A 195,747,435 vertex graph related to the Fischer group Fi23, part II

Rowley, Peter and Walker, Louise

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

```
Reports available from: http://eprints.maths.manchester.ac.uk/
    And by contacting: The MIMS Secretary
    School of Mathematics
    The University of Manchester
    Manchester, M13 9PL, UK
```


A 195,747,435 VERTEX GRAPH RELATED TO THE FISCHER GROUP $F i_{23}$,II

Peter Rowley

Louise Walker

School of Mathematics
University of Manchester
Oxford Road
Manchester
M13 9JL
UK

Introduction

In this paper and [6] we complete our investigation, begun in [5], of the structure of the $195,747,435$ vertex $\operatorname{graph} \mathcal{G}$, which is the point line collinearity graph of a certain geometry Γ associated with the Fischer group $F i_{23}$. We continue the section numbering of [5] and refer the reader to Section 2 for the descriptions of \mathcal{G} and the geometry Γ. Our main results are given in Section 1 and the notation we employ is to be found in Section 2. Additionally, Section 2 contains detailed information on the line orbits which is of crucial importance for many of our arguments. Diamonds, a particular configuration in \mathcal{G}, arise frequently - see Section 3 for their definition and properties.

Just as in [5], a denotes a fixed point of \mathcal{G}. Before previewing the contents of this paper, we take stock of our progress so far. As noted in [5] Theorems 2, 3 and 4 have been established. Combining together Lemmas 4.8, 4.15, 4.16, Theorem 4.13 with the definitions in (2.15) we see that Theorems 5,7 and 8 follow. So, in $\Delta_{3}(a)$, we have complete knowledge of the point distribution of the lines in $\Gamma_{1}(x)$ for x in the G_{a}-orbits $\Delta_{3}^{1}(a), \Delta_{3}^{3}(a)$ and $\Delta_{3}^{4}(a)$. Information about $\Delta_{3}^{2}(a)$ is almost complete, only awaiting verification of Lemma 6.6 for Theorem 6 to be proven. The remaining two G_{a}-orbits of $\Delta_{3}(a), \Delta_{3}^{5}(a)$ and $\Delta_{3}^{6}(a)$, are more elusive and a complete picture of them only emerges in [6].

Here, and in [6], we take the scalpel to $\Delta_{4}(a)$, the fourth disc of a. Eventually we shall learn that $\Delta_{4}(a)$ is the union of six G_{a}-orbits $\Delta_{4}^{i}(a)(1 \leq i \leq 6)$. The procedure we adopt in investigating each $\Delta_{4}^{i}(a)$ is first to identify $G_{a x}$, the stabilizer of x in $G_{a}\left(x \in \Delta_{4}^{i}(a)\right)$. An initial step in this is the study of $\{d, x\}^{\perp}$ for certain $d \in \Delta_{3}(a)$. The bound given in Lemma 5.3(ii) is useful in reducing the number of possible cases we must consider. Having pinpointed $G_{a x}$, we then have access to the line orbits and their associated combinatorial descriptions as detailed in Section 2. Then we move on to determine to which G_{a}-orbits the points on lines in $\Gamma_{1}(x)$ belong. It is here that we make great use of the diamonds in \mathcal{G}. Unfortunately, it does not appear to be possible to deal completely with each G_{a}-orbit one at a time. Rather we have to content ourselves with partial information about a particular G_{a}-orbit and then analyse other G_{a}-orbits before it is possible to return to the earlier orbit and refine
the information previously obtained. This neccessity of having to advance on several different fronts simultaneously is particularly marked in $\Delta_{4}(a)$. As a result it is difficult to keep track of what has been proved and where it has been proved. So, in Appendix B (at the end of [6]) we list the results giving the point line distribution for each $G_{a x}$-orbit of $\Gamma_{1}(x), x \in \Delta_{3}(a) \cup \Delta_{4}(a)$. In passing we mention that there is an Appendix A (also at the end of [6]) in which we itemize all heptads having a certain property - this is called upon in Lemmas 8.1, 8.6, 8.8 and 12.1.

The first section of this paper contains some general observations about \mathcal{G} - Lemmas 5.4-5.6 are frequently deployed, along with various numerical data, to transfer information from one G_{a}-orbit to another. In Section 6 we begin analysing $\Delta_{4}^{1}(a)$ - there we uncover the structure of $G_{a x}\left(x \in \Delta_{4}^{1}(a)\right)$ and are able to tidy up certain matters relating to $\Delta_{3}^{2}(a)$ and $\Delta_{3}^{5}(a)$. However certain issues involving $\Delta_{4}^{1}(a)$ are not resolved before, in the following section, we next look at $\Delta_{4}^{2}(a)$. In the long Section 8 we consider $\Delta_{4}^{4}(a)$ obtaining a great deal of data about this orbit (though we cannot settle the orbits $\alpha_{5}(x$, END,+$)$, $\alpha_{5}(x$, END,-$)$ here, $\left.x \in \Delta_{4}^{4}(a)\right)$ as well as reconsidering (and finishing) $\Delta_{4}^{2}(a)$. The last three G_{a}-orbits of $\Delta_{4}(a), \Delta_{4}^{3}(a), \Delta_{4}^{5}(a)$ and $\Delta_{4}^{6}(a)$, plus unfinished business with the orbits $\Delta_{4}^{1}(a)$ and $\Delta_{4}^{4}(a)$ are the subject of [6].

We end this introduction with some remarks on our labelling conventions for points in \mathcal{G}. Usually we use x to denote the point of \mathcal{G} we are currently most interested in. Additionally, whenever possible, we use the letters b (or b_{i}, b^{\prime}), c (or c_{i}, c^{\prime}) for points of \mathcal{G} in, respectively, $\Delta_{1}(a), \Delta_{2}(a)$; and $d, e\left(\right.$ or d_{i}, d^{\prime}, e_{i}, $\left.e^{\prime}\right)$ for points in $\Delta_{3}(a)$.

5 Preliminary observations on $\Delta_{4}(a)$

We begin by showing that the sets $\Delta_{4}^{i}(a)$ defined in (2.15) are, in fact, all in $\Delta_{4}(a)$. Then, in the next result we verify that each $\Delta_{4}^{i}(a)$ is a G_{a}-orbit.

Lemma 5.1. (i) Let $x \in \Gamma_{0}$. If $\Gamma_{3}(a, x) \neq \emptyset$, then $d(a, x) \leq 3$.
(ii) If $x \in \Delta_{4}^{i}(a), i \in\{1, \ldots, 6\}$, then $d(a, x)=4$ (and so $\Gamma_{3}(a, x)=\emptyset$).

Proof. Part (i) follows directly from [3;Appendix 1]. Turning to part (ii), let $i=1$ and assume that $d(a, x) \leq 3$, and argue for a contradiction. By (2.15) there exists $d \in \Delta_{3}^{1}(a) \cap \Delta_{1}(x)$ such that $d+x \in \alpha_{0}(d, D(d, a))$. If $x \in \Delta_{2}(a)=$ $\Delta_{2}^{1}(a) \cup \Delta_{2}^{2}(a)$, then $x \in \Gamma_{0}(X)$ for each $X \in D(d, a)$ by Lemma 4.3(i). While $x \in \Delta_{3}^{1}(a) \cup \Delta_{3}^{2}(a) \cup \Delta_{3}^{3}(a) \cup \Delta_{3}^{4}(a) \cup \Delta_{3}^{5}(a) \cup \Delta_{3}^{6}(a)$ also yields, using Lemmas 4.15 and 4.16, that $x \in \Gamma_{0}(X)$ for each $X \in D(d, a)$. This contradicts $d+x \in$ $\alpha_{0}(d, D(d, a))$. Therefore, by Lemma 4.7, $d(a, x)=4$. Likewise we may establish (ii) for $i=2, \ldots, 6$.

Lemma 5.2. For $i \in\{1, \ldots, 6\}, \Delta_{4}^{i}(a)$ is a G_{a}-orbit.
Proof. Suppose $i=1$. Then by (2.15) there must be a $d \in \Delta_{3}^{1}(a) \cap \Delta_{1}(x)$ such that $d+x \in \alpha_{0}(d, D(d, a))$. Now by Lemma 4.8(i) $G_{a d}^{* d} \sim L_{3}(4) 2$ and by (2.4), $\alpha_{0}(d, D(d, a))$ is a $G_{a d}$-orbit. Combining this with Lemmas 3.2 and 4.4 shows that $\Delta_{4}^{1}(a)$ is a G_{a}-orbit. Similar considerations, using (2.3), (2.5) and (2.6), deal with the other cases.

We make frequent use of our next lemma - part (ii) is particularly valuable in determining the size of $\Delta_{1}(x) \cap \Delta_{3}(a)$ for various $x \in \Delta_{4}(a)$.

Lemma 5.3. Let $x \in \Delta_{4}(a)$ and $d_{1}, d_{2} \in \Delta_{3}(a) \cap \Delta_{1}(x)$, with $d_{1} \neq d_{2}$.
(i) If $X_{i} \in \Gamma_{3}\left(a, d_{i}\right)$ for $i=1,2$, then $X_{1} \neq X_{2}$.
(ii) $\left|\Delta_{1}(x) \cap \bigcup_{i=1}^{4} \Delta_{3}^{i}(a)\right| \leq 23$.

Proof. Let $X_{i} \in \Gamma_{3}\left(a, d_{i}\right), i=1,2$. If $X_{1}=X_{2}$, then Lemma 3.6 implies that $\Gamma_{3}(a, x) \neq \emptyset$, contradicting Lemma 5.1(ii). Thus (i) holds. Since $\left|\Gamma_{3}(a)\right|=23$ and $\Gamma_{3}(a, d) \neq \emptyset$ for $d \in \bigcup_{i=1}^{4} \Delta_{3}^{i}(a)$, (ii) follows from (i).

The following three results are all variations upon the same theme - these results aid us in identifying to which $G_{a x^{\prime} \text {-orbit } l}\left(\in \Gamma_{1}\left(x^{\prime}\right)\right)$ belongs, using information about $\Gamma_{1}(x)$, where $x \in \Gamma_{0}(l) \backslash\left\{x^{\prime}\right\}$.

Lemma 5.4. Let Λ and Λ^{\prime} be distinct G_{a}-orbits of \mathcal{G} and let $x \in \Lambda, x^{\prime} \in \Lambda^{\prime}$ be such that $d\left(x, x^{\prime}\right)=1$. If $\Delta_{1}(x) \cap \Lambda^{\prime}$ is a $G_{a x}$-orbit, then $\Lambda_{1}\left(x^{\prime}\right) \cap \Lambda$ is a $G_{a x^{\prime}-\text { orbit }}$ and

$$
\left|\Delta_{1}\left(x^{\prime}\right) \cap \Lambda\right|=\left[G_{a x^{\prime}}: G_{a x^{\prime} x}\right]=\frac{|\Lambda|}{\left|\Lambda^{\prime}\right|}\left|\Delta_{1}(x) \cap \Lambda^{\prime}\right|
$$

Proof. See [Lemma 3.6; 4].

Lemma 5.5. Suppose that Λ and Λ^{\prime} are distinct G_{a}-orbits of \mathcal{G} and let $x \in \Lambda$, $x^{\prime} \in \Lambda^{\prime}$ be such that $d\left(x, x^{\prime}\right)=1$. Let \mathcal{O}_{x} be the $G_{a x}$-orbit of $\Gamma_{1}(x)$ which contains $x+x^{\prime}$, and put $L=\bigcup\left\{\mathcal{O}_{x}^{g} \mid g \in G_{a}\right\}$. If $\Gamma_{0}\left(x+x^{\prime}\right) \nsubseteq \Lambda \cup \Lambda^{\prime}$, then
(i) $\Gamma_{1}\left(x^{\prime}\right) \cap L$ is a $G_{\text {ax }}$-orbit of $\Gamma_{1}\left(x^{\prime}\right)$; and
(ii) $\left|\Gamma_{1}\left(x^{\prime}\right) \cap L\right|=\frac{\left|\mathcal{O}_{x}\right||\Lambda|}{\left|\Lambda^{\prime}\right|}$.

Proof. See [Lemma 3.7;4]
Lemma 5.6. Suppose that Λ and Λ^{\prime} are distinct G_{a}-orbits of \mathcal{G} and let $x \in \Lambda$, $x^{\prime} \in \Lambda^{\prime}$ be such that $d\left(x, x^{\prime}\right)=1$. Assume that $\left|\Gamma_{0}\left(x+x^{\prime}\right) \cap \Lambda\right|=1$ and $\left|\Gamma_{0}\left(x+x^{\prime}\right) \cap \Lambda^{\prime}\right|=2$ and that there exists $t \in G_{a}$ such that t interchanges the two points in $\Gamma_{0}\left(x+x^{\prime}\right) \cap \Lambda^{\prime}$. Let \mathcal{O}_{x} and $\mathcal{O}_{x^{\prime}}^{\prime}$ be, respectively, the $G_{a x}$ (respectively $G_{\text {ax' }}$)-orbit of $\Gamma_{1}(x)$ (respectively $\left.\Gamma_{1}\left(x^{\prime}\right)\right)$ containing $x+x^{\prime}$ (respectively $x^{\prime}+x$). Set $L=\bigcup\left\{\mathcal{O}_{x}^{g} \mid g \in G_{a}\right\}$ and $L^{\prime}=\bigcup\left\{\mathcal{O}_{x^{\prime}}^{\prime}{ }^{g} \mid g \in G_{a}\right\}$. Then $\Gamma_{1}\left(x^{\prime}\right) \cap L=\mathcal{O}_{x^{\prime}}^{\prime}$, $\Gamma_{1}(x) \cap L^{\prime}=\mathcal{O}_{x}$ and therefore $L=L^{\prime}$. Moreover,

$$
2\left|\mathcal{O}_{x} \| \Lambda\right|=\left|\mathcal{O}_{x^{\prime}}^{\prime}\right|\left|\Lambda^{\prime}\right|
$$

Proof. See [Lemma 3.8; 4]
We conclude this section with a result which determines the point distribution of the $G_{a x}^{* x}$-orbits on $\Gamma_{1}(x)$ of size 40 , for $x \in \Delta_{3}^{5}(a)$. Representatives of these two orbits were not given in (2.7) because they are indistinguishable when only viewed in Γ_{x}. So let $x \in \Delta_{3}^{5}(a),\{c\}=\Delta_{1}(x) \cap \Delta_{2}^{2}(a)$ and $\{b\}=\Delta_{1}(a) \cap \Delta_{2}^{2}(x)$ (the existence of c and b follows from Lemmas 3.8(i) and 4.11(i)). Recall that $G_{a x}^{* x}\left(\sim 2^{4} A_{5}\right)$ is the stabilizer in $G_{a x}^{* x}\left(\cong M_{23}\right)$ of the hexad $x+c$ and the element $X(x, b)$ of Ω_{x}. The orbits of $G_{a x}^{* x}$ on $\Gamma_{1}(x)$ are described in (2.7).

Lemma 5.7. Let $l \in \alpha_{3}(x, x+c,-)$ and $\Gamma_{0}(l)=\left\{x, y, y^{\prime}\right\}$. Then the possibilities $\{c, y\}^{\perp} \cap \Delta_{3}^{2}(a) \neq \emptyset$ and $\{c, y\}^{\perp} \cap \Delta_{3}^{2}(a)=\emptyset$ both occur. Further, the following hold.
(i) If $\{c, y\}^{\perp} \cap \Delta_{3}^{2}(a) \neq \emptyset$, then $\left|\Gamma_{0}(l) \cap \Delta_{4}^{3}(a)\right|=2$.
(ii) If $\{c, y\}^{\perp} \cap \Delta_{3}^{2}(a)=\emptyset$, then either $y \in \Delta_{4}^{5}(a), y^{\prime} \in \Delta_{4}^{6}(a)$ or $y^{\prime} \in \Delta_{4}^{5}(a)$, $y \in \Delta_{4}^{6}(a)$.

Proof. In order to work concretely in Ω_{c}, we take

$$
\left.c+b=\begin{array}{|l|l|l|l|l|l|l|}
\hline & \times \\
\times & \times \\
\times & \times \\
\times & \times
\end{array} \right\rvert\, \quad \text { and } \quad X(c, a)=\begin{array}{|l|l|l|}
\hline & \circ & \\
\hline
\end{array}
$$

Since $c+x \in \alpha_{1,0}(c, c+b, X(c, a))$ and $\alpha_{1,0}(c, c+b, X(c, a))$ is a $G_{a c}$-orbit, we may assume

$$
c+x=\begin{array}{|l|l|l|l|}
\hline & & & \times \\
\hline & & & \\
& \times & & \\
& \times & \times & \times \\
\hline
\end{array}
$$

Let $c+e$ be a heptad with $c+e \in \alpha_{3}(c, c+x)$ and let $z \in\{x, e\}^{\perp} \backslash\{c\}$. If we choose $c+e$ so as $(c+b) \cap(c+x)(=X(x, b))$ is not in $(c+x) \cap(c+e)=T(c, z)$, then $x+z \in \alpha_{3}(x, x+c,-)$. Choosing
we observe, courtesy of Theorem 4, that $e \in \Delta_{3}^{2}(a)$. Thus we have $\{c, z\}^{\perp} \cap$ $\Delta_{3}^{2}(a) \neq \emptyset$ with $x+z \in \alpha_{3}(x, x+c,-)$. If, instead, we chose

$$
c+e=\begin{array}{|l|l|ll|ll|}
\hline & \times & & & \times & \\
\hline & & & & & \\
& & & & & \\
& & & & & \\
& & \times & & & \\
\end{array}
$$

then, again using Theorem 4, we see that we have an instance of $\{c, z\}^{\perp} \cap$ $\Delta_{3}^{2}(a)=\emptyset$ with $x+z \in \alpha_{3}(x, x+c,-)$. We now move on to consider (i) and (ii).

Let $X=X(x, b)$, the unique hyperplane in $\Gamma_{3}(c+b, c+x)$. Also let $d \in$ $\{c, y\}^{\perp} \backslash\{x\}$ where, for part (i) we further suppose that $d \in \Delta_{3}^{2}(a)$. So we have

where $\Gamma_{0}(c+d)=\left\{c, d^{\prime}, d\right\}$. We first prove part (i). Since $d \in \Delta_{3}^{2}(a)$, by Theorem $4 b \in \Delta_{2}^{1}(d)$. Because $l=x+y \in \alpha_{3}(x, x+c,-), X \notin \Gamma_{3}(x+y)$. So, in particular, $X \notin T(c, y)$. In Ω_{c} we have

$$
(c+b) \cap T(c, y) \subseteq(c+b) \cap(c+x)=\{X\}
$$

whence we deduce that $(c+b) \cap T(c, y)=\emptyset$. Since $T(d, b) \subseteq c+b$ and $T(d, x)=$ $T(c, y),\left(\right.$ in $\left.\Omega_{c}\right)$

$$
T(d, b) \cap T(d, x) \subseteq(c+b) \cap T(c, y)=\emptyset
$$

From Theorem 4.13(iv), in $\Omega_{d},|(d+c) \cap O(d, a)|=4$ and $O(d, a) \cap T(d, b)=\emptyset$. So $d+c=((d+c) \cap O(d, a)) \dot{\cup} T(d, b)$. Then $T(d, x) \subseteq d+c$ and $T(d, b) \cap T(d, x)=\emptyset$ force $T(d, x) \subseteq O(d, a)$. Consequently $|(d+y) \cap O(d, a)|=4$. From $X(d, a) \in$ $T(d, b), T(d, b) \subseteq d+c$ and $T(d, b) \cap T(d, x)=\emptyset$ (in Ω_{d}) we also note that $y \notin \Gamma_{0}(X(d, a))$. Therefore $y \in \Delta_{4}^{3}(a)$ by definition (see (2.15)(xi)). Since $d^{\prime} \in \Delta_{3}^{2}(a)$ by Theorem 4 and $y^{\prime} \in \Delta_{1}\left(d^{\prime}\right)$ by Lemma 3.10 , similarly we have $y^{\prime} \in \Delta_{4}^{3}(a)$, and this proves part (i).

For part (ii), as $c+x \notin \Gamma_{1}(X(c, a))$, by Lemma 3.11(ii) we may suppose d is chosen so that $\Gamma_{3}(a, d) \neq \emptyset$. By assumption $d \notin \Delta_{3}^{2}(a)$ and hence, by Theorem 4 we may assume, without loss of generality, that $d \in \Delta_{3}^{3}(a)$ and $d^{\prime} \in \Delta_{3}^{4}(a)$.

From $\Gamma_{3}(a, x)=\emptyset$ and Lemma 3.6 we see that $y, y^{\prime} \notin \Gamma_{0}(X(d, a))$ because $X(d, a)=X(c, a)$. Using Lemma 3.10, $y \in \Delta_{4}^{6}(a)$ and $y^{\prime} \in \Delta_{4}^{5}(a)$ by definition (see (2.15)). This completes the proof of the lemma.

By Lemma 5.7 we can distinguish between the two $G_{a x}^{* x}$-orbits of size 40 on $\Gamma_{1}(x)$ by observing the configuration at c. The set of lines in $\alpha_{3}(x, x+$ $c,-)$ satisfying part (i) of Lemma 5.7 will be labelled $\alpha_{3}^{(1)}(x, x+c,-)$ and the remaining lines in $\alpha_{3}(x, x+c,-)$, (satisfying part (ii)) will be labelled $\alpha_{3}^{(2)}(x, x+$ $c,-)$.

6 A first look at $\Delta_{4}^{1}(a)$

In this section we begin our investigation of the point distribution of lines in $\Gamma_{1}(x)$ for $x \in \Delta_{4}(a)$. Some of this comes as easy corollaries of results about lines incident with points in $\Delta_{3}(a)$.

For the whole of this section we assume $x \in \Delta_{4}^{1}(a)$. By definition (see (2.15)) $\Delta_{1}(x) \cap \Delta_{3}^{1}(a) \neq \emptyset$. We first show that this set has a unique point.

Lemma 6.1. $\left|\Delta_{1}(x) \cap \Delta_{3}^{1}(a)\right|=1$.
Proof. For a contradiction assume that $d_{1}, d_{2} \in \Delta_{1}(x) \cap \Delta_{3}^{1}(a)$ with $d_{1} \neq d_{2}$. Hence $D\left(a, d_{1}\right) \cap D\left(a, d_{2}\right)=\emptyset$ by Lemma 5.3(i). Let $X \in \Gamma_{3}\left(a, d_{1}\right)$ and $Y \in \Gamma_{3}\left(a, d_{2}\right)$. So, in Ω_{a}, X is an element of $D\left(a, d_{1}\right)$ and Y is an element of $D\left(a, d_{2}\right)$. If $\tau:=\tau(X)$ then $x^{\tau} \neq x$ by Lemma 3.2. Since $\tau \in Q(a), d_{2}^{\tau} \in \Gamma_{0}(Y)$ and we have

where $d_{2} \neq d_{2}^{\tau}$ by Lemma 3.4. Furthermore $d_{2}^{\tau} \in \Delta_{1}\left(d_{2}\right)$ by Lemma 4.1 because
$x, x^{\tau} \notin \Gamma_{0}(Y)$. If $\Gamma_{0}\left(d_{2}+d_{2}^{\tau}\right)=\left\{d_{2}, c, d_{2}^{\tau}\right\}$ then $c \in \Delta_{2}^{1}(a)$ by Lemma 4.16 and [3;Appendix 1]. However Lemma 3.10 implies that $c \in \Delta_{1}\left(d_{1}\right)$ and so, in $\Omega_{a}, D\left(a, d_{1}\right) \cup D\left(a, d_{2}\right) \subseteq T(a, c)$ by Theorem 4.13(iii). But then $D\left(a, d_{1}\right) \cap$ $D\left(a, d_{2}\right) \neq \emptyset$, a contradiction.

Lemma 6.2. (i) $\left|\Delta_{4}^{1}(a)\right|=2^{13}$.3.5.11.23.
(ii) $G_{a x}^{* a} \sim L_{3}(2) .2$ and $Q(a)_{x} \cong 2$.

Proof. By Lemma 6.1 we have $\{d\}=\Delta_{3}^{1}(a) \cap \Delta_{1}(x)$ for some $d \in \Gamma_{0}$. Then $\left|\Delta_{1}(d) \cap \Delta_{4}^{1}(a)\right|=240$ by (2.4) and (2.15). Taking this together with Lemmas 4.8(i) and 6.1 we get

$$
\left|\Delta_{4}^{1}(a)\right|=240 \times 2^{9} .11 .23=2^{13} .3 .5 .11 .23
$$

For part (ii), Lemma 6.1 implies that $G_{a x} \leq G_{a d}$. By Lemma 4.8(i) $Q(a)_{d} \cong$ 2^{2}. In fact, $Q(a)_{d}=Q(d)_{a}=\left\langle\tau\left(Y_{1}\right), \tau\left(Y_{2}\right)\right\rangle$ where $\left\{Y_{1}, Y_{2}\right\}=\Gamma_{3}(a, d)$. Also $x^{\tau\left(Y_{i}\right)} \neq x$ by Lemma 3.2 because $x \notin \Gamma_{0}\left(Y_{i}\right)(i=1,2)$. However $\tau\left(Y_{1}\right) \tau\left(Y_{2}\right) \in$ $G_{a x}$, whence $Q(a)_{x}=\left\langle\tau\left(Y_{1}\right) \tau\left(Y_{2}\right)\right\rangle \cong 2$. Since $\left[G_{a d}: G_{a x}\right]=240$ we then have $\left[G_{a d}^{* a}: G_{a x}^{* a}\right]=120$. Examining the maximal subgroups of $G_{a d}^{* a}\left(\sim L_{3}(4) 2\right)$ using [1] we see that $G_{a x}^{* a} \sim L_{3}(2) .2$ is the only possibility.

The next result shows that x is collinear with points in other $\Delta_{3}(a) G_{a}$ orbits.

Lemma 6.3. (i) $\left|\Delta_{1}(x) \cap \Delta_{3}^{2}(a)\right|=7$.
(ii) Let $e \in \Delta_{1}(x) \cap \Delta_{3}^{2}(a)$. Then $e+x \in \alpha_{2,0}(e, O(e, a), X(e, a))$.

Proof. Let $\{d\}=\Delta_{1}(x) \cap \Delta_{3}^{1}(a)$. By considering the set of 21 heptads $\{d+c \mid$ $\left.c \in \Delta_{2}^{1}(a) \cap \Delta_{1}(d)\right\}$ in Γ_{d} we see there exists $c \in \Delta_{2}^{1}(a) \cap \Delta_{1}(d)$ with $c \in \Delta_{2}^{1}(x)$. Since $\Gamma_{3}(a, x)=\emptyset, T(c, a) \cap T(c, x)=\emptyset$ in Ω_{c}. Hence there exists $e \in\{c, x\}^{\perp}$ such that $|(c+e) \cap T(c, a)|=1$ or 3 in Ω_{c}. Since $x \in \Delta_{4}(a)$ we must have $|(c+e) \cap T(c, a)|=1$ by Theorem 3, whence, again by Theorem $3, e \in \Delta_{3}^{2}(a)$. Thus $\Delta_{1}(x) \cap \Delta_{3}^{2}(a) \neq \emptyset$.

Let e be any point in $\Delta_{1}(x) \cap \Delta_{3}^{2}(a)$. Then we have $e+x \in \alpha_{i, 0}(e, O(e, a), X(e, a))$ for some $i=0,2$ or 4 by (2.5) because $\Gamma_{3}(a, x)=\emptyset$. Moreover, by Lemma 3.2 $\tau(X(e, a))$ interchanges the two points in $\Gamma_{0}(e+x) \backslash\{e\}$. If $e+x \in \alpha_{0,0}(e, O(e, a), X(e, a))$, then we may use (2.5) and Lemma 5.6 to show that $x+e$ lies in a $G_{a x}$-orbit on $\Gamma_{1}(x)$ of size

$$
\frac{2.8 \cdot\left|\Delta_{3}^{2}(a)\right|}{\left|\Delta_{4}^{1}(a)\right|}=\frac{16 \cdot 2^{8} \cdot 3 \cdot 5 \cdot 11 \cdot 23}{2^{13} \cdot 3 \cdot 5 \cdot 11 \cdot 23}=\frac{1}{2}
$$

which is clearly impossible. Similarly if $e+x \in \alpha_{4,0}(e, O(e, a), X(e, a))$, then $x+e$ lies in a $G_{a x}$-orbit of size

$$
\frac{2 \cdot 56 \cdot\left|\Delta_{3}^{2}(a)\right|}{\left|\Delta_{4}^{1}(a)\right|}=\frac{112 \cdot 2^{8} \cdot 3 \cdot 5 \cdot 11 \cdot 23}{2^{13} \cdot 3 \cdot 5 \cdot 11 \cdot 23}=\frac{7}{2}
$$

which is again untenable. Therefore $e+x \in \alpha_{2,0}(e, O(e, a), X(e, a))$ which proves part (ii). Part (i) now follows from part (ii) using Lemmas 4.8(ii) and 6.2(i).

Lemma 6.4. $a \in \Delta_{4}^{1}(x)$.
Proof. By Lemma 6.3 we can choose $e \in \Delta_{3}^{2}(a) \cap \Delta_{1}(x)$ and we have $e+x \in$ $\alpha_{2,0}(e, O(e, a), X(e, a))$. Let $e+x=$

		\times	\times
\times	\times	\times	
\times			
\times			

Put $\{b\}=\{a, c\}^{\perp}$. Then $b \in \Delta_{2}^{1}(e)$ by Theorem 4 and $T(e, b) \cap O(e, a)=\emptyset$ in Ω_{e} by Theorem 4.13(iv). Hence $|T(e, b) \cap T(c, x)|=2$ in Ω_{e}, which implies that $b \in \Delta_{3}^{1}(x)$ by Lemma 4.14(i). Since $d(a, x)=4$, the result now follows from Theorem 5.

The following result gives an explicit geometric description of the group $G_{a x}^{* x}$.
Lemma 6.5. Let $b \in \Delta_{1}(a) \cap \Delta_{3}^{1}(x)$ and $d \in \Delta_{3}^{1}(a) \cap \Delta_{1}(x)$. Then $D(x, b) \cap$ $(x+d)=\emptyset$ in Ω_{x} and $G_{a x}^{* a}$ is the stabilizer in $G_{x}^{* x}\left(\cong M_{23}\right)$ of the heptad $x+d$ and the duad $D(x, b)$.

Proof. First we note that b and d are the unique points in $\Delta_{1}(a) \cap \Delta_{3}^{1}(x)$ and $\Delta_{3}^{1}(a) \cap \Delta_{1}(x)$ respectively by Lemmas 6.1 and 6.4. Therefore $G_{a x}^{* x}$ is contained in the stabilizer of $x+d$ and $D(x, b)$ in $G_{x}^{* x}$. Let $\Gamma_{0}(x+d)=\left\{x, x^{\prime}, d\right\}$. Assume that $D(x, b) \cap(x+d) \neq \emptyset$ and let $D(x, b)=\left\{X_{1}, X_{2}\right\}$. Suppose that $X_{1} \in \Gamma_{3}(x+d)$ and $X_{2} \notin \Gamma_{3}(x+d)$. Then $\tau:=\tau\left(X_{1}\right) \tau\left(X_{2}\right)$ fixes a and interchanges d and x^{\prime} by Lemma 3.2. However $x^{\prime} \in \Delta_{4}^{1}(a)$ by definition (see (2.15)), which gives a contradiction. Hence $X_{1}, X_{2} \in \Gamma_{3}(x+d)$. So Theorem 5 implies that either $d \in \Delta_{2}^{1}(b)$ or $x^{\prime} \in \Delta_{2}^{1}(b)$. Since $x^{\prime} \in \Delta_{4}(a)$ we must have $d \in \Delta_{2}^{1}(b)$. By Theorem $3\left|\Gamma_{3}(a, b, d)\right|=\left|\Gamma_{3}(x, b, d)\right|=2$ because $a \in \Delta_{3}^{1}(d)$ and $x \in \Delta_{3}^{1}(b)$. Therefore $\Gamma_{3}(a, x) \neq \emptyset$ because $\left|\Gamma_{3}(b, d)\right|=3$. We now have a contradiction to Lemma 5.1(ii) and thus we conclude that $D(x, b) \cap(x+d)=\emptyset$. In M_{23} the stabilizer of a heptad and a duad disjoint from the heptad is isomorphic to $L_{3}(2) .2$. Therefore the result now follows by Lemma 6.2(ii).

We are now in a position to describe the $G_{a x}$-orbits of $\Gamma_{1}(x)$ by their intersection with $D(x, b)$ (denoted by DUAD) and the heptad $x+d$ (where $\{d\}=\Delta_{3}^{1}(a) \cap \Delta_{1}(x)$ and $\left.\{b\}=\Delta_{1}(a) \cap \Delta_{3}^{1}(x)\right)$. These orbits are listed in (2.9) (with b there playing the role of d).

Lemma 6.6. Let $\{d\}=\Delta_{3}^{1}(a) \cap \Delta_{1}(x)$ and $\{b\}=\Delta_{1}(a) \cap \Delta_{3}^{1}(x)$.
(i) If $l \in \alpha_{3,2}\left(x, x+d\right.$, DUAD), then $\left|\Gamma_{0}(l) \cap \Delta_{3}^{2}(a)\right|=1$ and $\left|\Gamma_{0}(l) \cap \Delta_{4}^{1}(a)\right|=$ 2.
(ii) Let $e \in \Delta_{3}^{2}(a) \cap \Delta_{1}(x)$. Then $e+x \in \alpha_{2,0}(e, O(e, a), X(e, a))$ if and only if $x+e \in \alpha_{3,2}(x, x+d$, DUAD $)$.
(iii) If $l \in \alpha_{3,0}^{\mathfrak{L}}(x, x+d, \mathrm{DUAD})$, then $\left|\Gamma_{0}(l) \cap \Delta_{3}^{6}(a)\right|=1$ and $\left|\Gamma_{0}(l) \cap \Delta_{4}^{1}(a)\right|=$ 2.
(iv) If $l \in \alpha_{1,2}(x, x+d, \mathrm{DUAD})$, then $\left|\Gamma_{0}(l) \cap \Delta_{3}^{6}(a)\right|=1$ and $\left|\Gamma_{0}(l) \cap \Delta_{4}^{1}(a)\right|=$ 2.

Proof. Let $e \in \Delta_{3}^{2}(a) \cap \Delta_{1}(x)$. For $y \in \Delta_{4}^{1}(a) \cap \Delta_{1}(e)$ we have $e+y \in \alpha_{2,0}$ $(e, O(e, a), X(e, a))$ by Lemma 6.3(ii). So, by Lemma 3.2, $\left|\Gamma_{0}(e+y) \cap \Delta_{3}^{2}(a)\right|=1$ and $\left|\Gamma_{0}(e+y) \cap \Delta_{4}^{1}(a)\right|=2$ and therefore, by (2.5), $\Delta_{1}(e) \cap \Delta_{4}^{1}(a)$ is a $G_{a e^{-}}$ orbit. Consequently, using Lemma 5.4, $\Delta_{1}(x) \cap \Delta_{3}^{2}(a)$ is a $G_{a x}$-orbit whence, by Lemma 6.3(i) and (2.9), $\left\{x+e^{\prime} \mid e^{\prime} \in \Delta_{3}^{2}(a)\right\}=\alpha_{3,2}(x, x+d$, DUAD). This proves parts (i) and (ii).

For (iii), let $c \in \Delta_{2}^{1}(a) \cap \Delta_{1}(d)$. Since $\Gamma_{3}(a, x)=\emptyset$, there exist $e_{1}, e_{2} \in$ $\{c, x\}^{\perp} \backslash\{d\}$ with $e_{1} \in \Delta_{3}^{6}(a)$ and $e_{2} \in \Delta_{3}^{2}(a)$. We have

where $\Gamma_{0}(c+d)=\left\{c, d^{\prime}, d\right\}$ and $\Gamma_{0}\left(x+e_{1}\right)=\left\{x, e_{1}^{\prime}, e_{1}\right\}$. Since $\left(x+e_{1}\right) \cap(x+d)=$ $T(x, c)=\left(x+e_{2}\right) \cap(x+d),(x+d) \cap \mathrm{DUAD}=\emptyset$ and $\left|\left(x+e_{2}\right) \cap \mathrm{DUAD}\right|=2$ in $\Gamma_{x}, x+e_{1} \in \alpha_{3,0}^{\mathfrak{R}}(x, x+d, \mathrm{DUAD}$) by definition (see (2.9)). We have $e_{1}^{\prime} \in \Delta_{1}\left(d^{\prime}\right)$ by Lemma 3.10. Therefore Theorem 4.13 and (2.15) imply that $e_{1}^{\prime} \in \Delta_{2}^{1}(a) \cup \Delta_{3}^{1}(a) \cup \Delta_{3}^{3}(a) \cup \Delta_{4}^{1}(a)$ because $d^{\prime} \in \Delta_{3}^{1}(a)$. However $e_{1} \in \Delta_{3}^{6}(a)$ and $x \in \Delta_{4}^{1}(a)$ which means that $e_{1}^{\prime} \notin \Delta_{2}^{1}(a) \cup \Delta_{3}^{1}(a) \cup \Delta_{3}^{3}(a)$ by Lemmas 4.15 and 5.1(ii). This proves part (iii).

Finally we turn to part (iv). Let $c \in \Delta_{2}^{1}(x) \cap \Delta_{1}(b)$ (c exists by Theorem 4.13(iii)). For each $y \in\{c, x\}^{\perp}, y \in \Delta_{2}^{1}(b)$ and the heptad $x+y$ contains $D(x, b)(=\mathrm{DUAD})$ in Ω_{x}. Therefore $a \in \Delta_{3}^{i}(y)$ for $i=1,2$ or 6 and using symmetry (see Lemma 4.12) $y \in \Delta_{3}^{i}(a)$ for $i=1,2$ or 6 . Since $\Gamma_{3}(a, x)=\emptyset$, $\Gamma_{3}(T(c, x)) \cap \Gamma_{3}(a)=\emptyset$. Thus there exists $\mathrm{y} \in\{c, x\}^{\perp}$ with $\mathrm{y} \in \Delta_{3}^{6}(a)$. By (2.9) and part (i), $x+y \in \alpha_{1,2}(x, x+d$, DUAD) because $x+y$ contains DUAD in Ω_{x}. Let $\Gamma_{0}(x+y)=\left\{x, y^{\prime}, y\right\}$. Then $b \in \Delta_{3}^{1}\left(y^{\prime}\right)$. Note that $\Gamma_{3}\left(a, y^{\prime}\right)=\emptyset$, for otherwise we have $X \in \Gamma_{3}\left(a, y^{\prime}\right)$ with $X \notin \Gamma_{3}\left(y^{\prime}+x\right)$. But then $\tau(X)$ interchanges y and x by Lemma 3.2, which is impossible as $y \in \Delta_{3}(a)$ and $x \in \Delta_{4}(a)$. Hence $a \in \Delta_{4}^{1}\left(y^{\prime}\right)$ by the definition of $\Delta_{4}^{1}\left(y^{\prime}\right)$. Appealing to Lemma 6.4 completes the proof of part (iv) and hence of the lemma.

We return, temporarily, to the orbit $\Delta_{3}^{5}(a)$ - the information given in our next result is required in Lemma 6.8.

Lemma 6.7. Let $z \in \Delta_{3}^{5}(a)$ and $l \in \alpha_{3}\left(z, z+c,+\right.$) (where $\{c\}=\Delta_{1}(z) \cap \Delta_{2}^{2}(a)$). Then $\left|\Gamma_{0}(l) \cap \Delta_{4}^{1}(a)\right|=\left|\Gamma_{0}(l) \cap \Delta_{4}^{3}(a)\right|=1$.

Proof. We have

where $\Gamma_{0}(l)=\left\{z, y^{\prime}, y\right\}$ and $\{b\}=\{a, c\}^{\perp}$. Since $\Gamma_{3}(a, z)=\emptyset$ we must have $X(c, a) \notin \Gamma_{3}(T(c, y))$. Let $X=X(z, b)$. By definition $y, y^{\prime} \in \Gamma_{0}(X)$ and so $X \in \Gamma_{3}(T(c, y))$. Hence, of the 5 heptads in $\Gamma_{1}(c, T(c, y))$, one lies in $\Gamma_{1}(X(c, a)) \cap \alpha_{3}(c, c+b)$, two lie in $\alpha_{3}(c, c+b) \backslash \Gamma_{1}(X(c, a))$ and two lie in $\alpha_{1}(c, c+b) \backslash \Gamma_{1}(X(c, a))$. Therefore $\{c, y\}^{\perp}$ consists of one point d in $\Delta_{3}^{2}(a)$, two points in $\Delta_{3}^{6}(a)$ and two points in $\Delta_{3}^{5}(a)$ (including $\left.z\right)$.

In $\Omega_{d},|(d+c) \cap O(d, a)|=4$ and $T(d, b) \cap O(d, a)=\emptyset$ by Theorem 4.13(iv). Since $z+y \in \alpha_{3}(z, z+c,+), X \in \Gamma_{3}(z+y)$. Hence $X \in \Gamma_{3}(b, c, d, z, y)$ by Lemmas 3.6 and 4.3. Therefore $T(d, z) \cap T(d, b) \neq \emptyset$ in Ω_{d}, whence $T(d, z) \nsubseteq$ $O(d, a)$. Also $X(d, a)(=X(c, a)) \notin \Gamma_{3}(T(d, z))$ because $T(d, z)=T(c, y)$. Thus there exists $z_{1}, z_{2} \in\{d, z\}^{\perp} \backslash\{c\}$ with $d+z_{1} \in \alpha_{4,0}(d, O(d, a), X(d, a))$ and $d+z_{2} \in \alpha_{2,0}(d, O(d, a), X(d, a))$. So, by (2.15) and Lemma 6.3(ii), we have $z_{1} \in \Delta_{4}^{3}(a)$ and $z_{2} \in \Delta_{4}^{1}(a)$. However $X \in \Gamma_{3}(T(z, d))$ implies that $z+$ $z_{i} \in \alpha_{3}(z, z+c,+)$ for $i=1,2$. We have $\Delta_{4}^{1}(a) \neq \Delta_{4}^{3}(a)$ by Lemma 6.3(ii) and (2.15)(xi) because $\alpha_{2,0}(d, O(d, a), X(d, a))$ and $\alpha_{4,0}(d, O(d, a), X(d, a))$ are
distinct $G_{a d}$-orbits. Since $\alpha_{3}(z, z+c,+)$ is a $G_{a z}^{* z}$-orbit on $\Gamma_{1}(z)$ by (2.7) it follows that $\left|\Gamma_{0}(l) \cap \Delta_{4}^{1}(a)\right|=\left|\Gamma_{0}(l) \cap \Delta_{4}^{3}(a)\right|=1$, as required.

Before considering $\Delta_{4}^{1}(a)$ again we summarize current progress on Theorem 9. Lemma 4.11(i) gives the size of $\Delta_{3}^{5}(a)$ and the structure of $G_{a z}\left(z \in \Delta_{3}^{5}(a)\right)$. In Lemmas 5.7 and 6.7 the point distribution for $\alpha_{3}^{(1)}(z, z+c,-), \alpha_{3}^{(2)}(z, z+c,-)$ and $\alpha_{3}\left(z, z+c,+\right.$) is elucidated (where $\{c\}=\Delta_{1}(z) \cap \Delta_{2}^{2}(a)$). It remains to examine $\alpha_{1}(z, z+c,+)$ and $\alpha_{1}(z, z+c,-)$ and this will be done in, respectively, Lemmas 9.6(i),(ii) and 13.5(i), when we have learned more about $\Delta_{4}^{5}(a)$ and $\Delta_{4}^{6}(a)$.

Lemma 6.8. Let $\{d\}=\Delta_{3}^{1}(a) \cap \Delta_{1}(x)$ and $\{b\}=\Delta_{1}(a) \cap \Delta_{3}^{1}(x)$. For $l \in$ $\alpha_{1,1}(x, x+d$, DUAD $)$ we have that
(i) $\left|\Gamma_{0}(l) \cap \Delta_{3}^{5}(a)\right|=\left|\Gamma_{0}(l) \cap \Delta_{4}^{3}(a)\right|=1$; and
(ii) if $e \in \Gamma_{0}(l) \cap \Delta_{3}^{5}(a)$, then $l \in \alpha_{3}(e, e+c,+)$ (where $\left.\{c\}=\Delta_{2}^{2}(a) \cap \Delta_{1}(e)\right)$.

Proof. Let $y \in \Delta_{3}^{5}(a)$ and $k \in \alpha_{3}\left(y, y+c^{\prime},+\right)$ where $\left\{c^{\prime}\right\}=\Delta_{2}^{2}(a) \cap \Delta_{1}(y)$. Then, by Lemma 6.7, $\left|\Gamma_{0}(k) \cap \Delta_{4}^{1}(a)\right|=\left|\Gamma_{0}(k) \cap \Delta_{4}^{3}(a)\right|=1$. If $z \in \Gamma_{0}(k) \cap \Delta_{4}^{1}(a)$, then by Lemmas 4.11(i), 5.5 and $6.2(\mathrm{i})$ we have that k lies in a $G_{a z}$-orbit on $\Gamma_{1}(z)$ of size 42. Hence $k \in \alpha_{1,1}\left(z, z+d^{\prime}, \mathrm{DUAD}\right.$) (where $\left\{d^{\prime}\right\}=\Delta_{1}(z) \cap \Delta_{3}^{1}(a)$) by (2.9). Since $\Delta_{4}^{1}(a)$ is a G_{a}-orbit and $\alpha_{1,1}(x, x+d$, DUAD $)$ is a $G_{a x}$-orbit we have part (i). Appealing to Lemma 5.5 again yields part (ii).

The point distribution of the remaining $G_{a x}$-orbits will be dealt with in Sections 8 and 12.

7 A first look at $\Delta_{4}^{2}(a)$

In this short section we study some of the points distance one from a point in the G_{a}-orbit $\Delta_{4}^{2}(a)$. Let $x \in \Delta_{4}^{2}(a)$ be fixed for the whole of this section. More specifically, in this section, after pinning down $\left|\Delta_{4}^{2}(a)\right|$ and $G_{a x}$, we will determine the point distribution for lines in $\alpha_{0}(x, 0(x, a))$ and $\alpha_{4}(x, 0(x, a))$.

The remaining line orbit $\alpha_{2}(x, 0(x, a))$ must await the verification, in Lemma 8.4, that $\Delta_{4}^{4}(a) \neq \Delta_{4}^{6}(a)$, and so is dealt with in Lemma 8.12.

Our first two results are used in the identification of $G_{a x}$.
Lemma 7.1. $\left|\Delta_{1}(x) \cap \Delta_{3}^{2}(a)\right| \geq 15$
Proof. Let $d \in \Delta_{1}(x) \cap \Delta_{3}^{2}(a)$ with $d+x \in \alpha_{0,0}(d, O(d, a), X(d, a))$. By (2.5) we

and $X(d, a)=$
For all $c \in \Delta_{2}^{1}(a) \cap \Delta_{1}(d)$ we have $d+c \in$
 sists of the heptads

So we have $d+c \in \alpha_{3}(d, d+x)$ for all $c \in \Delta_{2}^{1}(a) \cap \Delta_{1}(d)$. Fix $c \in \Delta_{2}^{1}(a) \cap \Delta_{1}(d)$. Then $c \in \Delta_{2}^{1}(x)$ and $T(c, a) \cap T(c, x)=\emptyset$ in Ω_{c} because $\Gamma_{3}(a, x)=\emptyset$ by Lemma 5.1(ii). Using Lemma 3.11(ii) either
(1) there exists $y \in\{c, x\}^{\perp}$ with $|(c+y) \cap T(c, a)|=2$ in Ω_{c}; or
(2) there exists $y_{1}, y_{2} \in\{c, x\}^{\perp} \backslash\{d\}, y_{1} \neq y_{2}$ with $\left|\left(c+y_{i}\right) \cap T(c, a)\right|=1$ for $i=1,2$ in Ω_{c}.

If (1) holds, then $y \in \Delta_{3}^{1}(a)$ by (2.15)(iii). However Theorem 5 and $x \in$ $\Delta_{4}(a)$ imply that $x \in \Delta_{4}^{1}(a)$ which contradicts Lemma 6.3 (ii) because $d+$ $x \in \alpha_{0,0}(d, O(d, a), X(d, a))$. So (2) holds and $y_{2} \in \Delta_{3}^{2}(a)$ by Lemma 4.14(ii). Since $\left|\Delta_{2}^{1}(a) \cap \Delta_{1}(d)\right|=7$, to prove the lemma it is enough to show that if $c^{\prime} \in \Delta_{2}^{1}(a) \cap \Delta_{1}(d)$ and $c^{\prime} \neq c$, then $c^{\prime} \notin \Delta_{1}\left(y_{1}\right) \cup \Delta_{1}\left(y_{2}\right)$. Assume $c^{\prime} \in \Delta_{1}\left(y_{i}\right)$ for some $i=1,2$. Then $c, c^{\prime} \in\left\{y_{i}, d\right\}^{\perp}$ and $c, c^{\prime} \in \Gamma_{0}(X(d, a))$ by Theorem 4.13(iv). Therefore Lemma 3.6 yields $y_{i} \in \Gamma_{0}(X(d, a))$, whence $x \in \Gamma_{0}(X(d, a))$ by Lemma 3.6 again. We now have a contradiction to Lemma 5.1(ii) and so the lemma is proved.

Lemma 7.2. If $G_{a x} \sim 2^{4}$. $L_{3}(2)$, then for any $d \in \Delta_{1}(x) \cap \Delta_{3}^{2}(a)$ we have $\left|\Delta_{1}(d) \cap \Delta_{4}^{2}(a)\right|=16$.

Proof. We assume the result is false and argue for a contradiction. By (2.5), (2.15) and Lemmas 3.2 and 6.3(ii) we must have $\left|\Delta_{1}(d) \cap \Delta_{4}^{2}(a)\right|=16+112=128$ and $\Delta_{4}^{2}(a)=\Delta_{4}^{3}(a)$. Also, $G_{a x} \sim 2^{4}$. $L_{3}(2)$ together with Lemma 5.2 imply that $\left|\Delta_{4}^{2}(a)\right|=\left|\Delta_{4}^{3}(a)\right|=2^{11}$.3.5.11.23. Using (2.7), Lemmas 5.7(i) and 6.7 there exists $e \in \Delta_{3}^{5}(a) \cap \Delta_{1}(x)$ with $\left|\Delta_{1}(e) \cap \Delta_{4}^{3}(a)\right| \geq 140$. Furthermore, for each line $l \in \alpha_{3}^{(1)}(e, e+c,-) \cup \alpha_{3}(e, e+c,+)\left(\right.$ where $\left.\{c\}=\Delta_{2}^{2}(a) \cap \Delta_{1}(e)\right)$, we have $\left|\Gamma_{0}(l) \cap \Delta_{3}^{5}(a)\right|=1$. Therefore, since $\Delta_{4}^{3}(a)$ and $\Delta_{3}^{5}(a)$ are G_{a}-orbits we have at least n lines in $\Gamma_{1}(x)$, incident with a point in $\Delta_{3}^{5}(a)$ where

$$
n \geq \frac{140 \cdot\left|\Delta_{3}^{5}(a)\right|}{\left|\Delta_{4}^{3}(a)\right|}=\frac{140 \cdot 2^{12} \cdot 3 \cdot 7 \cdot 11 \cdot 23}{2^{11} \cdot 3 \cdot 5 \cdot 11 \cdot 23}=392
$$

This contradicts the fact that $\Gamma_{1}(x)=253$, so proving the lemma.
Lemma 7.3. (i) $G_{a x} \cong A_{8}$ with $Q(a)_{x}=1$ and $Q(x)_{a}=1$. Further $G_{x}^{* x}$ is the stabilizer in M_{23} of an octad of Ω_{x}.
(ii) $\left|\Delta_{4}^{2}(a)\right|=2^{12} .11 .23$.
(iii) $\left|\Delta_{1}(x) \cap \Delta_{3}^{2}(a)\right|=15$ and, for $e \in \Delta_{1}(x) \cap \Delta_{3}^{2}(a),\left|\Delta_{1}(e) \cap \Delta_{4}^{2}(a)\right|=16$.

Proof. By the definition of $\Delta_{4}^{2}(a)$ (see (2.15)) there exists $d \in \Delta_{1}(x) \cap \Delta_{3}^{2}(a)$ such that

$$
d+x \in \alpha_{0,0}(d, O(d, a), X(d, a))
$$

Recall that $G_{a d} \sim\left[2^{7}\right] L_{3}(2), G_{a d}^{* d} \sim 2^{3} L_{3}(2)$ and $Q(a) \cap Q(d)=\langle\tau(X(a, d))\rangle$. From (2.5) the stabilizer of $d+x$ in $G_{a d}^{* d}$ is isomorphic to $L_{3}(2)$. Since $\tau(X(d, a)) \notin$ G_{x} by Lemma 3.2, we conclude that
(7.3.1) $G_{a d x} \sim 2^{3} L_{3}(2)$ with $G_{a d x} \cap Q(d) \cong 2^{3}$ and $G_{a d x} \cap Q(a) \cap Q(d)=1$.

Lemmas 4.13(iv) and 6.3(ii) and (2.5) imply that for $y \in \Delta_{1}(d) \cap \Delta_{4}^{2}(a)$ we have

$$
d+x \in \alpha_{0,0}(d, O(d, a), X(d, a)) \cup \alpha_{4,0}(d, O(d, a), X(d, a))
$$

Hence, as $\Delta_{4}^{2}(a)$ is a G_{a}-orbit, Lemma 3.2 and (2.5) give
(7.3.2) $\left|\Delta_{1}(d) \cap \Delta_{4}^{2}(a)\right|=16$ or 128.

We now show that $Q(a)_{x}=1$. For $g \in Q(a)_{x}$ we have that g fixes $X(a, d)$, whence $d^{g}=d$ by Lemma 5.3(i). Thus $Q(a)_{x} \leq G_{a d x}$ and therefore, as $Q(a)_{x} \unlhd$ $G_{a d x}$, we get $Q(a)_{x} \leq Q(d)$. So $Q(a)_{x} \leq G_{a d x} \cap Q(a) \cap Q(d)=1$ by (7.3.1).

Using [1] to examine the subgroups of $G_{a}^{* a} \cong M_{23}$ which can contain a subgroup of the shape $2^{3} L_{3}(2)$ we deduce that
(7.3.3) the shape of $G_{a x}$ is one of $2^{3} L_{3}(2), 2^{4} L_{3}(2), 2^{4} A_{7}, A_{8}, M_{22}$ and M_{23}.

Set $n=\left|\Delta_{1}(x) \cap \Delta_{3}^{2}(a)\right|$.
Suppose $G_{a x}$ has shape $2^{4} A_{7}, M_{22}$ or M_{23}. Then, by Lemma 5.2, we have, respectively, $\left|\Delta_{4}^{2}(a)\right|=2^{11} .11 .23,2^{11} .23$ and 2^{11}. Thus $\left|\Delta_{4}^{2}(a)\right| \leq 2^{11} .11 .23$. Combining (7.3.2) and Lemma 4.8(ii) yields

$$
2^{8} .3 \cdot 5 \cdot 11.23 .16 \leq\left|\Delta_{4}^{2}(a)\right| \cdot n \leq 2^{11} .11 .23 . n
$$

Thus $n \geq 30$ which is impossible by Lemma 5.3 (ii). So $G_{a x}$ is not of shape $2^{4} A_{7}, M_{22}$ or M_{23}.

Now assume that $G_{a x} \sim 2^{3} L_{3}(2)$. Then $\left|\Delta_{4}^{2}(a)\right|=2^{12}$.3.5.11.23. Using (7.3.2) and Lemma 4.8(ii) gives

$$
2^{8} \cdot 3 \cdot 5 \cdot 11 \cdot 23 \cdot 128 \geq\left|\Delta_{4}^{2}(a)\right| \cdot n=2^{12} \cdot 3 \cdot 5 \cdot 11.23 \cdot n
$$

whence $n \leq 8$. This situation is ruled out by Lemma 7.1.
Next we consider the case $G_{a x} \sim 2^{4} L_{3}(2)$. So $\left|\Delta_{4}^{2}(a)\right|=2^{11}$.3.5.11.23 and, by Lemma $7.2,\left|\Delta_{1}(d) \cap \Delta_{4}^{2}(a)\right|=16$ which then yields

$$
2^{8} \cdot 3 \cdot 5 \cdot 11.23 .16=\left|\Delta_{4}^{2}(a)\right| \cdot n=2^{11} \cdot 3 \cdot 5 \cdot 11.23 . n
$$

But then $n=2$, contrary to Lemma 7.1. Therefore, in view of (7.3.3), $G_{a x} \cong$ A_{8} is the only possibility. Clearly we then get that $Q(x)_{a}=1$. Consulting [1] we further conclude that $G_{a x}^{* x}$ is the stabilizer in M_{23} of an octad in Ω_{x}. Also

$$
\left|\Delta_{4}^{2}(a)\right|=\frac{2^{18} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 23}{2^{6} \cdot 3^{2} \cdot 5 \cdot 7}=2^{12} \cdot 11 \cdot 23
$$

If $\left|\Delta_{1}(d) \cap \Delta_{4}^{2}(a)\right|=128$, then we see that $n=120$, against Lemma 5.3(ii). Thus, by (7.3.2), $\left|\Delta_{1}(d) \cap \Delta_{4}^{2}(a)\right|=16$ and then we obtain part (iii), so proving the lemma.

We will use $O(x, a)$ to denote the octad of Ω_{x} stabilized by $G_{a x}^{* x}\left(\cong G_{a x} \cong\right.$ $\left.A_{8}\right)$. Referring to (2.10) we see that $G_{a x}$ has 3 orbits on $\Gamma_{1}(x)$.

Corollary 7.4. Let $d \in \Delta_{1}(x) \cap \Delta_{3}^{2}(a)$. Then
(i) $x+d \in \alpha_{0}(x, O(x, a))$;
(ii) $d+x \in \alpha_{0,0}(d, O(d, a), X(d, a))$; and
(iii) $\Gamma_{0}(d+x) \backslash\{d\} \subseteq \Delta_{4}^{2}(a)$.

Proof. Parts (i) and (ii) follow from (2.5), (2.10) and Lemmas 5.4 and 7.3(iii). Now part (ii) and (2.15) give part (iii).

Lemma 7.5. Let $l \in \alpha_{4}(x, O(x, a))$. Then $\left|\Gamma_{0}(l) \cap \Delta_{3}^{6}(a)\right|=\left|\Gamma_{0}(l) \cap \Delta_{4}^{3}(a)\right|=1$.
Proof. Let $d \in \Delta_{1}(x) \cap \Delta_{3}^{2}(a)$; so $d+x \in \alpha_{0,0}(d, O(d, a), X(d, a))$ by Corollary 7.4(ii). We may choose $c \in \Delta_{1}(d)$ with $c \in \Delta_{2}^{1}(a) \cap \Delta_{2}^{1}(x)$. If $\Gamma_{0}(c+d)=$ $\left\{c, d^{\prime}, d\right\}$, then $d^{\prime} \in \Delta_{3}^{2}(a)$ by Lemma 4.6(i). Since $X(d, a) \notin \Gamma_{3}\left(T\left(d^{\prime}, x\right)\right)$, $y \notin \Gamma_{0}(X(d, a))$ for each $y \in\left\{d^{\prime}, x\right\}^{\perp} \backslash\{d\}$ by Lemma 3.6. Moreover, by Theorem 4.13(iv), the heptad $d^{\prime}+d$ has empty intersection with the octad $O\left(d^{\prime}, a\right)$ in $\Omega_{d^{\prime}}$, which means that $T\left(d^{\prime}, x\right) \cap O\left(d^{\prime}, a\right)=\emptyset$ in $\Omega_{d^{\prime}}$. Therefore either,
(1) $\left|\left\{d^{\prime}, x\right\}^{\perp} \cap \Delta_{4}^{1}(a)\right|=4$; or
(2) $\left|\left\{d^{\prime}, x\right\}^{\perp} \cap \Delta_{4}^{2}(a)\right|=2$ and $\left|\left\{d^{\prime}, x\right\}^{\perp} \cap \Delta_{4}^{3}(a)\right|=2$.

Assume (1) holds. By Lemma $3.10 c$ is collinear with the point in $\Gamma_{0}(x+$ $y) \backslash\{x, y\}$ for each $y \in\left\{d^{\prime}, x\right\}^{\perp}$. Using Lemma 3.11(ii) we can choose $y^{\prime} \in\{c, x\}^{\perp}$ with $y^{\prime} \neq d$ and $\Gamma_{3}\left(a, y^{\prime}\right) \neq \emptyset$, and, by Lemma 3.10, $y^{\prime} \in \Gamma_{0}(x+y) \backslash\{x, y\}$ for some $\mathrm{y} \in\left\{d^{\prime}, x\right\}^{\perp}$. Let $X \in \Gamma_{3}\left(a, y^{\prime}\right)$. Then $x, y \notin \Gamma_{0}(X)$, whence $x^{\tau(X)}=y$ by Lemma 3.2. Since $\tau(X) \in G_{a}$ we must have $\Delta_{4}^{2}(a)=\Delta_{4}^{1}(a)$. This clearly contradicts Lemmas 6.2(i) and 7.3(ii). Thus (1) cannot hold and we are in case (2).

We now examine $\{c, x\}^{\perp}$. By Theorem 5, if $e \in \Delta_{3}^{1}(a)$, then $\Delta_{1}(e) \cap \Delta_{4}(a) \subseteq$ $\Delta_{4}^{1}(a)$. Hence $\{c, x\}^{\perp} \cap \Delta_{3}^{1}(a)=\emptyset$. Furthermore $T(c, x) \cap T(c, a)=\emptyset$ in Ω_{c} because $\Gamma_{3}(a, x)=\emptyset$. Therefore we must have $\left|\{c, x\}^{\perp} \cap \Delta_{3}^{2}(a)\right|=3$ and $\left|\{c, x\}^{\perp} \cap \Delta_{3}^{6}(a)\right|=2$. Let $y \in\{c, x\}^{\perp}$ and $\Gamma_{0}(x+y)=\left\{x, y^{\prime}, y\right\}$. If $y \in \Delta_{3}^{2}(a)$, then $y^{\prime} \in \Delta_{4}^{2}(a)$ by Corollary 7.4(iii). So by (2), if $y \in \Delta_{3}^{6}(a)$ we must have $y^{\prime} \in \Delta_{4}^{3}(a)$. Assume $z \in \Delta_{3}^{6}(a) \cap\{c, x\}^{\perp}$ and $\Gamma_{0}(x+z)=\left\{x, z^{\prime}, z\right\}$. So $z^{\prime} \in \Delta_{4}^{3}(a)$.

In $\Omega_{x},(x+y) \cap O(x, a)=\emptyset$ for all $y \in \Delta_{3}^{2}(a) \cap\{c, x\}^{\perp}$ because $x+y \in$ $\alpha_{0}(x, O(x, a))$ by Corollary 7.4(i). Hence $T(x, c) \cap O(x, a)=\emptyset$ and $\mid(x+z) \cap$ $O(x, a) \mid=4$ in Ω_{x}. Therefore $x+z \in \alpha_{4}(x, O(x, a))$ and since $\alpha_{4}(x, O(x, a))$ is a $G_{a x}$-orbit, the lemma is proved.

8 A first look at $\Delta_{4}^{4}(a)$

We delay the exploration of $\Delta_{4}^{3}(a)$ until Section 11 and turn our attention instead to $\Delta_{4}^{4}(a)$. For the whole of Section 8, we let x be a fixed point in $\Delta_{4}^{4}(a)$.

Recall from (2.15)(xii) that $\Delta_{1}(x) \cap \Delta_{3}^{3}(a) \neq \emptyset$. We show that, in fact, $\left|\Delta_{1}(x) \cap \Delta_{3}^{3}(a)\right|=11$. This is done in several stages. The set Y_{d}, which we now define, plays an important role in these arguments. For $d \in \Delta_{1}(x) \cap \Delta_{3}^{3}(a)$ with $d+x \in \alpha_{1,0}(d, d+c, X(d, a))$ (where $\{c\}=\Delta_{1}(d) \cap \Delta_{2}^{2}(a)$), we put

$$
Y_{d}:=\left\{y \in \Delta_{3}^{3}(a) \cap \Delta_{1}(x) \cap \Delta_{2}^{1}(d) \mid \text { there exists } z \in\{y, d\}^{\perp} \cap \Delta_{3}^{1}(a)\right\}
$$

$\left(z_{i} \in \Delta_{3}^{1}(a), Y_{d}=\left\{y_{1}, y_{2}, \ldots, y_{r}\right\}\right)$
Lemma 8.1. Suppose $d \in \Delta_{1}(x) \cap \Delta_{3}^{3}(a)$ with $d+x \in \alpha_{1,0}(d, d+c, X(d, a))$ (where $\left.\{c\}=\Delta_{1}(d) \cap \Delta_{2}^{2}(a)\right)$. Then
(i) Y_{d} is a $G_{a d x}$-orbit and $\left|Y_{d}\right|=10$;
(ii) $\left|\Delta_{1}(x) \cap \Delta_{3}^{3}(a)\right| \geq 11$; and
(iii) there exists a $G_{a x}$-orbit in $\Delta_{1}(x) \cap \Delta_{3}^{3}(a)$ of size at least 10 .

Proof. Parts (ii) and (iii) follow from part (i). For part (i), by (2.3), without loss of generality we may assume $d+x=$| | \times | \times | \times |
| :--- | :--- | :--- | :--- |
| | \times | | |
| | | \times | |,\quad where $d+c=$

we see there are exactly 10 heptads intersecting $d+c$ in just $X(d, a)$ and $d+x$ in three elements of Ω_{d} (namely $h_{1}, h_{2}, h_{3}, h_{4}, h_{5}, h_{6}, h_{9}, h_{11}, h_{14}, h_{15}$). Therefore there are 10 lines $l \in \Gamma_{1}(d)$ with $l \in \alpha_{1,1}(d, d+c, X(d, a)) \cap \alpha_{3}(d, d+x)$. Furthermore $\left|\Gamma_{0}(l) \cap \Delta_{3}^{1}(a)\right|=1$ for each such l by Lemma 4.15 and so the set $S:=\Delta_{1}(d) \cap \Delta_{3}^{1}(a) \cap \Delta_{2}^{1}(x)$ contains exactly 10 points. By Lemma 4.8(iii), $G_{a d} \sim 2^{5} A_{6}$ and $G_{a d}$ is transitive on $\left\{y \in \Delta_{1}(d) \mid d+y \in \alpha_{1,0}(d, d+c, X(d, a))\right\}$ by (2.3) and Lemma 3.2. Hence $G_{a d x} \cong A_{5}$ and S is a $G_{a d x}$-orbit. Moreover $S \subseteq \Gamma_{0}(X(d, a))$.

Fix $z \in S$. Since $\Gamma_{3}(a, x)=\emptyset$ by Lemma $5.1(i i)$ we must have $\Gamma_{3}(a, y)=\emptyset$ for at least three points $y \in\{z, x\}^{\perp}$. By considering the possible heptads in Γ_{z} together with (2.15) we conclude that $\{z, x\}^{\perp} \backslash\{d\}$ consists of one point $e \in \Delta_{3}^{3}(a)$ and three points in $\Delta_{4}^{1}(a)$. For example, without loss of generality we may suppose that

Lemma 4.15. Then $T(z, x) \cap D(z, a)=\emptyset$ in Ω_{z} because $\Gamma_{3}(a, x)=\emptyset$. So, for

in this case.
To prove $\left|Y_{d}\right|=10$ it is enough to show that e is not collinear with any point in $S \backslash\{z\}$. Assume $z^{\prime} \in S \cap \Delta_{1}(e)$ with $z^{\prime} \neq z$, and argue for a contradiction. Then $z, z^{\prime} \in \Gamma_{0}(X(d, a))$, whence Lemma 3.6 implies that $e \in \Gamma_{0}(X(d, a))$. However this gives $d, e \in \Gamma_{0}(X(d, a)) \cap \Delta_{1}(x)$ with $d \neq e$, contrary to Lemma 5.3(i). So $\left|Y_{d}\right|=10$. The fact that Y_{d} is a $G_{a d x}$-orbit follows because S is a $G_{a d x}$-orbit and the proof of part (i) is complete.

Lemma 8.2. Let \mathcal{B}_{x} be a $G_{a x}$-orbit on $\Gamma_{1}(x)$ and suppose there exists $l \in \mathcal{B}_{x}$ and $d \in \Gamma_{0}(l) \cap \Delta_{3}^{3}(a)$ with $l \in \alpha_{1,0}(d, d+c, X(d, a))$ (where $\{c\}=\Delta_{1}(d) \cap \Delta_{2}^{2}(a)$). Let $\mathcal{D}_{x}=\left\{y \in \Delta_{1}(x) \cap \Delta_{3}^{3}(a) \mid x+y \in \mathcal{B}_{x}\right\}$.
(i) If $y \in \Delta_{1}(x) \cap \Delta_{3}^{3}(a)$ with $y+x \in \alpha_{1,0}\left(y, y+c^{\prime}, X(y, a)\right.$) (for $\left\{c^{\prime}\right\}=$ $\left.\Delta_{1}(y) \cap \Delta_{2}^{2}(a)\right)$, then $y \in \mathcal{D}_{x}$.
(ii) $Y_{d} \subseteq \mathcal{D}_{x}$.
(iii) For each $y \in \mathcal{D}_{x}, G_{a y x} \cong A_{5}$.

Proof. We first show part (i) holds. Let y be as given in part (i), and set $L=\left\{\left(\alpha_{1,0}(d, d+c, X(d, a))\right)^{g} \mid g \in G_{a}\right\}$. By $(2.3) \alpha_{1,0}(d, d+c, X(d, a))$ is a $G_{a d^{-}}$ orbit which contains $l=d+x$. Also, by Lemma 3.2, $\tau(X(d, a))$ interchanges the two points in $\Gamma_{0}(d+x) \backslash\{d\}$. Employing Lemma 5.6 with $\Delta_{3}^{3}(a), \Delta_{4}^{4}(a), d, x$ and \mathcal{B}_{x} playing, respectively, the roles of $\Lambda, \Lambda^{\prime}, x, x^{\prime}$ and $\vartheta_{x^{\prime}}^{\prime}$ yields $\Gamma_{1}(x) \cap L=\mathcal{B}_{x}$. Now $\Delta_{3}^{3}(a)$ being a G_{a}-orbit and $\alpha_{1,0}\left(y, y+c^{\prime}, X(y, a)\right)$ being a $G_{a y}$-orbit implies that $y+x \in L$. Therefore $x+y \in \Gamma_{1}(x) \cap L=\mathcal{B}_{x}$, whence $y \in \mathcal{D}_{x}$.

Turning to (ii), since Y_{d} is a $G_{a d x}$-orbit, either $Y_{d} \subseteq \mathcal{D}_{x}$ or $Y_{d} \cap \mathcal{D}_{x}=\emptyset$. We assume the latter and argue for a contradiction. Then for all $d_{1} \in Y_{d}$, $d_{1}+x \in \alpha_{3,0}\left(d_{1}, d_{1}+c_{1}, X\left(d_{1}, a\right)\right)\left(\right.$ where $\left.\left\{c_{1}\right\}=\Delta_{1}\left(d_{1}\right) \cap \Delta_{2}^{2}(a)\right)$ by part(i) and Lemma 5.1(ii). Fix $d_{1} \in Y_{d}$ and let $e \in \Delta_{3}^{1}(a) \cap\left\{d, d_{1}\right\}^{\perp}$. Since $\Gamma_{3}(a, x)=\emptyset$, $d+e \in \alpha_{1,1}(d, d+c, X(d, a))$ and $d_{1}+e \in \alpha_{1,1}\left(d_{1}, d_{1}+c_{1}, X\left(d_{1}, a\right)\right)$, we have $T\left(d, d_{1}\right) \cap(d+c)=\emptyset$ in Ω_{d} and $T\left(d_{1}, d\right) \cap\left(d_{1}+c_{1}\right)=\emptyset$ in $\Omega_{d_{1}}$. Therefore Lemma 3.11(ii) implies that $\left\{d+x^{\prime} \mid x^{\prime} \in\left\{d, d_{1}\right\}^{\perp} \backslash\{e\}\right\}$ consists of three lines in $\alpha_{1,0}(d, d+c, X(d, a))$ and one line in $\alpha_{3,0}(d, d+c, X(d, a))$. Similarly $\left\{d_{1}+x^{\prime} \mid x^{\prime} \in\left\{d, d_{1}\right\}^{\perp} \backslash\{e\}\right\}$ consists of three lines in $\alpha_{1,0}\left(d_{1}, d_{1}+c_{1}, X\left(d_{1}, a\right)\right)$ and one line in $\alpha_{3,0}\left(d_{1}, d_{1}+c_{1}, X\left(d_{1}, a\right)\right)$. Thus there exists $x_{1} \in\left\{d, d_{1}\right\}^{\perp} \backslash\{e, x\}$ with $d+x_{1} \in \alpha_{1,0}(d, d+c, X(d, a))$ and $d_{1}+x_{1} \in \alpha_{1,0}\left(d_{1}, d_{1}+c_{1}, X\left(d_{1}, a\right)\right)$. Since $G_{a d}$ is transitive on $\alpha_{1,0}(d, d+c, X(d, a))$ and $\tau(X(d, a)) \notin G_{x}$ by Lemma 3.2, there exists $h \in G_{a d}$ with $x_{1}^{h}=x$. Moreover $e^{h} \in \Delta_{3}^{1}(a) \cap\left\{d, d_{1}^{h}\right\}^{\perp}$ and thus $d_{1}^{h} \in Y_{d}$, whence $d_{1}^{h}+x \in \alpha_{3,0}\left(d_{1}^{h}, d_{1}^{h}+c_{1}^{h}, X\left(d_{1}^{h}, a\right)\right)$. However $d_{1}^{h}+x=$ $\left(d_{1}+x_{1}\right)^{h} \in \alpha_{1,0}\left(d_{1}^{h}, d_{1}^{h}+c_{1}^{h}, X\left(d_{1}^{h}, a\right)\right)$ by the flag-transitivity of G. From this contradiction we conclude that (ii) holds.

From Lemma 4.8(iii) $G_{a d} \sim 2^{5} A_{6}$ with $G_{a d} \cap Q(d)=\langle\tau(X(d, a))\rangle$. Combin-
ing (2.3) and Lemma 3.2 yields $H \cong A_{5}$. Since \mathcal{D}_{x} is a $G_{a x}$-orbit and, by part (i), $d \in \mathcal{D}_{x}$, we obtain (iii).

Lemma 8.3. Let \mathcal{D}_{x} be the $G_{a x}$-orbit described in Lemma 8.2. Then $\left|\mathcal{D}_{x}\right| \neq 12$.
Proof. Let $d \in \Delta_{1}(x) \cap \Delta_{3}^{3}(a)$ with $d+x \in \alpha_{1,0}(d, d+c, X(d, a))\left(\{c\}=\Delta_{1}(d) \cap\right.$ $\left.\Delta_{2}^{2}(a)\right)$. Supposing $\left|\mathcal{D}_{x}\right|=12$, we seek a contradiction. Then, by Lemmas 8.1(i) and 8.2, $\mathcal{D}_{x}=\{d\} \cup Y_{d} \cup\{e\}$. Put $H=G_{a d x}$. By Lemma 8.2(iii) $H \cong A_{5}$. Again by Lemma 8.1(i), Y_{d} is H-invariant and therefore $H \leq G_{a e x}$. Now \mathcal{D}_{x} is a $G_{a x^{-}}$ orbit and so $d^{g}=e$ for some $g \in G_{a x}$. Hence $G_{a e x}=H=H^{g}$ for some $g \in G_{a x}$. Suppose $e^{g} \neq d$. Then $e^{g} \in Y_{d}$ and H fixes e^{g}. This contradicts Lemma 8.1(i). Therefore we must have $e^{g}=d$ and hence $g^{2} \in H$. Thus $H \unlhd\langle H, g\rangle$ with $|\langle H, g\rangle|=2^{3} .3 .5$. Since $\left|C_{M_{23}}(\vartheta)\right|=15$ for any 5 -element ϑ of M_{23} (see [1]) we conclude that $\langle H, g\rangle \cong S_{5}$. Now $H \unlhd G_{a x}$ yields the untenable $H \leq G_{a d^{\prime} x}$ for all $d^{\prime} \in \mathcal{D}_{x}$ and so as $\left[G_{a x}:\langle H, g\rangle\right]=6$ we deduce that $G_{a x} \cong S_{6}$.

Consulting [1] we see that $G_{a x} \cong G_{x}^{* a}$ is contained in a subgroup of $G_{a}^{* a}$ isomorphic to either a group of shape $L_{3}(4) 2$ or A_{8}. These subgroups of $G_{a}^{* a}$ are, respectively, the stabilizer of a duad and an octad of Ω_{a}. Consequently $G_{a x}^{\prime} \cong A_{6}$ fixes at least two hyperplanes in $\Gamma_{3}(a)$. Now $A_{5} \cong H=G_{a d x}\left(\leq G_{a x}^{\prime}\right)$ fixes at most three hyperplanes, two of which are $X(a, d)$ and $X(a, e)$. So without loss of generality we have that $G_{a x}^{\prime}$ fixes $X(a, d)$. Since $X\left(a, d^{\prime}\right) \neq X(a, d)$ for any $d^{\prime} \in\left(\Delta_{1}(x) \cap \Delta_{3}^{3}(a)\right) \backslash\{d\}$ by Lemma 3.6 , we conclude that $G_{a x}^{\prime} \leq G_{a d x}$. This contradicts the fact that $\left[G_{a x}: G_{a d x}\right]=\left|\mathcal{D}_{x}\right|=12$ and so the proof of the lemma is complete.

Lemma 8.4. Let $d \in \Delta_{3}^{3}(a)$ with $\{c\}=\Delta_{1}(d) \cap \Delta_{2}^{2}(a)$.
(i) If $d \in \Delta_{1}(x)$, then $d+x \in \alpha_{1,0}(d, d+c, X(d, a))$.
(ii) If $l \in \alpha_{1,0}(d, d+c, X(d, a))$, then $\left|\Gamma_{0}(l) \cap \Delta_{4}^{4}(a)\right|=2$.
(iii) If $l \in \alpha_{3,0}(d, d+c, X(d, a))$, then $\left|\Gamma_{0}(l) \cap \Delta_{4}^{6}(a)\right|=2$.
(iv) $\Delta_{4}^{4}(a) \neq \Delta_{4}^{6}(a)$.
(v) $\Delta_{1}(d) \cap \Delta_{4}^{4}(a)$ and $\Delta_{1}(d) \cap \Delta_{4}^{6}(a)$ are $G_{\text {ad }}$-orbits of length 192 and 160 respectively.

Proof. Let $d \in \Delta_{3}^{3}(a)$. For any $l \in \alpha_{i, 0}(d, d+c, X(d, a))(i=1,3), l \notin$ $\Gamma_{1}(X(d, a))$. Therefore $\tau(X(d, a))$ interchanges the two points in $\Gamma_{0}(l) \backslash\{d\}$ by Lemma 3.2. Hence the two points in $\Gamma_{0}(l) \backslash\{d\}$ lie in the same G_{a}-orbit. By (2.5) and (2.15), to prove the lemma it is enough to show that for all $l \in \alpha_{3,0}(d, d+c, X(d, a)), \Gamma_{0}(l) \cap \Delta_{4}^{4}(a)=\emptyset$.

Suppose, for a contradiction, that there exists $l \in \alpha_{3,0}(d, d+c, X(d, a))$ and $y \in \Gamma_{0}(l) \cap \Delta_{4}^{4}(a)$. Since $\tau(X(d, a))$ interchanges y and the point in $\Gamma_{0}(l) \backslash\{d, y\}$
 size

$$
n_{1}=\frac{2 \cdot\left|\alpha_{3,0}(d, d+c, X(d+a))\right| \cdot\left|\Delta_{3}^{3}(a)\right|}{\left|\Delta_{4}^{4}(a)\right|} .
$$

Using (2.3) and Lemma 4.8(iii) we get

$$
n_{1}=\frac{2 \cdot 80 \cdot 2^{10} \cdot 7 \cdot 11 \cdot 23}{\left|\Delta_{4}^{4}(a)\right|}=\frac{2^{15} \cdot 5 \cdot 7 \cdot 11 \cdot 23}{\left|\Delta_{4}^{4}(a)\right|}
$$

However, by definition there exists $e \in \Delta_{1}(y) \cap \Delta_{3}^{3}(a)$ with $e+y \in \alpha_{1,0}(e, e+$ $\left.c^{\prime}, X(e, a)\right)\left(\left\{c^{\prime}\right\}=\Delta_{1}(e) \cap \Delta_{2}^{2}(a)\right)$. By a similar argument to the above we can show that e lies in a $G_{a y}$-orbit \mathcal{D}_{2} on $\Delta_{1}(y)$ of size

$$
\begin{aligned}
n_{2} & =\frac{2 \cdot\left|\alpha_{1,0}(d, d+c, X(d, a))\right| \cdot\left|\Delta_{3}^{3}(a)\right|}{\Delta_{4}^{4}(a)} \\
& =\frac{2^{16} \cdot 3 \cdot 7 \cdot 11 \cdot 23}{\left|\Delta_{4}^{4}(a)\right|} .
\end{aligned}
$$

Hence $\mathcal{D}_{1} \neq \mathcal{D}_{2}$ and $n_{1} / n_{2}=5 / 6$. Since, for all $z \in \Delta_{1}(d) \cap \Delta_{4}^{4}(a), d+z \in$ $\alpha_{i, 0}(d, d+c, X(d, a))$ for $i=1,3$, we must have $\left|\Delta_{1}(y) \cap \Delta_{3}^{3}(a)\right|=n_{1}+n_{2}$. Then Lemma 5.3(ii) implies that $n_{1}+n_{2}=11$ or 22 . However $n_{1}+n_{2} \neq 11$ otherwise $n_{1}=5$ and $n_{2}=6$, contrary to Lemma 8.1(iii). Therefore $n_{1}=10$ and $n_{2}=12$. However we now have a $G_{a y}$-orbit \mathcal{D}_{2} on $\Delta_{1}(y)$ of size 12 with $e \in \mathcal{D}_{2}$ where $e \in \Delta_{3}^{3}(a)$ and $e+y \in \alpha_{1,0}\left(e, e+c^{\prime}, X(e, a)\right)$. This contradicts Lemma 8.3 and so the proof is complete.

$$
\text { Set } \mathrm{n}:=\left|\Delta_{1}(x) \cap \Delta_{3}^{3}(a)\right| \text {. }
$$

Lemma 8.5. Let $d \in \Delta_{1}(x) \cap \Delta_{3}^{3}(a)$. Then,
(i) $\left[G_{a x}: G_{a d x}\right]=n$;
(ii) $G_{a x}$ acts transitively on $\Delta_{1}(x) \cap \Delta_{3}^{3}(a)$; and
(iii) $n=11,14,16,21,22$ or 23 .

Proof. By Lemma $5.2 \Delta_{4}^{4}(a)$ is a G_{a}-orbit, and so

$$
\left|\Delta_{4}^{4}(a)\right|=\frac{2^{18} 3^{2} .5 \cdot 7.11 .23}{\left|G_{a x}\right|}
$$

Counting edges, and using Lemma 4.8(iii), also gives

$$
\left|\Delta_{4}^{4}(a)\right|=\frac{\left|\Delta_{3}^{3}(a)\right| \cdot 96.2}{n}=\frac{2^{16} \cdot 3 \cdot 7 \cdot 11.23}{n}
$$

Therefore $\left|G_{a x}\right|=2^{2}$.3.5.n and hence, by Lemma 8.2(iii), $\left[G_{a x}: G_{a d x}\right]=n$, which proves (i).

Part (ii) follows from part (i).
Since $\Delta_{4}^{4}(a)$ is an integer, n must divide 2^{16}.3.7.11.23. By (ii) and Lemma 8.3, $n \neq 12$. Furthermore $11 \leq n \leq 23$ by Lemmas 5.1(ii) and 8.1(ii). This yields the list of possible values for n in part (iii).

Lemma 8.6. $n \neq 16$
Proof. We show that $n=16$ leads to a contradiction. Let $d \in \Delta_{1}(x) \cap \Delta_{3}^{3}(a)$. Appealing to Lemmas 8.2 (iii) and 8.5 we have $\left[G_{a x}: G_{a d x}\right]=16, G_{x}^{* x} \cong G_{a x}$ and $G_{a d x} \cong A_{5}$. By examining possible minimal normal subgroups of $G_{a x}$ and using the fact that $\left|C_{M_{23}}(\vartheta)\right|=15$ for any 5 -element ϑ in M_{23}, we deduce that $G_{a x} \sim 2^{4} A_{5}$ with $N=O_{2}\left(G_{a x}\right)$ an elementary abelian subgroup of order 16. Since M_{23} has only two conjugacy classes of elementary abelian subgroups of order 16 , we infer that $G_{x}^{* x}$ is a subgroup of either $2^{4} A_{7}$ (the stabilizer of a heptad) or $2^{4}\left(3 \times A_{5}\right): 2$ (the stabilizer of a triad).

We consider the former possibility first. Then $G_{a x}^{* x} \leq G_{x l}^{* x}$ for some $l \in \Gamma_{1}(x)$. Since N acts transitively upon $\left\{x+d^{\prime} \mid d^{\prime} \in \Delta_{1}(x) \cap \Delta_{3}^{3}(a)\right\}$, all the heptads $x+d^{\prime}$ in this set must intersect in a common element of the heptad l in Ω_{x}. That is all the lines $x+d^{\prime}\left(d^{\prime} \in \Delta_{1}(x) \cap \Delta_{3}^{3}(a)\right)$ are in $\Gamma_{1}(X)$ for some hyperplane X. Since $\left|Y_{d}\right|=10$ by Lemma $8.1(\mathrm{i})$, there are 10 points in the set

$$
S:=\left\{z \in \Delta_{3}^{1}(a) \cap \Delta_{2}^{1}(x) \cap \Delta_{1}(d) \mid \text { there exists } d^{\prime} \in\left(\{z, x\}^{\perp} \backslash\{d\}\right) \cap \Delta_{3}^{3}(a)\right\}
$$

Therefore Lemma 3.6 implies that $z \in \Gamma_{0}(X)$ for each $z \in S$. However, using the Appendix A, we see that

$$
(d+x) \cap \bigcap_{z \in S}(d+z)=\emptyset
$$

This contradiction rules out the case when $G_{a x}^{* x}$ is a subgroup of $2^{4} A_{7}$.
In the other case we have that $G_{a x}^{* x}\left(\sim 2^{4} A_{5}\right)$ is contained in the pointwise stabilizer of two elements of Ω_{x} which is isomorphic to $L_{3}(4)$. So $G_{a x}^{* x}$ is isomorphic to a parabolic subgroup of $L_{3}(4)$, whence $G_{a x}^{* x}$ acts transitively (by conjugation) upon $\left(N^{* x}\right)^{\#}$. Since N acts regularly upon $\left\{x+d^{\prime} \mid d^{\prime} \in \Delta_{1}(x) \cap \Delta_{3}^{3}(a)\right\}$, the conjugation action of $G_{a d x}^{* x}\left(\cong A_{5}\right)$ on $\left(N^{* x}\right)^{\#}$ is permutation isomorphic to $G_{a d x}$ acting on $\left(\Delta_{1}(x) \cap \Delta_{3}^{3}(a)\right) \backslash\{d\}$. However Y_{d} is a $G_{a d x}$-orbit and $\left|Y_{d}\right|=10$ by Lemma 8.1(i). With this contradiction we have established Lemma 8.6.

We are now in a position to show that $\mathrm{n}=11$.
Lemma 8.7. (i) $\left|\Delta_{1}(x) \cap \Delta_{3}^{3}(a)\right|=11$.
(ii) $\left|\Delta_{4}^{4}(a)\right|=2^{16} \cdot 3.7 .23$.
(iii) $G_{a x} \cong L_{2}(11)$ and $G_{a x} \cap Q(x)=1$.

Proof. (i) Suppose $n \neq 11$. Then from Lemmas 8.5(iii) and 8.6, $n \in\{14,21,22,23\}$. Considering possible minimal normal subgroups of $G_{a x}$ yields the existence of elements of orders $5 \times 7,5 \times 11$ or 5×23 in M_{23}, which is impossible. Thus $n=11$.
(ii)Combining part (i) with (2.3), (2.15)(xii) and Lemma 4.8(iii),

$$
\begin{aligned}
\left|\Delta_{4}^{4}(a)\right| & =\frac{\left|\Delta_{3}^{3}(a)\right| \cdot 192}{n} \\
& =2^{16} \cdot 3 \cdot 7 \cdot 23
\end{aligned}
$$

(iii) From part (i) and Lemmas 8.2(iii) and 8.5(ii), $G_{a x} \cap Q(x)=1$ with $G_{a x}^{* x}$ containing a subgroup of index 11 isomorphic to A_{5}. A perusal of [1] now yields (iii).

Using [1] we see that $G_{a x}^{* x}$ is the stabilizer of an 11-element set called an endecad (the symmetric difference of a heptad and an octad, intersecting in two elements of Ω_{x}) and an element X of Ω_{x} disjoint from the endecad. The orbits of $G_{a x}^{* x}\left(\cong L_{2}(11)\right)$ are described in (2.12). The next few results give the point distribution for lines in some of these $G_{a x}^{* x}$-orbits.

Lemma 8.8. Let $d \in \Delta_{1}(x) \cap \Delta_{3}^{3}(a)$. Then $x+d \in \alpha_{1}(x, \operatorname{END},-)$ with $\mid \Gamma_{0}(x+$ d) $\cap \Delta_{3}^{3}(a) \mid=1$ and $\left|\Gamma_{0}(x+d) \cap \Delta_{4}^{4}(a)\right|=2$.

Proof. By Lemma 8.7(i) $\left|\Delta_{1}(x) \cap \Delta_{3}^{3}(a)\right|=11$. Therefore (2.12) implies that $\left\{x+y \mid y \in \Delta_{1}(x) \cap \Delta_{3}^{3}(a)\right\}$ is equal to one of $\alpha_{1}(x, \mathrm{END},-), \alpha_{1}(x, \mathrm{END},+)$ or $\alpha_{5}(x$, END,+$)$. Suppose $\left\{x+y \mid y \in \Delta_{1}(x) \cap \Delta_{3}^{3}(a)\right\}$ equals one of $\alpha_{1}(x$, END,+$)$ and $\alpha_{5}(x, \mathrm{END},+)$. Then the 11 lines in $\left\{x+y \mid y \in \Delta_{1}(x) \cap \Delta_{3}^{3}(a)\right\}$ are incident with the same hyperplane $X \in \Gamma_{3}(x)$. By Lemma 8.1(i) for each of the 10 points $y \in\left(\Delta_{1}(x) \cap \Delta_{3}^{3}(a)\right) \backslash\{d\}$ there exists $z \in \Delta_{3}^{1}(a) \cap\{d, y\}^{\perp}$, whence, by Lemma 3.6, $d+y \in \Gamma_{1}(X)$ for each $y \in Y_{d}$. However, consulting Appendix A reveals that the 10 heptads $h_{1}, h_{2}, h_{3}, h_{4}, h_{5}, h_{6}, h_{9}, h_{11}, h_{14}, h_{15}$ (see Lemma 8.1) have empty intersection. Thus we deduce that $\left\{x+y \mid y \in \Delta_{1}(x) \cap \Delta_{3}^{3}(a)\right\}=\alpha_{1}(x$, END,-$)$. By (2.15) we have $\Gamma_{0}(d+x) \backslash\{d\} \subseteq \Delta_{4}^{4}(a)$, and we have the lemma.

Lemma 8.9. (i) Let $l \in \alpha_{3}(x, \operatorname{END},-)$. Then $\left|\Gamma_{0}(l) \cap \Delta_{4}^{1}(a)\right|=1$ and $\left|\Gamma_{0}(l) \cap \Delta_{4}^{4}(a)\right|=2$.
(ii) Let $l \in \alpha_{3}\left(x\right.$, END, +). Then $\left|\Gamma_{0}(l) \cap \Delta_{4}^{1}(a)\right|=\left|\Gamma_{0}(l) \cap \Delta_{4}^{4}(a)\right|=\mid \Gamma_{0}(l) \cap$ $\Delta_{4}^{6}(a) \mid=1$.
(iii) If $l \in \alpha_{3}(x, \operatorname{END},-) \cup \alpha_{3}(x, \mathrm{END},+)$ with $\{y\}=\Gamma_{0}(l) \cap \Delta_{4}^{1}(a)$ and $\{e\}=$ $\Delta_{1}(y) \cap \Delta_{3}^{1}(a)$, then $e \in \Delta_{2}^{1}(x)$.

Proof. Let $d_{1}, d_{2} \in \Delta_{1}(x) \cap \Delta_{3}^{3}(a)$ with $d_{1} \neq d_{2}$. Then Lemmas 8.1(i), 8.4(i) and 8.7(i) imply that there exists $e \in \Delta_{3}^{1}(a) \cap\left\{d_{1}, d_{2}\right\}^{\perp}$. We have

where $z \in\{e, x\}^{\perp} \backslash\left\{d_{1}, d_{2}\right\}$. Then $z \notin \Gamma_{0}\left(X\left(d_{i}, a\right)\right)(i=1,2)$ by Lemma 3.6 because $\Gamma_{3}(a, x)=\emptyset$. Therefore $\Gamma_{3}(a, z)=\emptyset$, otherwise for any $X \in$ $\Gamma_{3}(a, z)$ we would have $X \in \Gamma_{3}(e)$ by Lemma 4.15(i), which is impossible because $\Gamma_{3}(a, e)=\left\{X\left(a, d_{1}\right), X\left(a, d_{2}\right)\right\}$ by Lemma 4.3(ii). Thus $z \in \Delta_{4}^{1}(a)$
by definition (see (2.15)(ix)). However $x+d_{1}, x+d_{2} \in \alpha_{1}(x$, END,-$)$ by Lemma 8.8 and, as heptads in $\Omega_{x}, x+d_{1}$ and $x+d_{2}$ intersect END in different elements. Thus $T(x, e)$ and END have empty intersection in Ω_{x}. Hence $x+z \in \alpha_{1}(x, \mathrm{END},+) \cup \alpha_{3}(x, \mathrm{END},+) \cup \alpha_{3}(x, \mathrm{END},-)$ by (2.12) because $x+z$ contains the triad $T(x, e)$ in Ω_{x}. However Lemma 3.11(ii) implies that $|(x+z) \cap \mathrm{END}|=3$ for each $z \in\{e, x\}^{\perp} \backslash\left\{d_{1}, d_{2}\right\}$ and $x+z$ contains the unique element of Ω_{x} fixed by $G_{a x}$ for precisely one $z \in\{e, x\}^{\perp} \backslash\left\{d_{1}, d_{2}\right\}$. Therefore we may assume $\{e, x\}^{\perp} \backslash\left\{d_{1}, d_{2}\right\}=\left\{z_{1}, z_{2}, z_{3}\right\}$ where $x+z_{1} \in \alpha_{3}(x$, END,+$)$ and $x+z_{2}, x+z_{3} \in \alpha_{3}(x, \mathrm{END},-)$.

Let $\Gamma_{0}\left(e+d_{1}\right)=\left\{e, d, d_{1}\right\}$. Then $d \in \Delta_{3}^{3}(a)$ by Lemma 4.15(i) and $d \in$ $\Delta_{1}(f)$ for each $f \in \bigcup\left\{\Gamma_{0}(x+y) \backslash\{x, y\} \mid y \in\{e, x\}^{\perp} \backslash\left\{d_{1}\right\}\right\}$ using Lemma 3.10. Since $\Gamma_{3}(a, x)=\emptyset, X(d, a) \notin \Gamma_{3}(T(d, x))$. Considering the 5 heptads in Γ_{d} incident with $T(d, x)$ together with (2.15)(xii) and (xiv) yields that $\Delta_{3}^{3}(a) \cap$ $\{d, x\}^{\perp}=\left\{d_{1}\right\},\left|\Delta_{4}^{4}(a) \cap\{d, x\}^{\perp}\right|=3$ and $\left|\Delta_{4}^{6}(a) \cap\{d, x\}^{\perp}\right|=1$. We know that $\Gamma_{0}\left(x+d_{2}\right) \backslash\left\{x, d_{2}\right\} \subseteq \Delta_{4}^{4}(a)$ by Lemma 8.8. This, together with the fact that $\alpha_{3}(x, \mathrm{END},-)$ and $\alpha_{3}(x, \mathrm{END},+)$ are $G_{a x}$-orbits forces $\Gamma_{0}\left(x+z_{1}\right) \backslash\left\{x, z_{1}\right\} \subseteq$ $\Delta_{4}^{6}(a)$ and $\Gamma_{0}\left(x+z_{i}\right) \backslash\left\{x, z_{i}\right\} \subseteq \Delta_{4}^{4}(a)$ for $i=2,3$. This proves parts (i) and (ii).

Part (iii) follows because $\{e\}=\Delta_{2}^{1}(x) \cap \Delta_{3}^{1}(a) \cap \Delta_{1}(z)$ for each $z \in \Delta_{4}^{1}(a) \cap$ $\{e, x\}^{\perp}$ by Lemma 6.1, together with the fact that $\alpha_{3}(x$, END,-$)$ and $\alpha_{3}(x$, END,+$)$ are $G_{a x}$-orbits on $\Gamma_{1}(x)$.

In the next lemma we reconsider a point in $\Delta_{4}^{1}(a)$.
Lemma 8.10. Let $y \in \Delta_{4}^{1}(a), l \in \Gamma_{1}(y)$ and $\{d\}=\Delta_{1}(y) \cap \Delta_{3}^{1}(a)$. Suppose there exists $z \in \Gamma_{0}(l) \cap \Delta_{4}^{4}(a)$.
(i) If $l \in \alpha_{3}(z, \mathrm{END},+)$, then $l \in \alpha_{3,0}^{\mathcal{L}^{c}}(y, y+d$, DUAD$)$ and $\left|\Gamma_{0}(l) \cap \Delta_{4}^{1}(a)\right|=$ $\left|\Gamma_{0}(l) \cap \Delta_{4}^{4}(a)\right|=\left|\Gamma_{0}(l) \cap \Delta_{4}^{6}(a)\right|=1$.
(ii) If $l \in \alpha_{3}(z, \mathrm{END},-)$, then $l \in \alpha_{3,1}(y, y+d$, DUAD$)$ with $\left|\Gamma_{0}(l) \cap \Delta_{4}^{1}(a)\right|=1$ and $\left|\Gamma_{0}(l) \cap \Delta_{4}^{4}(a)\right|=2$.

Proof. Since $\Gamma_{0}(l) \cap \Delta_{4}^{4}(a) \neq \emptyset, l \in \alpha_{1,0}(y, y+d, \mathrm{DUAD}) \cup \alpha_{3,0}^{\mathcal{L}^{c}}(y, y+d$, DUAD $) \cup$ $\alpha_{3,1}(y, y+d$, DUAD $)$ by (2.9) and Lemmas 6.6 and 6.8. Assume $l \in \alpha_{3}(z$, END,+$) \cup$ $\alpha_{3}(z$, END,-$)$. Then by Lemma 8.9(iii), $d \in \Delta_{2}^{1}(z)$. Hence, since $y \in\{d, z\}^{\perp}, y+$
$z=l \in \alpha_{3}(y, y+d)$. Therefore we must have $l \in \alpha_{3,0}^{\mathcal{L}^{c}}(y, y+d, \mathrm{DUAD}) \cup \alpha_{3,1}(y, y+$ d, DUAD).

Let DUAD $=\left\{X_{1}, X_{2}\right\}$ where $X_{1}, X_{2} \in \Gamma_{3}(y)$. Then $X_{1}, X_{2} \in \Gamma_{3}(b)$ where $\{b\}=\Delta_{1}(a) \cap \Delta_{3}^{1}(y)$ by Lemma 6.5. Since $X_{1}, X_{2} \notin \Gamma_{3}(a)$, Lemma 3.2 yields that $\tau:=\tau\left(X_{1}\right) \tau\left(X_{2}\right) \in G_{a} \cap Q(y)$. If $l \in \alpha_{3,1}(y, y+d, \mathrm{DUAD})$, then $z^{\tau} \neq z$ by Lemma 3.2 because exactly one of X_{1} and X_{2} lies in $\Gamma_{3}(z)$. Thus $\Gamma_{0}(l) \backslash\{y\} \subseteq$ $\Delta_{4}^{4}(a)$. Therefore $l \in \alpha_{3}(z, \mathrm{END},+)$ implies that $l \in \alpha_{3,0}^{\mathcal{L}^{c}}(y, y+d, \mathrm{DUAD})$ by Lemma 8.9(ii) and part (i) follows from Lemma 8.9(ii) again.

So we may assume that $l \in \alpha_{3}(z, \mathrm{END},-)$. If $l \in \alpha_{3,0}^{\mathcal{L}^{c}}(y, y+d$, DUAD $)$, then appealing to part (i) and Lemma 5.5 we get that $l \in \alpha_{3}(z$, END,+$)$. This contradicts (2.12). Therefore we must have $l \in \alpha_{3,1}(y, y+d$, DUAD) and now Lemma 8.9(i) yields (ii).

In our next two lemmas we consider $y \in \Delta_{4}^{2}(a)$ and $\alpha_{2}(y, O(y, a))$, the line orbit of $G_{a y}$ that has yet to receive our attention.

Lemma 8.11. If $l \in \Gamma_{1}(y)$ and $l \in \alpha_{2}(y, O(y, a))$, then $\Gamma_{0}(l) \cap \Delta_{4}^{6}(a)=\emptyset$.
Proof. We assume the result is false and seek a contradiction. Thus we have $f \in \Delta_{4}^{6}(a)$ such that $y+f \in \alpha_{2}(y, O(y, a))$. Further, from (2.10), we have that
(8.11.1) $G_{a y f}$ contains a subgroup A isomorphic to A_{5}.

Let $d \in \Delta_{1}(f) \cap \Delta_{3}^{3}(a)$; by definition of $\Delta_{4}^{6}(a)$ such a d exists.
(8.11.2) $\left|G_{a f}\right|=2^{3} .3^{2} .5,2^{4} .3^{2} .5$ or $2^{5} .3^{2} .5$.

Set $n=\left|\Delta_{1}(f) \cap \Delta_{3}^{3}(a)\right|$. Combining Lemmas 5.4 and 8.4(v) gives $n=\left[G_{a f}\right.$: $\left.G_{a d f}\right]$. From Lemmas 4.8(iii) and $8.4(\mathrm{v})$ we have that $\left|G_{a d f}\right|=2^{3} .3^{2}$. Hence, using (8.11.1) and the order of M_{23}, we deduce that $5 \mid n$ and $3 \nmid n$. Consequently $n=5,10$ or 20 by Lemma 5.3(ii). Since $\left|G_{a f}\right|=\left|G_{a d f}\right| \cdot n=2^{3} .3^{2} . n$, this yields the possibilities listed in (8.11.2).
(8.11.3) $\left|Q(f) \cap G_{f a}\right| \leq 2$.

Clearly $Q(f) \cap G_{a f}$ fixes the line $f+y$ and $\left[Q(f) \cap G_{a f}: Q(f) \cap G_{a f y}\right] \leq 2$. Now $Q(f) \cap G_{a f y}$ is a subgroup of $G_{a y} \cong A_{8}$ (by Lemma 7.3(i)) which, by
(8.11.1), is normalized by $A \cong A_{5}$. Therefore $Q(f) \cap G_{a f y}=1$ by the structure of A_{8}, whence we have (8.11.3).

Put $\overline{G_{a f}}=G_{a f}^{* f}$, and use the usual bar notation for the subgroups of $G_{a f}$. Let \bar{N} be a minimal normal subgroup of $\overline{G_{a f}}$. Then we must have either $\bar{A} \leq \bar{N}$ or $\bar{A} \cap \bar{N}=1$. Suppose the former holds. Then \bar{N} must be a direct product of isomorphic non-abelian simple groups. The possible orders for $G_{a f}$ in (8.11.2) then force \bar{N} to be isomorphic to either A_{5} or A_{6}. If $\bar{N} \cong A_{6}$, then \bar{N} contains all the elements of $\overline{G_{a f}}$ of order 3. So, together (8.11.3) and (2.3) imply that $\bar{N}\left(\cong A_{6}\right)$ contains a subgroup isomorphic to $3 \times A_{4}$, which is impossible. Thus $\bar{A}=\bar{N} \cong A_{5}$ and, since $3^{2} \| \overline{G_{a f}} \mid$, we conclude that an element of $\overline{G_{a f}}$ of order 3 centralizes \bar{A}.

Now we consider the possibility $\bar{N} \cap \bar{A}=1$. By (8.11.2) $|\bar{N}|=3$ or \bar{N} is a 2 -group of order at most 2^{3}. Hence $[\bar{A}, \bar{N}]=1$. Since $C_{M_{23}}(\vartheta)=15$ for ϑ an element of M_{23} of order 5 , we deduce that $\bar{N}=3$. Therefore we conclude that, in either case, $\bar{A} \leq N_{\overline{G_{a f}}}(\langle\bar{\zeta}\rangle)$ where $\bar{\zeta} \in \overline{G_{a f}}$ has order 3. Consulting (2.14) we observe that \bar{A} does not fix any line in $\Gamma_{1}(f)$, yet we have that \bar{A} fixes $f+y$. With this contradiction, the proof of Lemma 8.11 is complete.

Lemma 8.12. Let $l \in \alpha_{2}(y, O(y, a))$. Then $\left|\Gamma_{0}(l) \cap \Delta_{4}^{4}(a)\right|=2$.
Proof. Let $d \in \Delta_{1}(y) \cap \Delta_{3}^{2}(a)$ and choose $z \in \Delta_{1}(y)$ such that $y+z \in \alpha_{2}(y, O(y, a)) \cap$ $\alpha_{3}(y, y+d)$ (by examining the MOG in [2] we see that such a heptad $y+z$ exists). Let $\Gamma_{0}(y+z)=\left\{y, z^{\prime}, z\right\}$. Since $d+y \in \alpha_{0,0}(d, O(d, a), X(d, a))$ by Corollary 7.4(ii), we have $T(d, z) \cap O(d, a)=\emptyset$ in Ω_{d}. Thus either,
(1) there exists $c \in \Delta_{1}(d) \cap \Delta_{2}^{1}(a)$ with $d+c \in \Gamma_{1}(T(d, z))$; or
(2) $\{d, z\}^{\perp} \backslash\{y\}$ consists of one point in $\Delta_{3}^{3}(a)$ and three points in $\Delta_{4}^{1}(a)$.

If case (1) holds, then one of z or z^{\prime} lies in $\Delta_{3}^{2}(a) \cup \Delta_{3}^{6}(a)$. Now $\left|\alpha_{2}(y, O(y, a))\right|=$ 168 and Lemma 7.3 (iii) rules out either of z and $z^{\prime} \in \Delta_{3}^{2}(a)$. So we have $z \in \Delta_{3}^{6}(a)$. Hence, using Lemma $7.5,\left|\Delta_{1}(y) \cap \Delta_{3}^{6}(a)\right|=70+168 i(i=1$ or 2$)$. From Lemmas 4.11(ii) and 7.3 (ii) $5\left|\left|\Delta_{3}^{6}(a)\right|\right.$ and $\left.5 \nmid\right| \Delta_{4}^{2}(a) \mid$ and therefore, by counting edges between $\Delta_{4}^{2}(a)$ and $\Delta_{3}^{6}(a), 5| | \Delta_{1}(y) \cap \Delta_{3}^{6}(a) \mid$. This is clearly
impossible, so case (2) holds and we have

where $e \in \Delta_{3}^{3}(a)$ and $\Gamma_{0}(d+e)=\left\{d, e^{\prime}, e\right\}$. Applying Lemma 4.15 to $d+e$ we get that $e^{\prime} \in \Delta_{3}^{3}(a)$ and $X(e, a)=X(d, a)$. Since $z \in \Delta_{1}(e)$ and $z^{\prime} \in \Delta_{1}\left(e^{\prime}\right)$ by Lemma 3.10 we must have $z, z^{\prime} \in \Delta_{3}^{i}(a) \cup \Delta_{4}^{j}(a)$ for $i \in\{1,2,3,4\}$ and $j \in\{4,6\}$. If $z \in \Delta_{3}^{i}(a)(i \in\{1,2,3,4\})$, then $\Gamma_{3}(a, z, d) \neq \emptyset$ by Lemma 4.15. In this case $\Gamma_{3}(a, y) \neq \emptyset$ contrary to Lemma 5.1. Similarly we get a contradiction if $z^{\prime} \in \Delta_{3}^{i}(a)(i \in\{1,2,3,4\})$. Therefore $z, z^{\prime} \in \Delta_{4}^{4}(a) \cup \Delta_{4}^{6}(a)$ and appealing to Lemma 8.11 we get $z, z^{\prime} \in \Delta_{4}^{4}(a)$, as required.

At this stage we remark that we have proved Theorem 12.
Recall that x is a fixed point in $\Delta_{4}^{4}(a)$.
Lemma 8.13. Let $l \in \alpha_{1}(x, \operatorname{END},+)$. Then $\left|\Gamma_{0}(l) \cap \Delta_{4}^{2}(a)\right|=1$ and $\mid \Gamma_{0}(l) \cap$ $\Delta_{4}^{4}(a) \mid=2$.

Proof. Since $\Delta_{4}^{4}(a)$ is a G_{a}-orbit, there exists $y \in \Delta_{1}(x) \cap \Delta_{4}^{2}(a)$ with $y+x \in$ $\alpha_{2}(y, O(Y, a))$ by Lemma 8.12. Appealing to Corollary 7.4(i) and the MOG in [2] we can choose $d \in \Delta_{1}(y) \cap \Delta_{3}^{2}(a)$ with $y+d \in \alpha_{3}(y, y+x)$. Thus $d \in \Delta_{2}^{1}(x)$. In $\Omega_{d}, T(d, x) \cap O(d, a)=\emptyset$ because $d+y \in \alpha_{0,0}(d, O(d, a), X(d, a))$ by Corollary 7.4(ii). Since $x \in \Delta_{4}(a),\{d, x\}^{\perp} \cap \Delta_{2}^{1}(a)=\emptyset$, whence $\{d, x\}^{\perp} \backslash\{y\}$ must consist of three points in $\Delta_{4}^{1}(a)$ and one point in $\Delta_{3}^{3}(a)$. Letting $\{\mathrm{e}\}=\{d, x\}^{\perp} \cap \Delta_{3}^{3}(a)$, we have

Lemma 8.8 implies that $x+e \in \alpha_{1}(x, \mathrm{END},-)$. Also $|(x+y) \cap \mathrm{END}|=1$ or 5 in Ω_{x} by (2.12) and Lemma 8.9. However $|(x+y) \cap(x+e)|=3$ in Ω_{x} and so we must have $|(x+y) \cap \mathrm{END}|=1$. Hence $x+y \in \alpha_{1}(x, \mathrm{END},+)$ by (2.12) and Lemma 8.8. Since $y+x \in \alpha_{2}(y, O(y, a))$, Lemma 8.12 yields $\left|\Gamma_{0}(y+x) \cap \Delta_{4}^{2}(a)\right|=1$ and $\left|\Gamma_{0}(y+x) \cap \Delta_{4}^{4}(a)\right|=2$. The result now follows because $\alpha_{1}(x, \mathrm{END},+)$ is a $G_{a x}$-orbit.

Finally in this section we prove a symmetry result.
Lemma 8.14. $a \in \Delta_{4}^{4}(x)$.
Proof. Let $d \in \Delta_{1}(x) \cap \Delta_{3}^{3}(a)$ and $e \in \Delta_{3}^{1}(a) \cap \Delta_{2}^{1}(x) \cap \Delta_{1}(d)$ (d and e exist by Lemmas 8.1, 8.7(i) and 8.9(iii)). We have $e+d \in \alpha_{1}(e, D(e, a))$ by Theorem 5. Since $\Gamma_{3}(a, x)=\emptyset, D(e, a) \cap T(e, x)=\emptyset$ in Ω_{e}. Let D be a duad of Ω_{e} contained in the triad $T(e, x)$ and let l be the unique heptad in Ω_{e} containing $D \cup D(e, a)$. Since $T(e, x) \subseteq e+d$ and $|(e+d) \cap D(e, a)|=1, T(e, x) \nsubseteq l$ in Ω_{e}. By Theorem 5 again, there exists $c \in \Gamma_{0}(l)$ with $c \in \Delta_{2}^{1}(a)$. Since $D \subseteq T(e, x)$ in $\Omega_{e},\left|\Gamma_{3}(c, x)\right| \geq 2$ by Lemma 4.1. Hence $c \in \Delta_{2}^{1}(x) \cup \Delta_{3}^{1}(x)$ by Theorem 4.13. If $c \in \Delta_{2}^{1}(x)$, then, since $e \in \Delta_{2}^{1}(x)$ we must have $T(e, x) \in \Gamma_{2}(e+c)$, contrary to $T(e, x) \nsubseteq l$. Therefore $c \in \Delta_{3}^{1}(x)$ and $D=D(c, x)$.

In $\Omega_{c}, T(c, a) \cap D(c, x)=\emptyset$ because $\Gamma_{3}(a, x)=\emptyset$. Therefore Lemma 3.11(ii)
implies there exists $b \in\{a, c\}^{\perp}$ with $(c+b) \cap D(c, x)=\emptyset$ in Ω_{c}. Then $b \in \Delta_{4}^{1}(x)$ by definition (see (2.15)(ix)). Hence Lemmas 6.6(i),(iii) and 8.10(i),(ii) imply $a \in \Delta_{3}^{i}(x) \cup \Delta_{4}^{j}(x)$ for $i=2$ or 6 and $j=1,4$ or 6 because G is transitive on Γ_{0} and $b+a \in \alpha_{3}(b, b+c)$. Since $x \in \Delta_{4}(a), a \notin \Delta_{3}(x)$. If $a \in \Delta_{4}^{1}(x)$ holds, then $x \in \Delta_{4}^{1}(a)$ by Lemma 6.4, which is impossible by Lemmas 6.2(i) and 8.7(ii). So $a \notin \Delta_{4}^{1}(x)$. If $a \in \Delta_{4}^{6}(x)$, then $\left|\Delta_{4}^{4}(a)\right|=\left|\Delta_{4}^{6}(a)\right|$ and $G_{a y} \cong L_{2}(11)$ for all $y \in \Delta_{4}^{6}(a)$. Appealing to Lemmas 8.4(v) and 8.7(ii) then yields

$$
\left|\Delta_{1}(y) \cap \Delta_{3}^{3}(a)\right|=\frac{160 \cdot 2^{10} \cdot 7 \cdot 11 \cdot 23}{2^{16} \cdot 3 \cdot 7 \cdot 23} \notin \mathbb{Z}
$$

which is untenable. Therefore $a \in \Delta_{4}^{4}(x)$ and the lemma is proved.

References

[1] J. Conway, R. Curtis, S. Norton, R. Parker and R. Wilson, Atlas of Finite Groups, Oxford Univ.Press, London, 1985.
[2] R. Curtis, A new combinatorial approach to M_{24}, Math.Proc.Cambridge Philos.Soc. 79(1976), 25-42.
[3] P. Rowley and L. Walker, On the $F i_{22}$-minimal parabolic geometry, Geom.Dedicata 61(1996), no.2, 121-167.
[4] P. Rowley and L.Walker, A 11,707,448,673,375 vertex graph related to the Baby Monster - I, J.Combin.Theory, Ser.A, 107(2004), 181-213.
[5] P. Rowley and L. Walker, A 195,747,435 vertex graph related to the Fischer group $F i_{23}$, I, manuscript.
[6] P. Rowley and L. Walker, A 195,747,435 vertex graph related to the Fischer group $F i_{23}$, III, manuscript.

