zk−1

Γ(k)
e−z(s+t). (20)
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Figure 7: Approximate information distances dEM =
√
EM (equation (24)) in

the McKay manifold, measured from distributions T0 with exponential marginal
distribution for x so α1 = 1 and τx = 1. So the surface represents distances
from a Poisson process for latency.

Then the mean, standard deviation and coefficient of variation are given by

µz(t) =
k

s+ t
(21)

σz(t) =

√
k

s+ t
(22)

τz(t) =
1√
k
. (23)

4 Information geometry

Information geometry of the smooth family M of McKay bivariate gamma prob-
ability density functions has been studied in detail in Arwini and Dodson [1].
This provides a Riemannian metric on M, so yielding a curved 3-manifold, and
moreover the metric is subordinate to maximum likelihood/maximum entropy
processes. Here we illustrate how the geometry may be used to provide a nat-
ural distance structure on the space of McKay distributions. First we measure
distances from distributions with exponential marginal distributions—those for
which latency is controlled by a Poisson event process with α1 = 1, τx = 1. The
derivation of a distance from distribution T0 is given in [1], and yields in terms
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Figure 8: Approximate information distances dEM =
√
EM (equation (25)) in

the McKay manifold, measured from distributions T0 with exponential marginal
distribution for y, so α1 +α2 = 1 and τy = 1. So the surface represents distances
from a Poisson process for infectivity.

of τx and ρ

EM (τx, ρ)|[T0:α1=1] =

(
ρ2 + 1

)2
16ρ6

∣∣∣∣ 1
τ2
x

− 1
∣∣∣∣

+
1
4

∣∣∣∣(1− 1
τ2
x

)(
1− 1

ρ2

)
+ 3 log

(
τ2
x

)∣∣∣∣
+

∣∣∣∣ψ( 1
τ2
x

1
ρ2
− 1
)
− ψ

(
1
ρ2
− 1
)∣∣∣∣

+
∣∣∣∣ψ( 1

τ2
x

)
+ γ

∣∣∣∣ (24)

where ψ(u) = d log Γ(u)
du is the digamma function and γ is the Euler gamma

constant—of numerical value about 0.577. Figure 7 shows a plot of dEM =√
EM (τx, ρ) From equation (24). This is an approximation to the Rieman-

nian distance but it represents the main features of the information distance
of arbitrary latency distributions T1 from the curve of distributions T0 with
α1 = 1, τx = 1.

Repeating the above procedure for the case when T0 has (α1+α2) = 1, which
corresponds to an exponential infectivity distribution (and a Poisson process of
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infections) we obtain

EM (α1, α2)|[T0:α1+α2=1] = |ψ (α2)− ψ (1− α1)|

+
1
4

∣∣∣∣ (2α1 + α2) 2

4α1
− 1

2
(α1 + 1)

∣∣∣∣ . (25)

This is plotted in Figure 8.
Geodesic curves in Riemannian manifolds give minimal arc length and exam-

ples are given in [3] for manifolds of Weibull, gamma and bigamma distributions,
together with gradient flow curves for entropy. More details of the information
geometry of uniform, exponential, gamma, Gaussian, and bivariate versions with
applications are provided in the book [1].
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