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Reconstruction algorithm
for the linearized polarization tomography problem

with incomplete data.

William Lionheart and Vladimir Sharafutdinov

Abstract. The paper studies some problem of polarization tomography by the method developed

in [12]. Specifically it is shown that the Truncated Transverse Ray Transform (TTRT) restricted
to lines orthogonal to one of three generically chosen directions determines a trace-free symmetric

tensor field uniquely. While a constructive formula is given for the solution this is unstable.

However for six suitably chosen directions a stable reconstruction algorithm is given. The result
has applications to photoelastic tomography.

1. Introduction

Many physical quantities such as stress and permittivity can be represented by symmetric second
rank tensor fields and this gives rise to a need to determine such quantities in the interior of an object
using only external measurements. Where the tensor is not a scalar multiple of the Kronecker tensor
such problems are anisotropic. In contrast to the isotropic case, the subject of anisotropic inverse
problems is not well developed with few results showing the sufficiency of data to determine the
unknown tensor field uniquely, a lack of explicit inverse procedures to solve the inverse problem and
few experimental groups working on systems to collect the necessary data.

The photoelastic effect relates the stress σ to the dielectric permittivity tensor ε via the equation

(1.1) ε = ε0 + C0σ + C1tr(σ)δ

where C0 and C1 are constants depending on the material, ε0 is the permittivity tensor in the
unstressed state (typically isotropic) and δ is the Kronecker tensor. The resulting anisotropic per-
mittivity tensor effects the propagation of light in a transparent medium. In the case of ε0 = const ·δ
and of a small stress, and consequently a permittivity close to isotropic, light will continue to prop-
agate in a straight line through material but the polarization state of the light will change [11, Ch
5]. For sufficiently small (in the C1 sense) σ the dependence of the change in the polarization state
of the light on ε for each ray path is approximated by a linear operator, the truncated transverse
ray transform TTRT, which is the subject of this paper. In many practical experiments the data
that can be measured are exactly the characteristic parameters [1],[5]. In this linear case these give
exactly two independent measurements per ray. Typically the overall phase change of the light as it
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passes through the object cannot be accurately measured, but if it were the transverse ray transform
TRT rather than the TTRT would be the appropriate operator.

It is often helpful to use the natural orthogonal splitting of symmetric rank two tensors in to
the kernel of the trace operator and its orthogonal complement, which consists of scalar multiples of
the Kronecker tensor. In elasticity the trace-free part of a tensor f − (1/3)tr(f)δ for f a symmetric
second rank tensor field on R3, is called the deviatoric part. It is shown in [11, Thm 6.2.2] that the
null space of the TTRT is exactly the scalar multiples of the Kronecker tensor.

In photoelastic tomography one attempts to recover the deviatoric part of the permittivity ε,
and hence the deviatoric part of the stress tensor, from measurements of characteristic parameters
for a large number of rays. That is to invert the TTRT from some subset of data. The method has
been used successfully by Aben et al [3] to image one component of the stress tensor of an object
from measurements of polarized light transmitted through the object while the object is rotated
180◦ about an axis. The main interest of Aben’s group is in the measurement of residual stress in
glass and they make the reasonable assumption that the stress tensor σ (a symmetric second rank
tensor field) is solenoidal, that is

(1.2)
3∑
j=1

∂σij
∂xj

= 0.

In the case of glass objects one can assume that the object D, that is the support of σ, is bounded by
a smooth surface, or at worst has only corners and edges (for example Lipschitz). If we interpret (1.2)
in the distributional sense this is equivalent, where the support has a smooth boundary, with the
assumption that the normal component vanishes at the boundary σN = 0 on ∂D where N is the unit
normal. Under these assumptions a reconstruction algorithm was proposed by the second author
[10], [11, Sec 2.16] and tested on simulated data, and a practical realization of a simple related
algorithm was implemented by Aben et al [3] and applied to experimental data. These algorithms
rely on data derived from rotation about one fixed axis defined by the unit vector η, that is data
from rays orthogonal to η, and recover the η ·ση component of the stress. In each plane normal to η
intersecting the support of σ these algorithms use filtered back projection methods common in two-
dimensional x-ray tomography. The algorithms essentially work “slice-by-slice”. They can therefore
be implemented easily and efficiently. By rotation of the object about five generically chosen axes
one can recover all components of the deviatoric part of ε and hence knowing C0 the deviatoric part
of σ. The solenoidal condition (1.2), together with the vanishing of σ at infinity, then means that σ
itself is uniquely determined.

There are however situations in which photoelastic tomography may prove useful where the
solenoidal condition is violated, either by the presence of body forces in the interior of the object
or more importantly because external loads are applied to the object. An important example is
where a transparent object is made of a mechanical component and an external load applied. It
is possible to freeze the stress in to the object and then examine the object with polarized light.
The traditional procedure for three dimensional stress analysis [1, p.63], [4] is to carefully cut the
model in to thin planar slices. The optical response of each slice is measured using a polarimeter
and this used to estimate the difference between the principle stresses in the slice. It has been
proposed [15] that a tomographic method is used so as to avoid the lengthy and expensive process
of cutting sections, and to avoid the destruction of the test object. However to date the only known
analytical algorithm [11, Sec 6.6] for the inversion of the TTRT assumes data is measured from all
ray directions. This would be difficult to arrange in practice and the process of acquiring the data
would be time consuming. A numerical study [14] using a discretization to reduce the problem to
a sparse system of linear equations, indicated that a stable reconstruction with a finite number of
axes might be possible.

Other possible applications of tomography with polarized light include the Kerr effect [2], to-
mography of plasma [9], and weakly birefringent liquid crystals [6].
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In this paper we demonstrate that there is indeed a reconstruction algorithm for the TTRT
for a general tensor field using data from only three rotation axes (or normal directions) and a stable
reconstruction algorithm for six axes. The method first performs a slice by slice reconstruction of
six functions by two dimensional back projection and filter methods. The components of tensor field
are related to these functions by a linear operator with coefficients that are rational functions of the
Fourier transform variables.

If the reader is not familiar with the truncated transverse ray transform, we recommend Section 1
of the paper [13] for the physical motivation of TTRT. The latter paper studies the nonlinear inverse
problem of polarization tomography for a nonhomogeneous background medium. While uniqueness
of solution is established for the non-linear problem for a symmetric tensor field, uniqueness does
not hold for the non-symmetric case [8]. In contrast to [13] and [8], the present paper is restricted
to studying the linearized inverse problem in the case of a homogeneous background medium, but
only incomplete data are assumed to be known.

2. Posing the problem and discussion of results

We start with discussing tensor fields on Rn for arbitrary n. But only the cases n = 2 and n = 3
are used in the main part of the article.

We consider Rn as the Euclidean vector space with the standard scalar product 〈·, ·〉 and norm
| · |. Since we are going to use the Fourier transform, Rn is considered as the real part of Cn; the
scalar product is extended to the Hermitian product on Cn which is again denoted by 〈·, ·〉.

Let S2Cn be the complex vector space of symmetric R-bilinear maps Rn×Rn → C. Elements of
the space are (complex-valued) symmetric tensors of second rank on Rn. Any such tensor f ∈ S2Cn
is identified with the C-linear operator f : Cn → Cn by the formula 〈fξ, η〉 = 〈fη, ξ〉 = f(ξ, η) for
ξ, η ∈ Rn. If f∗ is the dual operator, then f∗ = f̄ . Operators satisfying the latter equation will be
called symmetric operators. By δ we denote the Kronecker tensor that corresponds to the identity
operator.

Given an orthonormal basis (e1, . . . , en) of Rn, a tensor f ∈ S2Cn can be represented by the
symmetric n×n-matrix (fjk), fjk = f(ej , ek). The Hermitian scalar product on S2Cn is defined by
〈f, g〉 =

∑n
j,k=1 fjkḡjk, the result is independent of the choice of an orthonormal basis. We use only

orthonormal bases, so we do not distinguish co- and contravariant tensors.
For a unit vector ξ ∈ Rn, let Qξ : S2Cn → S2Cn be the orthogonal projection onto the subspace

{f ∈ S2Cn | fξ = 0, tr f =
∑n
j=1 fjj = 0}. For example for n = 3, for an orthonormal basis of the

form (e1, e2, e3 = ξ), the projection is expressed by

(2.1) Qξf =
1
2

 f11 − f22 2f12 0
2f21 f22 − f11 0

0 0 0

 .

Let us recall the definition of the Schwartz space S(Rn) of smooth rapidly decaying functions.
The space consists of (complex-valued) functions f ∈ C∞(Rn) satisfying |∂αf(x)| ≤ Cα,k(1 + |x|)−k
for every multi-index α and every integer k ≥ 0. The Fourier transform F : S(Rn) → S(Rn) is
defined by

F [f ] = f̂(y) = (2π)−n/2
∫

Rn

e−i〈y,x〉f(x)dx.

We will need also the partial Fourier transform FV : S(Rn) → S(Rn) that is defined for any
vector subspace V ⊂ Rn as follows. Choose Cartesian coordinates (x1, . . . , xn) in Rn such that
V = {x | xk+1 = · · · = xn = 0}. Then

FV [f ] = f̂(y1, . . . , yk, xk+1, . . . , xn) = (2π)−k/2
∫
Rk

e−i(y1x1+···+ykxk)f(x)dx1 . . . dxk.

The result is independent of the choice of such coordinates and satisfies F = FV FV ⊥ = FV ⊥FV .
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Let S(Rn;S2Cn) be the Schwartz space of S2Cn-valued functions on Rn. Elements of the
space are smooth rapidly decaying second rank symmetric tensor fields on Rn. In an orthonormal
basis, such a field is represented by a symmetric n × n-matrix f = (fjk(x)) with functions fjk ∈
S(Rn) that are components of f (with respect to the basis). The Fourier transform S(Rn;S2Cn)→
S(Rn;S2Cn), f 7→ f̂ is defined component-wise, f̂ = (f̂jk). The result is independent of the choice
of an orthonormal basis. The Fourier transform on the Schwartz space S(Rn; Cn) of vector fields is
defined in the same way.

The family of oriented lines in Rn is parameterized by points of the manifold

TSn−1 = {(ξ, x) ∈ Rn × Rn | |ξ| = 1, 〈ξ, x〉 = 0} ⊂ Rn × Rn

that is the tangent bundle of the unit sphere Sn−1 ⊂ Rn. Namely, an oriented line l ⊂ Rn is uniquely
represented as l = {x + tξ | t ∈ R} with (ξ, x) ∈ TSn−1. The Schwartz space S(TSn−1) consists of
functions ϕ ∈ C∞(TSn−1) satisfying the estimates

sup
(ξ,x)∈TSn−1

(1 + |x|)k|∂αξ ∂βxϕ(ξ, x)| ≤ Cα,β,k

for all multi-indices α, β and integers k ≥ 0. To make sense of partial derivatives in the latter
formula, the function ϕ is assumed to be extended to a neighborhood of TSn−1 in R2n in such a way
that ϕ(tξ, x) = ϕ(ξ, x) for t > 0 and ϕ(ξ, x+ tξ) = ϕ(ξ, x) for t ∈ R. The space S(TSn−1;S2Cn) of
S2Cn-valued functions is defined in a similar way.

The truncated transverse ray transform is the linear operator

K : S(Rn;S2Cn)→ S(TSn−1;S2Cn)

defined by

Kf(ξ, x) =

∞∫
−∞

Qξf(x+ tξ) dt.

Since Qξδ = 0, the operator K vanishes on scalar multiples of the Kronecker tensor δ, i.e.,
K(ϕδ) = 0 for ϕ ∈ S(Rn). Therefore we will study the problem of inverting the operator K on
the subspace of S(R3;S2C3) consisting of trace-free tensor fields, i.e., f will be always assumed to
satisfy

(2.2) tr f =
3∑
j=1

fjj = 0.

A trace-free tensor field f ∈ S(R3;S2C3) can be uniquely recovered from the function Kf known
on the whole of TS2, the reconstruction procedure is presented in Section 6.6 of [11].

As any 3D tomographic problem, the problem of recovering f from Kf is overdetermined in
dimension. Indeed, we are trying to recover functions fjk(x) of the three-dimensional argument
x ∈ R3 given the function Kf on the four-dimensional manifold TS2 of lines. Therefore it is quite
natural to pose the problem of recovering f from incomplete data Kf |L3 , where L3 is some three-
dimensional submanifold of TS2. On the other hand, the problem is underdetermined in the number
of unknown functions. Indeed, the matrix (Kf)(ξ, x) has two linearly independent components
since it satisfies tr (Kf)(ξ, x) = 0 and (Kf)(ξ, x)ξ = 0. A trace-free tensor field f has five linearly
independent components. We are trying to recover five latter unknowns from the data consisting of
two components of Kf .

In the present article, the submanifold L3 ⊂ TS2 is chosen as follows. For a unit vector η ∈ S2,
let L3

η = {(ξ, x) ∈ TS2 | 〈ξ, η〉 = 0} be the family of lines orthogonal to η. For a finite set (η1, . . . , ηN )
of unit vectors, we set

(2.3) L3 = L3(η1, . . . , ηN ) =
N⋃
j=1

L3
ηj .
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Our approach to the problem with data on manifold (2.3) is described as follows. We start with
considering the data Kf |L3

η
for one vector. For a plane P orthogonal to η, the restriction of the

vector field x 7→ η × f(x)η to P can be considered as a 2D vector field on P . Hereafter × is the
vector product. The latter vector field will be called the slice of the vector field η× fη by the plane
P . The slice of f by P is also defined, the latter being a symmetric second rank tensor field on P .
We consider 2D slices of the vector field η × fη (of the tensor field f) by all 2-planes orthogonal to
η and apply a slice-by-slice reconstruction to these 2D vector (tensor) fields. This reconstruction
procedure actually coincides, up to nonrelevant details, with the classical method of inverting the 2D
Radon transform: application of the back projection operator followed by a power of the Laplacian.
After passing to Fourier images, the result can be written as the pair of equations

(2.4) Φη(y)f̂(y) = λη(y), Ψη(y)f̂(y) = µη(y),

where λη(y) and µη(y) are some scalar functions that have been effectively recovered from the data
Kf |L3

η
in the slice-by-slice reconstruction, and Φη(y) (Ψη(y)) is a pure algebraic linear functional

with coefficients depending linearly (quadratically) on y.
Of course, two scalar equations (2.4) are not enough for determining the tensor field f̂ . We use

several unit vectors (η1, . . . , ηN ) to obtain the system

(2.5) Φηi(y)f̂(y) = ληi(y), Ψηi(y)f̂(y) = µηi(y) (1 ≤ i ≤ N)

of linear algebraic equations.
How large must be the number 2N of equations in system (2.5)? Since f̂ has five linearly

independent components, it might be expected that N = 3 is sufficient for the unique reconstruction.
Indeed, we will prove (Theorem 5.1) that system (2.5) is nondegenerate at almost every point y ∈ R3

for a generic family (η1, η2, η3) of three unit vectors. In particular, this is true for (η1, η2, η3) being an
orthonormal basis of R3. This gives, in principle, a reconstruction procedure. But the reconstruction
would possess some instability because system (2.5) is degenerate on some hypersurface. In the case
of an orthonormal basis, system (2.5) is degenerate on coordinate planes. Since (2.5) for N = 3 is a
system of six equations in five unknowns, the right-hand side (λ1, λ2, λ3, µ1, µ2, µ3) must satisfy some
linear equation, the consistency condition. We will write down the consistency condition explicitly
in the case of an orthonormal basis.

For a stable reconstruction, we have to enlarge the number 2N of equations in system (2.5). We
will present a stable reconstruction procedure for the following choice of six unit vectors:

(2.6)


η1 = 1√

2
(e2 + e3), η2 = 1√

2
(e3 + e1), η3 = 1√

2
(e1 + e2),

η4 = 1√
2
(e2 − e3), η5 = 1√

2
(e3 − e1), η6 = 1√

2
(e1 − e2),

where (e1, e2, e3) is an orthonormal basis of R3 (Theorem 6.1). In authors’ opinion, the algorithm
is quite suitable for usage in practical photoelasticity.

Most probably, N = 6 is the minimal number of directions for the stable reconstruction, but the
authors have not proved this statement. Another important question is about consistency conditions
that are discussed in Section 7.

3. Three kinds of ray transform

We will need vector and tensor fields on affine subspaces (planes) of Rn. For a vector subspace
V ⊂ Rn, let VC be the complexification of V and S2VC be the complex vector space of symmetric R-
bilinear maps V ×V → C. Elements of the latter space are (symmetric second rank complex-valued)
tensors on V . Such a tensor f ∈ S2VC is identified with the symmetric operator f : VC → VC. For
a point x ∈ Rn, by x + V = {x + v | v ∈ V } ⊂ Rn we denote the affine subspace (plane) through
x parallel to V . Let S(x + V ;S2VC) be the Schwartz space of smooth fast decaying S2VC-valued
functions on x+ V . Elements of the space are (smooth fast decaying second rank) symmetric tensor
fields on the plane x + V . The identical embedding ι : x + V ⊂ Rn induces the linear operator
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ι∗ : S(Rn;S2Cn) → S(x + V ;S2VC) by ι∗f(y)(v, w) = f(y)(v, w) for y ∈ x + V and v, w ∈ V . For
f ∈ S(Rn;S2Cn), the tensor field ι∗f ∈ S(x + V ;S2VC) will be called the slice of f by the plane
x+ V . The Schwartz space S(x+ V ;VC) of vector fields on x+ V is defined as well.

Besides the truncated transverse ray transform K that has been introduced in the previous
section, we need two other kinds of the ray transform. The transverse ray transform

J : S(Rn;S2Cn)→ S(TSn−1;S2Cn)

is defined by

Jf(ξ, x) =

∞∫
−∞

Pξf(x+ tξ) dt,

where Pξ : S2Cn → S2Cn is the orthogonal projection onto the subspace {f ∈ S2Cn | fξ = 0}. The
longitudinal ray transform

I : S(Rn; Cn)→ S(TSn−1), I : S(Rn;S2Cn)→ S(TSn−1)

is defined on vector and tensor fields by formulas

(3.1) If(ξ, x) =

∞∫
−∞

〈f(x+ tξ), ξ〉 dt and If(ξ, x) =

∞∫
−∞

〈f(x+ tξ)ξ, ξ〉 dt

respectively.
The longitudinal ray transform can be also defined on a hyperplane of Rn. For η ∈ Sn−1, let

η⊥ = {ξ ∈ Rn | 〈ξ, η〉 = 0}, η⊥C be the complexification of η⊥, and Sn−2
η = {ξ ∈ η⊥ | |ξ| = 1} be

the unit sphere in ξ⊥. Given s ∈ R, let sη + η⊥ be the hyperplane through sη parallel to η⊥ and
ιη,s : sη + η⊥ ⊂ Rn be the identical embedding. The family of oriented lines in the hyperplane
sη + η⊥ is parameterized by points of the manifold TSn−2

η = {(ξ, x) | ξ ∈ Sn−2
η , x ∈ η⊥, 〈ξ, x〉 = 0}

such that a point (ξ, x) ∈ TSn−2
η corresponds to the line {sη + x+ tξ | t ∈ R}. The longitudinal ray

transform on the hyperplane sη + η⊥

Iη,s : S(sη + η⊥; η⊥C )→ S(TSn−2
η ), Iη,s : S(sη + η⊥;S2η⊥C )→ S(TSn−2

η )

is defined on vector and tensor fields by formulas

(3.2) Iη,sf(ξ, x) =

∞∫
−∞

〈f(sη + x+ tξ), ξ〉dt and Iη,sf(ξ, x) =

∞∫
−∞

〈f(sη + x+ tξ)ξ, ξ〉dt

respectively. Operators (3.1) and (3.2) are related as follows. If f ∈ S(Rn;S2Cn) and ι∗η,sf is the
slice of f by the hyperplane sη + η⊥, then Iη,s(ι∗η,sf)(ξ, x) = If(ξ, sη + x) for (ξ, x) ∈ TSn−2

η .

We will derive some relations between the three ray transforms. We will do this in the 3D case.
For ξ ∈ S2 and a trace-free field f ∈ S(R3;S2C3), the projections Pξf and Qξf are related by

(3.3) Qξf(x) = Pξf(x) +
1
2
〈f(x)ξ, ξ〉ε(ξ),

where εij(ξ) = δij − ξiξj . Formula (3.3) is a partial case of Lemma 6.4.2 of [11]. Setting x := x+ tξ
in (3.3) and integrating the result over t, we obtain

(3.4) (Kf)(ξ, x) = (Jf)(ξ, x) +
1
2

(If)(ξ, x) · ε(ξ) for (ξ, x) ∈ TS2.

Let a vector η ∈ S2 be orthogonal to ξ. Then ε(ξ)η = η and formula (3.4) gives

(3.5) (Kf)(ξ, x)η = (Jf)(ξ, x)η +
1
2

(If)(ξ, x)η for (ξ, x) ∈ TS2, 〈ξ, η〉 = 0, |η| = 1.
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Multiply equation (3.5) by ξ × η
(3.6) 〈(Kf)(ξ, x)η, ξ × η〉 = 〈(Jf)(ξ, x)η, ξ × η〉 for (ξ, x) ∈ TS2, 〈ξ, η〉 = 0, |η| = 1.

The right-hand side of the latter equation can be transformed as follows. As is easily seen, Pξf =
πξfπξ where πξ : R3 → R3 is the orthogonal projection onto ξ⊥. Since πξη = η and πξ(ξ×η) = ξ×η,

〈(Jf)(ξ, x)η, ξ × η〉 =

∞∫
−∞

〈πξf(x+ tξ)πξη, ξ × η〉dt

=

∞∫
−∞

〈f(x+ tξ)η, ξ × η〉dt =

∞∫
−∞

〈η × f(x+ tξ)η, ξ〉dt.

Equation (3.6) takes the form

(3.7) 〈(Kf)(ξ, x)η, ξ × η〉 =

∞∫
−∞

〈η × f(x+ tξ)η, ξ〉dt for (ξ, x) ∈ TS2, 〈ξ, η〉 = 0, |η| = 1.

Since the vector field η × fη is orthogonal to η, its restriction to every plane sη + η⊥ can be
considered as the 2D vector field on the plane, i.e., (η × fη)|sη+η⊥ ∈ S(sη + η⊥; η⊥C ). Formula (3.7)
means that

Iη,s((η × fη)|sη+η⊥)(ξ, x) = 〈(Kf)(ξ, sη + x)η, ξ × η〉 for (ξ, x) ∈ TS1
η.

Now, we multiply equation (3.5) by η

(3.8) 〈(Kf)(ξ, x)η, η〉 = 〈(Jf)(ξ, x)η, η〉+
1
2

(If)(ξ, x) for (ξ, x) ∈ TS2, 〈ξ, η〉 = 0, |η| = 1.

The first term on the right-hand side of (3.8) can be transformed as follows:

〈(Jf)(ξ, x)η, η〉 =

∞∫
−∞

〈πξf(x+ tξ)η, η〉dt =

∞∫
−∞

〈f(x+ tξ)η, πξη〉dt =

∞∫
−∞

〈f(x+ tξ)η, η〉dt.

Formula (3.8) becomes

(3.9) 〈(Kf)(ξ, x)η, η〉 =

∞∫
−∞

〈f(x+ tξ)η, η〉dt+
1
2

(If)(x, ξ) for (ξ, x) ∈ TS2, 〈ξ, η〉 = 0, |η| = 1.

For a fixed unit vector η ∈ R3 and s ∈ R, we define the function ϕ on the plane sη + η⊥ by
ϕ(x) = 〈f(x)η, η〉. Formula (3.9) means that

(3.10) Iη,s(ι∗η,sf + 2ϕδ)(ξ, x) = 2〈(Kf)(ξ, sη + x)η, η〉 for (ξ, x) ∈ TS1
η,

where δ is the Kronecker tensor on ξ⊥.
The function ϕ can be expressed through the tensor ι∗η,sf . Indeed, let (ξ, ξ′, η) be the orthonor-

mal basis of R3. Then

0 = tr f(x) = 〈f(x)ξ, ξ〉+ 〈f(x)ξ′, ξ′〉+ 〈f(x)η, η〉,

ϕ(x) = 〈f(x)η, η〉 for x ∈ sη + η⊥,

tr ι∗η,sf(x) = 〈f(x)ξ, ξ〉+ 〈f(x)ξ′, ξ′〉 for x ∈ sη + η⊥.

The three last formulas imply

ϕ(x) = − tr ι∗η,sf(x) for x ∈ sη + η⊥.

Substituting this value into (3.10), we obtain

Iη,s(ι∗η,sf − 2( tr ι∗η,sf)δ)(ξ, x) = 2〈(Kf)(ξ, sη + x)η, η〉 for (ξ, x) ∈ TS1
η.
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We summarize results of this section in the following statement.

Lemma 3.1. Let f ∈ S(R3;S2C3) be a trace-free tensor field. Equations

(3.11) Iη,s((η × fη)|sη+η⊥) = K1
η,sf,

(3.12) Iη,s(ι∗η,sf − 2 tr(ι∗η,sf)δ) = 2K2
η,sf

hold for every s ∈ R and η ∈ S2, where the functions Ki
η,sf ∈ S(TS1

η) (i = 1, 2) are defined by

(K1
η,sf)(ξ, x) = 〈(Kf)(ξ, sη + x)η, ξ × η〉, (K2

η,sf)(ξ, x) = 〈(Kf)(ξ, sη + x)η, η〉.

For η ∈ S2, the submanifold L3
η ⊂ TS2 was defined in Section 2. We identify L3

η with R×TS1
η by

the diffeomorphism R×TS1
η → L3

η, (s; ξ, x) 7→ (ξ, sη+x). As was mentioned in Section 2, the matrix
function Kf |L3

η
has two linearly independent components. The functions Ki

ηf ∈ S(R × TS1
η) =

S(R)⊗ S(TS1
η) (i = 1, 2)

(3.13) (K1
ηf)(s; ξ, x) = 〈(Kf)(ξ, sη + x)η, ξ × η〉, (K2

ηf)(s; ξ, x) = 〈(Kf)(ξ, sη + x)η, η〉

are just such independent components. The function Ki
η,sf from Lemma 3.1 is actually the s-slice

of Ki
ηf , i.e., (Ki

η,sf)(ξ, x) = Ki
η(s; ξ, x). Thus, given the data Kf |L3

η
for a trace-free tensor field

f ∈ S(R3;S2C3), right-hand sides of (3.11)–(3.12) are known for every s, and we can consider
(3.11) and (3.12) as linear equations with the unknown f . In the next section, we will transform
(3.11)–(3.12) to algebraic equations by applying the Fourier transform.

4. Main algebraic equations

First of all, we briefly recall inversion formulas for 2D vector and tensor fields which recover the
tangential component of f̂ from If . See Sections 2.4 and 3.4 of [12] for details.

The tangential component τg ∈ C∞(R2) of a vector field g ∈ C∞(R2; C2) is defined by

(4.1) (τg)(y) = 〈g(y), y⊥〉,

see formula (3.8) of [12]. Here the vector y⊥ is the result of rotating y by π/2 in the positive
direction, R2 being endowed the standard orientation.

The manifold TS1 can be identified with R × S1 by the diffeomorphism (p, ξ) 7→ (ξ, pξ⊥) for
(p, ξ) ∈ R× S1. Therefore the derivative ∂

∂p : S(TS1)→ S(TS1) is well defined.
For a vector field f ∈ S(R2; C2), the tangential component of the Fourier transform F [f ] is

recovered from the ray transform If by the formula

(4.2) τF [f ] =
i

2
|y|F

[
B
(∂(If)

∂p

)]
,

see formula (2.24) of [12]. Here B : S(TS1) → C∞(R2) is the back projection operator. If TS1 is
considered as the manifold of oriented lines in R2 then, for ϕ ∈ S(TS1), the value of the function
Bϕ at a point x ∈ R2 is just the average of ϕ over all lines passing through x. The analytical
expression for B can be written as follows. Choose an orthonormal basis (e1, e2) of R2 and let
ξ(θ) = cos θe1 + sin θe2 and ξ⊥(θ) = − sin θe1 + cos θe2. Then

(4.3) (Bϕ)(x) =
1

2π

2π∫
0

ϕ(ξ(θ), 〈x, ξ⊥(θ)〉ξ⊥(θ))dθ.

The tangential component τg ∈ C∞(R2) of a tensor field g ∈ C∞(R2;S2C2) can be defined by

(4.4) (τg)(y) = |y|2tr g − 〈g(y)y, y〉,
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see formula (3.8) of [12]. For f ∈ S(R2;S2C2), the tangential component of the Fourier transform
F [f ] is recovered from the ray transform If by the formula

(4.5) τF [f ] =
1
2
|y|3F [B(If)],

see formula (3.19) of [12].
For ϕ ∈ S(TS1), the function Bϕ(x) is C∞-smooth and bounded on R2 but does not fast decay

as |x| → ∞. Therefore the Fourier transform on right-hand sides of (4.2) and (4.5) is understood in
the distribution sense.

We return to the 3D problem. Let f ∈ S(R3;S2C3) be a trace-free tensor field. Fix a unit vector
η ∈ S2 and denote by f ′ = Fη⊥ [f ] ∈ S(R3;S2C3) the partial Fourier transform of f . For any s ∈ R,
the restriction of the vector field η×f ′η to the plane sη+η⊥ coincides with the 2D Fourier transform
of (η× fη)|sη+η⊥ , i.e., (η× f ′η)|sη+η⊥ = F [(η× fη)|sη+η⊥ ], where F is the Fourier transform on the
plane sη + η⊥. Apply formula (4.2) to the vector field (η × fη)|sη+η⊥ ∈ S(sη + η⊥; η⊥C )

τ((η × f ′η)|sη+η⊥)(sη + y) =
i

2
|y|Fη⊥

[
Bη

(∂(Iη,s((η × fη)|sη+η⊥))
∂p

)]
for y ∈ η⊥,

where Bη : S(TS1
η) → C∞(η⊥) is the back projection operator on the plane η⊥. Comparing the

right-hand side of this formula with (3.11) and (3.13), we obtain

(4.6) τ((η × f ′η)|sη+η⊥)(sη + y) =
i

2
|y|Fx→y

[(
Bη

∂(K1
ηf)

∂p

)
(sη + x)

]
for y ∈ η⊥,

where Fx→y is the Fourier transform on the plane η⊥.
By (4.1),

τ((η × f ′η)|sη+η⊥)(sη + y) = 〈η × f ′(sη + y)η, η × y〉 = 〈f ′(sη + y)η, y〉.
Formula (4.6) takes the form

(4.7) 〈f ′(sη + y)η, y〉 =
i

2
|y|Fx→y

[(
Bη

∂(K1
ηf)

∂p

)
(sη + x)

]
for y ∈ η⊥.

Applying the one-dimensional Fourier transform Fs→σ to this equation, we obtain

〈f̂(ση + y′)η, y′〉 =
i

2
|y′|Fsη+x′→ση+y′

[(
Bη

∂(K1
ηf)

∂p

)
(sη + x′)

]
for y′ ∈ η⊥,

where f̂ is the 3D Fourier transform of f . If, for y′ ∈ η⊥ and σ ∈ R, let y = ση + y′, then y′ = πηy
where πη : R3 → R3 is the orthogonal projection onto η⊥. Therefore the last formula can be written
as

〈f̂(y)η, πηy〉 =
i

2
|πηy|Fx→y

[(
Bη

∂(K1
ηf)

∂p

)
(x)
]
,

where Fx→y is the 3D Fourier transform. The back projection is now understood as the linear
operator Bη : S(R× TS1

η)→ C∞(R3) defined by

(4.8) (Bηϕ)(sη + x) =
1

2π

2π∫
0

ϕ(s; ξ(θ), 〈x, ξ⊥(θ)〉ξ⊥(θ))dθ for x ∈ η⊥,

where ξ(θ) = cos θe1 + sin θe2 and ξ⊥(θ) = − sin θe1 + cos θe2 with respect to an orthonormal basis
(e1, e2) of η⊥. The operator has the obvious sense: the value of Bηϕ at a point x ∈ R3 is just the
average of the function ϕ over all lines passing through x and orthogonal to η.

Let again η ∈ S2 be a fixed vector and f ′ = Fη⊥ [f ] be the partial Fourier transform of a trace-
free tensor field f ∈ S(R3;S2C3). For any s ∈ R, the slice ι∗η,sf

′ coincides with the 2D Fourier



10 WILLIAM LIONHEART AND VLADIMIR SHARAFUTDINOV

transform of the slice ι∗η,sf , i.e., ι∗η,sf
′ = F [ι∗η,sf ], where F is the Fourier transform on the plane

sη + η⊥. Apply formula (4.5) to the tensor field ι∗η,sf − 2 tr (ι∗η,sf)δ ∈ S(sη + η⊥;S2η⊥C )

[τ(ι∗η,sf
′ − 2 tr (ι∗η,sf

′)δ)](sη + y) =
1
2
|y|3Fη⊥ [Bη(Iη,s(ι∗η,sf − 2 tr (ι∗η,sf)δ))] for y ∈ η⊥.

Comparing the right-hand side of this formula with (3.12)–(3.13), we obtain

(4.9) [τ(ι∗η,sf
′ − 2 tr (ι∗η,sf

′)δ)](sη + y) = |y|3Fx→y[(BηK2
ηf)(sη + x)] for y ∈ η⊥,

where Fx→y is the Fourier transform on the plane η⊥.
Now, we are going to express the left-hand side of (4.9) in terms of f ′. First of all, since

(τδ)(sη + y) = |y|2,

(4.10) [τ(ι∗η,sf
′ − 2 tr (ι∗η,sf

′)δ)](sη + y) = [τ(ι∗η,sf
′)− 2|y|2 tr (ι∗η,sf

′)](sη + y) for y ∈ η⊥.

Apply formula (4.4) to the field g = ι∗η,sf
′ ∈ S(sη + η⊥;S2η⊥C )

[τ(ι∗η,sf
′)](sη + y) = |y|2 tr (ι∗η,sf

′)− 〈(ι∗η,sf ′)(sη + y)y, y〉 for y ∈ η⊥.

By the definition of the slice, 〈(ι∗η,sf ′)(sη + y)y, y〉 = 〈f ′(sη + y)y, y〉 for y ∈ η⊥. Therefore the last
formula is simplified to the following one:

[τ(ι∗η,sf
′)](sη + y) = |y|2 tr (ι∗η,sf

′)− 〈f ′(sη + y)y, y〉 for y ∈ η⊥.
Substitute this expression into (4.10)

(4.11) [τ(ι∗η,sf
′ − 2 tr (ι∗η,sf

′)δ)](sη + y) = −|y|2 tr (ι∗η,sf
′)(sη + y)− 〈f ′(sη + y)y, y〉 for y ∈ η⊥.

If (e1, e2) is an orthonormal basis of η⊥, then

0 = tr f ′ = 〈f ′e1, e1〉+ 〈f ′e2, e2〉+ 〈f ′η, η〉,
tr (ι∗sηf

′) = 〈f ′e1, e1〉+ 〈f ′e2, e2〉.
This implies

tr (ι∗sηf
′) = −〈f ′η, η〉.

With the help of the last equation, formula (4.11) takes the final form

(4.12) [τ(ι∗η,sf
′ − 2 tr (ι∗η,sf

′)δ)](sη + y) = |y|2〈f ′(sη + y)η, η〉 − 〈f ′(sη + y)y, y〉 for y ∈ η⊥.
Substitute (4.12) into (4.9)

|y|2〈f ′(sη + y)η, η〉 − 〈f ′(sη + y)y, y〉 = |y|3Fx→y[(BηK2
ηf)(sη + x)] for y ∈ η⊥.

Applying the one-dimensional Fourier transform Fs→σ to this equation, we obtain

|y′|2〈f̂(ση + y′)η, η〉 − 〈f̂(ση + y′)y′, y′〉 = |y′|3Fsη+x′→ση+y′ [(BηK2
ηf)(sη + x′)]

for y′ ∈ η⊥. Changing the variables y = ση + y′ as before, we write this equation in the form

|πηy|2〈f̂(y)η, η〉 − 〈f̂(y)πηy, πηy〉 = |πηy|3Fx→y[(BηK2
ηf)(x)] for y ∈ R3.

We summarize results of this section in the following statement.

Lemma 4.1. Let f̂ be the 3D Fourier transform of a trace-free tensor field f ∈ S(R3;S2C3). For
a unit vector η ∈ S2, equations

(4.13) 〈f̂(y)η, πηy〉 = λη(y)

and

(4.14) |πηy|2〈f̂(y)η, η〉 − 〈f̂(y)πηy, πηy〉 = µη(y)

hold on R3 with right-hand sides defined by

(4.15) λη(y) =
i

2
|πηy|Fx→y

[(
Bη

∂(K1
ηf)

∂p

)
(x)
]
,
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(4.16) µη(y) = |πηy|3Fx→y[(BηK2
ηf)(x)].

Here πη : R3 → R3 is the orthogonal projection onto η⊥, Fx→y is the 3D Fourier transform on
R3, the back projection operator Bη : S(R × TS1

η) → C∞(R3) is defined by (4.8), and operators
Ki
η : S(R3;S2C3)→ S(R× TS1

η) (i = 1, 2) are defined by

(4.17) (K1
ηf)(s; ξ, x) = 〈(Kf)(ξ, sη + x)η, ξ × η〉 for s ∈ R and (ξ, x) ∈ TS1

η,

(4.18) (K2
ηf)(s; ξ, x) = 〈(Kf)(ξ, sη + x)η, η〉 for s ∈ R and (ξ, x) ∈ TS1

η,

K being the truncated transverse ray transform. The partial derivative ∂
∂p : S(R×TS1

η)→ S(R×TS1
η)

is defined with the help of the diffeomorphism R2 × S1
η → R× TS1

η, (s, p, ξ) 7→ (s, ξ, pξ × η).

Given the data Kf |L3
η
, right-hand sides λη(y) and µη(y) of equations (4.13)–(4.14) can be ef-

fectively recovered by formulas (4.15)–(4.18). Thus, (4.13) and (4.14) are linear algebraic equations
in unknowns f̂jk(y) with known right-hand sides and with coefficients depending linearly (quadrat-
ically) on y.

In next two sections, we will investigate systems obtained by combining equations (4.13)–(4.14)
for several values of η. Only the data (λη, µη) are used for each value of η in what follows.

5. System for three directions

Here, we are going to investigate the system obtained by combining equations (4.13)–(4.14) for
vectors (η1, η2, η3) constituting an orthonormal basis of R3. To abbreviate further formulas, let us
denote ληi by λi and µηi by λi.

For η = η1 = (1, 0, 0), we have πηy = (0, y2, y3), f̂η = (f̂11, f̂12, f̂13) and

|πηy|2〈f̂η, η〉 − 〈f̂πηy, πηy〉 = (y2
2 + y2

3)f̂11 − (f̂22y
2
2 + 2f̂23y2y3 + f̂33y

2
3).

Using the relation tr f̂ = 0, this can be written as

|πηy|2〈f̂η, η〉 − 〈f̂πηy, πηy〉 = −
(

(2y2
2 + y2

3)f̂22 + 2y2y3f̂23 + (y2
2 + 2y2

3)f̂33

)
.

Therefore equations (4.13)–(4.14) for η1 are as follows:

(5.1) y2f̂12 + y3f̂13 = λ1.

(5.2) (2y2
2 + y2

3)f̂22 + 2y2y3f̂23 + (y2
2 + 2y2

3)f̂33 = −µ1.

The corresponding equations for η2 and η3 are obtained from (5.1)–(5.2) by cyclic transposing
indices. In such the way we arrive to the systems

(5.3)



y2f̂12 + y3f̂13 = λ1,

y1f̂12 + y3f̂23 = λ2,

y1f̂13 + y2f̂23 = λ3;

(2y2
2 + y2

3)f̂22 + 2y2y3f̂23 + (y2
2 + 2y2

3)f̂33 = −µ1,

(2y2
1 + y2

3)f̂11 + 2y1y3f̂13 + (y2
1 + 2y2

3)f̂33 = −µ2,

(2y2
1 + y2

2)f̂11 + 2y1y2f̂12 + (y2
1 + 2y2

2)f̂22 = −µ3.

One can easily check that system (5.3) is nondegenerate at every point y ∈ R3 which does not
belong to any coordinate plane. Thus, the system is uniquely solvable for almost all y. By continuity,
f̂(y) is uniquely determined on the whole of R3. This gives the uniqueness statement: a trace-free
tensor field f ∈ S(R3;S2C3) is uniquely determined by the data (Kf |L3

η1
,Kf |L3

η2
,Kf |L3

η3
) for an

orthonormal basis (η1, η2, η3).
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Substituting the solution to system (5.3) into the equation tr f̂ = 0, we obtain the relation

y1(−y2
1 + y2

2 + y2
3)λ1 + y2(y2

1 − y2
2 + y2

3)λ2 + y3(y2
1 + y2

2 − y2
3)λ3 + y2

1µ1 + y2
2µ2 + y2

3µ3 = 0

which can be considered as a consistency condition.
Let us prove the more general statement: a trace-free tensor field f is uniquely determined by

the data (Kf |L3
η1
,Kf |L3

η2
,Kf |L3

η3
) for a generic family (η1, η2, η3) of three unit vectors. To this end

we introduce the functions

a(η, y, f̂) = 〈f̂η, |η|2y − 〈y, η〉η〉,

b(η, y, f̂) =
∣∣|η|2y − 〈y, η〉η∣∣2 〈f̂η, η〉 − |η|2〈f̂(|η|2y − 〈y, η〉η), |η|2y − 〈y, η〉η〉.

They are polynomials in (η, y, f̂) ∈ R3 × R3 × S2C3 homogeneous in η and linear in f̂ . For a unit
vector η, the functions a(η, y, f̂) and b(η, y, f̂) coincide with left-hand sides of equations (4.13) and
(4.14) respectively. Let us now consider the system of equations

a(ηi, y, f̂) = 0 b(ηi, y, f̂) = 0, (1 ≤ i ≤ 3)

for a general point (η1, η2, η3; y) ∈ R12. The determinant of the system is a polynomial in (η1, η2, η2; y)
homogeneous in each ηi. We have proved that the polynomial is not identically equal to zero. There-
fore it does not vanish almost everywhere in R12. Because of the homogeneity, the same is true for
unit vectors: the system is nondegenerate for almost all (η1, η2, η3; y) ∈ (S2)3 × R3.

Let us return to considering system (5.3) for an orthonormal basis (η1, η2, η3). It gives us a recon-
struction algorithm. Indeed, given the data (Kf |L3

η1
,Kf |L3

η2
,Kf |L3

η3
) for a trace-free tensor field f ∈

S(R3;S2C3), right-hand sides λi(y) and µi(y) of equations (5.3) are effectively recovered by formulas
(4.15)–(4.18). Let us arrange components of f̂ to the column-vector f̂ = (f̂11, f̂12, f̂13, f̂22, f̂23, f̂33)t.
Then the solution to system (5.3) can be represented analytically in the form

f̂(y) = (det (y))−1M(y)(λ(y), µ(y))t

with some 6× 6-matrix M(y) polynomially depending on y, where det (y) is the determinant of the
system. This gives us f̂ |R3\Γ, where

Γ = {y ∈ R3 | det (y) = 0} = {y ∈ R3 | y1y2y3 = 0}.

The data f̂ |R3\Γ are sufficient for recovering f by applying the inverse Fourier transform.
We summarize this result in the following theorem

Theorem 5.1. A trace-free tensor field f ∈ S(R3;S2C3) is uniquely determined by the data
(Kf |L3

η1
,Kf |L3

η2
,Kf |L3

η3
) for a generic choice of three vectors (η1, η2, η3), in particular an orthogonal

basis is sufficient.

Of course, this reconstruction algorithm possesses the following instability: in the presence of
measurement errors in the data, the accuracy in recovering f̂(y) decreases as the point y approaches
the surface Γ.

6. System for six directions

Here, we investigate the system obtained by combining equations (4.13)–(4.14) for six unit
vectors of family (2.6). We use again the abbreviated notations λi = ληi and µi = µηi .

We start with the following observation: six equations (4.14) give a possibility for the stable
reconstruction of mixed components f̂jk (j 6= k).
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For η = η3 = 1√
2
(1, 1, 0), we have πηy = y − 〈η, y〉η = 1

2 (y1 − y2, y2 − y1, 2y3) and

|πηy|2〈f̂η, η〉 − 〈f̂πηy, πηy〉 =
1
4

((y1−y2)2 + 2y2
3)(f̂11 + 2f̂12 + f̂22)− 1

4

(
(y1−y2)2(f̂11 + f̂22)

+ 4y2
3 f̂33 − 2(y1 − y2)2f̂12 + 4(y1 − y2)y3f̂13 − 4(y1 − y2)y3f̂23

)
=

1
2
y2

3(f̂11 + f̂22)− y2
3 f̂33 + ((y1 − y2)2 + y2

3)f̂12 − (y1 − y2)y3f̂13 + (y1 − y2)y3f̂23.

Using the relation tr f̂ = 0, this can be written as

|πηy|2〈f̂η, η〉 − 〈f̂πηy, πηy〉 = ((y1 − y2)2 + y2
3)f̂12 − (y1 − y2)y3f̂13 + (y1 − y2)y3f̂23 −

3
2
y2

3 f̂33.

Therefore equation (4.14) for η3 is as follows:

((y1 − y2)2 + y2
3)f̂12 − (y1 − y2)y3f̂13 + (y1 − y2)y3f̂23 −

3
2
y2

3 f̂33 = µ3.

The corresponding equation for η6 = 1√
2
(1,−1, 0) is derived in the same way

((y1 + y2)2 + y2
3)f̂12 + (y1 + y2)y3f̂13 + (y1 + y2)y3f̂23 +

3
2
y2

3 f̂33 = −µ6.

Eliminating f̂33 from last two equations, we obtain the equation containing only mixed components

|y|2f̂12 + y2y3f̂13 + y1y3f̂23 = (µ3 − µ6)/2.

By cyclic transposing indices on the left-hand side, we obtain two similar equations for pairs (η2, η5)
and (η1, η4) of family (2.6). In such the way we arrive to the system

(6.1)


|y|2f̂12 + y2y3f̂13 + y1y3f̂23 = (µ3 − µ6)/2,

y2y3f̂12 + |y|2f̂13 + y1y2f̂23 = (µ2 − µ5)/2,

y1y3f̂12 + y1y2f̂13 + |y|2f̂23 = (µ1 − µ4)/2.

System (6.1) is nondegenerate at every point 0 6= y ∈ R3. Indeed, the determinant of the system
admits the estimate det ≥ 2|y|6/3. Therefore system (6.1) is uniquely solvable for any y 6= 0 and
the solution satisfies the stability estimate

(6.2) |f̂jk(y)| ≤ 3
2
|y|−2

3∑
i=1

|µi(y)− µi+3(y)| (j 6= k).

Before going further, let us give a remark on the singularity of system (6.1) at the point y = 0.
Such singularities are unavoidable in our approach. Indeed, all coefficients of our main equations
(4.13)–(4.14) vanish at y = 0. This phenomenon is actually caused by the following fact: the
tangential part of a vector (tensor) field has a singularity at the origin; see Sections 2.2 and 3.2 of
[12] for details. Therefore let us agree to disregard singularities at the origin and consider systems
with such singularities as nondegenerate systems.

Assuming mixed components f̂jk (j 6= k) have been stably recovered, we use six equations (4.13)
for a stable reconstruction of the diagonal components f̂jj .

Equations (4.13) for η3 and η6 can be easily written down:

(y1 − y2)(f̂11 − f̂22) + 2y3(f̂13 + f̂23) = 2
√

2λ3,

(y1 + y2)(f̂11 − f̂22) + 2y3(f̂13 − f̂23) = 2
√

2λ6.
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This system is equivalent to the following one:

y1(f̂11 − f̂22) =
√

2(λ3 + λ6)− 2y3f̂13,

y2(f̂11 − f̂22) =
√

2(λ6 − λ3) + 2y3f̂23.

By cyclic transposing indices, we write similar equations for pairs (η2, η5) and (η1, η4). In such the
way we obtain the system

(6.3)



y1(f̂11 − f̂22) =
√

2(λ3 + λ6)− 2y3f̂13,

y2(f̂11 − f̂22) =
√

2(λ6 − λ3) + 2y3f̂23,

y3(f̂33 − f̂11) =
√

2(λ2 + λ5)− 2y2f̂23,

y1(f̂33 − f̂11) =
√

2(λ5 − λ2) + 2y2f̂12,

y2(f̂22 − f̂33) =
√

2(λ1 + λ4)− 2y1f̂12,

y3(f̂22 − f̂33) =
√

2(λ4 − λ1) + 2y1f̂13.

Take the sum of third and sixth equations of (6.3)

y3(f̂11 − f̂22) =
√

2(λ1 − λ2 − λ4 − λ5)− 2y1f̂13 + 2y2f̂23

and consider the system obtained by uniting this equation with first two equations of (6.3)

y1(f̂11 − f̂22) =
√

2(λ3 + λ6)− 2y3f̂13,

y2(f̂11 − f̂22) =
√

2(λ6 − λ3) + 2y3f̂23,

y3(f̂11 − f̂22) =
√

2(λ1 − λ2 − λ4 − λ5)− 2y1f̂13 + 2y2f̂23.

Multiplying the first (second, third) of these equations by y1 (by y2, y3) and summing results, we
obtain

|y|2(f̂11 − f̂22) =
√

2
(

(y1 − y2)λ3 + (y1 + y2)λ6 + y3(λ1 − λ2 − λ4 − λ5)
)
− 4y1y3f̂13 + 4y2y3f̂23.

Quite similarly, the following equation is derived from (6.3):

|y|2(f̂11 − f̂33) =
√

2
(

(y1 − y3)λ2 − (y1 + y3)λ5 − y2(λ3 − λ1 − λ4 − λ6)
)
− 4y1y2f̂12 + 4y2y3f̂23.

Taking the sum of last two equations and using the relation tr f̂ = 0, we obtain the stable
reconstruction formula for f̂11

(6.4)
f̂11 =

√
2

3|y|2
(

(y2 + y3)λ1 + (y1 − 2y3)λ2 + (y1 − 2y2)λ3 + (y2 − y3)λ4

− (y1 + 2y3)λ5 + (y1 + 2y2)λ6

)
− 4

3|y|2
(y1y2f̂12 + y1y3f̂13 − 2y2y3f̂23).

The corresponding formulas for f̂22 and f̂33 are obtained in the same way

(6.5)
f̂22 =

√
2

3|y|2
(

(y2 − 2y3)λ1 + (y1 + y3)λ2 − (2y1 − y2)λ3 + (y2 + 2y3)λ4

− (y1 − y3)λ5 − (2y1 + y2)λ6

)
− 4

3|y|2
(y1y2f̂12 − 2y1y3f̂13 + y2y3f̂23),
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(6.6)
f̂33 =

√
2

3|y|2
(
− (2y2 − y3)λ1 − (2y1 − y3)λ2 + (y1 + y2)λ3 − (2y2 + y3)λ4

+ (2y1 + y3)λ5 + (y1 − y2)λ6

)
− 4

3|y|2
(−2y1y2f̂12 + y1y3f̂13 + y2y3f̂23).

Formulas (6.4)–(6.6) imply the stability estimate

(6.7) |f̂11(y)|+ |f̂22(y)|+ |f̂33(y)| ≤ C ′
(
|y|−1

6∑
i=1

|λi(y)|+ |f̂12(y)|+ |f̂13(y)|+ |f̂23(y)|
)

with some universal constant C ′. Together with (6.2), this gives the final stability estimate

(6.8) |f̂(y)| ≤ C
(
|y|−1

6∑
i=1

|λi(y)|+ |y|−2
3∑
i=1

|µi(y)− µi+3(y)|
)

with some universal constant C.
Similarly we obtain the estimate on the Frobenius norm of f̂

(6.9) |f̂(y)|2 ≤ C ′′
(
|y|−2

6∑
i=1

|λi(y)|2 + |y|−4
3∑
i=1

|µi(y)− µi+3(y)|2
)

which gives stability estimates in L2 based Sobolev spaces.
We have now proved the following theorem

Theorem 6.1. For the family (2.6) of unit vectors the data (Kf |L3
η1
, . . . ,Kf |L3

η6
) uniquely

determines a trace-free field f ∈ S(R3;S2C3) with a stable, explicit reconstruction formula. Stability
estimates are given by (6.8) and (6.9).

Summary of the algorithm. For the reader’s convenience, we summarize here all essential
steps needed for the numerical realization of the algorithm implied by Theorem 6.1

(1) Identifying L3
ηi with R × TS1

ηi as at the end of Section 3 and using formulas (4.17)–(4.18),
represent the data as the family (Kj

η1f, . . . ,K
j
η6f) (j = 1, 2) of functions Kj

ηif ∈ S(R × TS1
ηi).

Evaluate the derivatives ∂(K1
ηif)/∂p as explained in Lemma 4.1.

(2) Using formula (4.8), evaluate the functions (Bηi(∂K
1
ηif/∂p))(x) and BηiK

2
ηif(x) (1 ≤ i ≤ 6)

by multiple applying the two-dimensional back projection operator Bηi for every value of 〈x, ηi〉
(practically, for 〈x, ηi〉 belonging to a finite grid).

(3) Evaluate F [Bηi(∂K
1
ηif/∂p)] and F [BηiK

2
ηif ] (1 ≤ i ≤ 6) by applying the 3D Fourier trans-

form and then calculate the functions λi = ληi and µi = µηi by formulas (4.15)–(4.16).
(4) Find mixed components f̂jk(y) (j 6= k) by solving system (6.1) and then find diagonal

components f̂jj by formulas (6.4)–(6.6).
(5) Find f(x) by applying the inverse Fourier transform.

7. Consistency conditions

Let us now discuss the question on consistency conditions in the case of family (2.6): given a
family of twelve functions ϕji ∈ S(R×S1

ηi) (1 ≤ i ≤ 6, 1 ≤ j ≤ 2), does there exist a trace-free tensor
field f ∈ S(R3; C3) such that ϕji = Kj

ηif? Actually we discuss consistency conditions in terms of
functions λi = ληi and µi = µηi (1 ≤ i ≤ 6) defined by (4.15) and (4.16). There are three kinds of
consistency conditions which can be called the local, global, and algebraic conditions respectively.

(1) Local consistency conditions. First of all we observe that only the differences

(7.1) µ̃i = µi − µi+3 (1 ≤ i ≤ 3)



16 WILLIAM LIONHEART AND VLADIMIR SHARAFUTDINOV

are used in our algorithm as is seen from (6.1). Also only three linear combinations of λi’s

(7.2)

λ̃1 =(y2 + y3)λ1 + (y1 − 2y3)λ2 + (y1 − 2y2)λ3

+ (y2 − y3)λ4 − (y1 + 2y3)λ5 + (y1 + 2y2)λ6,

λ̃2 =(y2 − 2y3)λ1 + (y1 + y3)λ2 − (2y1 − y2)λ3

+ (y2 + 2y3)λ4 − (y1 − y3)λ5 − (2y1 + y2)λ6,

λ̃3 =− (2y2 − y3)λ1 − (2y1 − y3)λ2 + (y1 + y2)λ3

− (2y2 + y3)λ4 + (2y1 + y3)λ5 + (y1 − y2)λ6

participate in the algorithm as is seen from (6.4)–(6.6). The family (λ̃1(y), . . . , µ̃3(y)) must be such
that the field f̂(y), obtained by solving system (6.1) and substituting the solution into (6.4)–(6.6),
belongs to S(R3;S2C3). This requirement can be considered as the first consistency condition. Let
us refer to the requirement as “the local consistency condition”. It implies (but is not equivalent to)
the following fact: the functions λ̃i and µ̃i belong to the subspace of S(R3) consisting of functions
vanishing at the origin together with first order derivatives. Let us also mention that formulas
(4.15)–(4.16) do not guarantee any good behavior of the functions λη(y) and µη(y) near the origin
since the Fourier transform of BηKj

ηf can be singular at the origin, compare with the remark after
formula (4.5).

(2) Global consistency condition. It can be very implicitly described as follows. For a family
(λ̃1, . . . , µ̃3) of six functions satisfying the local consistency conditions, let f̂ be the solution to
systems (6.1) and (6.4)–(6.6), and let (λi = K1

ηif, µi = K2
ηif | 1 ≤ i ≤ 6) be the corresponding data

for the field f = F−1[f̂ ]. We have thus defined some linear operator

A : (λ̃1, . . . , µ̃3) 7→ (λ1, . . . , µ6).

Define also the operator

B : (λ1, . . . , µ6) 7→ (λ̃1, . . . , µ̃3)

by formulas (7.1)–(7.2). The global consistency condition can be formulated as follows: our data
D = (λ1, . . . , µ6) must satisfy ABD = D. Our algorithm is independent of this condition since only
the data (λ̃1, . . . , µ̃3) are used in the algorithm.

(3) Algebraic consistency conditions. First of all we observe that the equation tr f̂ = 0 is
satisfied by expressions (6.4)–(6.6) as can be checked by substitution. We have the system of
12 linear algebraic equations (4.13)–(4.14) in six unknowns f̂jk(y). Therefore right-hand sides
(λ1, . . . , λ6, µ1, . . . , µ6) must satisfy 6 linear algebraic equations (with coefficients depending on y).
By substitute expressions (6.4)–(6.6) into equations (6.3) and eliminating each f̂ii from a pair of
equations we obtain consistency conditions on the λi. Although there are three equations (6.3) this
only results in one independent consistency condition

(7.3)

y2y3

(
− y2(y2

1 − y2
2 + y2

3) + y3(y2
1 + y2

2 − y2
3)
)
λ1

+y1y3

(
− y3(y2

1 + y2
2 − y2

3) + y1(−y2
1 + y2

2 + y2
3)
)
λ2

+y1y2

(
− y1(−y2

1 + y2
2 + y2

3) + y2(y2
1 − y2

2 + y2
3)
)
λ3

+y2y3

(
y2(y2

1 − y2
2 + y2

3) + y3(y2
1 + y2

2 − y2
3)
)
λ4

+y1y3

(
y3(y2

1 + y2
2 − y2

3) + y1(−y2
1 + y2

2 + y2
3)
)
λ5

+y1y2

(
y1(−y2

1 + y2
2 + y2

3) + y2(y2
1 − y2

2 + y2
3)
)
λ6 = 0.
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It is invariant under the permutation of indices

(7.4) 1 7→ 3 7→ 2 7→ 1, 4 7→ 6 7→ 5 7→ 4.

The proof is given in the appendix.
The other algebraic consistency conditions relate both the µi and λi and are considerably more

complicated.

8. Conclusions

We have shown that using the data for the truncated transverse ray transform only for rays
orthogonal to six directions it is possible to reconstruct a trace-free tensor field in the Schwarz class.
Both the TTRT and the lateral Ray transforms we have used are easily extended from the Schwartz
class to the space E ′(R3;S2C3) of compactly supported tensor field-distributions by application of
the formal adjoint operators to test functions, following the procedure in [11, Sec 2.14]. Our estimate
(6.9) then implies that the inversion procedure is bounded on the Sobolev scale in a way analogous
to the scalar X-ray transform [7]. Clearly this implies that some regularization is required for a
practical numerical procedure, again taking our queue from the scalar case this would typically
be done by a modification of the inversion operator for large |y|, although [14] suggests a more
systematic approach to regularization for photoelastic applications. The stability of the inversion on
Sobolev scales implies in particular that in the important case of tensor fields that are the product
of a smooth field with the characteristic function of a bounded Lipschitz domain, a case typical
in photoelasticity. Although the solenoidal condition might hold in the interior this allows for the
possibility of forces on the boundary of the domain including external loads. Hence the technique
could be used in photoelastic tomography provided the characteristic parameter data can be collected
with sufficient precision and an apparatus developed that is capable of rotating the specimen a half
revolution about six axes of rotation without any of the necessary rays being obscured.

While the method implemented by [2] requires the use of only one dimensional convolution filters
followed by a two dimensional back projection on each slice, our method performs a two dimensional
back projection on each slice followed by a three dimensional filter coupling the components of
the tensor field. In this sense it is more costly, although typically in three dimensional scalar
computerized tomography it is the back projection rather than the filter operations that are more
time consuming. Our algorithm does however have the advantage that once the back projection
operations have been performed the characteristic parameter data are no longer required to be
retained in memory. We anticipated that steps (3) and (5) in our algorithm can be implemented
efficiently on a rectangular voxel grid using a three dimensional Fast Fourier Transform.

9. Appendix

Proof of (7.3). Substituting expressions (6.4)–(6.6) into first two equations of system (6.3), we
obtain the equations

(9.1)

{
(2y2

1 − |y|2)f̂13 − 2y1y2f̂23 = b1,

2y1y2f̂13 − (2y2
2 − |y|2)f̂23 = b2

with the right-hand sides

(9.2)
b1 =

1√
2

(
y1(λ1 − λ2 − λ4 − λ5) +

1
y3

(y2
1 − y1y2 − |y|2)λ3 +

1
y3

(y2
1 + y1y2 − |y|2)λ6

)
,

b2 =
1√
2

(
y2(λ1 − λ2 − λ4 − λ5) +

1
y3

(y1y2 − y2
2 + |y|2)λ3 +

1
y3

(y1y2 + y2
2 − |y|2)λ6

)
.

We consider (9.1) as a system in unknowns f̂13 and f̂23. The determinant of the system is

∆ =
∣∣∣∣ 2y2

1 − |y|2 −2y1y2

2y1y2 −(2y2
2 − |y|2)

∣∣∣∣ = |y|2(y2
1 + y2

2 − y2
3).
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Solve the system by Cramer

f̂13 =
1
∆

∣∣∣∣ b1 −2y1y2

b2 |y|2 − 2y2
2

∣∣∣∣ =
1
∆

(
(y2

1 − y2
2 + y2

3)b1 + 2y1y2b2

)
.

Substitute the values of b1, b2 and ∆ to obtain

(9.3)

f̂13 =
1√

2|y|2(y2
1 + y2

2 − y2
3)

(
|y|2y1(λ1 − λ2 − λ4 − λ5)

+
1
y3

(y3
1y2 + y2

1y
2
2 − y2

1y
2
3 + y1y

3
2 + y1y2y

2
3 + y4

2 − y4
3)λ3

+
1
y3

(−y3
1y2 + y2

1y
2
2 − y2

1y
2
3 − y1y

3
2 − y1y2y

2
3 + y4

2 − y4
3)λ6

)
.

Quite similarly

(9.4)

f̂23 =
1√

2|y|2(y2
1 + y2

2 − y2
3)

(
− |y|2y2(λ1 − λ2 − λ4 − λ5)

+
1
y3

(y4
1 + y3

1y2 + y2
1y

2
2 + y1y

3
2 + y1y2y

2
3 − y2

2y
2
3 − y4

3)λ3

+
1
y3

(−y4
1 + y3

1y2 − y2
1y

2
2 + y1y

3
2 + y1y2y

2
3 + y2

2y
2
3 + y4

3)λ6

)
.

We do not need to repeat our calculations for third and fourth equations of system (6.3) since
they are obtained by applying permutation (7.4) to the first two equations of the system. We just
apply permutation (7.4) to formula (9.3) to obtain

(9.5)

f̂23 =
1√

2|y|2(y2
1 − y2

2 + y2
3)

(
|y|2y3(−λ1 + λ3 − λ4 − λ6)

+
1
y2

(y4
1 + y3

1y3 + y2
1y

2
3 + y1y

2
2y3 + y1y

3
3 − y4

2 − y2
2y

2
3)λ2

+
1
y2

(y4
1 − y3

1y3 + y2
1y

2
3 − y1y

2
2y3 − y1y

3
3 − y4

2 − y2
2y

2
3)λ5

)
.

We have thus obtained two different formulas (9.4) and (9.5) for the same f̂23. We equate
right-hand sides of these formulas

1√
2|y|2(y2

1 + y2
2 − y2

3)

(
− |y|2y2(λ1 − λ2 − λ4 − λ5)

+
1
y3

(y4
1 + y3

1y2 + y2
1y

2
2 + y1y

3
2 + y1y2y

2
3 − y2

2y
2
3 − y4

3)λ3

+
1
y3

(−y4
1 + y3

1y2 − y2
1y

2
2 + y1y

3
2 + y1y2y

2
3 + y2

2y
2
3 + y4

3)λ6

)
=

1√
2|y|2(y2

1 − y2
2 + y2

3)

(
|y|2y3(−λ1 + λ3 − λ4 − λ6)

+
1
y2

(y4
1 + y3

1y3 + y2
1y

2
3 + y1y

2
2y3 + y1y

3
3 − y4

2 − y2
2y

2
3)λ2

+
1
y2

(y4
1 − y3

1y3 + y2
1y

2
3 − y1y

2
2y3 − y1y

3
3 − y4

2 − y2
2y

2
3)λ5

)
.
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Multiply this equation by the common denominator

(y2
1 − y2

2 + y2
3)
(
− |y|2y2

2y3(λ1 − λ2 − λ4 − λ5)

+ y2(y4
1 + y3

1y2 + y2
1y

2
2 + y1y

3
2 + y1y2y

2
3 − y2

2y
2
3 − y4

3)λ3

+ y2(−y4
1 + y3

1y2 − y2
1y

2
2 + y1y

3
2 + y1y2y

2
3 + y2

2y
2
3 + y4

3)λ6

)
= (y2

1 + y2
2 − y2

3)
(
|y|2y2y

2
3(−λ1 + λ3 − λ4 − λ6)

+ y3(y4
1 + y3

1y3 + y2
1y

2
3 + y1y

2
2y3 + y1y

3
3 − y4

2 − y2
2y

2
3)λ2

+ y3(y4
1 − y3

1y3 + y2
1y

2
3 − y1y

2
2y3 − y1y

3
3 − y4

2 − y2
2y

2
3)λ5

)
.

Grouping similar terms, we write this in the form

(9.6) a1λ1 + a2λ2 + a3λ3 + a4λ4 + a5λ5 + a6λ6 = 0,

where

(9.7)

a1 = |y|2y2y3

(
− y2(y2

1 − y2
2 + y2

3) + y3(y2
1 + y2

2 − y2
3)
)
,

a2 = y3

(
|y|2y2

2(y2
1 − y2

2 + y2
3)

− (y2
1 + y2

2 − y2
3)(y4

1 + y3
1y3 + y2

1y
2
3 + y1y

2
2y3 + y1y

3
3 − y4

2 − y2
2y

2
3)
)
,

a3 = y2

(
(y2

1 − y2
2 + y2

3)(y4
1 + y3

1y2 + y2
1y

2
2 + y1y

3
2 + y1y2y

2
3 − y2

2y
2
3 − y4

3)

− |y|2y2
3(y2

1 + y2
2 − y2

3)
)
,

a4 = |y|2y2y3

(
y2(y2

1 − y2
2 + y2

3) + y3(y2
1 + y2

2 − y2
3)
)
,

a5 = y3

(
|y|2y2

2(y2
1 − y2

2 + y2
3)

− (y2
1 + y2

2 − y2
3)(y4

1 − y3
1y3 + y2

1y
2
3 − y1y

2
2y3 − y1y

3
3 − y4

2 − y2
2y

2
3)
)
,

a6 = y2

(
(y2

1 − y2
2 + y2

3)(−y4
1 + y3

1y2 − y2
1y

2
2 + y1y

3
2 + y1y2y

2
3 + y2

2y
2
3 + y4

3)

+ |y|2y2
3(y2

1 + y2
2 − y2

3)
)
.

By straightforward but cumbersome calculations, formulas (9.7) are transformed to the form

(9.8)

a1 = |y|2y2y3

(
− y2(y2

1 − y2
2 + y2

3) + y3(y2
1 + y2

2 − y2
3)
)
,

a2 = |y|2y1y3

(
− y3(y2

1 + y2
2 − y2

3) + y1(−y2
1 + y2

2 + y2
3)
)
,

a3 = |y|2y1y2

(
− y1(−y2

1 + y2
2 + y2

3) + y2(y2
1 − y2

2 + y2
3)
)
,

a4 = |y|2y2y3

(
y2(y2

1 − y2
2 + y2

3) + y3(y2
1 + y2

2 − y2
3)
)
,

a5 = |y|2y1y3

(
y3(y2

1 + y2
2 − y2

3) + y1(−y2
1 + y2

2 + y2
3)
)
,

a6 = |y|2y1y2

(
y1(−y2

1 + y2
2 + y2

3) + y2(y2
1 − y2

2 + y2
3)
)
.

Substituting values (9.8) into (9.6), we arrive at (7.3).
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