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1 Abstract

Let p be prime, k a finite field of characteristic p, and G a virtually pro-p
group. We prove an analogue of the Green Correspondence for finitely generated
modules over the completed group algebra k[[G]].

2 Introduction

Let p be a prime number, G a finite group, @ a p-subgroup of G and L any
subgroup of G containing the normalizer Ng(Q) of @ in G. Let k be a field
of positive characteristic p. In [2] J.A. Green demonstrates a fundamental cor-
respondence between finitely generated kG-modules with vertex @) and finitely
generated kL-modules with vertex . When L = Ng(Q) the Green corre-
spondence allows for the reduction of many questions about general modules to
questions about modules with a normal vertex.

Now let G be a profinite group and k a finite field of characteristic p. In [3]
we took some first steps towards a modular representation theory of profinite
groups. In particular we demonstrated a classification theorem for relatively
projective finitely generated k[[G]-modules, introduced vertices and sources, and
showed that the expected uniqueness properties hold for these objects (under
additional hypotheses in the case of sources). Here we generalize the Green
correspondence (properly interpreted) to the class of virtually pro-p groups.
We will reference [3] frequently, since many necessary foundational results are
discussed therein.

Our main result is the following:

Theorem 2.1. Let G be a virtually pro-p group, let Q be a closed pro-p subgroup
of G and let L be a closed subgroup of G containing Ng(Q). Let S be a finitely
generated indecomposable profinite k[[Q]]-module with vertex Q. Then there is
a bijection between the set of isomorphism classes of indecomposable profinite
E[[L]]-modules with vertex Q and source S, and the set of isomorphism classes
of indecomposable profinite k|[[G]]-modules with vertex @ and source S.

*Research part of a PhD project undertaken at the University of Manchester



We approach the proof in two main steps. We first demonstrate a correspon-
dence which is word-for-word analogous to the finite case under the additional
assumption that L is open in G. Using this special case we then demonstrate the
truth of the above theorem. First let us establish some notation to be assumed
throughout our discussion.

The main concepts mentioned in this paragraph are introduced and discussed
in [3]. Let G be a virtually pro-p group and & a finite field of characteristic p.
All modules are assumed to be profinite left modules. If U is a k[[G]-module
and N is a closed normal subgroup of G, then we denote by Uy the coinvariant
module k@k[[N]]U. If U is finitely generated and N is open in G, then Uy is
finite. If U is non-zero, finitely generated and indecomposable, then by [3, 2.8,
2.9] we can choose a cofinal inverse system of open normal pro-p subgroups of
G for which each Uy is non-zero and indecomposable.

Let @ be a closed pro-p subgroup of G and let L be any closed subgroup of
G containing N (Q). We define the following two sets of subgroups of G:

X={X<cG|X<zQr 'nQ,z¢ L}

Y ={Y <¢cG|Y <zQz 'NLx¢L}

If 9 is a collection of subgroups of G, then we say a finitely generated k[G]-
module U is relatively $)-projective if each indecomposable summand of U is
projective relative to an element of §. As in the finite case we note that X
consists of proper subgroups of ), while ) may contain a conjugate of Q.

3 The case where L is open

Essentially following the treatment in [1, 3.12] we prove three lemmas which
constitute the bulk of the work for the case of open L.

Lemma 3.1. Let V be a finitely generated indecomposable Q-projective k[[L]|-
module. Then V1G22V @ Vi, where Vi is Y-projective.

Proof. By the Mackey decomposition formula [5, 2.2] we have
Vi P s lent*=Ve @ #(V)lerenrl®
z€L\G/L z€L\G/L,x¢L
so we need only show that a summand of the form (V) |,7,-1~.1F with x ¢ L
is Y-projective. By [3, 5.2] the module z(V) is projective relative to zQz !

1

so by [3, 3.7] we can choose a k[zQz~']-module S such that z(V)|S 1%5=" .
Then

x(V) lew—lﬁLTL | STwLwiliwLm—lﬁLTLg @ y(S) l(ya:)Q(yﬁ)—lﬂ:sz—lﬁLTL
Y

where y runs through a set of double coset representatives of

(zLz~ ' N L)\aLz™t/zQx™".



Note that yz = xlz~'z = xl for some | € L and = ¢ L implies zl ¢ L so that
each ((yz)Q(yxr) ' NaxLz~' N L) € Y. Hence the module z(V) |11~z is
relatively )-projective as required. O

Lemma 3.2. Let V be a finitely generated indecomposable Q-projective k[[L]]-
module. Then V162 U @ Uy, where U is indecomposable, V | Ulp, and Uy is
X-projective.

Proof. Since V ’ V1% 1, by the Krull-Schmidt theorem [4, 2.1] there is an inde-
composable summand U of V ¢ with V | Ulp. Write V192 U @ U; and take
an indecomposable summand U’ of U;. We wish to show that U’ is relatively
X-projective. Note that U’ is relatively Q)-projective.

Since Ng(Q) < L and L is open, a standard compactness argument allows us
to consider a cofinal inverse system of open normal subgroups N of G such that
Ng(QN) < L. Fix some N in our system. The module U’ is projective relative
to QN, so U’ | U’ lonT9 by [3, 3.7). Since U’ |gy is finitely generated we can
find some indecomposable k[[QN]-module S such that S| U’ |onx and U’ | S1°.
Now U’ [on= U’ |Llgn so there is an indecomposable finitely generated k[[L]]-
module V'’ such that V' ’ U'lrand S | V' lon. Note that V' is a direct summand
of V1€|, distinct from V, so by 3.1 it is projective relative to a subgroup of the
form tQt~' N L with t € G,t ¢ L. Let T be a k[[tQt~! N L]]-module such that
V! ‘ T 1¥. From the Mackey decomposition theorem [5, 2.2] we have

S|V lon | T 1M on= . UT) Lanoun-1nent®N .
IEQN\L/tQt—1NL

Since t ¢ L it follows that S is projective relative to a subgroup of the form
rQr~t N QN for some z ¢ L. Since U’ ’ S5 1¢ we have shown that for each N
in our system the module U’ is projective relative to a subgroup of the form
rQr 1N QN for some = ¢ L that depends on N.

We would like to find some x € G,z ¢ L for which U’ is projective relative
to 2Qx~' N QN for every N in our system. Denote by C the non-empty set
of # € G,x ¢ L for which U’ is relatively [zQz~' N QN]-projective. If ever
N < M and x € Cy then certainly U’ is projective relative to xQz ' NQM, so
if x € Cy then z € C);. Since each Cy is closed in G the standard compactness
argument now shows that () Cn # 0.

Choose some & € G, x ¢ L for which U’ is projective relative to 2Qx "' NQN
for each N in our system. By [3, 4.2] it follows that U’ is projective relative to

m(anfl NQN) =zQz"'N (ﬂ QN)=2Qr'NQ
N N

as required. O

In the finite case the following lemma is an easy corollary of 3.1. In our more
general context it requires a little more care.



Lemma 3.3. Let U be a finitely generated indecomposable k[[G])-module with
vertex Q. There is a finitely generated indecomposable k[L]-module V with
vertex @ such that U | V19 and V | Ulr.

Proof. We work in a cofinal inverse system of N <o G with Ng(QN) < L. We
first show that U |; has an indecomposable summand with vertex @. Since
U | U |11¢ we have U |, has at least one summand with vertex conjugate to @Q
in G. Let X denote the non-empty set of isomorphism classes of V' | U |1 having
vertex conjugate to . For each N we have U | U LQNTG = U | V lé NE
for some V € X, and so U ‘ W 1€ for some W ’ V lgn. Clearly W has vertex
yQy~" C QN.

Suppose V has vertex zQz ! and let S be a k[[zQz~']-module with V | S 1%,
Applying Mackey’s formula to W } S TLLQN it follows that V has vertex L-
conjugate to a subgroup of QN, and so V' has a vertex contained in QN.

Note that X is a finite set, so some element of X must have vertex contained
in QN for a cofinal subset of N <o G and hence some element of X has vertex

Q.

Let Z be an indecomposable summand of U |;, and suppose that for all N
in our system there is some x ¢ L such that Z is xQNx~!-projective. Denote
by Cn the non-empty set of all such ¢ L. If x € Cy then xq € Cy for all
q € QN and so each set Cy is closed in G.

If N < M and x € Cy then certainly = € Cy;. By compactness we now
have that () Cn # 0. Fix x € (5 Cn. It follows that Z is 2Qx ! N-projective
for each N, and so Z is xQx~'-projective. Note that for any ! € L we have
(Ix)Q(lx)~1 # Q since lx ¢ L. From the conjugacy of vertices [3, 4.5] it follows
that Z does not have vertex Q.

Since there is an indecomposable summand of U | with vertex @ the con-
trapositive of the previous argument shows there is some Ny <p¢ G such that
this summand is not projective relative to zQNox~! for any x ¢ L. From now
on we work within the cofinal system of N <o G with N < Nj.

Let 7 denote the (finite, non-empty) set of isomorphism classes of indecom-
posable V ! U |1 such that U | V 1¢. We wish to find an element of 7" with vertex
Q. Choose N in our system. Since U ’ U lg ~¢ we take some indecomposable
summand V | UlQNTL such that U | V1€, Since V | V1€, by 3.1 we have two
possibilities:

° V‘UlLor

e FEach summand of U |, is projective relative to zQNz~! N L for some
x ¢ L.

But by our choice of N the latter cannot happen, so that V' | UlpandsoV €T.
Thus for all N there is an element of 7 which is Q N-projective, and so there is
an element of 7 which has vertex @, as required. O

Proposition 3.4. Let G be a virtually pro-p group, @ a closed pro-p subgroup
of G and let L be an open subgroup of G containing Ng(Q). Then we have



the following correspondence between finitely generated indecomposable k[G]-
modules with vertex Q, and finitely generated indecomposable k[[L]]-modules with
verter Q:

1. If U is a finitely generated indecomposable k[[G]|-module with verter Q,
then there is a unique indecomposable summand f(U) of U |, with vertex
Q, and the rest have vertex in Q).

2. If V is a finitely generated indecomposable k[[L]]-module with vertex Q,
then there is a unique indecomposable summand g(V') of V 1¢ with vertex
Q, and the rest have verter in X.

3. The given correspondence is one-one in the sense that f(g(V)) 2V and
g(f(U) =U.

Proof. 1. By 3.3 we have that U ‘ V 1€ for some finitely generated indecom-
posable k[[L]-module V' with vertex Q. Thus U |, } V1% .. By 3.1 V is
the only summand of V 1€, with vertex @ and the rest have vertex in 2,
so that U |1, has at most one summand with vertex (). On the other hand,
again by 3.3 we have that U |1, has at least one summand with vertex Q.
Hence we set f(U) =V and the claim holds.

2. We have V | V 1|1 so we choose an indecomposable summand U ’ V1@
such that V | Ul By 3.2 we have V192 U@U, where U; is X-projective.
The module U has vertex @ since if it had smaller vertex then the Mackey
decomposition theorem shows that V' would as well. Thus, we take g(V') =
U and we are done.

3. This is clear.

4 A more general case

We retain the notation from above but drop the assumption that L is open in
G. When L was open and U,V were Green correspondents as above, we see in
particular that V | U |r. This need not be the case when L has infinite index in
G - an example of this phenomenon can be found in the last section of [5]. For
this reason we now focus on the map g.

Let V be an indecomposable finitely generated k[[L]-module with vertex Q.
By [3, 5.1] we can choose a cofinal inverse system of N <lp G for which V 15 is
indecomposable. We work in this system as we prove the following key lemma:

Lemma 4.1. For any given M <o G in our inverse system the module V 1M

has vertezr Q.

Proof. Certainly V 19 is relatively Q-projective, so we choose some vertex R
of V1M contained in Q. We will show that V is R-projective. Consider the



cofinal inverse system of those N <ip G contained inside M, noting that for each
such N the module V 12 is indecomposable.
Let S be a k[[R]-module such that V 1Z™ | S1EM. Then for each N < M

we have

vy | VIF Ly } STIRMlLN% @ z(S) lmermLNTLN
z€ELN\LM/R

so that V 1V is xRz~ !-projective for some & € LM and hence has vertex
rRx~!. Denote by Cy the non-empty set of all y € LM with the property that
yRy ! is a vertex of V1N, Then Cl is a finite union of right cosets of LN so
is a closed subset of LM. We would like to show that (), Cn # 0.

Given Ni,...,Np, let N = NyN...N N,. Then by the argument above
Cn' # 0. But Cns C Cy;, for each 4, since if VTLN/ is induced from a yRy !-
module, then so is each V 15Vi. Thus, ) # Cnv € Cn, N...N Cy, and so by
compactness (| Cn # 0. It follows that we can find some y € LM so that
V1EN is y Ry~ '-projective for each N < M.

We move now from induced modules to coinvariant modules. Note that if
V15N is y Ry~ !-projective then it is certainly y RNy~ '-projective, so for some
yRNy '-module T we have V 15V ’TTLN. Now

Vien = (VIEN N (T 1Y) n =2 Ty 15

by [3, 2.6] so that Vznn is yRNy~-projective for each N in our system. Now
by [3, 3.5] the module V is yRy !-projective and so some conjugate of yRy !
contains Q. Thus R < Q < zRz~! for some z € LM, so R = @ and we are
done. O

Recall that L contains the normalizer of @ in G.

Corollary 4.2. Let V be an indecomposable k[[L]]-module with vertex Q. Then
V19 has a unique summand g(V) with vertex Q, and the rest have vertex in X.

Proof. We choose some M <o G for which V XM is indecomposable. By 4.1
V 1M has vertex Q. But now by 3.4 V 192 V 1LM¢ has a unique summand
g(V') with vertex @ and the rest have vertex in

(X <cG|X <2Qx 'NQ,z ¢ LM}
but this is a subset of X and so we are done. O
We can now prove Theorem 2.1:

Proof. The map ¢ from 4.2 restricted to those modules with source S has the
appropriate image and domain. We need only check that ¢ is bijective.

First we show that if U is an indecomposable k[[G]]-module with vertex @
and source S, then there is some indecomposable k[[L]-module V with vertex Q



and source S such that U = g(V'). But this is clear since if ST'=V, @... @V,
is a decomposition into indecomposable summands then

U|S192 ST V19 0. 0 V, 19

and so U | V; 1¢ for some i since U has local endomorphism ring by [3, 4.4].
Clearly V; has vertex ). This shows that g is surjective.

It remains to show that if V, W are finitely generated indecomposable k[[L]]-
modules having vertex @ and source S, and g(V) = g(W) as k[G]-modules,
then V' 2 W as k[[L]]-modules. Choose a cofinal inverse system of N <o G for
which both V 12 and W £ are indecomposable. Let g(V) = U =2 g(W). The
modules V TN and W 1EY are both Green correspondents of U in the sense of
3.4 and so V 1EN= W 1EN for each N in our inverse system. But

VLN 1Ly
= (V1'V)y =2 (W1FV)N
= Vinn & Winn

for each N, and so V = W by [3, 3.4]. O
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