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Abstract

Given a pair of distinct eigenvalues (A1, A2) of an n x n quadratic matrix polyno-
mial Q(A) with nonsingular leading coefficient and their corresponding eigenvec-

tors, we show how to transform @Q()\) into a quadratic of the form [Qd(o’\) q(g)}

having the same eigenvalues as Q(\), with Q4(A) an (n—1) x (n — 1) quadratic
matrix polynomial and ¢(A) a scalar quadratic polynomial with roots A; and
A2. This block diagonalization cannot be achieved by a similarity transforma-
tion applied directly to Q(\) unless the eigenvectors corresponding to A1 and
Ao are parallel. We identify conditions under which we can construct a family
of 2n x 2n elementary similarity transformations that (a) are rank-two modi-
fications of the identity matrix, (b) act on linearizations of Q(\), (c¢) preserve
the block structure of a large class of block symmetric linearizations of Q(\),
thereby defining new quadratic matrix polynomials ¢1(A) that have the same
eigenvalues as Q(\), (d) yield quadratics Q1(\) with the property that their
eigenvectors associated with A; and A are parallel and hence can subsequently
be deflated by a similarity applied directly to Q1 (). This is the first attempt at
building elementary transformations that preserve the block structure of widely
used linearizations and which have a specific action.

Key words: quadratic eigenvalue problem, linearization, structure preserving
transformation, deflation
2000 MSC: 15A18, 65F15, 65F30

1. Introduction

Consider the quadratic matrix polynomial Q(\) = A\2M + A\C + K, where
M,C, K € R"™"™ with M nonsingular, and the associated quadratic eigenvalue
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problem
QNzp =0, z7Q()\) =0, (1)

where A is an eigenvalue and zr and x, are corresponding right and left eigen-
vectors, respectively. Throughout, we use the subscript R to denote right eigen-
vectors or when referring to transformations applied to the right, and the sub-
script L for left eigenvectors and transformations applied to the left. We also
denote by A(Q) the spectrum of Q.

Given two eigentriples (\j, zgj,xr;), j = 1,2 satisfying appropriate condi-
tions, we propose a deflation procedure that decouples Q()) into a quadratic
Qq(\) = N2My + ACy + K, of dimension n — 1 and a scalar quadratic g(\) =
A2m + Ae+k =m(A — A1)(A — A\2) such that

AQ) = AQq) U {1, X2}

and there exist well-defined relations between the eigenvectors of Q(\) and those
of the decoupled quadratic

Qv(/\) = |:Qd(§)\) q((i\):| . (2)

This is termed “strong deflation” in the engineering community, as opposed to
“weak deflation”, which is achieved by introducing zeros in the trailing rows or
columns of the matrices.

Unlike for linear polynomials A — AB, we cannot in general construct an
nxn equivalenge transformation with nonsingular matrices Pr, and Pr such
PEQ(N\)Pgr = Q(\), where Q()) is the decoupled quadratic in (2) [17]. The
standard way of treating quadratic matrix polynomials, both theoretically and
numerically, is to convert them into equivalent linear matrix pencils of twice
the dimension, a process called linearization [11]. For example, when M is
nonsingular the block symmetric pencil

wor=a[§ ][

is a linearization of Q()\) in the sense that La(\) satisfies

ELF) = |9 ]

for some unimodular F(\) and F()), where I,, is the n X n identity matrix [11],
[22]. This implies that ¢ - det(L2(A\)) = det(Q()N)) for some nonzero constant c,
so that Lo and ) have the same eigenvalues. Deflation procedures for matrix
pencils ignore the block structure of linearizations such as Ly(\). They produce
a deflated pencil that is not in general a linearization of a quadratic matrix
polynomial [16].

Garvey, Friswell, and Prells [8] and later Chu and Xu [7] showed that for
quadratics with symmetric coefficients and semisimple eigenvalues (i.e., each



eigenvalue A appears only in 1 x 1 Jordan blocks in a Jordan triple for @ [11]),
there exists a real nonsingular matrix W € R2"*2" such that

WTLy(\W = A [DOM gﬂ + {‘?M DOK} =: Lp(M\), (3)

with Dy, Do, D diagonal. The pencil Lp () is a linearization of the diagonal
quadratic Qp(\) = A2Dys + AD¢ + D, which clearly has the same eigenval-
ues as @Q(A). The proof of the diagonalization of the blocks of La(A) in (3) is
constructive and requires the knowledge of all the eigenvalues and eigenvectors
of Q). Most importantly it shows that by increasing the dimension of the trans-
formations from n x n when working directly on @ to 2n x 2n by working on
a pencil of twice the dimension of @, total decoupling of the underlying sec-
ond order system can be achieved. The congruence in (3) is an example of a
structure preserving transformation (SPT). More generally, we say that a pair
(Wr,Wg) of 2n x 2n real nonsingular matrices defines a structure preserving
transformation for an n x n quadratic matrix polynomial Q(\) = A2M +A\C'+ K
with M nonsingular if

e[y 4] 3 2w (3 ][5 4] o

where M;,Cy, and K; are n x n matrices [21] that define a new quadratic
Q1(\) = A2M; + A\C; + K; having the same eigenvalues as Q().

Because the problem is quadratic, we need to deflate two eigenvalues at a
time. For a given pair of eigenvalues A1, A2 and their associated left and right
eigenvectors xy;, Tp;, j = 1,2, we identify conditions under which there exist
elementary SPTs (Wp,Wg) that are rank-two modifications of the 2n x 2n
identity matrix and transform Q(A) into a new quadratic Q1(\) for which A\
and Ay share the same left eigenvector z;, and same right eigenvector zg, that
is,

21Q1(A) =0, Qi(N)zr=0, j=12 (5)
In particular we find that A\; and A must be semisimple and distinct and that,
if they are both real, they must also satisfy

sign (WM%) = sign <M> ’

leQl(Al)le m€1Q'(>\2)xR2

which for symmetric quadratics () means that A\; and A2 must have opposite
type [3]. Under these conditions we characterize a family of elementary SPTs
that transform Q(A) with eigentriples (\;, zr;,z;) to a new quadratic Q1(\)
with eigentriples (A;, zr, z1), 7 = 1,2. Since our transformations are structure
preserving we never work with the 2n x 2n matrices in (4). Indeed the matrix
coefficients of @Q1()) turn out to be low rank modifications of M,C and K and
are therefore not expensive to compute. When (5) holds we then show how
to construct two nonsingular matrices Gy, Gg such that GTQ,(\)Gp = Q()\)



with Q()) block diagonal as in (2), that is, the pair (G, Gg) deflates the two
eigenvalues A1, \o.

This paper is organized as follows. After some preliminary results in section
2 on structure preserving transformations, we explain in section 3 how to de-
flate eigenvalues of symmetric quadratic matrix polynomials. We then extend
in the following section the symmetric deflation procedure to quadratics with
nonsymmetric coefficient matrices. We present in section 5 some numerical ex-
amples that illustrate our deflation procedure. To the best of our knowledge,
this work is the first attempt at constructing a family of nontrivial elementary
SPTs that have a specific action of practical use: that of “mapping” two linearly
independent eigenvectors to a set of linearly dependent eigenvectors.

2. Structure preserving transformations

In this section we recall some necessary results from [9] and [21]. SPTs,
defined in (4), have a number of important and useful properties that we begin
by summarizing.

Lemma 1. [21] Let (W, WR) be an SPT transforming Q(\) = A2M +\C + K
with M nonsingular into Q(\) = \>M + \C + K. Then

(i) Q(\) and Q(N) share the same eigenvalues.
(ii) M is nonsingular.
(i) If (A, z,y) is an eigentriple of Q(\) then

-1 AL o AT 1 j\y _ j\g
v |[Y]=[5] v V)=
for some nonzero T,y € C™ such that @(/\)f =0 and g*@(/\) =0.
(iv) If L(\) belongs to the vector space of pencils [14], [18]

o ’U1M UQM 1}10 — UQM UlK . 2
DL(Q)_{)\[’UQM UQCU1K:|+|: UlK ’UQK:|.U€R }7

with vector v then L(\) = WEL(NW, € DL(Q) with vector v. In other
words, the SPT (Wr,Wg) preserves the block structure of DL(Q). More-
over if L(X) is a linearization of Q then L()\) is a linearization of Q(N).

(v) If Wr, = Wg and Q()\) is symmetric (i.e., M,C and K are symmetric)
then Q(X) is symmetric.

Matrix pairs (Gr,Ggr) of the form

Gs 0

Gsz{o Gg

]eRZW", det(Gg)#£0, S=L,R

always define an SPT for any n x n_quadratic (). They have the property that

if (Gp,GR) transforms Q(A) into Q(\) then Q(\) = ézQ(A)GR. The pair



(Gr,GR) is called a class one elementary SPT when és =71 msng for some
nonzero vectors mg,ng € R", S =L, R [9].
The key elementary SPT used in our deflation procedure has the form

I+ agbl agdh

T =
o agfy  T+aghk

c RQHXZH’ (6)

where ag,bg,ds, fs,hs € R™ with ag,dg, fs nonzero. The matrix Ts differs
from the identity matrix by a matrix of rank at most two and it is nonsingular
if [5], [21]

det(Ts) = (1 + agbg)(1 + akhg) — (a§dg)(a§ fs) # 0.
With the notation
ay =arMag, ac:=arCap, ok :=arKag,

a pair (Ty,,Tr) of nonsingular matrices with Ts, S = L, R, as in (6) forms a
class two elementary SPT if [9], [21]

ac=a¥Cagr #0 (7)
and
1
iaCfL +anbr = —Mag, (8)
1
ag fr + iac(bL +hr)+apdy, = —Cag, (9)
1
ahr, + §ach = —Kag, (10)
1 T
§aCfR +aybp=-M"ar, (11)
1
ar fr+ §aC(bR +hg) +aydr = —-CTay, (12)
1 T
OéKhR+§OécdR:—K ar,. (13)

The constraints (8)—(13) force preservation of structure. Multiplying the con-
straints (8) and (10) on the left by a and the constraints (11) and (13) on the
left by aTR allows us to rewrite the determinant of 77, and T as

det(Ts) = ag’(1 + akbg)(1 + ashg)(ag — darxan), S=L,R

which shows that
ol —dagay #0 (14)

is a necessary condition for (Tr,,Ts) to be an SPT.



From (8)—(13) we have that if (7%, Tx) transforms Q(A) to Q(A) then

~ 1
K=K —aghhk - 5ac(hLdﬁ +d hk) — aydydk,

~ 1
C=C—aglhpfk+ fLhR) — §aC(hLb£ +bphh +dpfE + frdy)
—an(dpbf + brdp),
—~ 1
M =M —axf,ff - iaC(bLflqﬁ; + frbR) — anbrbr,
which shows that M. , 6’, and K are low rank modifications of M ,C, and K.
Note that once the two vectors a; and ap are chosen such that (7) and (14)

hold, the structure preserving constraints (8)—(13) are linear in the remaining
unknown vectors. They can be rewritten in matrix form as

VA=B — VLA = Bgr, VgpA= By, (15)
where A € R**3 and B = [g}z] € R27*3 are given by
o %ac 0
0 @ la Ma Ca Ka
A= |, M 30C B R R R

50&0 K 0 ’ o MTCLL CTCLL KTaL
0 ac (677¢

(16)

D=

and V =[] € R4 with Vg = [bs ds fs hs] € R for § = L,R
contains the remaining unknown vectors. Some calculations show that

1
det(ATA) = Z(oz% — 404MaK)2(a% + a?w + a%()

which is nonzero by (14), so that A has full rank and all solutions to (15) are
given by

Vi, = BrAt +UL(I — AAT)
— + _ + L R L y
V =BAT +U(I — AAY) — {VRBLA++UR(IAA+)’

for some arbitrary U = [glﬂ € R?"x4 Here A% is the pseudoinverse of A,
which is given by A* = (ATA)~1 AT since A has full rank (see Stewart and Sun
[20, Sec. 3.1]).

The transformation Tg used in our deflation procedure performs a specific
action: that of mapping a quadratic matrix polynomial with two non parallel
eigenvectors associated with a pair of eigenvalues to a quadratic whose eigenvec-
tors associated to that pair of eigenvalues are now parallel. This results in an
additional constraint of the form zgvs = wg for some given zg and wg that the
solutions V7, and Vg of (15) must satisfy. The next result will then be useful.

Theorem 2. Let A € R™* r > k have full rank, B € R™** w € R", and
nonzero z € R™ be given. The problem of finding V € R™*" such that

VA=B, TV =wl, (17)



has a solution if and only if wT A = 2T B. In this case the general solution is
V=(I-2"BAT +UI — AAT) + 2(2T2) " twT, (18)
where U € R™ " is any matriz such that 27U = 0.

Proof. If V is a solution to (17) then 27 B = 2TV A = wT A. Conversely,
if 27’B = wT A then since At A = I multiplying V in (18) on the right by A
yields VA = B and since 27U = 0 we have that 27V = w” so that V in (18) is
a solution to (17). Now every solution V' to (17) can be rewritten as

V=(I-22"YWAAT — (I — 22" )WVAAT +V — 22TV + 221V
=(I - 22" YWAAT + (I — 22TV — AAT) + 22TV
= (I —2z2NBAT + (I — 22"V — AAT) + 2(272) tw™,

which is of the form (18) with U := (I — zz™)V satisfying 27U = 0. D

3. Deflation for symmetric quadratics

Symmetric quadratics have the property that if x is a right eigenvector asso-
ciated with the eigenvalue A then y = T is the corresponding left eigenvector. So
if we use congruence transformations to preserve the symmetry of the quadratic
we just need to consider the deflation of eigenpairs rather than eigentriples. We
denote by (A1,z1) and (A2, z2) the two eigenpairs to be deflated. First we show
that when z; and x5 are parallel there exists an n X n congruence transfor-
mation which, when applied directly to @, deflates A\; and Ay. When x; and
xo are linearly independent, we show how to construct a class two elementary
SPT that transforms @ to a new quadratic @ for which A\; and Ao share the
same eigenvector. In other words, the SPT allows us to transform the original
deflation problem into one we know how to handle.

3.1. Linearly dependent eigenvectors

We first treat the case where the eigenvalues A1 and Ao have a common
eigenvector z € R™. The next lemma is crucial to proving the existence of a
congruence transformation that deflates these two eigenvalues. Some relations
in this lemma have already been observed by Chu, Hwang, and Lin [6].

Lemma 3. Consider the n x n symmetric quadratic Q(\) = N2M + \C + K.

1) If Q(Nj)z =0, j = 1,2 with z € R™\ {0} and A1 # XAy then Cz = cMz
and Kz =k Mz with ¢ = —(A\1 + A2) and k = M A2. Moreover, if \y and
o are semisimple then zT Mz # 0.

(ii) If Cz=¢c¢Mz and Kz = k Mz for some nonzero z € R™ and ¢,k € C then
Q()\])Z = 0, j = 1,2 with /\1,2 = —(C:l: A c — 4]{:)/2



Proof. (i) It follows from A?Mz +XCz+ Kz =0, j = 1,2 that when
A # X2, Cz = —(AM+X2)Mz = cMzand then Kz = —\2Mz+X\ (A +X2) M2z =
MA2Mz = kMz. If A1, A2 are semisimple then 0 # 27Q’(\;)z [1, Theorem. 3.2]
and z7Q'(\j)z = (2\; + ¢)z7 Mz which imply that 27 Mz # 0. Note that here
Q'(N) is the first derivative of @ with respect to A, that is, @Q'(\) = 2AM + C.

(ii) If Cz = ¢ Mz and Kz = k Mz then Q(\j)z = (A3 + Njc + k)M =z = 0,
j = 1,2, from which the formula for A\; o follows. 0

Assume there exists a nonsingular matrix G such that
Gep, =2z, GT(Mz)=me,, m=2z"Mz, (19)

where e, is the last column of the n X n identity matrix. Since G and M
are nonsingular we must have m # 0, or equivalently, 27 Mz # 0 which by
Lemma 3(i) holds when Ay and Ay are distinct and semisimple. Then we have
that

G"MGe,, = GTMz = me,,.

Now if A\; and Ay are distinct then by Lemma 3(i), Cz = cMz and Kz = kM z,
so that
T(y2 e [M o0 C 0 K 0

G(/\M—F)\C—i—K)G—)\[O m]+)\[0 mc}—'—[o mk}’ (20)
where ¢ = —(A1 + A2) and k = A; Ag; thus G deflates the two eigenvalues A; and
A2. Note that if Ay = As and, Cz and Kz are multiples of Mz then, as long as
2T Mz # 0, G in (19) deflates A; and Ay from Q. It is easily seen from (20) that
in this case A1 (= A2) must be a defective eigenvalue with partial multiplicity 2.

We build the matrix G in two steps. First, we construct a Householder
reflector H = I — 2vvT /(vTv) [12] such that

H(Mz) = ||Mz||2ey.

Second, we form L = I,, +rsT, where se, = 1 and r = HA{%‘IQ Hz—e,, so that
M=z
Le, = qu, LTe, =e,
m
since rTe,, = HMnfuzzTHen —1= ZT% —1=0. Hence
m
=——HL 21
LT 21

satisfies (19). It is shown in [10] that taking

1+V1+rTy
-7

rTy

= en
minimizes the condition number k(L) of L and that with this choice,

IiQ(G)2 _ HQ(L)Q _V 1+ HT”§ + ”T”?
VIHr3=Irlle’




which is reasonably small as long as ||r||2 is not much larger than 1. Using
|Mz||2He, = M~z and the definition of  we have that

Ir||3 = Ty = (zTMzz)(sz)/(zTMz)2 -1

showing that ||r||2 does not depend on the norm of z or M.
Note that G in (21) depends on 2n parameters: the Householder vector
v € R™ and r € R™ which is consistent with the 2n constraints in (19).

3.2. Linearly independent eigenvectors

When z; and x5 are linearly independent there is clearly no nonsingular
transformation mapping the full rank matrix [21 2] to the rank-one matrix
[en en]. The idea in this case is to build an SPT T that transforms Q(\) with
eigenpairs (Aj,z;), j = 1,2 to Q1(\) with eigenpairs (), 2), j = 1,2 that can
then be deflated using the procedure described in section 3.1. We only consider
the case where A1 # A\o. Indeed when the two eigenvalues are equal and x; is
not parallel to z2, A1 and A2 belong to two distinct Jordan blocks. In this case,
the decoupling (20) cannot be achieved.

Since we aim to treat the deflation of real eigenpairs together with that of
complex conjugate eigenpairs, we introduce the real matrices A € R?*2? and
X € R"*2 defined by

0 X
A= (22)

[_O‘ﬂ ﬂ if Ay = Ao = a + i with 8 #£ 0,

[Al 0 ] if Ay and A, are real,

and

Y [z1 2] for real eigenpairs,
Tl [u v] for complex eigenpairs with x1 = To = u + iv.

(23)

We want to construct a class two elementary SPT T = I, + [“bT “dT] with

afT ahT
a,b,d, f,h € R™ and a nonzero vector z € R"™ such that
XA zeT A
-1 o
T |:X:|_|:Z€T:|, (24>
where e = []]. This constraint means that T‘l[)‘iﬂ'] = [%77], for some

nonzero d;, j = 1,2. Hence if T' transforms Q(X) to Q1(X) then by Lemma 1(iii),
Qi1(Nj)z =0, j = 1,2. We rewrite (24) in terms of the 6n unknown vectors
a,b,d, f,h,z as

zeT A+ (b 2)ae” A+ (d7 2)ae” = XA, (25)
zeT + (fT2)ae’ A + (W' 2)ae’ = X. (26)

and solve (25)-(26) for a, z and the scalars b7 z,d” z, fTz, hT 2 as follows.



Let nonzero p,q € R? be such that
ep=0, eTAp=1, eflg=1, eTAg=0.

Since A1 # Ag, it is easily seen that
_ 1
p=7(A1—A)"" {_1]7 qg=Ap— (A1 +X)p,  Ag=—X\dap,

with v = 1 for real eigenpairs and v = i for complex eigenpairs. Multiplying
(26) on the right by p yields (f72)a = Xp. Since the columns of X are lin-
carly independent, we have that f7z # 0. Now without loss of generality, we
normalize a such that a’a = 1. Tt follows that

a=(ff2)"'Xp,  ffz=|Xpl2#0. (27)

Multiplying (25) on the right by p yields z + (b72)a = X Ap. If we choose to
normalize 2 such that el z = 1, where we let ¢ be such that |ef'a| = ||| then
b2 = (ef XAp —1)/(e} a), z=XAp— (b"2)a. (28)

Multiplying (25)—(26) on the right by ¢ and on the left by e] gives

d's = ((FXAq)/(cFa), WPz = (eF Xq—1)/(eFa). (29)

What is now left is the construction of V :=[b d f h]such that 2TV =
w?, where w? = [bT2 dT'z fT2 hTz], and VA = B, since T is structure
preserving (see section 2), where B = —[Ma Ca Ka] and A is as in (16)

with ayr = a” Ma, ac = a”Ca # 0 and ax = a” Ka. We know from Theorem
2 that a solution V to VA = B, 27V = w’ exists if and only if

wlA=2TB. (30)

The next lemma, crucial for the deflation process, provides a necessary and
sufficient condition on the eigenpairs (\;,z;), j = 1,2 for (30) to hold.

Lemma 4. The relation w™ A = 27 B holds if and only if the eigenpairs (A1, z1)
and (A2,x2) of Q(N) satisfy

xF{Q/(Al)xl = Ex;pQ/O\z)% (31)
with € = —1 for real eigenpairs and e = 1 for complex conjugate eigenpairs.

Proof. Tedious calculations left to Appendix A show that the row vector
g7 = wT A — 27 B has the form

9" = Vg (xlTQ/(/\l)xl - erTQ’()\Q)xQ) [1 ¢ k],

where 7, is a nonzero scalar, ¢ = —(A\1+A2), k = A \g, € = —1 for real eigenpairs
and € = 1 for complex eigenpairs. D

10



For real eigenpairs, the condition (31) implies that A\; and A must have opposite
type, the type of a real eigenvalue A of Q(\) with associated eigenvector x being
the sign of 7 Q' (\)x = 2AxT Mz +27Cx. Note that this is to be expected from
the theory of Hermitian matrix polynomials since for a symmetric quadratic with
2r distinct real eigenvalues, r of them are of positive type and r of them are of
negative type (see [11]). Hence when deflating two real eigenpairs, one must be
of positive type and the other of negative type. Now under this condition, (31)
is achieved with the scaling

Ty 11/ \x?Q’()\l)le Ty — T2/ ‘ngI(AQ)xﬂ

as long as both A\; and Ao are semisimple, so that :EJTQ’()\j)xj #£0,j=1,2.
For complex conjugate eigenpairs, (31) is achieved with the scaling

21— 21 /2T Q' (N\)xy, T2=171

if z7'Q'(\1)x; # 0 and no scaling otherwise. (Note here the use of “I” rather
than “x”.)

With the above scaling, Lemma 4 together with Theorem 2 tells us that the
equations VA = B and 27V = w” have the solutions

T
_ (7 _* + A L BT
Vf(I ZTz)BA + U - AAY) + o, (32)

where U € R™** is any matrix such that 27U = 0. It follows that (27)—(29) and
(32) define a family of class two elementary SPTs T transforming Q(A) with
eigenpairs (Aj, z;) to Q1(\) with eigenpairs (A;, 2), j = 1, 2. Identifying which
solution minimizes the condition number ko (T') = ||T||2||T!||2 remains an open
problem.

4. Deflation for nonsymmetric quadratics

The deflation procedure described in section 3 extends to the case where
M,C, and K are nonsymmetric. We denote by (\j,zgj,xr;), j = 1,2 the
two eigentriples to be deflated from Q()\) with (Ao, Zgo,zr2) = (A1, Tr1,ZL1)
when Im(A\;) # 0. In contrast with the symmetric deflation procedure we use
equivalence transformations rather than congruence transformations since we
do not need to preserve symmetry. Three situations must be considered.

4.1. Parallel left eigenvectors and parallel right eigenvectors

Without loss of generality let us assume in this case that ;1 = xp2 = 21,
and xR1 = o = zr with 2y, zr € R” so that

21Q1(N\) =0,  Qi(\)zg=0, j=1.2 (33)

11



As in Lemma 3 it is easily shown that if (33) holds with A\; # Ay then

Cizp =cMzp, Kizrp =kM zg, (34)
2FC =T My, 2L K, =kzE M, (35)
where ¢ = —(A1 + A2) and k = A\ Ag. Moreover if A; and Ay are semisimple then

Z%M zp # 0. Suppose there exist nonsingular matrices G and G such that

G%MZR = mey, GLen = ZL, (36)
GEMT 2z, = me,, GRren = 2R, (37)

where m = 21’ Mzp. (Note that the left (right) transformation G, (G g) depends
on the right (left) eigenvector.) Since M, G, and G are nonsingular we must
have m # 0 which is guaranteed when A; and Ay are distinct and semisimple.
With G and G satisfying (36) and (37) we have

GtMGRre, =Gt Mzp =me,, eGTMGRL =:I MGy =mel

and on using (34)—(37) it follows that

croncmon= ([ 2[5 L[5 4] e

0 m 0 mec 0 mk

If we let ur, = Mz and ug = M7 2z, the matrices G, and G can be taken in
the form

Gg= " HsLs, S=1L,R,
|usll2

where Hg is a Householder reflector such that Hsus = |ugl||2en, and Lg =
T .
I, — rgsg with
T
_lusl L Lrylerdns
rs=-——— Hszs —€n,  S§=e€n— ————T5
TsTs
so that Jus]
usii2 T
Lgen = m Hszs, Lsen = €p.-

Then it is easy to check that the pair (Gr,Ggr) satisfies (34) and (35) and
therefore deflates A\; and Ay from Q.

4.2. Non parallel left eigenvectors and non parallel Tight eigenvectors

As for the symmetric case our aim is to build a class two elementary SPT
(Tr,,Tr), with Ty, not necessarily equal to Tg, that transforms Q(\) to a new
quadratic @1 () for which A; and A share the same left eigenvector z;, and the
same right eigenvector zr. In order to apply the deflation process of section 4.1,
we assume that A; and Ay are semisimple and distinct. When A\ = Ay with
lineary independent eigenvectors then A; and Ay belong to two distinct Jordan
blocks and the decoupling (38) cannot be achieved.
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Let Ts be such that

T
;! [XsAS] _ {Zizefs} : (39)

with A, = AT and Ap = A where A, X7 and Xp are formed as in (22) and
(23), and e = [}]. If the pair (7%, TR) is structure preserving and transforms
Q(A) to Q1(A) then the constraint (39) for S = L and S = R together with
Lemma 1(iv) implies that 27 Q,(A;) = 0 and Q;(\;)zg =0, j = 1,2.

Now if we choose T to have the form (6) then with the following normal-
izations of ag and zg,

agag =1,  epzg=1 lejas]=lagl, (40)

we obtain in a similar way to the symmetric case described in section 3.2, that
under the constraint (39),

f&zg = I Xgpsll2 # 0, ag = (f&2s) ' Xspg)
bgzs = (eZSXSASpS — 1)/(6%;a5), zg = XgAgpg — (bgzs)as, (41)
d§zg = (engsAsqs)/(eeTsas)a hizg = (e}, Xsqs — 1)/(€£Tsas)a

where pg, gs € R? are such that
eTpS =0, eTASpS =1, eTqS =1, eTASqS =0.

Assuming that afCap # 0, the class two elementary SPT (77, Tg) is com-
pletely determined if we can find two matrices Vi, Vg € R™* of the form
[bs ds fs hs]with S =L,R such that

VLA = BR7 Z%VL = wg, (42)

VRA =B,  zLVg=uwf, (43)
where A € R*3 and B € R*3 areasin (16) and wl = [blzg dizg flzg hizg],
S = L,R. From Theorem 2, a solution V7, to (42) and a solution Vg to (43)
exist if and only if wl A = ZI' By and whA = ZLB; .

Lemma 5. The relations

wiA—ZIBr=0, whA—Z B, =0

hold if and only if the eigentriples (A\1,xr1,2r1) and (Ao, ZRra,xr2) of Q(N\)
satisfy

33{1@’(/\1)35121 = 53{2@/()\2)%1%27 33%1@’()\2)33122 = —$€2Q/()\1)$R1 (44)

with € = —1 for real eigentriples and e = 1 for complex conjugate eigentriples.
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Proof. Let g7 = w} A—Z] By, and g = whA—Z}L B, . Calculations along
the same lines as those presented in Appendix A for the symmetric case show
that for real eigentriples,

=G +&—-&-&)I[1 ¢ k],
gh=rEG +& & —&)[1 ¢ k],

where v, and g are nonzero scalars, ¢ = —(A; + A2), k = A1 Ay and

& =20,Q' (Mg, &=20,Q (M)Tpy, & =127,Q (N2,
b2 = 215Q (\)Tpos €4 = 21,Q (N)TRys &6 = 272Q (\)Tpy-

From 27, Q(\j)zre = 0, j = 1,2 we find that 27,Cxpy = — (A1 + X2)at, Mz,
from which it follows that 27, Q'(A\)z e = —2T,Q'(A2)T gy, that is, &5 = —&.
In an analogous way we find that z7,Q (\1)xg, = —27,Q (\2)xy,, that is,
&4 = —&g. Hence, g, = gr =0 if and only if & + & = 0 and &5 + &6 = 0.

For complex conjugate eigentriples, we find that

(45)

g =7, (i& +is+ &+ &) [1 ¢ k],
gh=Fr (& +i& + &+ &)1 ¢ k],

where 71, and 7r are nonzero complex scalars, §;, j = 1,2,5,6 are defined in
(45) and & = 27,Q'(\y)z gy, & = 27,Q'(A)Tpo. Using 27, Q(Nj)zre = 0,
J = 1,2 it is easily shown that xj,Q'(A\)zpy, = —27,Q'(A2)zz, which, by
taking the conjugate, becomes {7 = —&;. We show similarly that &g = —&s.
Hence, g;, = gr = 0 if and only if &, — & = 0 and &5 + &6 = 0 which completes
the proof. ]

The assumption that A; and A2 are semisimple implies that in (44) the terms
on the left-hand side relation for real eigentriples and the terms on the right-hand
side relation for complex conjugate eigentriples are nonzero. If xfj Q'(\j)x Rj =
0 or xij'()\k);ka =0, j # k, then a scaling similar to that described after

Lemma 4 can be applied to ensure that (44) holds. When both 27, Q' (A1)z g,
and 27, Q' (\2)z , are nonzero, we let

_ 7@ (N)T Ry po = 215Q (A\)T gy
271 Q (AT gy 271Q (M) T o
Then for real eigentriples, the relations (44) hold after an appropriate scaling

of the eigenvectors only if sign(p;) = sign(pz), in which case we can apply the
scaling

P1

TL1 < |Pl|1/2IL1, TR1 |p1|1/2xm7 (46)
T2 |p2|71/21’L23 TR2 < |P2|1/2$32-

For complex eigentriples, (A1, zg1,zr1) = (A2, ZRr2,212) = (A, z,y) and (44)
holds when x and y are scaled such that 37 @Q’(\)x is real and y*Q'(\)z is purely
imaginary.
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When (44) holds, Lemma 5 and Theorem 2 tell us that the set of solutions
to (42) and (43) is given by

T T

szg ZL T
Vi=(1—-—*= BRA++UL(I—AA+)+ wy, ,
ZLZL ZLAL

T
Vi = (I = ZI;Z’R)BLN +UR(T — AAY) + Bl
*R*R *R*R
where U, Ugr € R™™ are any matrices such that ngs =0,S=L,R.
The matrices V;, and Vg together with ar, and ag in (41) define an SPT
(Tr,, Tr) that transforms Q(X) into Q1(\) such that (33) holds.

4.8. Non parallel left (right) eigenvectors and parallel right (left) eigenvectors

When for example rank([zr1,z12]) = 1 and rank([x g1, TR |) = 2 we might
want to look for an SPT of the form (l2,,Tr) with Tx a class two elementary
SPT, since the left eigenvectors are already parallel to each other. Unfortu-
nately, the pair (Is,,Tg) is not structure preserving. However we can still
use the procedure described in section 4.2 to map (\j, zgrj, zr;) to (A, 2R, 2L),
j = 1,2 as long as we make sure that after the scaling (46), the vector X py, is
nonzero so that ay, in (41) is defined. If Xp;, = 0 then we replace 1 by pxr,
and xRy by pxgri, where p = —1 for real eigentriples and p = i for complex
conjugate eigenpairs so that (46) still holds but Xz py, is nonzero.

5. Numerical experiments

We now describe some numerical experiments designed to give insight into
our deflation procedure. It is not our aim to investigate the numerical stability
properties of the procedure. This is a separate issue that will be addressed in a
future paper. In all our experiments we take U = 0 in (18). Our computations
were done in MATLAB 7.6 (R2008a) for which u =273 ~ 1.1 x 10716,

Recall that (T, Tr) defines a class two elementary SPT that maps a quadratic
matrix polynomial with two non parallel eigenvectors associated with a pair of
eigenvalues to a quadratic whose eigenvectors associated to that pair of eigen-
values are now parallel, and that (G, GRg) defines a deflating transformation.
We drop the subscripts R and L when the left and right transformations are
equal. If Q()\) is n x n, the cost of deflating (A1, \2) is O(n?) operations.

Ezxperiment 1. Our first example is a 2 X 2 symmetric quadratic Q(\) =
NM + XC + K defined by

2 -1 0 1 3 2
e R B ) B L I
with A(Q) = {—0.34 &+ 1.847,0.14 £ 0.513} to two decimal places. Note that
M~1C does not commute with M 1K, so Q()\) is not proportionally damped.
Therefore the system cannot be decoupled by a 2 x 2 congruence transformation
directly applied to Q(X).
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Table 1: Relative magnitude of the off-diagonal elements of the deflated quadratic Q2(X\) =
A2Ms + AC2 + Ko in Experiment 2 and condition number of the transformations.

Deflated

evalues off(My) off(Cy) off(Ks) | ko(Tr) k2(Tr) k2(GL) k2(GRr)
Real 3.0e-15 1.7e-13 1.6e-13 | 6.0eb 2.0e2 3.6el 3.3e0

Complex | 2.0e-16 1.4e-14 5.6e-14 1.8e3 4.5el 1.0 1.1

Table 2: Condition numbers of the SPTs T and deflating transformations G for different pairs
of eigenvalues for experiment 4.

| A, As) (A Ae) (A A7) (A1, As)
ko(T) | 4.62el 1.43e3 4.41e2 7.15el
ko(L) 2.09e0 6.41e0 1.61e0 4.61e0

Given the pair of complex conjugate eigenvalues A\ 2 = —0.34£1.84 and their
associated linearly independent eigenvectors our symmetric deflation procedure
decouples Q(A) into

22 5.6 2.0e-16 \ —-1.6 —9.4e-16 1.6 —9.8e-17
2.0e-16 —1.4e-1 —9.4e-16 —9.3e-2 —9.8e-17 —4.8e-1 |’

to two significant digits, with k2(T) = 7.9 and k2(G) ~ 1. Thus we have
accomplished (2) to within the working precision.

Ezperiment 2. Our second example is a 2 X 2 quadratic matrix polynomial
arising in the study of the dynamic behaviour of a bicycle [19]. The coefficient
matrices are nonsymmetric. They can be generated using the NLEVP MATLAB
toolbox [4] via nlevp(’bicycle’). This quadratic has two real eigenvalues,
A1 = —0.32 and A2 &~ —14 and two complex conjugate eigenvalues —0.78 + 4.53.
Table 1 shows that the left and right transformations corresponding to the
deflation of the complex conjugate eigentriples have a smaller condition number
than those used for the deflation of the real eigentriples. The large condition
number of 77, in the real case affects the size of the off-diagonal elements of the
deflated quadratic. Here off(E) = ||E — diag(E)||2/||E|l2, E = Ma, Cs, Ks.

Ezperiment 3. Our next example is a 4 X 4 hyperbolic symmetric quadratic
eigenvalue problem generated as in [13, Sec. 6]. The eigenvalues, real since
the quadratic is hyperbolic, are uniformly distributed between 1 and 8. If we
order them increasingly then Aq,..., \; have negative type and s, ..., Ag have
positive type [2, Proof of Thm. 1]. Any pairs (Aj, A\;) with 1 < j < 4 and
5 < k < 8 can be deflated from the quadratic. Table 2 displays the condition
numbers of the SPT T and deflating transformation G for different pairings. It
shows that the choice of pairings affects the conditioning of the transformations.

Ezperiment 4. We now consider a symmetric quadratic eigenvalue problem
coming from a model describing the motion of a beam simply supported at both
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Table 3: Scaled residuals and condition numbers of the transformations used in Example 4.
n  res(M)  res(C) res(K)  ka(Gace) kKa2(W)
8 3.07e-15 4.63e-18  3.90e-16 1.69e1 1.52el
16  5.52e-15 5.08e-17  3.59e-15 4.47el 3.79el
32 1.34e-13 3.15e-16 1.68e-14 9.57el 7.84el
64 3.22e-12  6.09e-15  3.56e-14 1.95e2 1.57e2

ends and damped at the midpoint. It can be generated with the NLEVP toolbox
via nlevp(’damped_beam’ ,nele), where nele is the number of finite elements.
It is shown in [15, Thm. A1] that the damped problem Q(\) = A2M+AC+K and
the undamped problem @, (\) = A2M + K have n eigenvalues and n eigenvectors
in common: those corresponding to the anti-symmetric modes. Because M and
K are positive definite, the eigenvalues of @, () are pure imaginary; they come
in pairs (A, \), each pair sharing the same eigenvector.

We computed the n eigenpairs corresponding to the antisymmetric modes of
Qu(\) using the MATLAB function eig with the option ’chol’ and deflated
all of them from Q(\) using the procedure described in section 3.1. Let

Q) = GL QNG = M +AC + K

be the deflated quadratic, where Gu.. is the matrix which accumulates the
product of the n/2 deflating transformations of the form (21) and M, C, K are
block 2 x 2 diagonal with (n/2) x (n/2) blocks, the lower block being diagonal.
Table 3 displays the scaled residuals res(M), res(C), and res(K), where

”GT EGacc — EH2

res(E) = ace =,
1Gacel3I1El2 + [ £]l2

and the 2-norm condition numbers ko (Gqcc) for different values of n = 2xnele.

The quadratic of the beam problem can be block diagonalized as (see [15,
App. Al])

_ [ MM+ ADy + K 0

T
w Q()\)W 0 ‘ )\2M2 + Ko |’

where W is orthogonal, Ms and K5 are both symmetric positive definite and
A2M, + K, contains the anti-symmetric modes. The last column of Table 3
displays the condition number of the transformation W that block diagonalizes
A2Ms + Ko. As a comparison, we note that ra(Gaee) is not much larger than
) (W)

A. Technical results for the proof of Lemma 4

We start by recalling the notation. Let (A1, 1) and (Mg, 22) be two eigenpairs
of a symmetric quadratic Q(\) = A2M + AC + K such that A\; # \y. For real
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eigenpairs let A = diag(A1, A2) and let X = [z1 23] For complex conjugate
eigenpairs let A = [f‘ﬁ g} and X = [u v], where A\; = Ay = a+ i3, 8 # 0 and
T1 = To = u + iv. Let

_ 1
p="70\1— A2) 1[1], g=Ap— (A1 + A)p

with v = 1 for real eigenpairs and v = i for complex eigenpairs and let

[Tz =||Xpll2 #0, a=(fT2)""Xp,
bz = (e XAp—1)/(ela), z=XAp— (b'2)a,
d"z = (ef X Aq)/(e] a), W'z = (e Xq—1)/(cTa),

where £ is such that a; = el a # 0. Define

ay  zoc 10 B=—-[Ma Ca Ka]l,
A=],0 em )y g p oy,

3QC 1aK 0 T—[bT dar fT nT ]

0 lac ax wl = z z z z],

where ay = a”Ma, ac = a¥Ca and ax = a¥ Ka. The next lemma contains
useful relations.

Lemma 6. The following relations hold.

2T Cxy = c ¥ Mux,, (48)

2T Kxy = kal Mx,, (49)

d'z = —k 12, (50)

Rz —bTz=c fT2, (51)

where ¢ = —(A1+ A2) and k = M. Also for any symmetric matric E we have
a’EBa=ap = (f12)*p" XTEXp, (52)

2'EBa = (fT2) " 'pT ATXTEXp — (b7 2)(f72)2p" XTEXp, (53)

with

T T [ waTEz, + 2T EBxy — 22T Ex,) for real eigenpai
pXTEXp= { L(ix] BEx) — iz} Bxy + 221 Ex,)  otherwise, (54)
T AT T [ u\aT Bz + X\ad Exy + cal Exy)  for real eigenpaj
prATXTEXp = { E(ixa] Bx) — iXyad Bxy — cad Ex,)  otherwise, i5§5)

where = (A1 — X\2) ™2 # 0 is defined since \; # \a.

Proof. The relations (48) and (49) follow from 7 Q(\;)zy = 22 Q(\))z; =
0 and 27 Q()\y)x5 = 0. The relations (50)—(53) follow from the definition of p,
q, a and z and (54)—(55) follow from the definition of A and X and p. 0
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With these relations in hand we can now prove the formula for g7 = w” A —
2T B in Lemma 4. From the definition of A, B w and z we find that

0" 2)anm + 5 (fT Jac -I-ZTMa
g=|30"2)ac + (d"2)an + (fT o, + 3(hT2)ac + 27 Ca
$(d"z)ac + agh®z + ZTKa

Using (52) with £ = M and E = C and (53) with E = M we obtain that the
first component of g satisfies

20fT2)g1 = p" XTCXp+ 20" ATXT M X p. (56)
In a similar way we find that the other components of g satisfy
2(fT2)go = cp" XCXp — 2kp" XM Xp + 20" ATXTCXp + 2" XK X,
20fT2)gs = —kp? XTCXp+2ep" XTKXp+ 2pT ATXTK Xp.

Using (54) and (55) with £ = M, C and K and the relations (48)—-(51) we find
that for real eigenpairs,

2(f"z)g" _H(331Q( )331+x2TQ/(/\2)332)[1 c k]

and that for complex conjugate eigenpairs,

Q(fTZ)g *M(%Q( 1)7 _$2Q( 2)T )[1 c kJ.
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