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Abstract

In Markov chain models in finance and healthcare a transition matrix over a certain
time interval is needed but only a transition matrix over a longer time interval may be
available. The problem arises of determining a stochastic pth root of a stochastic matrix
(the given transition matrix). By exploiting the theory of functions of matrices, we
develop results on the existence and characterization of matrix pth roots, and in particular
on the existence of stochastic pth roots of stochastic matrices. Our contributions include
characterization of when a real matrix has a real pth root, a classification of pth roots
of a possibly singular matrix, a sufficient condition for a pth root of a stochastic matrix
to have unit row sums, and the identification of classes of stochastic matrices that have
stochastic pth roots for all p. We also delineate a wide variety of possible configurations as
regards existence, nature (primary or nonprimary), and number of stochastic roots, and
develop a necessary condition for existence of a stochastic root in terms of the spectrum
of the given matrix.

Key words: Stochastic matrix, nonnegative matrix, matrix pth root, primary matrix
function, nonprimary matrix function, Perron–Frobenius theorem, Markov chain,
transition matrix, embeddability problem, M -matrix, inverse eigenvalue problem
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1. Introduction

Discrete-time Markov chains are in widespread use for modelling processes that evolve
with time. Such processes include the variations of credit risk in the finance industry and
the progress of a chronic disease in healthcare, and in both cases the particular problem
considered here arises.

In credit risk, a transition matrix records the probabilities of a firm’s transition from
one credit rating to another over a given time interval [19]. The shortest period over which
a transition matrix can be estimated is typically one year, and annual transition matrices
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can be obtained from rating agencies such as Moody’s Investors Service and Standard &
Poor’s. However, for valuation purposes, a transition matrix for a period shorter than
one year is usually needed. A short term transition matrix can be obtained by computing
a root of an annual transition matrix. A six-month transition matrix, for example, is
a square root of the annual transition matrix. This property has led to interest in the
finance literature in the computation or approximation of roots of transition matrices
[18], [22]. Exactly the same mathematical problem arises in Markov models of chronic
diseases, where the transition matrix is built from observations of the progression in
patients of a disease through different severity states. Again, the observations are at an
interval longer than the short time intervals required for study and the need for a matrix
root arises [4]. An early discussion of this problem, which identifies the need for roots of
transition matrices in models of business and trade, is that of Waugh and Abel [33].

A transition matrix is a stochastic matrix: a square matrix with nonnegative entries
and row sums equal to 1. The applications we have described require a stochastic root
of a given stochastic matrix A, that is, a stochastic matrix X such that Xp = A, where
p is typically a positive integer. Mathematically, there are three main questions.

1. Under what conditions does a given stochastic matrix A have a stochastic pth root,
and how many roots are there?

2. If a stochastic root exists, how can it be computed?

3. If a stochastic root does not exist, what is an appropriate approximate stochastic
root to use in its place?

The focus of this work is on the first question, which has not previously been inves-
tigated in any depth. Regarding the second and third questions, various methods are
available for computing matrix pth roots [2], [11], [12], [14, Chap. 7], [17], [31], but there
are currently no methods tailored to finding a stochastic root. Current approaches are
based on computing some pth root and perturbing it to be stochastic [4], [18], [22].

In Section 2 we recall known results on the existence of matrix pth roots and derive
a new characterization of when a real matrix has a real pth root. With the aid of a
lemma describing the pth roots of block triangular matrices whose diagonal blocks have
distinct spectra, we obtain a classification of pth roots of possibly singular matrices. In
Section 3 we derive a sufficient condition for a pth root of a stochastic matrix A to have
unit row sums; we show that this condition is necessary for primary roots and that a
nonnegative pth root always has unit row sums when A is irreducible. We use the latter
result to connect the stochastic root problem with the problem of finding nonnegative
roots of nonnegative matrices. Two classes of stochastic matrices are identified that have
stochastic principal pth roots for all p: one is the inverse M -matrices and the other is a
class of symmetric positive semidefinite matrices explicitly obtained from a construction
of Soules. In Section 4 we demonstrate a wide variety of possible scenarios for the
existence and uniqueness of stochastic roots of a stochastic matrix—in particular, with
respect to whether a stochastic root is principal, primary, or nonprimary. In Section 5
we exploit a result on the inverse eigenvalue problem for stochastic matrices in order
to obtain necessary conditions that the spectrum of a stochastic matrix must satisfy in
order for the matrix to have a stochastic pth root. Finally, some conclusions are given
in Section 6.
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2. Theory of matrix pth roots

We are interested in the nonlinear equation Xp = A, where p is assumed to be a
positive integer. In practice, p might be rational—for example if a transition matrix is
observed for a five year time interval but the interval of interest is two years. If p = r/s
for positive integer r and s then the problem is to solve the equation Xr = As, and this
reduces to the original problem with p← r and A← As, since any positive integer power
of a stochastic matrix is stochastic.

We can understand the nonlinear equation Xp = A through the theory of functions
of matrices. The following theorem classifies all pth roots of a nonsingular matrix [14,
Thm. 7.1], [31] and will be exploited below.

Theorem 2.1 (classification of pth roots of nonsingular matrices). Let the non-
singular matrix A ∈ C

n×n have the Jordan canonical form Z−1AZ = J = diag(J1, J2, . . . , Jm),
with Jordan blocks Jk = Jk(λk) ∈ C

mk×mk , and let s ≤ m be the number of distinct

eigenvalues of A. Let L
(jk)
k = L

(jk)
k (λk), k = 1:m, denote the p pth roots of Jk given by

L
(jk)
k (λk) :=




fjk
(λk) f ′

jk
(λk) · · ·

f
(mk−1)
jk

(λk)

(mk − 1)!

fjk
(λk)

. . .
...

. . . f ′
jk

(λk)

fjk
(λk)




, (2.1)

where jk ∈ {1, 2, . . . , p} denotes the branch of the pth root function f . Then A has
precisely ps pth roots that are expressible as polynomials in A, given by

Xj = Zdiag(L
(j1)
1 , L

(j2)
2 , . . . , L(jm)

m )Z−1, j = 1: ps, (2.2)

corresponding to all possible choices of j1, . . . , jm, subject to the constraint that ji = jk

whenever λi = λk. If s < m then A has additional pth roots that form parametrized
families

Xj(U) = ZUdiag(L
(j1)
1 , L

(j2)
2 , . . . , L(jm)

m )U−1Z−1, j = ps + 1: pm, (2.3)

where jk ∈ {1, 2, . . . , p}, U is an arbitrary nonsingular matrix that commutes with J ,
and for each j there exist i and k, depending on j, such that λi = λk while ji 6= jk.

In the theory of matrix functions the roots (2.2) are called primary functions of A, and
the roots in (2.3), which exist only if A is derogatory (that is, if some eigenvalue appears
in more than one Jordan block), are called nonprimary functions [14, Chap. 1]. A dis-
tinguishing feature of the primary roots (2.2) is that they are expressible as polynomials
in A, whereas the nonprimary roots are not.

While a nonsingular matrix always has a pth root, the situation is more complicated
for singular matrices, as the following result of Psarrakos [30] shows.

Theorem 2.2 (existence of pth root). A ∈ C
n×n has a pth root if and only if the

“ascent sequence” of integers d1, d2, . . . defined by

di = dim(null(Ai))− dim(null(Ai−1)) (2.4)
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has the property that for every integer ν ≥ 0 no more than one element of the sequence
lies strictly between pν and p(ν + 1).

For real A, the above theorems do not distinguish between real and complex roots.
The next theorem provides a necessary and sufficient condition for the existence of a real
pth root of a real A; it generalizes [16, Thm. 6.4.14], which covers the case p = 2.

Theorem 2.3 (existence of real pth root). A ∈ R
n×n has a real pth root if and only

if it satisfies the ascent sequence condition (2.4) and, if p is even, A has an even number
of Jordan blocks of each size for every negative eigenvalue.

Proof. First, we note that a given Jordan canonical form J is that of some real matrix
if and only if for every nonreal eigenvalue λ occurring in r Jordan blocks of size q there
are also r Jordan blocks of size q corresponding to λ; in other words, the Jordan blocks
of each size for nonreal eigenvalues come in complex conjugate pairs. This property is
a consequence of the real Jordan form and its relation to the complex Jordan form [16,
Sec. 3.4], [23, Sec. 6.7].

(⇒) If A has a real pth root then by Theorem 2.2 it must satisfy (2.4). Suppose that
p is even, that A has an odd number, 2k + 1, of Jordan blocks of size m for some m and
some eigenvalue λ < 0, and that there exists a real X with Xp = A. Since a nonsingular
Jordan block does not split into smaller Jordan blocks when raised to a positive integer
power [14, Thm. 1.36], the Jordan form of X must contain exactly 2k + 1 Jordan blocks
of size m corresponding to eigenvalues µj with µp

j = λ, which implies that each µj is
nonreal since λ < 0 and p is even. In order for X to be real these Jordan blocks must
occur in complex conjugate pairs, but this is impossible since there is an odd number of
them. Hence we have a contradiction, so A must have an even number of Jordan blocks
of size m for λ.

(⇐) A has a Jordan canonical form Z−1AZ = J = diag(J0, J1), where J0 collects
together all the Jordan blocks corresponding to the eigenvalue 0 and J1 contains the
remaining Jordan blocks. Since (2.4) holds for A it also holds for J0, so J0 has a pth root
W0, and W0 can be taken real in view of the construction given in [30, Sec. 3]. Form a
pth root W1 of J1 by taking a pth root of each constituent Jordan block in such a way
that every nonreal root has a matching complex conjugate—something that is possible
because the Jordan blocks of A for negative eigenvalues occur in pairs, by assumption,
while the Jordan blocks for nonreal eigenvalues occur in complex conjugate pairs since
A is real. Then, with W = diag(W0,W1), we have W p = J . Since the Jordan blocks of
W occur in complex conjugate pairs it is similar to a real matrix, Y . With ∼ denoting
similarity, we have Y p ∼ W p = J ∼ A. Since Y p and A are real and similar, they are
similar via a real similarity [16, Sec. 3.4]. Thus A = GY pG−1 for some real, nonsingular
G, which can be rewritten as A = (GY G−1)p = Xp, where X is real.

The next theorem identifies the number of real primary pth roots of a real matrix.

Theorem 2.4. Let the nonsingular matrix A ∈ R
n×n have r1 distinct positive real eigen-

values, r2 distinct negative real eigenvalues, and c distinct complex conjugate pairs of
eigenvalues. If p is even there are (a) 2r1pc real primary pth roots if r2 = 0 and (b) no
real primary pth roots if r2 > 0. If p is odd there are pc real primary pth roots.
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Proof. By transforming A to real Schur form R our task reduces to counting the number
of real pth roots of the diagonal blocks, since a primary pth root of R has the same
quasitriangular structure as R and its off-diagonal blocks are uniquely determined by the
diagonal blocks [14, Sec. 7.2], [31]. Consider a 2× 2 diagonal block C, which contains a
complex conjugate pair of eigenvalues. Let

Z−1CZ = diag(λ, λ) = θI + iµK, K =

[
1 0
0 −1

]
.

Then C = θI + µW , where W = iZKZ−1, and since θ, µ ∈ R it follows that W ∈ R
2×2.

The real primary pth roots of C are X = ZDZ−1 = Zdiag(α+iβ, α−iβ)Z−1 = αI+βW ,
where (α + iβ)p = θ + iµ, since the eigenvalues must occur in complex conjugate pairs.
There are p such choices, giving pc choices in total.

Every real eigenvalue must be mapped to a real pth root, and the count depends on
the parity of p. There is obviously no real primary pth root if r2 > 0 and p is even, while
for odd p any negative eigenvalue −λ must be mapped to −λ1/p, which gives no freedom.
Each positive eigenvalue λ yields two choices ±λ1/p for even p, but only one choice λ1/p

for odd p. This completes the proof.

The next lemma enables us to extend the characterization of pth roots in Theorem 2.1
to singular A.

Lemma 2.5. Let

A =

[
A11 A12

0 A22

]
∈ C

n×n,

where Λ(A11) ∩ Λ(A22) = ∅. Then any pth root of A has the form

X =

[
X11 X12

0 X22

]
,

where Xp
ii = Aii, i = 1, 2 and X12 is the unique solution of the Sylvester equation

A11X12 −X12A22 = X11A12 −A12X22.

Proof. It is well known (see, e.g., [14, Prob. 4.3]) that if W satisfies the Sylvester
equation A11W −WA22 = A12 then

D =

[
A11 0
0 A22

]
=

[
I −W
0 I

]−1 [
A11 A12

0 A22

] [
I −W
0 I

]
≡ R−1AR.

The Sylvester equation has a unique solution since A11 and A22 have no eigenvalue in
common. It is easy to see that any pth root of A = RDR−1 has the form X = RY R−1,
where Y p = D. To characterize all such Y we partition Y conformably with D and
equate the off-diagonal blocks in Y D = DY to obtain the nonsingular Sylvester equations
Y12A22 − A11Y12 = 0 and Y21A11 − A22Y21 = 0, which yield Y12 = 0 and Y21 = 0, from
which Y p

ii = Aii, i = 1, 2, follows. Therefore

X = RY R−1 =

[
I −W
0 I

]
diag(Y11, Y22)

[
I −W
0 I

]−1

=

[
Y11 Y11W −WY22

0 Y22

]
.
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The Sylvester equation for X12 follows by equating the off-diagonal blocks in XA = AX,
and again this equation is nonsingular.

We can now extend Theorem 2.2 to possibly singular matrices.

Theorem 2.6 (classification of pth roots). Let A ∈ C
n×n have the Jordan canon-

ical form Z−1AZ = J = diag(J0, J1), where J0 collects together all the Jordan blocks
corresponding to the eigenvalue 0 and J1 contains the remaining Jordan blocks. As-
sume that A satisfies the condition of Theorem 2.2. All pth roots of A are given by
A = Zdiag(X0,X1)Z

−1, where X1 is any pth root of J1, characterized by Theorem 2.1,
and X0 is any pth root of J0.

Proof. Since A satisfies the condition of Theorem 2.2, J0 does as well. It suffices to note
that by Lemma 2.5 any pth root of J has the form diag(X0,X1), where Xp

0 = J0 and
Xp

1 = J1.

Among all pth roots the principal pth root is the most used in theory and in practice.
For A ∈ C

n×n with no eigenvalues on R
−, the closed negative real axis, the principal pth

root, written A1/p, is the unique pth root of A all of whose eigenvalues lie in the segment
{ z : −π/p < arg(z) < π/p } [14, Thm. 7.2]. It is a primary matrix function and it is real
when A is real.

3. pth roots of stochastic matrices

We now focus on pth roots of stochastic matrices, and in particular the question of
the existence of stochastic roots.

In the next two theorems we recall some key facts from Perron–Frobenius theory that
will be needed below [1, Chap. 2], [16, Chap. 8], [23, Chap. 15]. Recall that A ∈ R

n×n is
reducible if there is a permutation matrix P such that

PT AP =

[
A11 A12

0 A22

]
, (3.1)

where A11 and A22 are square, nonempty submatrices. A is irreducible if it is not
reducible. We write X ≥ 0 (X > 0) to denote that the elements of X are all nonnegative
(positive), and denote by ρ(A) the spectral radius of A, e = [1, 1, . . . , 1]T the vector of
1s, and ek the unit vector with 1 in the kth position and zeros elsewhere.

Theorem 3.1 (Perron–Frobenius). If A ∈ R
n×n is nonnegative then ρ(A) is an

eigenvalue of A with a corresponding nonnegative eigenvector. If, in addition, A is
irreducible then

(a) ρ(A) > 0;

(b) there is an x > 0 such that Ax = ρ(A)x;

(c) ρ(A) is a simple eigenvalue of A (that is, it has algebraic multiplicity 1).

Theorem 3.2. Let A ∈ R
n×n be stochastic. Then

(a) ρ(A) = 1;
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(b) 1 is a semisimple eigenvalue of A (that is, it appears only in 1 × 1 Jordan
blocks in the Jordan canonical form of A) and has a corresponding eigenvector e;

(c) if A is irreducible, then 1 is a simple eigenvalue of A.

Proof. The first part is straightforward. The semisimplicity of the eigenvalue 1 is proved
by Minc [27, Chap. 6, Thm. 1.3], while the last part follows from Theorem 3.1.

For a pth root X of a stochastic A to be stochastic there are two requirements: that X
is nonnegative and that Xe = e. While Xp = A and X ≥ 0 together imply that ρ(X) = 1
is an eigenvalue of X with a corresponding nonnegative eigenvector v (by Theorem 3.1),
it does not follow that v = e. The matrices A and X in Fact 4.11 below provide an
example, with v = [1, 1, 21/2]T . The next result shows that a sufficient condition for a
pth root of a stochastic matrix to have unit row sums is that every copy of the eigenvalue
1 of A is mapped to an eigenvalue 1 of X.

Lemma 3.3. Let A ∈ R
n×n be stochastic and let Xp = A, where for any eigenvalue µ

of X with µp = 1 it holds that µ = 1. Then Xe = e.

Proof. Since A is stochastic and so has 1 as a semisimple eigenvalue with corresponding
eigenvector e, it has the Jordan canonical form A = ZJZ−1 with J = diag(I, J2, J0),
where 1 6∈ Λ(J2), J0 ∈ C

k×k contains all the Jordan blocks corresponding to zero eigen-
values, and Ze1 = e. By Theorem 2.6 any pth root X of A satisfying the assumption
of the lemma has the form X = ZULU−1Z−1, where L = diag(I, L2, Y0) with Y p

0 = J0,

and where U = diag(Ũ , Ik) with Ũ an arbitrary nonsingular matrix that commutes with

diag(I, J2) and hence is of the form Ũ = diag(Ũ1, Ũ2). Then

Xe = ZULU−1Z−1e = ZULU−1e1 = Zdiag(I, Ũ2L2Ũ
−1
2 , Y0)e1 = Ze1 = e,

as required.

The sufficient condition of the lemma for X to have unit row sums is not necessary,
as the example A =

[
1
0

0
1

]
, X =

[
0
1

1
0

]
, p = 2, shows. However, for primary roots the

condition is necessary, since every copy of the eigenvalue 1 is mapped to the same root
ξ, and Xe = ξe (which can be proved using the property f(ZJZ−1) = Zf(J)Z−1 of
primary matrix functions f), so we need ξ = 1. The condition is also necessary when A
is irreducible, as the next corollary shows.

Corollary 3.4. Let A ∈ R
n×n be an irreducible stochastic matrix. Then for any non-

negative X with Xp = A, Xe = e.

Proof. Since A is stochastic and irreducible, 1 is a simple eigenvalue of A, by Theo-
rem 3.2. As noted just before Lemma 3.3, Xp = A and X ≥ 0 imply that ρ(X) = 1 is an
eigenvalue of X, and this is the only eigenvalue µ of X with µp = 1, since 1 is a simple
eigenvalue of A. Therefore the condition of Lemma 3.3 is satisfied.

The next result shows an important connection between stochastic roots of stochastic
matrices and nonnegative roots of irreducible nonnegative matrices.
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Theorem 3.5. Suppose C is an irreducible nonnegative matrix with positive eigenvector
x corresponding to the eigenvalue ρ(C). Then A = ρ(C)−1D−1CD is stochastic, where
D = diag(x). Moreover, if C = Y p with Y nonnegative then A = Xp, where X =
ρ(C)−1/pD−1Y D is stochastic.

Proof. The eigenvector x necessarily has positive elements in view of the fact that C is
irreducible and nonnegative, by Theorem 3.1. The stochasticity of A is standard (see [27,
Chap. 6, Thm. 1.2], for example), and can be seen from the observation that, since De =
x, Ae = ρ(C)−1D−1Cx = ρ(C)−1D−1ρ(C)x = e. We have Xp = ρ(C)−1D−1Y pD =
ρ(C)−1D−1CD = A. Finally, the irreducibility of C implies that of A, and hence the
nonnegative matrix X has unit row sums, by Corollary 3.4.

We can identify an interesting class of stochastic matrices for which a stochastic pth
root exists for all p. Recall that A ∈ R

n×n is a nonsingular M -matrix if A = sI − B
with B ≥ 0 and s > ρ(B). It is a standard property that the inverse of a nonsingular
M -matrix is nonnegative [1, Chap. 6].

Theorem 3.6. If the stochastic matrix A ∈ R
n×n is the inverse of an M -matrix then

A1/p exists and is stochastic for all p.

Proof. Since M = A−1 is an M -matrix, the eigenvalues of M all have positive real part
and hence M1/p exists. Furthermore, M1/p is also an M -matrix for all p, by a result of
Fiedler and Schneider [7]. Thus A1/p = (M1/p)−1 ≥ 0 for all p, and A1/pe = e follows
from the comments following Lemma 3.3, so A1/p is stochastic.

If A ≥ 0 and we can compute B = A−1 then it is straightforward to check whether
B is an M -matrix: we just have to check whether bij ≤ 0 for all i 6= j [1, Chap. 6]. An
example of a stochastic inverse M -matrix is given in Fact 4.8 below. Another example
is the lower triangular matrix

A =




1
1
2

1
2

...
...

. . .
1
n

1
n · · · 1

n


 , (3.2)

for which

A−1 =




1
−1 2
0 −2 3
...

...
. . .

. . .

0 0 · · · −(n− 1) n




.

Clearly, A−1 is an M -matrix and hence from Theorem 3.6, A1/p is stochastic for any
positive integer p.

A particular class of inverse M -matrices is the strictly ultrametric matrices, which
are the symmetric positive semidefinite matrices for which aij ≥ min(aik, akj) for all
i, j, k and aii > min{ aik : k 6= i } (or, if n = 1, a11 > 0). The inverse of such a matrix is
a strictly diagonally dominant M -matrix [26], [28].
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Using a construction of Soules [32] (also given in a different form by Perfect and
Mirsky [29, Thm. 8]), a class of symmetric positive semidefinite stochastic matrices with
stochastic roots can be built explicitly.

Theorem 3.7. Let Q ∈ R
n×n be an orthogonal matrix with first column n−1/2e, qij > 0

for i + j < n + 2, qij < 0 for i + j = n + 2, and qij = 0 for i + j > n + 2. If
λ1 ≥ λ2 ≥ · · · ≥ λn, λ1 > 0, and

1

n
λ1 +

1

n(n− 1)
λ2 +

1

(n− 1)(n− 2)
λ3 + · · ·+

1

1 · 2
λn ≥ 0 (3.3)

then

(a) A = λ−1
1 Qdiag(λ1, . . . , λn)QT is a symmetric stochastic matrix;

(b) if λ1 > λ2 then A > 0;

(c) if λn ≥ 0 then A1/p is stochastic for all p.

Proof. (a) is proved by Soules [32, Cor. 2.4]. (b) is shown by Elsner, Nabben, and

Neumann [6, p. 327]. To show (c), if λn ≥ 0 then λ
1/p
1 ≥ λ

1/p
2 ≥ · · · ≥ λ

1/p
n holds and

(3.3) trivially remains true with λi replaced by λ
1/p
i for all i and so A1/p is stochastic

by (a).

A family of matrices Q of the form specified in the theorem can be constructed as
a product of Givens rotations Gij , where Gij is a rotation in the (i, j) plane designed
to zero the jth element of the vector it premultiplies and produce a nonnegative ith
element. Choose rotations Gij so that

Ge := G12G23 . . . Gn−1,ne = n1/2e1.

Then G has positive elements on and above the diagonal, negative elements on the first
subdiagonal, and zeros everywhere else. We have GT e1 = n−1/2e, and defining Q as GT

with the order of its rows reversed yields a Q of the desired form. For example, for n = 4,

Q =




0.5000 0.2887 0.4082 0.7071
0.5000 0.2887 0.4082 −0.7071
0.5000 0.2887 −0.8165 0
0.5000 −0.8660 0 0


 .

There is a close relation between Theorems 3.6 and 3.7. If λ1 ≥ λ2 ≥ · · · ≥ λn > 0
in Theorem 3.7 then A in Theorem 3.7 has the property that A−1 is an M -matrix and,
moreover, A−k is an M -matrix for all positive integers k [6, Cor. 2.4].

It is possible to generalize Theorem 3.7 to nonsymmetric stochastic matrices with
positive real eigenvalues (using [5, Sec. 3], for example) but we will not pursue this here.

Finally, we note some more specific results. He and Gunn [13] explicitly find all pth
roots of 2×2 stochastic matrices and show how to construct all primary pth roots of 3×3
stochastic matrices. Marcus and Minc [25] give a sufficient condition for the principal
square root of a symmetric positive semidefinite matrix to be stochastic.

Theorem 3.8. Let A ∈ R
n×n be a symmetric positive semidefinite stochastic matrix

with aii ≤ 1/(n− 1), i = 1:n. Then A1/2 is stochastic.

Proof. See [25, Thm. 2] or [27, Chap. 5, Thm. 4.2].
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4. Scenarios for existence and uniqueness of stochastic roots

Existence and uniqueness of pth roots under the requirement of preserving stochastic
structure is not a straightforward matter. We present a sequence of facts that demon-
strate the wide variety of possible scenarios. In particular, we show that if the principal
pth root is not stochastic there may still be a primary stochastic pth root, and if there
is no primary stochastic pth root there may still be a nonprimary stochastic pth root.

Fact 4.1. A stochastic matrix may have no pth root for any p. Consider the stochastic
matrix A = Jn(0) + eneT

n ∈ R
n×n, where Jn(0), n > 2, is an n × n Jordan block with

eigenvalue 0. The ascent sequence (2.4) is easily seen to be n − 1 1s followed by zeros.
Hence by Theorem 2.2, A has no pth root for any p > 1.

Fact 4.2. A stochastic matrix may have pth roots but no stochastic pth root. This is true
for even p because if A is nonsingular and has some negative eigenvalues then it has pth
roots but may have no real pth roots, by Theorem 2.3. An example illustrating this fact
is the stochastic matrix

A =




0.5000 0.3750 0.1250
0.7500 0.1250 0.1250
0.0833 0.0417 0.8750


 , Λ(A) = {1, 3/4,−1/4},

which has pth roots for all p but no real pth roots for any even p.

Fact 4.3. A stochastic matrix may have a stochastic principal pth root as well as a
stochastic nonprimary pth root. Consider the family of 3× 3 stochastic matrices [22]

X(p, x) =




0 p 1− p
x 0 1− x
0 0 1


 ,

where 0 < p < 1 and 0 < x < 1, and let a = px. The eigenvalues of X(p, x) are 1, a1/2,
and −a1/2. The matrix

A = X(p, x)2 =




a 0 1− a
0 a 1− a
0 0 1




is stochastic. But there is another stochastic matrix X̃ that is also a square root of A:

X̃ =




a1/2 0 1− a1/2

0 a1/2 1− a1/2

0 0 1


 .

Note that X̃ is the principal square root of A (and hence a primary square root) while
all members of the family X(p, x) are nonprimary, since A is upper triangular but the
X(p, x) are not.

Fact 4.4. A stochastic matrix may have a stochastic principal pth root but no other
stochastic pth root.

10



The matrix (3.2) provides an example.

Fact 4.5. The principal pth root of a stochastic matrix with distinct, real, positive eigen-
values is not necessarily stochastic.

This fact is easily verified experimentally. For a parametrized example, let

D =




1 0 0
0 α 0
0 0 β


 , P =




1 1 1
1 1 −1
1 −1 0


 , 0 < α, β < 1.

Then the matrix

X = PDP−1 =
1

4




1 + α + 2β 1 + α− 2β 2− 2α
1 + α− 2β 1 + α + 2β 2− 2α

1− α 1− α 2 + 2α


 (4.1)

has unit row sums, and A = PD2P−1 can be obtained by replacing α, β in (4.1) with
α2, β2, respectively. Clearly, X is nonnegative if and only if β ≤ (1 + α)/2 while A is
nonnegative if and only if β ≤ ((1 + α2)/2)1/2. If we let (1 + α)/2 < β ≤ ((1 + α2)/2)1/2

then A is stochastic and its principal square root X = A1/2 is not nonnegative; moreover,
for α = 0.5, β = 0.751 (for example) it can be verified that none of the eight square roots
of A is stochastic.

Fact 4.6. A (row) diagonally dominant stochastic matrix (one for which aii ≥
∑

j 6=i aij

for all i) may not have a stochastic principal pth root.

The matrix A of the previous example serves to illustrate this fact. For α = 0.99,
β = 0.9501,

A =




9.9005× 10−1 9.9005× 10−7 9.9500× 10−3

9.9005× 10−7 9.9005× 10−1 9.9500× 10−3

4.9750× 10−3 4.9750× 10−3 9.9005× 10−1


 , (4.2)

which has strongly dominant diagonal. Yet none of the eight square roots of A is non-
negative.

Fact 4.7. A stochastic matrix whose principal pth root is not stochastic may still have
a primary stochastic pth root. This fact can be seen from the permutation matrices

X =




0 0 1
1 0 0
0 1 0


 , A =




0 1 0
0 0 1
1 0 0


 = X2. (4.3)

The eigenvalues of A are distinct (they are − 1
2 ±

√
3

2 i and 1), so all roots are primary.
The matrix X, which is not the principal square root (X has the same eigenvalues as A),
is easily checked to be the only stochastic square root of A.

11



Fact 4.8. A stochastic matrix with distinct eigenvalues may have a stochastic principal
pth root and a different stochastic primary pth root. As noted in [14, Prob. 1.31], the
symmetric positive definite matrix M with mij = min(i, j) has a square root Y with

yij =

{
0, i + j ≤ n,
1, i + j > n.

For example,



0 0 0 1
0 0 1 1
0 1 1 1
1 1 1 1




2

=




1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4


 .

It is also known that the eigenvalues of M are λk = (1/4) sec(kπ/(2n + 1))2, k = 1:n,
so ρ(M) = (1/4) sec(nπ/(2n + 1))2 =: rn [8]. Since M has all positive elements it has a
positive eigenvector x corresponding to ρ(M) (the Perron vector), and so we can apply
Theorem 3.5 to deduce that the stochastic matrix A = r−1

n D−1MD, where D = diag(x),

has stochastic square root X = r
−1/2
n D−1Y D, and X obviously has the same anti-

triangular structure as Y . Since X is clearly indefinite, it is not the principal square
root. However, since the eigenvalues of M , and hence A, are distinct, all the square
roots of A are primary square roots. The stochastic square root X has ⌈n/2⌉ positive
eigenvalues and ⌊n/2⌋ negative eigenvalues, which follows from the inertia properties of
a 2 × 2 block symmetric matrix—see, for example, Higham and Cheng [15, Thm. 2.1].
However, X is not the only stochastic square root of A, as we now show.

Lemma 4.9. The principal pth root of A = r−1
n D−1MD is stochastic for all p.

Proof. Because the row sums are preserved by the principal pth root, we just have to
show that A1/p is nonnegative, or equivalently that M1/p is nonnegative. It is known
that M−1 is the tridiagonal second difference matrix with typical row [−1 2 − 1], except
that the (n, n) element is 1. Since M−1 has nonpositive off-diagonal elements and M
is nonnegative, M−1 is an M -matrix and it follows from Theorem 3.6 that M1/p is
stochastic for all p.

For n = 4, A and its two stochastic square roots are




0.1206 0.2267 0.3054 0.3473
0.0642 0.2412 0.3250 0.3696
0.0476 0.1790 0.3618 0.4115
0.0419 0.1575 0.3182 0.4825


 =




0 0 0 1.0000
0 0 0.4679 0.5321
0 0.2578 0.3473 0.3949

0.1206 0.2267 0.3054 0.3473




2

=




0.2994 0.2397 0.2315 0.2294
0.0679 0.3908 0.2792 0.2621
0.0361 0.1538 0.4705 0.3396
0.0277 0.1117 0.2626 0.5980




2

.

Fact 4.10. A stochastic matrix without primary stochastic pth roots may have nonpri-
mary stochastic pth roots. Consider the circulant stochastic matrix

A =
1

3




1− 2a 1 + a 1 + a
1 + a 1− 2a 1 + a
1 + a 1 + a 1− 2a


 , 0 < a ≤

1

3
.
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The eigenvalues of A are 1,−a,−a. The four primary square roots X of A are all nonreal,
because in each case the two negative eigenvalues −a and −a are mapped to the same
square root, which means that X cannot have complex conjugate eigenvalues. With
ω = e−2πi/3, we have

A = Q−1DQ, Q =




1 1 1
1 ω ω2

1 ω2 ω


 , D = diag(1,−a,−a).

Let X = Q−1diag(1, ia1/2,−ia1/2)Q. Then

X =
1

3




1 1 + (3a)1/2 1− (3a)1/2

1− (3a)1/2 1 1 + (3a)1/2

1 + (3a)1/2 1− (3a)1/2 1


 ,

which is a stochastic, nonprimary square root of A.

Fact 4.11. A nonnegative pth root of a stochastic matrix is not necessarily stochastic.
Consider the nonnegative but non-stochastic matrix [24]

X =




0 0 2−1/2

0 0 2−1/2

2−1/2 2−1/2 0


 , Λ(X) = {1, 0,−1},

for which

A = X2k ≡




1/2 1/2 0
1/2 1/2 0
0 0 1


 , Λ(A) = {1, 1, 0}

is stochastic. Note that A is its own stochastic pth root for any integer p.

Fact 4.12. A stochastic matrix may have a stochastic pth root for some, but not all, p.

Consider again the matrix

A =




0 1 0
0 0 1
1 0 0




appearing in Fact 4.7. We have A3 = I, which implies A3k+1 = A and (A2)3k+2 = A4 = A
for all nonnegative integers k. Hence A is its own stochastic pth root for p = 3k + 1
and A2 is a stochastic pth root of A for p = 3k + 2. However, Λ(A) = {1, ω, ω} with
ω = e−2πi/3, and the arguments in Section 5 show that A has no stochastic cube root
(since ω lies outside the region Θ3

3 in Figure 5.2). Hence A does not have a stochastic
root for p = 3k.

The stochastic root problem is intimately related to the embeddability problem in
discrete-time Markov chains, which asks when a nonsingular stochastic matrix A can be
written A = eQ for some Q with qij ≥ 0 for i 6= j and

∑
j qij = 0, i = 1:n. Kingman

[21, Prop. 7] shows that this condition holds if and only if for every positive integer p
there exists some stochastic Xp such that A = Xp

p . (Thus the matrices identified in
Theorems 3.6 and 3.7 form two classes of embeddable matrices.) The condition that A
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is embeddable is therefore much stronger than the condition that A has a stochastic pth
root for a particular p. This is emphasized by the following facts, which show that certain
necessary conditions derived in the literature for A to be embeddable are not necessary
for A to have a stochastic pth root for certain p. Moreover, A may of course be singular
in the stochastic root problem, in which case it cannot be the exponential of any matrix.

Fact 4.13. det(A) > 0 is (obviously) necessary for the embeddability of a stochastic
matrix A; it is also necessary for the existence of a stochastic pth root when p is even,
but it is not necessary when p is odd.

The matrix

A =




0 1 0
1 0 0
0 0 1




has det(A) = −1, but A is its own stochastic pth root for any odd p.

Fact 4.14. det(A) ≤
∏

i aii is necessary for the embeddability of A [9, Thm. 6.1], but
it is not necessary for the existence of a stochastic pth root. For example, let A be the
matrix X in (4.3). Then A3 = I, so (A2)2 = A and A has a stochastic square root, but
det(A) = 1 > 0 = a11a22a33.

Fact 4.15. If there is a sequence k0 = i, k1, k2, . . . , km = j such that akℓkℓ+1
> 0 for

each ℓ but aij = 0 then A is not embeddable [10, Sec. 6.10], but it is still possible for A to
have a stochastic pth root for some p. See the matrix A in (4.3), which has a stochastic
root but for which a12 > 0 and a23 > 0, while a13 = 0.

In both the embeddability problem and the stochastic root problem it is difficult to
identify conditions that guarantee the existence of a logarithm or root of the required
form. For some further insight, consider a nonsingular upper triangular stochastic matrix
T , taking n = 3 for simplicity. The equation U2 = T can be solved for U (assumed
upper triangular) a diagonal at a time by a recurrence of Björck and Hammarling [3],

[14, Sec. 6.2]. This gives uii = t
1/2
ii , i = 1: 3 (since we require U nonnegative), ui,i+1 =

ti,i+1/(uii + ui+1,i+1), i = 1: 2, and u13 = (t13 − u12u23)/(t
1/2
11 + t

1/2
33 ). Hence u13 ≥ 0

when

t13 −
t12t23

(t
1/2
11 + t

1/2
22 )(t

1/2
22 + t

1/2
33 )

≥ 0.

If we assume that T is diagonally dominant, which implies tii ≥ 1/2, i = 1, 2, and note
that t33 = 1, we obtain the sufficient condition for nonnegativity that (1 + 21/2)t13 ≥
t12t23. But diagonal dominance alone is not sufficient to ensure nonnegativity. Thus even
for diagonally dominant triangular matrices the stochasticity of the principal square root
depends in a complicated way on the relationships between the matrix entries.

We can also consider general strictly diagonally dominant stochastic matrices, for
which aii > 1/2 for all i. Let m = mini aii and write A = mI + E. Then E ≥ 0 and
Ee = (A−mI)e = (1−m)e, so ‖E‖∞ = 1−m. Hence we can write A = m(I +F ), where
‖F‖∞ = ‖E‖∞/m = (1−m)/m < 1. Then the principal pth root can be expressed as

A1/p = m1/p(I + F )1/p = m1/p
(
I + 1

pF + 1
2!

1
p ( 1

p − 1)F 2 + · · ·
)
.
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Unfortunately, it is difficult to obtain from this expansion useful sufficient conditions for
A1/p ≥ 0. Nonnegativity is guaranteed if all the off-diagonal elements of F are positive
and ‖F‖∞ is sufficiently small, but as the matrix (4.2) shows, “small” here may have to
be very small.

5. Necessary conditions based on inverse eigenvalue problem

Karpelevič [20] has determined the set Θn of all eigenvalues of all stochastic n × n
matrices. This set provides the solution to the inverse eigenvalue problem for stochastic
matrices, which asks when a given complex scalar is the eigenvalue of some n×n stochastic
matrix. (Note the distinction with the problem of determining conditions under which
a set of n complex numbers comprises the eigenvalues of some n × n stochastic matrix,
which is called the inverse spectrum problem by Minc [27].)

The following theorem gives the main points of Karpelevič’s theorem on the charac-
terization of Θn; full details on the “specific rules” mentioned therein can be found in
[20] and [27, Chap. 7, Thm. 1.8].

Theorem 5.1. The set Θn is contained in the unit disk and is symmetric with respect
to the real axis. It intersects the unit circle at points e2iπa/b where a and b range over
all integers such that 0 ≤ a < b ≤ n. The boundary of Θn consists of curvilinear arcs
connecting these points in circular order. Any point λ on these arcs must satisfy one of
the parametric equations

λq(λs − t)r = (1− t)r, (5.1)

(λb − t)d = (1− t)dλq, (5.2)

where 0 ≤ t ≤ 1, and b, d, q, s, r are positive integers determined from certain specific
rules.

The set Θ3 of eigenvalues of 3×3 stochastic matrices consists of points in the interior
and on the boundary of an equilateral triangular of maximal size inscribed in the unit
circle with one of its vertices at the point (1, 0), as well as all points on the segment
[−1, 1]; see Figure 5.1. The boundary of Θ4 consists of curvilinear arcs determined by
the parametric equations λ3 + λ2 + λ + t = 0 and λ3 + λ2− (2t− 1)λ− t2 = 0, 0 ≤ t ≤ 1,
together with line segments linking (1, 0) with (0, 1), and (1, 0) with (0,−1), respectively,
as can also be seen in Figure 5.1.

Denote by Θp
n the set of pth powers of points in Θn, i.e., Θp

n = {λp : λ ∈ Θn}. If
A and X are stochastic n × n matrices such that Xp = A then for any eigenvalue λ of
X, λp is an eigenvalue of A. Hence, a necessary condition for A to have a stochastic
pth root is that all the eigenvalues of A are in the set Θp

n. It can be shown that Θp
n is

a closed set within the unit disk with boundary ∂Θp
n ⊆ {λ

p : λ ∈ ∂Θn}, where ∂Θn is
the boundary of Θn, the points on which satisfy the parametric equation (5.1) or (5.2).
Figure 5.2 shows the second to fifth powers of Θ3 and Θ4.

This approach provides necessary conditions for A to have a stochastic pth root. The
conditions are not sufficient, because we are checking whether each eigenvalue of A is the
eigenvalue of some pth power of a stochastic matrix, and not that every eigenvalue of A
is an eigenvalue of the pth power of the same stochastic matrix.
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Figure 5.1: The sets Θ3 and Θ4 of all eigenvalues of 3× 3 and 4× 4 stochastic matrices, respectively.
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Figure 5.2: Regions obtained by raising the points in Θ3 (left) and Θ4 (right) to the powers 2, 3, 4, and
5.
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Figure 5.3: Θ
p

4
for p = 12 and p = 52 and the spectrum (shown as dots) of A in (5.3).
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To illustrate, consider the stochastic matrix

A =




1/3 1/3 0 1/3
1/2 0 1/2 0

10/11 0 0 1/11
1/4 1/4 1/4 1/4


 . (5.3)

From Figure 5.3 we see that A cannot have a stochastic 12th root, but may have a
stochastic 52nd root. In fact, both A1/12 and A1/52 have negative elements and none of
the 52nd roots is stochastic.

If A ∈ R
n×n is stochastic then so is the matrix diag(A, 1) of order n+1, and it follows

that Θ3 ⊆ Θ4 ⊆ Θ5 ⊆ . . .. Moreover, the number of points at which the region Θn

intersects the unit circle increases rapidly with n; for example, there are 23 intersection
points for Θ8 and 80 for Θ16. As n increases the region Θn and its powers tend to
fill the unit circle, so the necessary conditions given in this section are most useful for
small dimensions. We emphasize, however, that small matrices do arise in practice;
for example, in the model in [4] describing the progression to AIDS in an HIV-infected
population the transition matrix2 is of dimension 5.

6. Conclusions

The existing literature on roots of stochastic matrices emphasizes computational as-
pects at the expense of a careful treatment of the underlying theory. We have used the
theory of matrix functions to develop tools for analyzing the existence of stochastic roots
of stochastic matrices. We have identified two classes of stochastic matrices for which the
principal pth root is stochastic for all p. However, such matrices seem rare, and we have
demonstrated a wide variety of possibilities for existence and uniqueness, in particular
regarding primary versus nonprimary roots. We have also given some necessary spectral
conditions for existence. We hope that as well as providing insight into what makes this

2This matrix has one negative eigenvalue and a square root is required; that no exact stochastic
square root exists follows from Theorem 2.3.
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interesting and practically important problem so difficult our work will prove useful for
further development of theory and algorithms.
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