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Abstract

Given a pair of distinct eigenvalues (λ1, λ2) of an n×n quadratic matrix polyno-
mial Q(λ) with nonsingular leading coefficient and their corresponding eigenvec-

tors, we show how to transform Q(λ) into a quadratic of the form
[

Qd(λ)
0

0
q(λ)

]

having the same eigenvalues as Q(λ), with Qd(λ) an (n− 1)× (n− 1) quadratic
matrix polynomial and q(λ) a scalar quadratic polynomial with roots λ1 and
λ2. This block diagonalization cannot be achieved by a similarity transforma-
tion applied directly to Q(λ) unless the eigenvectors corresponding to λ1 and
λ2 are parallel. We identify conditions under which we can construct a family
of 2n × 2n elementary similarity transformations that (a) are rank-two modi-
fications of the identity matrix, (b) act on linearizations of Q(λ), (c) preserve
the block structure of a large class of block symmetric linearizations of Q(λ),
thereby defining new quadratic matrix polynomials Q1(λ) that have the same
eigenvalues as Q(λ), (d) yield quadratics Q1(λ) with the property that their
eigenvectors associated with λ1 and λ2 are parallel and hence can subsequently
be deflated by a similarity applied directly to Q1(λ). This is the first attempt at
building elementary transformations that preserve the block structure of widely
used linearizations and which have a specific action.

Key words: quadratic eigenvalue problem, linearization, structure preserving
transformation, deflation
2000 MSC: 15A18, 65F15, 65F30

1. Introduction

Consider the quadratic matrix polynomial Q(λ) = λ2M + λC + K, where
M,C,K ∈ R

n×n with M nonsingular, and the associated quadratic eigenvalue
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problem
Q(λ)xR = 0, x∗

LQ(λ) = 0, (1)

where λ is an eigenvalue and xR and xL are corresponding right and left eigen-
vectors, respectively. Throughout, we use the subscript R to denote right eigen-
vectors or when referring to transformations applied to the right, and the sub-
script L for left eigenvectors and transformations applied to the left. We also
denote by Λ(Q) the spectrum of Q.

Given two eigentriples (λj , xRj , xLj), j = 1, 2 satisfying appropriate condi-
tions, we propose a deflation procedure that decouples Q(λ) into a quadratic
Qd(λ) = λ2Md + λCd + Kd of dimension n − 1 and a scalar quadratic q(λ) =
λ2m + λc + k = m(λ− λ1)(λ− λ2) such that

Λ(Q) = Λ(Qd) ∪ {λ1, λ2}

and there exist well-defined relations between the eigenvectors of Q(λ) and those
of the decoupled quadratic

Q̃(λ) =

[
Qd(λ) 0

0 q(λ)

]
. (2)

This is termed “strong deflation” in the engineering community, as opposed to
“weak deflation”, which is achieved by introducing zeros in the trailing rows or
columns of the matrices.

Unlike for linear polynomials A − λB, we cannot in general construct an
n × n equivalence transformation with nonsingular matrices PL and PR such
PT

L Q(λ)PR = Q̃(λ), where Q̃(λ) is the decoupled quadratic in (2) [17]. The
standard way of treating quadratic matrix polynomials, both theoretically and
numerically, is to convert them into equivalent linear matrix pencils of twice
the dimension, a process called linearization [11]. For example, when M is
nonsingular the block symmetric pencil

L2(λ) = λ

[
0 M
M C

]
+

[
−M 0

0 K

]

is a linearization of Q(λ) in the sense that L2(λ) satisfies

E(λ)L2(λ)F (λ) =

[
Q(λ) 0

0 In

]

for some unimodular E(λ) and F (λ), where In is the n×n identity matrix [11],
[22]. This implies that c · det(L2(λ)) = det(Q(λ)) for some nonzero constant c,
so that L2 and Q have the same eigenvalues. Deflation procedures for matrix
pencils ignore the block structure of linearizations such as L2(λ). They produce
a deflated pencil that is not in general a linearization of a quadratic matrix
polynomial [16].

Garvey, Friswell, and Prells [8] and later Chu and Xu [7] showed that for
quadratics with symmetric coefficients and semisimple eigenvalues (i.e., each
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eigenvalue λ appears only in 1× 1 Jordan blocks in a Jordan triple for Q [11]),
there exists a real nonsingular matrix W ∈ R

2n×2n such that

WT L2(λ)W = λ

[
0 DM

DM DC

]
+

[
−DM 0

0 DK

]
=: LD(λ), (3)

with DM ,DC , DK diagonal. The pencil LD(λ) is a linearization of the diagonal
quadratic QD(λ) = λ2DM + λDC + DK , which clearly has the same eigenval-
ues as Q(λ). The proof of the diagonalization of the blocks of L2(λ) in (3) is
constructive and requires the knowledge of all the eigenvalues and eigenvectors
of Q. Most importantly it shows that by increasing the dimension of the trans-
formations from n × n when working directly on Q to 2n × 2n by working on
a pencil of twice the dimension of Q, total decoupling of the underlying sec-
ond order system can be achieved. The congruence in (3) is an example of a
structure preserving transformation (SPT). More generally, we say that a pair
(WL,WR) of 2n × 2n real nonsingular matrices defines a structure preserving
transformation for an n×n quadratic matrix polynomial Q(λ) = λ2M +λC+K
with M nonsingular if

WT
L

([
0 M
M C

]
,

[
−M 0

0 K

])
WR =

([
0 M1

M1 C1

]
,

[
−M1 0

0 K1

])
, (4)

where M1, C1, and K1 are n × n matrices [21] that define a new quadratic
Q1(λ) = λ2M1 + λC1 + K1 having the same eigenvalues as Q(λ).

Because the problem is quadratic, we need to deflate two eigenvalues at a
time. For a given pair of eigenvalues λ1, λ2 and their associated left and right
eigenvectors xLj , xRj , j = 1, 2, we identify conditions under which there exist
elementary SPTs (WL,WR) that are rank-two modifications of the 2n × 2n
identity matrix and transform Q(λ) into a new quadratic Q1(λ) for which λ1

and λ2 share the same left eigenvector zL and same right eigenvector zR, that
is,

z∗LQ1(λj) = 0, Q1(λj)zR = 0, j = 1, 2. (5)

In particular we find that λ1 and λ2 must be semisimple and distinct and that,
if they are both real, they must also satisfy

sign

(
xT

L2Q
′(λ2)xR2

xT
L1Q

′(λ1)xR1

)
= sign

(
xT

L2Q
′(λ1)xR1

xT
L1Q

′(λ2)xR2

)
,

which for symmetric quadratics Q means that λ1 and λ2 must have opposite
type [3]. Under these conditions we characterize a family of elementary SPTs
that transform Q(λ) with eigentriples (λj , xRj , xLj) to a new quadratic Q1(λ)
with eigentriples (λj , zR, zL), j = 1, 2. Since our transformations are structure
preserving we never work with the 2n × 2n matrices in (4). Indeed the matrix
coefficients of Q1(λ) turn out to be low rank modifications of M,C and K and
are therefore not expensive to compute. When (5) holds we then show how

to construct two nonsingular matrices GL, GR such that GT
LQ1(λ)GR = Q̃(λ)
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with Q̃(λ) block diagonal as in (2), that is, the pair (GL, GR) deflates the two
eigenvalues λ1, λ2.

This paper is organized as follows. After some preliminary results in section
2 on structure preserving transformations, we explain in section 3 how to de-
flate eigenvalues of symmetric quadratic matrix polynomials. We then extend
in the following section the symmetric deflation procedure to quadratics with
nonsymmetric coefficient matrices. We present in section 5 some numerical ex-
amples that illustrate our deflation procedure. To the best of our knowledge,
this work is the first attempt at constructing a family of nontrivial elementary
SPTs that have a specific action of practical use: that of “mapping” two linearly
independent eigenvectors to a set of linearly dependent eigenvectors.

2. Structure preserving transformations

In this section we recall some necessary results from [9] and [21]. SPTs,
defined in (4), have a number of important and useful properties that we begin
by summarizing.

Lemma 1. [21] Let (WL,WR) be an SPT transforming Q(λ) = λ2M +λC +K

with M nonsingular into Q̃(λ) = λ2M̃ + λC̃ + K̃. Then

(i) Q(λ) and Q̃(λ) share the same eigenvalues.

(ii) M̃ is nonsingular.

(iii) If (λ, x, y) is an eigentriple of Q(λ) then

W−1
R

[
λx
x

]
=

[
λx̃
x̃

]
, W−1

L

[
λ̄y
y

]
=

[
λ̄ỹ
ỹ

]
,

for some nonzero x̃, ỹ ∈ C
n such that Q̃(λ)x̃ = 0 and ỹ∗Q̃(λ) = 0.

(iv) If L(λ) belongs to the vector space of pencils [14], [18]

DL(Q) =

{
λ

[
v1M v2M
v2M v2C − v1K

]
+

[
v1C − v2M v1K

v1K v2K

]
: v ∈ R

2

}
,

with vector v then L̃(λ) = WT
L L(λ)WR ∈ DL(Q̃) with vector v. In other

words, the SPT (WL,WR) preserves the block structure of DL(Q). More-

over if L(λ) is a linearization of Q then L̃(λ) is a linearization of Q̃(λ).

(v) If WL = WR and Q(λ) is symmetric (i.e., M,C and K are symmetric)

then Q̃(λ) is symmetric.

Matrix pairs (GL, GR) of the form

GS =

[
G̃S 0
0 G̃S

]
∈ R

2n×2n, det(G̃S) 6= 0, S = L,R

always define an SPT for any n× n quadratic Q. They have the property that
if (GL, GR) transforms Q(λ) into Q̃(λ) then Q̃(λ) = G̃T

LQ(λ)G̃R. The pair
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(GL, GR) is called a class one elementary SPT when G̃S = I −mSnT
S for some

nonzero vectors mS , nS ∈ R
n, S = L,R [9].

The key elementary SPT used in our deflation procedure has the form

TS =

[
I + aSbT

S aSdT
S

aSfT
S I + aShT

S

]
∈ R

2n×2n, (6)

where aS , bS , dS , fS , hS ∈ R
n with aS , dS , fS nonzero. The matrix TS differs

from the identity matrix by a matrix of rank at most two and it is nonsingular
if [5], [21]

det(TS) = (1 + aT
S bS)(1 + aT

ShS)− (aT
SdS)(aT

SfS) 6= 0.

With the notation

αM := aT
LMaR, αC := aT

LCaR, αK := aT
LKaR,

a pair (TL, TR) of nonsingular matrices with TS , S = L,R, as in (6) forms a
class two elementary SPT if [9], [21]

αC = aT
LCaR 6= 0 (7)

and

1

2
αCfL + αMbL = −MaR, (8)

αKfL +
1

2
αC(bL + hL) + αMdL = −CaR, (9)

αKhL +
1

2
αCdL = −KaR, (10)

1

2
αCfR + αMbR = −MT aL, (11)

αKfR +
1

2
αC(bR + hR) + αMdR = −CT aL, (12)

αKhR +
1

2
αCdR = −KT aL. (13)

The constraints (8)–(13) force preservation of structure. Multiplying the con-
straints (8) and (10) on the left by aT

L and the constraints (11) and (13) on the
left by aT

R allows us to rewrite the determinant of TL and TR as

det(TS) = α−2
C (1 + aT

S bS)(1 + aT
ShS)(α2

C − 4αKαM ), S = L,R

which shows that
α2

C − 4αKαM 6= 0 (14)

is a necessary condition for (TL, TS) to be an SPT.
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From (8)–(13) we have that if (TL, TR) transforms Q(λ) to Q̃(λ) then

K̃ = K − αKhLhT
R −

1

2
αC(hLdT

R + dLhT
R)− αMdLdT

R,

C̃ = C − αK(hLfT
R + fLhT

R)− 1

2
αC(hLbT

R + bLhT
R + dLfT

R + fLdT
R)

−αM (dLbT
R + bLdT

R),

M̃ = M − αKfLfT
R −

1

2
αC(bLfT

R + fLbT
R)− αMbLbT

R,

which shows that M̃, C̃, and K̃ are low rank modifications of M,C, and K.
Note that once the two vectors aL and aR are chosen such that (7) and (14)

hold, the structure preserving constraints (8)–(13) are linear in the remaining
unknown vectors. They can be rewritten in matrix form as

V A = B ⇐⇒ VLA = BR, VRA = BL, (15)

where A ∈ R
4×3 and B =

[
BR

BL

]
∈ R

2n×3 are given by

A =




αM
1
2αC 0

0 αM
1
2αC

1
2αC αK 0
0 1

2αC αK


 , B = −

[
MaR CaR KaR

MT aL CT aL KT aL

]
(16)

and V =
[

VL

VR

]
∈ R

2n×4 with VS = [ bS dS fS hS ] ∈ R
n×4 for S = L,R

contains the remaining unknown vectors. Some calculations show that

det(ATA) =
1

4
(α2

C − 4αMαK)2(α2
C + α2

M + α2
K)

which is nonzero by (14), so that A has full rank and all solutions to (15) are
given by

V = BA+ + U(I −AA+) ⇐⇒
{

VL = BRA+ + UL(I −AA+),
VR = BLA+ + UR(I −AA+),

for some arbitrary U =
[

UL

UR

]
∈ R

2n×4. Here A+ is the pseudoinverse of A,

which is given by A+ = (ATA)−1AT since A has full rank (see Stewart and Sun
[20, Sec. 3.1]).

The transformation TS used in our deflation procedure performs a specific
action: that of mapping a quadratic matrix polynomial with two non parallel
eigenvectors associated with a pair of eigenvalues to a quadratic whose eigenvec-
tors associated to that pair of eigenvalues are now parallel. This results in an
additional constraint of the form zT

S VS = wT
S for some given zS and wS that the

solutions VL and VR of (15) must satisfy. The next result will then be useful.

Theorem 2. Let A ∈ R
r×k, r ≥ k have full rank, B ∈ R

n×k, w ∈ R
r, and

nonzero z ∈ R
n be given. The problem of finding V ∈ R

n×r such that

V A = B, zT V = wT , (17)
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has a solution if and only if wT A = zT B. In this case the general solution is

V = (I − zz+)BA+ + U(I −AA+) + z(zT z)−1wT , (18)

where U ∈ R
n×r is any matrix such that zT U = 0.

Proof. If V is a solution to (17) then zT B = zT V A = wT A. Conversely,
if zT B = wT A then since A+A = I multiplying V in (18) on the right by A
yields V A = B and since zT U = 0 we have that zT V = wT so that V in (18) is
a solution to (17). Now every solution V to (17) can be rewritten as

V = (I − zz+)V AA+ − (I − zz+)V AA+ + V − zz+V + zz+V

= (I − zz+)V AA+ + (I − zz+)V (I −AA+) + zz+V

= (I − zz+)BA+ + (I − zz+)V (I −AA+) + z(zT z)−1wT ,

which is of the form (18) with U :=
(
I − zz+

)
V satisfying zT U = 0.

3. Deflation for symmetric quadratics

Symmetric quadratics have the property that if x is a right eigenvector asso-
ciated with the eigenvalue λ then y = x is the corresponding left eigenvector. So
if we use congruence transformations to preserve the symmetry of the quadratic
we just need to consider the deflation of eigenpairs rather than eigentriples. We
denote by (λ1, x1) and (λ2, x2) the two eigenpairs to be deflated. First we show
that when x1 and x2 are parallel there exists an n × n congruence transfor-
mation which, when applied directly to Q, deflates λ1 and λ2. When x1 and
x2 are linearly independent, we show how to construct a class two elementary
SPT that transforms Q to a new quadratic Q1 for which λ1 and λ2 share the
same eigenvector. In other words, the SPT allows us to transform the original
deflation problem into one we know how to handle.

3.1. Linearly dependent eigenvectors

We first treat the case where the eigenvalues λ1 and λ2 have a common
eigenvector z ∈ R

n. The next lemma is crucial to proving the existence of a
congruence transformation that deflates these two eigenvalues. Some relations
in this lemma have already been observed by Chu, Hwang, and Lin [6].

Lemma 3. Consider the n× n symmetric quadratic Q(λ) = λ2M + λC + K.

(i) If Q(λj)z = 0, j = 1, 2 with z ∈ R
n \ {0} and λ1 6= λ2 then Cz = cMz

and Kz = k Mz with c = −(λ1 + λ2) and k = λ1λ2. Moreover, if λ1 and
λ2 are semisimple then zT Mz 6= 0.

(ii) If Cz = cMz and Kz = k Mz for some nonzero z ∈ R
n and c, k ∈ C then

Q(λj)z = 0, j = 1, 2 with λ1,2 = −(c±
√

c2 − 4k)/2.
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Proof. (i) It follows from λ2
jMz + λjCz + Kz = 0, j = 1, 2 that when

λ1 6= λ2, Cz = −(λ1+λ2)Mz = cMz and then Kz = −λ2
1Mz+λ1(λ1+λ2)Mz =

λ1λ2Mz = kMz. If λ1, λ2 are semisimple then 0 6= zT Q′(λj)z [1, Theorem. 3.2]
and zT Q′(λj)z = (2λj + c)zT Mz which imply that zT Mz 6= 0. Note that here
Q′(λ) is the first derivative of Q with respect to λ, that is, Q′(λ) = 2λM + C.

(ii) If Cz = cMz and Kz = k Mz then Q(λj)z = (λ2
j + λjc + k)Mz = 0,

j = 1, 2, from which the formula for λ1,2 follows.

Assume there exists a nonsingular matrix G such that

Gen = z, GT (Mz) = men, m = zT Mz, (19)

where en is the last column of the n × n identity matrix. Since G and M
are nonsingular we must have m 6= 0, or equivalently, zT Mz 6= 0 which by
Lemma 3(i) holds when λ1 and λ2 are distinct and semisimple. Then we have
that

GT MGen = GT Mz = men.

Now if λ1 and λ2 are distinct then by Lemma 3(i), Cz = cMz and Kz = kMz,
so that

GT (λ2M + λC + K)G = λ2

[
M̃ 0
0 m

]
+ λ

[
C̃ 0
0 mc

]
+

[
K̃ 0
0 mk

]
, (20)

where c = −(λ1 +λ2) and k = λ1λ2; thus G deflates the two eigenvalues λ1 and
λ2. Note that if λ1 = λ2 and, Cz and Kz are multiples of Mz then, as long as
zT Mz 6= 0, G in (19) deflates λ1 and λ2 from Q. It is easily seen from (20) that
in this case λ1(= λ2) must be a defective eigenvalue with partial multiplicity 2.

We build the matrix G in two steps. First, we construct a Householder
reflector H = I − 2vvT /(vT v) [12] such that

H(Mz) = ‖Mz‖2en.

Second, we form L = In + rsT , where sT en = 1 and r = ‖Mz‖2

m Hz− en, so that

Len =
‖Mz‖2

m
Hz, LT en = en

since rT en = ‖Mz‖2

m zT Hen − 1 = zT Mz
m − 1 = 0. Hence

G =
m

‖Mz‖2
HL (21)

satisfies (19). It is shown in [10] that taking

s = en −
1 +
√

1 + rT r

rT r
r

minimizes the condition number κ(L) of L and that with this choice,

κ2(G)2 = κ2(L)2 =

√
1 + ‖r‖22 + ‖r‖2√
1 + ‖r‖22 − ‖r‖2

,
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which is reasonably small as long as ‖r‖2 is not much larger than 1. Using
‖Mz‖2Hen = Mz and the definition of r we have that

‖r‖22 = rT r = (zT M2z)(zT z)/(zT Mz)2 − 1

showing that ‖r‖2 does not depend on the norm of z or M .
Note that G in (21) depends on 2n parameters: the Householder vector

v ∈ R
n and r ∈ R

n which is consistent with the 2n constraints in (19).

3.2. Linearly independent eigenvectors

When x1 and x2 are linearly independent there is clearly no nonsingular
transformation mapping the full rank matrix [x1 x2 ] to the rank-one matrix
[ en en ]. The idea in this case is to build an SPT T that transforms Q(λ) with
eigenpairs (λj , xj), j = 1, 2 to Q1(λ) with eigenpairs (λj , z), j = 1, 2 that can
then be deflated using the procedure described in section 3.1. We only consider
the case where λ1 6= λ2. Indeed when the two eigenvalues are equal and x1 is
not parallel to x2, λ1 and λ2 belong to two distinct Jordan blocks. In this case,
the decoupling (20) cannot be achieved.

Since we aim to treat the deflation of real eigenpairs together with that of
complex conjugate eigenpairs, we introduce the real matrices Λ ∈ R

2×2 and
X ∈ R

n×2 defined by

Λ =





[
λ1 0
0 λ2

]
if λ1 and λ2 are real,

[
α β
−β α

]
if λ1 = λ̄2 = α + iβ with β 6= 0,

(22)

and

X =

{
[x1 x2 ] for real eigenpairs,
[u v ] for complex eigenpairs with x1 = x̄2 = u + iv.

(23)

We want to construct a class two elementary SPT T = I2n +
[

abT

afT

adT

ahT

]
with

a, b, d, f, h ∈ R
n and a nonzero vector z ∈ R

n such that

T−1

[
XΛ
X

]
=

[
zeT Λ
zeT

]
, (24)

where e =
[
1
1

]
. This constraint means that T−1

[
λjxj

xj

]
=

[
λjδjz

δjz

]
, for some

nonzero δj , j = 1, 2. Hence if T transforms Q(λ) to Q1(λ) then by Lemma 1(iii),
Q1(λj)z = 0, j = 1, 2. We rewrite (24) in terms of the 6n unknown vectors
a, b, d, f, h, z as

zeT Λ + (bT z)aeT Λ + (dT z)aeT = XΛ, (25)

zeT + (fT z)aeT Λ + (hT z)aeT = X. (26)

and solve (25)–(26) for a, z and the scalars bT z, dT z, fT z, hT z as follows.
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Let nonzero p, q ∈ R
2 be such that

eTp = 0, eTΛp = 1, eTq = 1, eTΛq = 0.

Since λ1 6= λ2, it is easily seen that

p = γ(λ1 − λ2)
−1

[
1
−1

]
, q = Λp− (λ1 + λ2)p, Λq = −λ1λ2p,

with γ = 1 for real eigenpairs and γ = i for complex eigenpairs. Multiplying
(26) on the right by p yields (fT z)a = Xp. Since the columns of X are lin-
early independent, we have that fT z 6= 0. Now without loss of generality, we
normalize a such that aTa = 1. It follows that

a = (fT z)−1Xp, fT z = ‖Xp‖2 6= 0. (27)

Multiplying (25) on the right by p yields z + (bT z)a = XΛp. If we choose to
normalize z such that eT

ℓ z = 1, where we let ℓ be such that |eT
ℓ a| = ‖a‖∞ then

bT z = (eT
ℓ XΛp− 1)/(eT

ℓ a), z = XΛp− (bT z)a. (28)

Multiplying (25)–(26) on the right by q and on the left by eT
ℓ gives

dT z = (eT
ℓ XΛq)/(eT

ℓ a), hT z = (eT
ℓ Xq − 1)/(eT

ℓ a). (29)

What is now left is the construction of V := [ b d f h ] such that zT V =
wT , where wT = [ bT z dT z fT z hT z ], and V A = B, since T is structure
preserving (see section 2), where B = − [Ma Ca Ka ] and A is as in (16)
with αM = aT Ma, αC = aT Ca 6= 0 and αK = aT Ka. We know from Theorem
2 that a solution V to V A = B, zT V = wT exists if and only if

wT A = zT B. (30)

The next lemma, crucial for the deflation process, provides a necessary and
sufficient condition on the eigenpairs (λj , xj), j = 1, 2 for (30) to hold.

Lemma 4. The relation wT A = zT B holds if and only if the eigenpairs (λ1, x1)
and (λ2, x2) of Q(λ) satisfy

xT
1 Q′(λ1)x1 = ǫxT

2 Q′(λ2)x2 (31)

with ǫ = −1 for real eigenpairs and ǫ = 1 for complex conjugate eigenpairs.

Proof. Tedious calculations left to Appendix A show that the row vector
gT = wT A− zT B has the form

gT = γg

(
xT

1 Q′(λ1)x1 − ǫxT
2 Q′(λ2)x2

)
[ 1 c k ] ,

where γg is a nonzero scalar, c = −(λ1+λ2), k = λ1λ2, ǫ = −1 for real eigenpairs
and ǫ = 1 for complex eigenpairs.

10



For real eigenpairs, the condition (31) implies that λ1 and λ2 must have opposite
type, the type of a real eigenvalue λ of Q(λ) with associated eigenvector x being
the sign of xT Q′(λ)x = 2λxT Mx+xT Cx. Note that this is to be expected from
the theory of Hermitian matrix polynomials since for a symmetric quadratic with
2r distinct real eigenvalues, r of them are of positive type and r of them are of
negative type (see [11]). Hence when deflating two real eigenpairs, one must be
of positive type and the other of negative type. Now under this condition, (31)
is achieved with the scaling

x1 ← x1/
√
|xT

1 Q′(λ1)x1|, x2 ← x2/
√
|xT

2 Q′(λ2)x2|

as long as both λ1 and λ2 are semisimple, so that xT
j Q′(λj)xj 6= 0, j = 1, 2.

For complex conjugate eigenpairs, (31) is achieved with the scaling

x1 ← x1/
√

xT
1 Q′(λ1)x1, x2 = x̄1

if xT
1 Q′(λ1)x1 6= 0 and no scaling otherwise. (Note here the use of “T” rather

than “∗”.)
With the above scaling, Lemma 4 together with Theorem 2 tells us that the

equations V A = B and zT V = wT have the solutions

V =
(
I − zzT

zT z

)
BA+ + U(I −AA+) +

z

zT z
wT , (32)

where U ∈ R
n×4 is any matrix such that zT U = 0. It follows that (27)–(29) and

(32) define a family of class two elementary SPTs T transforming Q(λ) with
eigenpairs (λj , xj) to Q1(λ) with eigenpairs (λj , z), j = 1, 2. Identifying which
solution minimizes the condition number κ2(T ) = ‖T‖2‖T−1‖2 remains an open
problem.

4. Deflation for nonsymmetric quadratics

The deflation procedure described in section 3 extends to the case where
M,C, and K are nonsymmetric. We denote by (λj , xRj , xLj), j = 1, 2 the
two eigentriples to be deflated from Q(λ) with (λ2, xR2, xL2) = (λ̄1, x̄R1, x̄L1)
when Im(λ1) 6= 0. In contrast with the symmetric deflation procedure we use
equivalence transformations rather than congruence transformations since we
do not need to preserve symmetry. Three situations must be considered.

4.1. Parallel left eigenvectors and parallel right eigenvectors

Without loss of generality let us assume in this case that xL1 = xL2 ≡ zL

and xR1 = xR2 ≡ zR with zL, zR ∈ R
n so that

zT
LQ1(λj) = 0, Q1(λj)zR = 0, j = 1, 2. (33)

11



As in Lemma 3 it is easily shown that if (33) holds with λ1 6= λ2 then

C1zR = cM1zR, K1zR = kM1zR, (34)

zT
LC1 = czT

LM1, zT
LK1 = kzT

LM1, (35)

where c = −(λ1 +λ2) and k = λ1λ2. Moreover if λ1 and λ2 are semisimple then
zT
LMzR 6= 0. Suppose there exist nonsingular matrices GL and GR such that

GT
LMzR = men, GLen = zL, (36)

GT
RMT zL = men, GRen = zR, (37)

where m = zT
LMzR. (Note that the left (right) transformation GL (GR) depends

on the right (left) eigenvector.) Since M , GL, and GR are nonsingular we must
have m 6= 0 which is guaranteed when λ1 and λ2 are distinct and semisimple.
With GL and GR satisfying (36) and (37) we have

GT
LMGRen = GT

LMzR = men, eT
nGT

LMGR = zT
LMGR = meT

n

and on using (34)–(37) it follows that

GT
L(M,C,K)GR =

([
M̃ 0
0 m

]
,

[
C̃ 0
0 mc

]
,

[
K̃ 0
0 mk

])
. (38)

If we let uL = MzR and uR = MT zL, the matrices GL and GR can be taken in
the form

GS =
m

‖uS‖2
HSLS , S = L,R,

where HS is a Householder reflector such that HSuS = ‖uS‖2en and LS =
In − rSsT

S with

rS =
‖uS‖2

m
HSzS − en, sS = en −

1 +
√

1 + rT
S rS

rT
S rS

rS

so that

LSen =
‖uS‖2

m
HSzS , LT

Sen = en.

Then it is easy to check that the pair (GL, GR) satisfies (34) and (35) and
therefore deflates λ1 and λ2 from Q.

4.2. Non parallel left eigenvectors and non parallel right eigenvectors

As for the symmetric case our aim is to build a class two elementary SPT
(TL, TR), with TL not necessarily equal to TR, that transforms Q(λ) to a new
quadratic Q1(λ) for which λ1 and λ2 share the same left eigenvector zL and the
same right eigenvector zR. In order to apply the deflation process of section 4.1,
we assume that λ1 and λ2 are semisimple and distinct. When λ1 = λ2 with
lineary independent eigenvectors then λ1 and λ2 belong to two distinct Jordan
blocks and the decoupling (38) cannot be achieved.

12



Let TS be such that

T−1
S

[
XSΛS

XS

]
=

[
zSeT ΛS

zSeT

]
, (39)

with ΛL = ΛT and ΛR = Λ where Λ, XL and XR are formed as in (22) and
(23), and e =

[
1
1

]
. If the pair (TL, TR) is structure preserving and transforms

Q(λ) to Q1(λ) then the constraint (39) for S = L and S = R together with
Lemma 1(iv) implies that zT

LQ1(λj) = 0 and Q1(λj)zR = 0, j = 1, 2.
Now if we choose TS to have the form (6) then with the following normal-

izations of aS and zS ,

aT
SaS = 1, eT

ℓS
zS = 1, |eT

ℓS
aS | = ‖aS‖∞, (40)

we obtain in a similar way to the symmetric case described in section 3.2, that
under the constraint (39),

fT
S zS = ‖XSpS‖2 6= 0, aS = (fT

S zS)−1XSpS ,

bT
SzS = (eT

ℓS
XSΛSpS − 1)/(eT

ℓS
aS), zS = XSΛSpS − (bT

SzS)aS ,

dT
SzS = (eT

ℓS
XSΛSqS)/(eT

ℓS
aS), hT

SzS = (eT
ℓS

XSqS − 1)/(eT
ℓS

aS),

(41)

where pS , qS ∈ R
2 are such that

eTpS = 0, eTΛSpS = 1, eTqS = 1, eTΛSqS = 0.

Assuming that aT
LCaR 6= 0, the class two elementary SPT (TL, TR) is com-

pletely determined if we can find two matrices VL, VR ∈ R
n×4 of the form

[ bS dS fS hS ] with S = L,R such that

VLA = BR, zT
LVL = wT

L , (42)

VRA = BL, zT
RVR = wT

R, (43)

where A ∈ R
4×3 and B ∈ R

2n×3 are as in (16) and wT
S = [ bT

SzS dT
SzS fT

S zS hT
SzS ],

S = L,R. From Theorem 2, a solution VL to (42) and a solution VR to (43)
exist if and only if wT

LA = ZT
L BR and wT

RA = ZT
RBL.

Lemma 5. The relations

wT
LA− ZT

L BR = 0, wT
RA− ZT

RBL = 0

hold if and only if the eigentriples (λ1, xR1, xL1) and (λ2, xR2, xL2) of Q(λ)
satisfy

xT
L1Q

′(λ1)xR1 = ǫxT
L2Q

′(λ2)xR2, xT
L1Q

′(λ2)xR2 = −xT
L2Q

′(λ1)xR1 (44)

with ǫ = −1 for real eigentriples and ǫ = 1 for complex conjugate eigentriples.
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Proof. Let gT
L = wT

LA−ZT
L BR and gT

R = wT
RA−ZT

RBL. Calculations along
the same lines as those presented in Appendix A for the symmetric case show
that for real eigentriples,

gT
L = γL (ξ1 + ξ2 − ξ3 − ξ4) [ 1 c k ] ,

gT
R = γR (ξ1 + ξ2 − ξ5 − ξ6) [ 1 c k ] ,

where γL and γR are nonzero scalars, c = −(λ1 + λ2), k = λ1λ2 and

ξ1 = xT
L1Q

′(λ1)xR1, ξ3 = xT
L1Q

′(λ1)xR2, ξ5 = xT
L1Q

′(λ2)xR2,

ξ2 = xT
L2Q

′(λ2)xR2, ξ4 = xT
L2Q

′(λ2)xR1, ξ6 = xT
L2Q

′(λ1)xR1.
(45)

From xT
L1Q(λj)xR2 = 0, j = 1, 2 we find that xT

L1CxR2 = −(λ1 + λ2)x
T
L1MxR2,

from which it follows that xT
L1Q

′(λ1)xR2 = −xT
L1Q

′(λ2)xR2, that is, ξ3 = −ξ5.
In an analogous way we find that xT

L2Q
′(λ1)xR1 = −xT

L2Q
′(λ2)xR1, that is,

ξ4 = −ξ6. Hence, gL = gR = 0 if and only if ξ1 + ξ2 = 0 and ξ5 + ξ6 = 0.
For complex conjugate eigentriples, we find that

gT
L = γ̃L (iξ7 + iξ8 + ξ5 + ξ6) [ 1 c k ] ,

gT
R = γ̃R (iξ1 + iξ2 + ξ5 + ξ6) [ 1 c k ] ,

where γ̃L and γ̃R are nonzero complex scalars, ξj , j = 1, 2, 5, 6 are defined in
(45) and ξ7 = xT

L1Q
′(λ2)xR1, ξ8 = xT

L2Q
′(λ1)xR2. Using x∗

L1Q(λj)xR2 = 0,
j = 1, 2 it is easily shown that x∗

L1Q
′(λ1)xR2 = −x∗

L1Q
′(λ2)xR2 which, by

taking the conjugate, becomes ξ7 = −ξ1. We show similarly that ξ8 = −ξ2.
Hence, gL = gR = 0 if and only if ξ1 − ξ2 = 0 and ξ5 + ξ6 = 0 which completes
the proof.

The assumption that λ1 and λ2 are semisimple implies that in (44) the terms
on the left-hand side relation for real eigentriples and the terms on the right-hand
side relation for complex conjugate eigentriples are nonzero. If xT

LjQ
′(λj)xRj =

0 or xT
LjQ

′(λk)xRk = 0, j 6= k, then a scaling similar to that described after

Lemma 4 can be applied to ensure that (44) holds. When both xT
L1Q

′(λ1)xR1

and xT
L1Q

′(λ2)xR2 are nonzero, we let

ρ1 =
xT

L2Q
′(λ2)xR2

xT
L1Q

′(λ1)xR1

, ρ2 =
xT

L2Q
′(λ1)xR1

xT
L1Q

′(λ2)xR2

.

Then for real eigentriples, the relations (44) hold after an appropriate scaling
of the eigenvectors only if sign(ρ1) = sign(ρ2), in which case we can apply the
scaling

xL1 ← |ρ1|1/2xL1, xR1 ← |ρ1|1/2xR1,
xL2 ← |ρ2|−1/2xL2, xR2 ← |ρ2|1/2xR2.

(46)

For complex eigentriples, (λ1, xR1, xL1) = (λ2, xR2, xL2) = (λ, x, y) and (44)
holds when x and y are scaled such that yT Q′(λ)x is real and y∗Q′(λ)x is purely
imaginary.
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When (44) holds, Lemma 5 and Theorem 2 tell us that the set of solutions
to (42) and (43) is given by

VL =

(
I − zLzT

L

zT
LzL

)
BRA+ + UL(I −AA+) +

zL

zT
LzL

wT
L ,

VR =

(
I − zRzT

R

zT
RzR

)
BLA+ + UR(I −AA+) +

zR

zT
RzR

wT
R,

where UL, UR ∈ R
n×m are any matrices such that zT

S US = 0, S = L,R.
The matrices VL and VR together with aL and aR in (41) define an SPT

(TL, TR) that transforms Q(λ) into Q1(λ) such that (33) holds.

4.3. Non parallel left (right) eigenvectors and parallel right (left) eigenvectors

When for example rank([xL1, xL2 ]) = 1 and rank([xR1, xR2 ]) = 2 we might
want to look for an SPT of the form (I2n, TR) with TR a class two elementary
SPT, since the left eigenvectors are already parallel to each other. Unfortu-
nately, the pair (I2n, TR) is not structure preserving. However we can still
use the procedure described in section 4.2 to map (λj , xRj , xLj) to (λj , zR, zL),
j = 1, 2 as long as we make sure that after the scaling (46), the vector XLpL is
nonzero so that aL in (41) is defined. If XLpL = 0 then we replace xL1 by µxL1

and xR1 by µxR1, where µ = −1 for real eigentriples and µ = i for complex
conjugate eigenpairs so that (46) still holds but XLpL is nonzero.

5. Numerical experiments

We now describe some numerical experiments designed to give insight into
our deflation procedure. It is not our aim to investigate the numerical stability
properties of the procedure. This is a separate issue that will be addressed in a
future paper. In all our experiments we take U = 0 in (18). Our computations
were done in MATLAB 7.6 (R2008a) for which u = 2−53 ≈ 1.1× 10−16.

Recall that (TL, TR) defines a class two elementary SPT that maps a quadratic
matrix polynomial with two non parallel eigenvectors associated with a pair of
eigenvalues to a quadratic whose eigenvectors associated to that pair of eigen-
values are now parallel, and that (GL, GR) defines a deflating transformation.
We drop the subscripts R and L when the left and right transformations are
equal. If Q(λ) is n× n, the cost of deflating (λ1, λ2) is O(n2) operations.

Experiment 1. Our first example is a 2 × 2 symmetric quadratic Q(λ) =
λ2M + λC + K defined by

M =

[
2 −1
−1 3

]
, C =

[
0 1
1 0

]
, K =

[
3 2
2 3

]
(47)

with Λ(Q) = {−0.34 ± 1.84i, 0.14 ± 0.51i} to two decimal places. Note that
M−1C does not commute with M−1K, so Q(λ) is not proportionally damped.
Therefore the system cannot be decoupled by a 2×2 congruence transformation
directly applied to Q(λ).
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Table 1: Relative magnitude of the off-diagonal elements of the deflated quadratic Q2(λ) =
λ2M2 + λC2 + K2 in Experiment 2 and condition number of the transformations.

Deflated
e’values

off(M2) off(C2) off(K2) κ2(TL) κ2(TR) κ2(GL) κ2(GR)

Real 3.0e-15 1.7e-13 1.6e-13 6.0e5 2.0e2 3.6e1 3.3e0
Complex 2.0e-16 1.4e-14 5.6e-14 1.8e3 4.5e1 1.0 1.1

Table 2: Condition numbers of the SPTs T and deflating transformations G for different pairs
of eigenvalues for experiment 4.

(λ1, λ5) (λ1, λ6) (λ1, λ7) (λ1, λ8)

κ2(T ) 4.62e1 1.43e3 4.41e2 7.15e1
κ2(L) 2.09e0 6.41e0 1.61e0 4.61e0

Given the pair of complex conjugate eigenvalues λ1,2 = −0.34±1.84 and their
associated linearly independent eigenvectors our symmetric deflation procedure
decouples Q(λ) into

λ2

[
5.6 2.0e-16

2.0e-16 −1.4e-1

]
+ λ

[
−1.6 −9.4e-16
−9.4e-16 −9.3e-2

]
+

[
1.6 −9.8e-17

−9.8e-17 −4.8e-1

]
,

to two significant digits, with κ2(T ) = 7.9 and κ2(G) ≈ 1. Thus we have
accomplished (2) to within the working precision.

Experiment 2. Our second example is a 2 × 2 quadratic matrix polynomial
arising in the study of the dynamic behaviour of a bicycle [19]. The coefficient
matrices are nonsymmetric. They can be generated using the NLEVP MATLAB
toolbox [4] via nlevp(’bicycle’). This quadratic has two real eigenvalues,
λ1 = −0.32 and λ2 ≈ −14 and two complex conjugate eigenvalues −0.78± 4.5i.
Table 1 shows that the left and right transformations corresponding to the
deflation of the complex conjugate eigentriples have a smaller condition number
than those used for the deflation of the real eigentriples. The large condition
number of TL in the real case affects the size of the off-diagonal elements of the
deflated quadratic. Here off(E) = ‖E − diag(E)‖2/‖E‖2, E = M2, C2,K2.

Experiment 3. Our next example is a 4× 4 hyperbolic symmetric quadratic
eigenvalue problem generated as in [13, Sec. 6]. The eigenvalues, real since
the quadratic is hyperbolic, are uniformly distributed between 1 and 8. If we
order them increasingly then λ1, . . . , λ4 have negative type and λ5, . . . , λ8 have
positive type [2, Proof of Thm. 1]. Any pairs (λj , λk) with 1 ≤ j ≤ 4 and
5 ≤ k ≤ 8 can be deflated from the quadratic. Table 2 displays the condition
numbers of the SPT T and deflating transformation G for different pairings. It
shows that the choice of pairings affects the conditioning of the transformations.

Experiment 4. We now consider a symmetric quadratic eigenvalue problem
coming from a model describing the motion of a beam simply supported at both
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Table 3: Scaled residuals and condition numbers of the transformations used in Example 4.

n res(M) res(C) res(K) κ2(Gacc) κ2(W )
8 3.07e-15 4.63e-18 3.90e-16 1.69e1 1.52e1
16 5.52e-15 5.08e-17 3.59e-15 4.47e1 3.79e1
32 1.34e-13 3.15e-16 1.68e-14 9.57e1 7.84e1
64 3.22e-12 6.09e-15 3.56e-14 1.95e2 1.57e2

ends and damped at the midpoint. It can be generated with the NLEVP toolbox
via nlevp(’damped−beam’,nele), where nele is the number of finite elements.
It is shown in [15, Thm. A1] that the damped problem Q(λ) = λ2M+λC+K and
the undamped problem Qu(λ) = λ2M+K have n eigenvalues and n eigenvectors
in common: those corresponding to the anti-symmetric modes. Because M and
K are positive definite, the eigenvalues of Qu(λ) are pure imaginary; they come
in pairs (λ, λ̄), each pair sharing the same eigenvector.

We computed the n eigenpairs corresponding to the antisymmetric modes of
Qu(λ) using the MATLAB function eig with the option ’chol’ and deflated
all of them from Q(λ) using the procedure described in section 3.1. Let

Q̃(λ) = GT
accQ(λ)Gacc = λ2M̃ + λC̃ + K̃

be the deflated quadratic, where Gacc is the matrix which accumulates the
product of the n/2 deflating transformations of the form (21) and M̃, C̃, K̃ are
block 2× 2 diagonal with (n/2)× (n/2) blocks, the lower block being diagonal.
Table 3 displays the scaled residuals res(M), res(C), and res(K), where

res(E) =
‖GT

accEGacc − Ẽ‖2
‖Gacc‖22‖E‖2 + ‖Ẽ‖2

,

and the 2-norm condition numbers κ2(Gacc) for different values of n = 2×nele.
The quadratic of the beam problem can be block diagonalized as (see [15,

App. A1])

WT Q(λ)W =

[
λ2M1 + λD1 + K1 0

0 λ2M2 + K2

]
,

where W is orthogonal, M2 and K2 are both symmetric positive definite and
λ2M2 + K2 contains the anti-symmetric modes. The last column of Table 3
displays the condition number of the transformation W that block diagonalizes
λ2M2 + K2. As a comparison, we note that κ2(Gacc) is not much larger than
κ2(W ).

A. Technical results for the proof of Lemma 4

We start by recalling the notation. Let (λ1, x1) and (λ2, x2) be two eigenpairs
of a symmetric quadratic Q(λ) = λ2M + λC + K such that λ1 6= λ2. For real
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eigenpairs let Λ = diag(λ1, λ2) and let X = [x1 x2]. For complex conjugate
eigenpairs let Λ =

[
α

−β
β
α

]
and X = [u v], where λ1 = λ̄2 = α + iβ, β 6= 0 and

x1 = x̄2 = u + iv. Let

p = γ(λ1 − λ2)
−1

[
1
−1

]
, q = Λp− (λ1 + λ2)p

with γ = 1 for real eigenpairs and γ = i for complex eigenpairs and let

fT z = ‖Xp‖2 6= 0, a = (fT z)−1Xp,

bT z = (eT
ℓ XΛp− 1)/(eT

ℓ a), z = XΛp− (bT z)a,

dT z = (eT
ℓ XΛq)/(eT

ℓ a), hT z = (eT
ℓ Xq − 1)/(eT

ℓ a),

where ℓ is such that aℓ = eT
ℓ a 6= 0. Define

A =




αM
1
2αC 0

0 αM
1
2αC

1
2αC αK 0
0 1

2αC αK


 ,

B = − [Ma Ca Ka ] ,

V = [ b d f h ] ,

wT = [ bT z dT z fT z hT z ] ,

where αM = aT Ma, αC = aT Ca and αK = aT Ka. The next lemma contains
useful relations.

Lemma 6. The following relations hold.

xT
1 Cx2 = c xT

1 Mx2, (48)

xT
1 Kx2 = k xT

1 Mx2, (49)

dT z = −k fT z, (50)

hT z − bT z = c fT z, (51)

where c = −(λ1 + λ2) and k = λ1λ2. Also for any symmetric matrix E we have

aT Ea = αE = (fT z)−2pT XT EXp, (52)

zT Ea = (fT z)−1pT ΛT XT EXp− (bT z)(fT z)−2pT XT EXp, (53)

with

pT XT EXp =

{
µ(xT

1 Ex1 + xT
2 Ex2 − 2xT

1 Ex2) for real eigenpairs,
µ
4 (ixT

1 Ex1 − ixT
2 Ex2 + 2xT

1 Ex2) otherwise,
(54)

pT ΛT XT EXp =

{
µ(λ1x

T
1 Ex1 + λ2x

T
2 Ex2 + cxT

2 Ex1) for real eigenpairs,
µ
4 (iλ1x

T
1 Ex1 − iλ2x

T
2 Ex2 − cxT

2 Ex1) otherwise,
(55)

where µ = (λ1 − λ2)
−2 6= 0 is defined since λ1 6= λ2.

Proof. The relations (48) and (49) follow from xT
1 Q(λ1)x2 = xT

2 Q(λ1)x1 =
0 and xT

1 Q(λ2)x2 = 0. The relations (50)–(53) follow from the definition of p,
q, a and z and (54)–(55) follow from the definition of Λ and X and p.
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With these relations in hand we can now prove the formula for gT = wT A−
zT B in Lemma 4. From the definition of A, B w and z we find that

g =




(bT z)αM + 1
2 (fT z)αC + zT Ma

1
2 (bT z)αC + (dT z)αM + (fT z)αk + 1

2 (hT z)αC + zT Ca
1
2 (dT z)αC + αKhT z + zT Ka


 .

Using (52) with E = M and E = C and (53) with E = M we obtain that the
first component of g satisfies

2(fT z)g1 = pT XT CXp + 2pT ΛT XT MXp. (56)

In a similar way we find that the other components of g satisfy

2(fT z)g2 = cpT XCXp− 2kpT XMXp + 2pT ΛT XT CXp + 2pT XKXp,

2(fT z)g3 = −kpT XT CXp + 2cpT XT KXp + 2pT ΛT XT KXp.

Using (54) and (55) with E = M,C and K and the relations (48)–(51) we find
that for real eigenpairs,

2(fT z)gT = µ
(
xT

1 Q′(λ1)x1 + xT
2 Q′(λ2)x2

)
[ 1 c k ]

and that for complex conjugate eigenpairs,

2(fT z)gT =
i

4
µ
(
xT

1 Q′(λ1)x1 − xT
2 Q′(λ2)x2

)
[ 1 c k ] .
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