

X_M-Harmonic Cohomology and Equivariant Cohomology on Riemannian Manifolds With Boundary

Al-Zamil, Qusay

2010

MIMS EPrint: 2010.96

Manchester Institute for Mathematical Sciences School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK

ISSN 1749-9097

X_M -Harmonic Cohomology and Equivariant Cohomology on Riemannian Manifolds With Boundary

Qusay S.A. Al-Zamil

October 26, 2010

Abstract

Given a Riemannian manifold M with boundary and a torus G which acts by isometries on M and let X be in the Lie algebra of G and corresponding vector field X_M on M, we consider Witten's coboundary operator $d_{X_M} = d + \iota_{X_M}$ on invariant forms on M. In [1] we introduce the absolute X_M -cohomology $H^*_{X_M}(M) = H^*(\Omega^*_G, d_{X_M})$ and the relative X_M -cohomology $H^*_{X_M}(M, \partial M) = H^*(\Omega^*_{G,D}, d_{X_M})$ where the D is for Dirichlet boundary condition and Ω^*_G is the invariant forms on M. Let δ_{X_M} be the adjoint of d_{X_M} and the resulting *Witten-Hodge-Laplacian* is $\Delta_{X_M} = d_{X_M} \delta_{X_M} + \delta_{X_M} d_{X_M}$ where the space ker Δ_{X_M} is called the X_M -harmonic forms. In this paper, we prove that the (even/odd) X_M -harmonic cohomology which is the X_M -cohomology of the subcomplex (ker Δ_{X_M}, d_{X_M}) of the complex (Ω^*_G, d_{X_M}) is enough to determine the total absolute and relative X_M -cohomology. As conclusion, we infer that the free part of the absolute and relative equivariant cohomology groups are determined by the (even/odd) X_M -harmonic cohomology when the set of zeros of the corresponding vector field X_M is equal to the fixed point set F for the G-action.

Keywords: Algebraic topology, equivariant topology, manifolds with boundary, cochain complex, group actions, equivariant cohomology. *MSC 2010*: 57R19, 55N91, 57R91

1 Introduction

In [3], S.Cappell, D. DeTurck et al. present the following main theorem,

Theorem 1.1 [3]. Let M be a compact, connected, oriented smooth Riemannian manifold of dimension n with boundary. Then the cohomology of the complex (Harm^{*}(M),d) of harmonic forms on M is given by the direct sum of the de Rham cohomology:

$$H^{k}(\operatorname{Harm}^{*}(M), \mathsf{d}) \cong H^{k}(M, \mathbb{R}) + H^{k-1}(M, \mathbb{R})$$

for k = 0, 1, ..., n and $\operatorname{Harm}^*(M) = \ker \Delta$ where Δ is the Laplacian operator.

The principle idea of this paper is to adapt theorem 1.1 in terms of our operators d_{X_M} , δ_{X_M} and Δ_{X_M} in order to study the X_M -harmonic cohomology when the manifold in question has a boundary and then we relate the X_M -harmonic cohomology with the free part of the relative and absolute equivariant cohomology.

More precisely, in this paper, we consider a compact, connected, oriented, smooth Riemannian manifold M (with or without boundary) and we suppose G is a torus acting by isometries on M and denote by Ω_G^k the k-forms invariant under the action of G. Given X in the Lie algebra of G and

corresponding vector field X_M on M, in [1], we consider Witten's coboundary operator $d_{X_M} = d + \iota_{X_M}$. This operator is no longer homogeneous in the degree of the invariant form: if $\omega \in \Omega_G^k$ then $d_{X_M} \omega \in \Omega_G^{k+1} \oplus \Omega_G^{k-1}$. Note then that $d_{X_M} : \Omega_G^{\pm} \to \Omega_G^{\mp}$, where Ω_G^{\pm} is the space of invariant forms of even (+) or odd (-) degree. A Riemannian metric on M leads to an L^2 -inner product

$$\langle \alpha, \beta \rangle = \int_M \alpha \wedge (\star \beta)$$

which is defined on $\Omega_G^*(M)$, where $\star : \Omega_G^* \to \Omega_G^{n-*}$ is the Hodge star operator and then it leads us to the formal adjoint $\delta_{X_M} = -(\mp 1)^n \star d_{X_M} \star : \Omega_G^{\pm} \to \Omega_G^{\mp}$ of d_{X_M} . The resulting *Witten-Hodge-Laplacian* is $\Delta_{X_M} = (d_{X_M} + \delta_{X_M})^2 = d_{X_M} \delta_{X_M} + \delta_{X_M} d_{X_M} : \Omega_G^{\pm} \to \Omega_G^{\pm}$.

When the manifold in question M is closed we define the X_M -cohomology which is the cohomology of the complex $(\Omega_G^*, \mathsf{d}_{X_M})$ where $\mathsf{d}_{X_M}^2 = 0$ because the forms are invariant (see [1] for details) and we denote it by $H_{X_M}^{\pm}(M)$. In this setting, Witten [4] introduces the definition of the X_M -harmonic forms (as we call in [1]) which we denote in this paper by $\operatorname{Harm}_{X_M}^*(M) = \operatorname{Harm}_{X_M}^+(M) + \operatorname{Harm}_{X_M}^-(M)$; then it is the kernel of the Witten-Hodge-Laplacian operator Δ_{X_M} (following [1]), i.e.

$$\operatorname{Harm}_{X_M}^{\pm}(M) = \ker \Delta_{X_M} \cap \Omega_G^{\pm} = \{ \omega \in \Omega_G^{\pm} \mid \Delta_{X_M} \omega = 0 \}$$

Clearly, $\operatorname{Harm}_{X_M}^{\pm}(M) \subset \Omega_G^{\pm}$, but Δ_{X_M} and d_{X_M} commute which means that the coboundary operator d_{X_M} preserves the X_M -harmonicity of invariant forms. i.e.

$$\operatorname{Harm}_{X_M}^{\pm}(M) \xrightarrow{d_{X_M}} \operatorname{Harm}_{X_M}^{\mp}(M)$$

Hence, $(\operatorname{Harm}_{X_M}^*(M), \mathsf{d}_{X_M})$ is a subcomplex of the \mathbb{Z}_2 -graded complex $(\Omega_G^*, \mathsf{d}_{X_M})$. Therefore, we can compute the X_M -cohomology of this complex which we call the X_M -harmonic cohomology and denote by $H^{\pm}(\operatorname{Harm}_{X_M}^*(M), \mathsf{d}_{X_M})$.

In the boundaryless case, we have proved that the space of X_M -harmonic fields $\mathcal{H}_{X_M}^{\pm} = \ker d_{X_M} \cap \ker \delta_{X_M}$ equal to the space of X_M -harmonic forms [1], i.e.

$$\operatorname{Harm}_{X_M}^{\pm}(M) = \mathcal{H}_{X_M}^{\pm}$$

Thus, we can conclude that all of the maps in the subcomplex $(\operatorname{Harm}^*_{X_M}(M), \mathsf{d}_{X_M})$ are zero which means that

$$H^{\pm}(\operatorname{Harm}_{X_{M}}^{*}(M), \mathsf{d}_{X_{M}}) = \operatorname{Harm}_{X_{M}}^{\pm}(M) = \mathcal{H}_{X_{M}}^{\pm}.$$

But, proposition 2.6 of [1] asserts that $H_{X_M}^{\pm}(M) \cong \mathcal{H}_{X_M}^{\pm}$, hence,

$$H^{\pm}(\operatorname{Harm}_{X_{M}}^{*}(M), \mathsf{d}_{X_{M}}) \cong H_{X_{M}}^{\pm}(M).$$
(1.1)

From another hand, eq.(1.1) is no longer true when the manifold in question has a boundary because the space of X_M -harmonic forms $\operatorname{Harm}_{X_M}^{\pm}(M)$ no longer coincides with the space of X_M -harmonic fields $\mathcal{H}_{X_M}^{\pm}$ [1]. Therefore, the main purpose of this paper is to study the X_M -harmonic cohomology when the manifold in question has a boundary and the result is theorem 2.3.

In the remainder of this introduction we recall necessary results from [1] and [2] when $\partial M \neq \emptyset$. In [1], we define two types of X_M -cohomology, the absolute X_M -cohomology $H^{\pm}_{X_M}(M)$ and the relative X_M -cohomology $H^{\pm}_{X_M}(M, \partial M)$. The first is the cohomology of the complex $(\Omega^*_G, \mathsf{d}_{X_M})$, while the second is the cohomology of the subcomplex $(\Omega^*_{G,D}, \mathsf{d}_{X_M})$, where $\omega \in \Omega^{\pm}_{G,D}$ if it satisfies $i^*\omega = 0$ (the *D* is for Dirichlet boundary condition). One also defines $\Omega_{G,N}^{\pm}(M) = \{\alpha \in \Omega_G^{\pm}(M) \mid i^*(\star \alpha) = 0\}$ (Neumann boundary condition). Clearly, the Hodge star provides an isomorphism

$$\star:\Omega^{\pm}_{G,D} \overset{\sim}{\longrightarrow} \Omega^{n-\pm}_{G,N}$$

where we write $n - \pm$ for the parity (modulo 2) resulting from subtracting an even/odd number from *n*. Furthermore, because d_{X_M} and i^* commute, it follows that d_{X_M} preserves Dirichlet boundary conditions while δ_{X_M} preserves Neumann boundary conditions. In fact, the space $\mathcal{H}^{\pm}_{X_M}(M)$ is infinite dimensional and so is much too big to represent the X_M -cohomology, hence, we restrict $\mathcal{H}^{\pm}_{X_M}(M)$ into each of two finite dimensional subspaces, namely $\mathcal{H}^{\pm}_{X_M,D}(M)$ and $\mathcal{H}^{\pm}_{X_M,N}(M)$ with the obvious meanings (Dirichlet and Neumann X_M -harmonic fields, respectively). There are therefore two different candidates for X_M harmonic representatives when the boundary is present. This construction firstly leads us to present the X_M -Hodge-Morrey decomposition theorem which states that

$$\Omega_G^{\pm}(M) = \mathcal{E}_{X_M}^{\pm}(M) \oplus \mathcal{C}_{X_M}^{\pm}(M) \oplus \mathcal{H}_{X_M}^{\pm}(M)$$
(1.2)

where $\mathcal{E}_{X_M}^{\pm}(M) = \{ \mathsf{d}_{X_M} \alpha \mid \alpha \in \Omega_{G,D}^{\pm} \}$ and $\mathcal{C}_{X_M}^{\pm}(M) = \{ \delta_{X_M} \beta \mid \beta \in \Omega_{G,N}^{\pm} \}$. This decomposition is orthogonal with respect to the L^2 -inner product given above.

In addition, we present the X_M -Friedrichs Decomposition Theorem which states that

$$\mathcal{H}_{X_M}^{\pm}(M) = \mathcal{H}_{X_M,D}^{\pm}(M) \oplus \mathcal{H}_{X_M,co}^{\pm}(M)$$
(1.3)

$$\mathcal{H}_{X_M}^{\pm}(M) = \mathcal{H}_{X_M,N}^{\pm}(M) \oplus \mathcal{H}_{X_M,\mathrm{ex}}^{\pm}(M)$$
(1.4)

where $\mathcal{H}_{X_M,ex}^{\pm}(M) = \{\xi \in \mathcal{H}_{X_M}^{\pm}(M) \mid \xi = \mathsf{d}_{X_M}\sigma\}$ and $\mathcal{H}_{X_M,co}^{\pm}(M) = \{\eta \in \mathcal{H}_{X_M}^{\pm}(M) \mid \eta = \delta_{X_M}\alpha\}$. These give the orthogonal X_M -Hodge-Morrey-Friedrichs decomposition [1],

$$\Omega_G^{\pm}(M) = \mathcal{E}_{X_M}^{\pm}(M) \oplus \mathcal{C}_{X_M}^{\pm}(M) \oplus \mathcal{H}_{X_M,N}^{\pm}(M) \oplus \mathcal{H}_{X_M,\mathrm{ex}}^{\pm}(M)$$
(1.5)

$$= \mathcal{E}_{X_M}^{\pm}(M) \oplus \mathcal{C}_{X_M}^{\pm}(M) \oplus \mathcal{H}_{X_M,D}^{\pm}(M) \oplus \mathcal{H}_{X_M,co}^{\pm}(M)$$
(1.6)

The two decompositions are related by the Hodge star operator. The consequence for X_M -cohomology is that each class in $H^{\pm}_{X_M}(M)$ is represented by a unique X_M -harmonic field in $\mathcal{H}^{\pm}_{X_M,N}(M)$, and each relative class in $H^{\pm}_{X_M}(M, \partial M)$ is represented by a unique X_M -harmonic field in $\mathcal{H}^{\pm}_{X_M,D}(M)$. The Hodge star operator \star induces an isomorphism

$$H_{X_M}^{\pm}(M) \cong H_{X_M}^{n-\pm}(M, \partial M). \tag{1.7}$$

We call eq.(1.7) the X_M -Poincaré-Lefschetz duality.

In order to prove the results for next section we will need the following theorem which is proved in [2].

Theorem 1.2 [2]. Let M be a compact, oriented smooth Riemannian manifold of dimension n with boundary and with an action of a torus G which acts by isometries on M. If an X_M -harmonic field $\lambda \in \mathcal{H}^{\pm}_{X_M}(M)$ vanishes on the boundary ∂M , then $\lambda \equiv 0$, i.e.

$$\mathcal{H}_{X_M,N}^{\pm}(M) \cap \mathcal{H}_{X_M,D}^{\pm}(M) = \{0\}$$

$$(1.8)$$

As a consequence of Theorem 1.2, we obtain the following result.

Corollary 1.3 [2]

$$\mathcal{H}_{X_M}^{\pm}(M) = \mathcal{H}_{X_M, \mathrm{ex}}^{\pm}(M) + \mathcal{H}_{X_M, \mathrm{co}}^{\pm}(M)$$
(1.9)

where "+" is not a direct sum.

Acknowledgment The author wishes to express deep gratitude towards his supervisor Dr.James Montaldi for his reading the first draft of this paper and for his helpful suggestions.

2 Main results

In this section, we use the symbol + between the spaces to indicate a direct sum whereas we reserve the symbol \oplus for an orthogonal (with respect to L^2 -inner product) direct sum unless otherwise indicated.

We begin with the following remark.

Remark 2.1 We need to define the following subspaces:

$$E_{X_M}^{\pm}(M) = \{ \mathsf{d}_{X_M} \alpha \mid \alpha \in \Omega_G^{\pm}(M) \}$$

and

$$cE_{X_M}^{\pm}(M) = \{\delta_{X_M} \alpha \mid \alpha \in \Omega_G^{\pm}(M)\}.$$

But, the X_M -Hodge-Morrey decomposition (1.2) implies the following decompositions:

$$E_{X_M}^{\pm} = E_{X_M}^{\pm}(M) = \mathcal{E}_{X_M}^{\pm}(M) \oplus \mathcal{H}_{X_M, \mathrm{ex}}^{\pm}(M)$$

and

$$cE_{X_M}^{\pm} = cE_{X_M}^{\pm}(M) = \mathcal{C}_{X_M}^{\pm}(M) \oplus \mathcal{H}_{X_M,\mathrm{co}}^{\pm}(M).$$

2.1 The image of the Witten-Hodge-Laplacian operator

The image of the *Witten-Hodge-Laplacian* operator Δ_{X_M} will be most important to obtain our main theorem 2.3. We therefore need first to prove the following lemma 2.2.

Lemma 2.2 Let M be a compact, connected, oriented smooth Riemannian manifold of dimension n with boundary and with an action of a torus G which acts by isometries on M. Then the Witten-Hodge-Laplacian operator $\Delta_{X_M} = \mathsf{d}_{X_M} \mathsf{d}_{X_M} + \mathsf{d}_{X_M} \mathsf{d}_{X_M} : \Omega_G^{\pm}(M) \longrightarrow \Omega_G^{\pm}(M)$ is surjective.

PROOF: We need to prove that $\Delta_{X_M}(\Omega_G^{\pm}(M)) = \Omega_G^{\pm}(M)$. Clearly, $\Delta_{X_M}(\Omega_G^{\pm}(M)) \subset \Omega_G^{\pm}(M)$, so we only need to prove the converse. To do so, we will first compute the image of Δ_{X_M} on each summand of the X_M -Hodge-Morrey decomposition (1.2).

It is clear that

$$\Delta_{X_M}(\mathcal{E}_{X_M}^{\pm}(M)) = \mathsf{d}_{X_M}\delta_{X_M}(\mathcal{E}_{X_M}^{\pm}(M)) \subset E_{X_M}^{\pm}.$$

Now, let $\beta \in E_{X_M}^{\pm}$ then $\beta = \mathsf{d}_{X_M} \alpha$ and by applying the X_M -Hodge-Morrey decomposition (1.2) on α we get $\alpha = \mathsf{d}_{X_M} \sigma + \delta_{X_M} \rho + \lambda$, so

$$\beta = \mathsf{d}_{X_M} \alpha = \mathsf{d}_{X_M} \delta_{X_M} \rho$$

but also by (1.2), ρ can be written as $\rho = d_{X_M} \epsilon + \delta_{X_M} \pi + \kappa$ which implies that

$$\beta = \mathsf{d}_{X_M} \alpha = \mathsf{d}_{X_M} \delta_{X_M} \rho = \mathsf{d}_{X_M} \delta_{X_M} \mathsf{d}_{X_M} \epsilon \in \Delta_{X_M}(\mathcal{E}_{X_M}^{\pm}(M)).$$

Hence, $\Delta_{X_M}(\mathcal{E}^{\pm}_{X_M}(M)) = E^{\pm}_{X_M}$. Likewise, $\Delta_{X_M}(\mathcal{C}^{\pm}_{X_M}(M)) = cE^{\pm}_{X_M}$. Clearly, $\Delta_{X_M}(\mathcal{H}^{\pm}_{X_M}(M)) = 0$. Using, the above equations together with remark 2.1, we obtain

$$\Delta_{X_M}(\Omega_G^{\pm}(M)) = E_{X_M}^{\pm} + c E_{X_M}^{\pm}$$

= $(\mathcal{E}_{X_M}^{\pm}(M) \oplus \mathcal{H}_{X_M,\mathrm{ex}}^{\pm}(M)) + (\mathcal{C}_{X_M}^{\pm}(M) \oplus \mathcal{H}_{X_M,\mathrm{co}}^{\pm}(M)).$ (2.1)

where "+" is not a direct sum.

Finally, let $\omega \in \Omega_G^{\pm}(M)$ then the X_M -Hodge-Morrey decomposition (1.2) together with corollary 1.3 assert that ω can be decomposed as

$$\omega = \mathsf{d}_{X_M}\alpha_{\omega} + \delta_{X_M}\beta_{\omega} + (\mathsf{d}_{X_M}\rho_{\omega} + \delta_{X_M}\sigma_{\omega}) \in \mathcal{E}_{X_M}^{\pm}(M) \oplus \mathcal{C}_{X_M}^{\pm}(M) \oplus (\mathcal{H}_{X_M,\mathrm{ex}}^{\pm}(M) + \mathcal{H}_{X_M,\mathrm{co}}^{\pm}(M))$$
(2.2)

Rearranging eq.(2.2), we get that eq.(2.1) shows that $\omega \in \Delta_{X_M}(\Omega_G^{\pm}(M))$ as desired. Thus, Δ_{X_M} is surjective.

Now, it is time to present the following fundamental theorem which is analogues to theorem 1.1.

Theorem 2.3 Let M be a compact, connected, oriented smooth Riemannian manifold of dimension n with boundary and with an action of a torus G which acts by isometries on M. Then the (even or odd) X_M -harmonic cohomology of the subcomplex (Harm^{*}_{X_M}(M), d_{X_M}) completely determines the total X_M -cohomology of the complex (Ω^*_G, d_{X_M}) and it is given by the direct sum:

$$H^{\pm}(\operatorname{Harm}_{X_{M}}^{*}(M), \mathsf{d}_{X_{M}}) \cong H_{X_{M}}^{\pm}(M) + H_{X_{M}}^{\mp}(M) = H_{X_{M}}^{*}(M)$$
(2.3)

PROOF: Applying the definition of the X_M -cohomology of the subcomplex $(\text{Harm}_{X_M}^{\pm}(M), \mathsf{d}_{X_M})$, we obtain that

$$H^{\pm}(\operatorname{Harm}_{X_{M}}^{*}(M), \mathsf{d}_{X_{M}}) = \frac{\ker \mathsf{d}_{X_{M}} \mid_{\operatorname{Harm}_{X_{M}}^{+}(M)}}{\mathsf{d}_{X_{M}}(\operatorname{Harm}_{X_{M}}^{+}(M))}$$

where ker $d_{X_M} |_{\operatorname{Harm}_{X_M}^{\pm}(M)} = \operatorname{kerd}_{X_M} \cap \operatorname{Harm}_{X_M}^{\pm}(M)$. But, the X_M -Hodge-Morrey-Friedrichs decomposition (1.5) implies the following decomposition

$$\ker \mathsf{d}_{X_M} \mid_{\operatorname{Harm}_{X_M}^{\pm}(M)} = \mathcal{E}_{X_M}^{\pm}(M) \oplus \mathcal{H}_{X_M,N}^{\pm}(M) \oplus \mathcal{H}_{X_M,\operatorname{ex}}^{\pm}(M) = \mathcal{H}_{X_M,N}^{\pm}(M) \oplus \mathcal{E}_{X_M} \operatorname{Harm}_{X_M}^{\pm}(M)$$

where $E_{X_M} \operatorname{Harm}_{X_M}^{\pm}(M) = E_{X_M}^{\pm}(M) \cap \operatorname{Harm}_{X_M}^{\pm}(M)$. But $\mathsf{d}_{X_M}(\operatorname{Harm}_{X_M}^{\mp}(M)) \subset \operatorname{ker} \mathsf{d}_{X_M} |_{\operatorname{Harm}_{X_M}^{\pm}(M)}$, then we obtain a direct sum decomposition

$$H^{\pm}(\operatorname{Harm}_{X_{M}}^{*}(M), \mathsf{d}_{X_{M}}) = \frac{\ker \mathsf{d}_{X_{M}} \mid_{\operatorname{Harm}_{X_{M}}^{\pm}(M)}}{\mathsf{d}_{X_{M}}(\operatorname{Harm}_{X_{M}}^{\pm}(M))} = \mathcal{H}_{X_{M},N}^{\pm}(M) + \frac{E_{X_{M}}\operatorname{Harm}_{X_{M}}^{\pm}(M)}{\mathsf{d}_{X_{M}}(\operatorname{Harm}_{X_{M}}^{\pm}(M))}$$

However, the X_M -Hodge isomorphism theorem [1] asserts that $H_{X_M}^{\pm}(M) \cong \mathcal{H}_{X_M,N}^{\pm}(M)$. Hence, we only need to prove that

$$\frac{E_{X_M}\operatorname{Harm}_{X_M}^{\pm}(M)}{\mathsf{d}_{X_M}(\operatorname{Harm}_{X_M}^{\mp}(M))} \cong \frac{\ker \mathsf{d}_{X_M}}{\mathsf{d}_{X_M}\Omega_G^{\pm}} \cong H_{X_M}^{\mp}(M).$$

We define the map $\overline{\delta}_{X_M}$ as follows :

$$\overline{\delta}_{X_M}([\varphi]) = [\delta_{X_M} \varphi] \in H^{\mp}_{X_M}(M), \quad \forall [\varphi] \in \frac{E_{X_M} \operatorname{Harm}_{X_M}^{\pm}(M)}{\mathsf{d}_{X_M}(\operatorname{Harm}_{X_M}^{\pm}(M))}$$

To prove $\overline{\delta}_{X_M}$ is a well-defined:

Let $\theta_1 - \theta_2 = \mathsf{d}_{X_M}\beta$, for some $\beta \in \operatorname{Harm}_{X_M}^{\mp}(M)$. i.e. $\Delta_{X_M}\beta = (\mathsf{d}_{X_M}\delta_{X_M} + \delta_{X_M}\mathsf{d}_{X_M})\beta = 0$.

Then

$$\begin{split} \delta_{X_M} \theta_1 - \delta_{X_M} \theta_2 &= \delta_{X_M} \mathsf{d}_{X_M} \beta \\ &= -\mathsf{d}_{X_M} \delta_{X_M} \beta \\ &= \mathsf{d}_{X_M} (-\delta_{X_M} \beta) \in \mathsf{d}_{X_M} \Omega_G^{\pm} \end{split} \tag{2.4}$$

Moreover, $\delta_{X_M}\beta$ is X_M -harmonic as $\Delta_{X_M}(\delta_{X_M}\beta) = \delta_{X_M}d_{X_M}\delta_{X_M}\beta = \delta^2_{X_M}(\theta_1 - \theta_2) = 0$. It means that $\delta_{X_M}(\theta_1 - \theta_2) \in d_{X_M}$ Harm $_{X_M}^{\mp}$. Thus, $\overline{\delta}_{X_M}$ is a well-defined.

Next, we prove $\overline{\delta}_{X_M}$ is one-to-one. To this end, let $\varphi \in E_{X_M} \operatorname{Harm}_{X_M}^{\pm}(M)$ and $\overline{\delta}_{X_M} \varphi \in \mathsf{d}_{X_M} \Omega_G^{\pm}$. We only need to prove $\varphi \in \mathsf{d}_{X_M}(\operatorname{Harm}_{X_M}^{\pm}(M))$. So, $\varphi = \mathsf{d}_{X_M}\beta$, and therefore

$$\Delta_{X_M}\beta = (\mathsf{d}_{X_M}\delta_{X_M} + \delta_{X_M}\mathsf{d}_{X_M})\beta = \mathsf{d}_{X_M}\delta_{X_M} + \delta_{X_M}\varphi \in \mathsf{d}_{X_M}\Omega_G^{\pm}$$

Thus, $\Delta_{X_M}\beta = \mathsf{d}_{X_M}\eta$ for some $\eta \in \Omega_G^{\pm}$, but Δ_{X_M} is onto by lemma (2.2) then we can write $\eta = \Delta_{X_M}\sigma$. Hence, $\Delta_{X_M}\beta = \mathsf{d}_{X_M}\eta = \mathsf{d}_{X_M}\Delta_{X_M}\sigma = \Delta_{X_M}\mathsf{d}_{X_M}\sigma$ which implies that $\beta - \mathsf{d}_{X_M}\sigma \in \operatorname{Harm}_{X_M}^{\mp}(M)$. Hence, we can rewrite $\varphi = \mathsf{d}_{X_M}\beta$ as follows, $\varphi = \mathsf{d}_{X_M}(\beta - \mathsf{d}_{X_M}\sigma) \in \mathsf{d}_{X_M}(\operatorname{Harm}_{X_M}^{\mp}(M))$.

Finally, to prove $\overline{\delta}_{X_M}$ is onto. Given $\alpha \in \ker d_{X_M}$, we should find $\varphi \in E_{X_M} \operatorname{Harm}_{X_M}^{\pm}(M)$ such that $\delta_{X_M} \varphi - \alpha \in d_{X_M} \Omega_G^{\pm}$. Applying lemma (2.2) on α , then we can write $\alpha = \Delta_{X_M} \beta$ and then we take $\varphi = d_{X_M} \beta$. one should notice that $\Delta_{X_M} \varphi = \Delta_{X_M} d_{X_M} \beta = d_{X_M} \Delta_{X_M} \beta = d_{X_M} \alpha = 0$, so $\alpha \in \ker d_{X_M}$. Thus, $\varphi \in E_{X_M} \operatorname{Harm}_{X_M}^{\pm}(M)$. Now,

$$\delta_{X_M} \phi = \delta_{X_M} \mathsf{d}_{X_M} \phi = \Delta_{X_M} \beta - \mathsf{d}_{X_M} \delta_{X_M} \beta = \alpha - \mathsf{d}_{X_M} \delta_{X_M} \beta$$

So, $\delta_{X_M} \varphi - \alpha \in \mathsf{d}_{X_M} \Omega_G^{\pm}$, as desired. Hence $\overline{\delta}_{X_M}$ is bijection map. So, eq.(2.3) holds.

In addition, Δ_{X_M} and δ_{X_M} commute. Hence, the coboundary operator δ_{X_M} preserves the X_M -harmonicity of invariant forms. i.e.

$$\operatorname{Harm}_{X_M}^{\pm}(M) \xrightarrow{\delta_{X_M}} \operatorname{Harm}_{X_M}^{\mp}(M)$$

Thus, $(\text{Harm}^*_{X_M}(M), \delta_{X_M})$ is a subcomplex of the \mathbb{Z}_2 -graded complex $(\Omega^*_G, \delta_{X_M})$. Therefore, we can compute the X_M -cohomology of this complex which we denote by $H^{\pm}(\text{Harm}^*_{X_M}(M), \delta_{X_M})$. So, applying the Hodge star to the isomorphism given by theorem 2.3 and replace $n - (\pm)$ by \pm and then using X_M -Poincaré-Lefschetz duality (1.7) to obtain the following corollary.

Corollary 2.4

$$H^{\pm}(\operatorname{Harm}_{X_{M}}^{*}(M), \delta_{X_{M}}) \cong H^{\pm}_{X_{M}}(M, \partial M) + H^{\mp}_{X_{M}}(M, \partial M) = H^{*}_{X_{M}}(M, \partial M)$$

3 Conclusions

In [1], we elucidate the connection between the X_M -cohomology groups and the relative and absolute equivariant cohomology groups (i.e. $H_G^{\pm}(M)$ and $H_G^{\pm}(M, \partial M)$) which are modules over $\mathbb{R}[u_1, \ldots, u_\ell]$ and the result is the following theorem.

Theorem 3.1 [1]. Let $\{X_1, \ldots, X_\ell\}$ be a basis of the Lie algebra \mathfrak{g} and $\{u_1, \ldots, u_\ell\}$ the corresponding coordinates and let $X = \sum_j s_j X_j \in \mathfrak{g}$. If the set of zeros $N(X_M)$ of the corresponding vector field X_M is equal to the fixed point set F for the G-action then

$$H_{X_M}^{\pm}(M,\partial M) \cong H_G^{\pm}(M,\partial M)/\mathfrak{m}_X H_G^{\pm}(M,\partial M) \cong H^{\pm}(F,\partial F),$$
(3.1)

and

$$H_{X_M}^{\pm}(M) \cong H_G^{\pm}(M) / \mathfrak{m}_X H_G^{\pm}(M) \cong H^{\pm}(F)$$
(3.2)

where $\mathfrak{m}_X = \langle u_1 - s_1, \dots, u_l - s_l \rangle$ is the ideal of polynomials vanishing at X.

We conclude that theorem 3.1, theorem 2.3 and corollary 2.4 prove the following theorem:

Theorem 3.2 With the hypotheses of the theorem 3.1. Then the (even or odd) X_M -harmonic cohomology of the subcomplexes (Harm^{*}_{X_M}(M), d_{X_M}) and (Harm^{*}_{X_M}(M), \delta_{X_M}) completely determine the free part of the absolute and relative equivariant cohomology groups, i.e.

$$H^{\pm}(\operatorname{Harm}^*_{X_M}(M), \mathsf{d}_{X_M}) \cong H^*_G(M)/\mathfrak{m}_X H^*_G(M) \cong H^*(F)$$

and

$$H^{\pm}(\operatorname{Harm}^*_{X_{\mathcal{M}}}(M), \delta_{X_{\mathcal{M}}}) \cong H^*_G(M, \partial M) / \mathfrak{m}_X H^*_G(M, \partial M) \cong H^*(F, \partial F).$$

References

- [1] Q.S.A. AL-ZAMIL, J. MONTALDI, Witten-Hodge theory for manifolds with boundary and equivariant cohomology. http://eprints.ma.man.ac.uk/1521/. (2010).
- [2] Q.S.A. AL-ZAMIL, J. MONTALDI, Generalized Dirichlet to Neumann operator on invariant differential forms and equivariant cohomology. http://eprints.ma.man.ac.uk/1528/. (2010)
- [3] S.CAPPELL, D. DETURCK, H. GLUCK, AND E. Y. MILLER, Cohomology of harmonic forms on Riemannian manifolds with boundary. *Forum Math.* 18 (6) (2006), 923-931.
- [4] E. WITTEN. Supersymmetry and Morse theory. J. Differential Geom., 17(4) (1982), 661–692.

School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK.

Qusay.Abdul-Aziz@postgrad.manchester.ac.uk