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Introduction

In this paper and [6] we complete our investigation, begun in [5], of the structure

of the 195,747,435 vertex graph G, which is the point line collinearity graph of

a certain geometry Γ associated with the Fischer group Fi23. We continue the

section numbering of [5] and refer the reader to Section 2 for the descriptions of

G and the geometry Γ. Our main results are given in Section 1 and the notation

we employ is to be found in Section 2. Additionally, Section 2 contains detailed

information on the line orbits which is of crucial importance for many of our

arguments. Diamonds, a particular configuration in G, arise frequently - see

Section 3 for their definition and properties.

Just as in [5], a denotes a fixed point of G. Before previewing the contents

of this paper, we take stock of our progress so far. As noted in [5] Theorems

2, 3 and 4 have been established. Combining together Lemmas 4.8, 4.15, 4.16,

Theorem 4.13 with the definitions in (2.15) we see that Theorems 5, 7 and 8

follow. So, in ∆3(a), we have complete knowledge of the point distribution of

the lines in Γ1(x) for x in the Ga-orbits ∆1
3(a), ∆3

3(a) and ∆4
3(a). Information

about ∆2
3(a) is almost complete, only awaiting verification of Lemma 6.6 for

Theorem 6 to be proven. The remaining two Ga-orbits of ∆3(a), ∆5
3(a) and

∆6
3(a), are more elusive and a complete picture of them only emerges in [6].

Here, and in [6], we take the scalpel to ∆4(a), the fourth disc of a. Eventually

we shall learn that ∆4(a) is the union of six Ga-orbits ∆i
4(a) (1 ≤ i ≤ 6).

The procedure we adopt in investigating each ∆i
4(a) is first to identify Gax,

the stabilizer of x in Ga (x ∈ ∆i
4(a)). An initial step in this is the study of

{d, x}⊥ for certain d ∈ ∆3(a). The bound given in Lemma 5.3(ii) is useful in

reducing the number of possible cases we must consider. Having pinpointed

Gax, we then have access to the line orbits and their associated combinatorial

descriptions as detailed in Section 2. Then we move on to determine to which

Ga-orbits the points on lines in Γ1(x) belong. It is here that we make great

use of the diamonds in G. Unfortunately, it does not appear to be possible to

deal completely with each Ga-orbit one at a time. Rather we have to content

ourselves with partial information about a particular Ga-orbit and then analyse

other Ga-orbits before it is possible to return to the earlier orbit and refine
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the information previously obtained. This neccessity of having to advance on

several different fronts simultaneously is particularly marked in ∆4(a). As a

result it is difficult to keep track of what has been proved and where it has been

proved. So, in Appendix B (at the end of [6]) we list the results giving the point

line distribution for each Gax-orbit of Γ1(x), x ∈ ∆3(a) ∪∆4(a). In passing we

mention that there is an Appendix A (also at the end of [6]) in which we itemize

all heptads having a certain property – this is called upon in Lemmas 8.1, 8.6,

8.8 and 12.1.

The first section of this paper contains some general observations about G
– Lemmas 5.4–5.6 are frequently deployed, along with various numerical data,

to transfer information from one Ga-orbit to another. In Section 6 we begin

analysing ∆1
4(a) - there we uncover the structure of Gax (x ∈ ∆1

4(a)) and are

able to tidy up certain matters relating to ∆2
3(a) and ∆5

3(a). However certain

issues involving ∆1
4(a) are not resolved before, in the following section, we next

look at ∆2
4(a). In the long Section 8 we consider ∆4

4(a) obtaining a great deal

of data about this orbit (though we cannot settle the orbits α5(x, END, +),

α5(x, END,−) here, x ∈ ∆4
4(a)) as well as reconsidering (and finishing) ∆2

4(a).

The last three Ga-orbits of ∆4(a), ∆3
4(a), ∆5

4(a) and ∆6
4(a), plus unfinished

business with the orbits ∆1
4(a) and ∆4

4(a) are the subject of [6].

We end this introduction with some remarks on our labelling conventions

for points in G. Usually we use x to denote the point of G we are currently most

interested in. Additionally, whenever possible, we use the letters b (or bi, b′), c

(or ci, c′) for points of G in, respectively, ∆1(a), ∆2(a); and d, e (or di, d′, ei,

e′) for points in ∆3(a).

5 Preliminary observations on ∆4(a)

We begin by showing that the sets ∆i
4(a) defined in (2.15) are, in fact, all in

∆4(a). Then, in the next result we verify that each ∆i
4(a) is a Ga-orbit.

Lemma 5.1. (i) Let x ∈ Γ0. If Γ3(a, x) 6= ∅, then d(a, x) ≤ 3.

(ii) If x ∈ ∆i
4(a), i ∈ {1, . . . , 6}, then d(a, x) = 4 (and so Γ3(a, x) = ∅).
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Proof. Part (i) follows directly from [3;Appendix 1]. Turning to part (ii), let

i = 1 and assume that d(a, x) ≤ 3, and argue for a contradiction. By (2.15)

there exists d ∈ ∆1
3(a)∩∆1(x) such that d + x ∈ α0(d,D(d, a)). If x ∈ ∆2(a) =

∆1
2(a) ∪∆2

2(a), then x ∈ Γ0(X) for each X ∈ D(d, a) by Lemma 4.3(i). While

x ∈ ∆1
3(a) ∪∆2

3(a) ∪∆3
3(a) ∪∆4

3(a) ∪∆5
3(a) ∪∆6

3(a) also yields, using Lemmas

4.15 and 4.16, that x ∈ Γ0(X) for each X ∈ D(d, a). This contradicts d + x ∈
α0(d, D(d, a)). Therefore, by Lemma 4.7, d(a, x) = 4. Likewise we may establish

(ii) for i = 2, . . . , 6.

Lemma 5.2. For i ∈ {1, . . . , 6}, ∆i
4(a) is a Ga-orbit.

Proof. Suppose i = 1. Then by (2.15) there must be a d ∈ ∆1
3(a) ∩∆1(x) such

that d + x ∈ α0(d,D(d, a)). Now by Lemma 4.8(i) G∗dad ∼ L3(4)2 and by (2.4),

α0(d, D(d, a)) is a Gad-orbit. Combining this with Lemmas 3.2 and 4.4 shows

that ∆1
4(a) is a Ga-orbit. Similar considerations, using (2.3), (2.5) and (2.6),

deal with the other cases.

We make frequent use of our next lemma – part (ii) is particularly valuable

in determining the size of ∆1(x) ∩∆3(a) for various x ∈ ∆4(a).

Lemma 5.3. Let x ∈ ∆4(a) and d1, d2 ∈ ∆3(a) ∩∆1(x), with d1 6= d2.

(i) If Xi ∈ Γ3(a, di) for i = 1, 2, then X1 6= X2.

(ii) |∆1(x) ∩⋃4
i=1 ∆i

3(a)| ≤ 23.

Proof. Let Xi ∈ Γ3(a, di), i = 1, 2. If X1 = X2, then Lemma 3.6 implies that

Γ3(a, x) 6= ∅, contradicting Lemma 5.1(ii). Thus (i) holds. Since |Γ3(a)| = 23

and Γ3(a, d) 6= ∅ for d ∈ ⋃4
i=1 ∆i

3(a), (ii) follows from (i).

The following three results are all variations upon the same theme – these

results aid us in identifying to which Gax′-orbit l (∈ Γ1(x′)) belongs, using

information about Γ1(x), where x ∈ Γ0(l)\{x′}.

Lemma 5.4. Let Λ and Λ′ be distinct Ga-orbits of G and let x ∈ Λ , x′ ∈ Λ′

be such that d(x, x′) = 1. If ∆1(x) ∩ Λ′ is a Gax-orbit, then Λ1(x′) ∩ Λ is a

Gax′-orbit and

|∆1(x′) ∩ Λ| = [Gax′ : Gax′x] =
|Λ|
|Λ′| |∆1(x) ∩ Λ′|.
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Proof. See [Lemma 3.6; 4].

Lemma 5.5. Suppose that Λ and Λ′ are distinct Ga-orbits of G and let x ∈ Λ,

x′ ∈ Λ′ be such that d(x, x′) = 1. Let Ox be the Gax-orbit of Γ1(x) which

contains x + x′, and put L =
⋃{Og

x | g ∈ Ga}. If Γ0(x + x′) * Λ ∪ Λ′, then

(i) Γ1(x′) ∩ L is a Gax′-orbit of Γ1(x′); and

(ii) |Γ1(x′) ∩ L| = |Ox||Λ|
|Λ′| .

Proof. See [Lemma 3.7;4]

Lemma 5.6. Suppose that Λ and Λ′ are distinct Ga-orbits of G and let x ∈ Λ,

x′ ∈ Λ′ be such that d(x, x′) = 1. Assume that |Γ0(x + x′) ∩ Λ| = 1 and

|Γ0(x+x′)∩Λ′| = 2 and that there exists t ∈ Ga such that t interchanges the two

points in Γ0(x + x′)∩Λ′. Let Ox and O′x′ be, respectively, the Gax (respectively

Gax′)-orbit of Γ1(x) (respectively Γ1(x′)) containing x+x′ (respectively x′+x).

Set L =
⋃{Og

x | g ∈ Ga} and L′ =
⋃{O′x′g | g ∈ Ga}. Then Γ1(x′) ∩ L = O′x′ ,

Γ1(x) ∩ L′ = Ox and therefore L = L′. Moreover,

2|Ox||Λ| = |O′x′ ||Λ′|.

Proof. See [Lemma 3.8; 4]

We conclude this section with a result which determines the point distribu-

tion of the G∗xax-orbits on Γ1(x) of size 40, for x ∈ ∆5
3(a). Representatives of these

two orbits were not given in (2.7) because they are indistinguishable when only

viewed in Γx. So let x ∈ ∆5
3(a), {c} = ∆1(x) ∩∆2

2(a) and {b} = ∆1(a) ∩∆2
2(x)

(the existence of c and b follows from Lemmas 3.8(i) and 4.11(i)). Recall that

G∗xax (∼ 24A5) is the stabilizer in G∗xax(∼= M23) of the hexad x+c and the element

X(x, b) of Ωx. The orbits of G∗xax on Γ1(x) are described in (2.7).

Lemma 5.7. Let l ∈ α3(x, x+c,−) and Γ0(l) = {x, y, y′}. Then the possibilities

{c, y}⊥ ∩∆2
3(a) 6= ∅ and {c, y}⊥ ∩∆2

3(a) = ∅ both occur. Further, the following

hold.

(i) If {c, y}⊥ ∩∆2
3(a) 6= ∅, then |Γ0(l) ∩∆3

4(a)| = 2.
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(ii) If {c, y}⊥ ∩∆2
3(a) = ∅, then either y ∈ ∆5

4(a), y′ ∈ ∆6
4(a) or y′ ∈ ∆5

4(a),

y ∈ ∆6
4(a).

Proof. In order to work concretely in Ωc, we take

c + b =

×
× ×
× ×
× ×

and X(c, a) =

◦

Since c + x ∈ α1,0(c, c + b,X(c, a)) and α1,0(c, c + b, X(c, a)) is a Gac-orbit, we

may assume

c + x =

×
× ×

×
× × ×

.

Let c + e be a heptad with c + e ∈ α3(c, c + x) and let z ∈ {x, e}⊥\{c}. If we

choose c+e so as (c+ b)∩ (c+x) (= X(x, b)) is not in (c+x)∩ (c+e) = T (c, z),

then x + z ∈ α3(x, x + c,−). Choosing

c + e =

×
× ×

× ×
× ×

(so T (c, z) =
×

× ×

)

we observe, courtesy of Theorem 4, that e ∈ ∆2
3(a). Thus we have {c, z}⊥ ∩

∆2
3(a) 6= ∅ with x + z ∈ α3(x, x + c,−). If, instead, we chose

c + e =

× ×
×
×

× × ×

(so T (c, z) =

×

× ×

)

then, again using Theorem 4, we see that we have an instance of {c, z}⊥ ∩
∆2

3(a) = ∅ with x + z ∈ α3(x, x + c,−). We now move on to consider (i) and

(ii).
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Let X = X(x, b), the unique hyperplane in Γ3(c + b, c + x). Also let d ∈
{c, y}⊥\{x} where, for part (i) we further suppose that d ∈ ∆2

3(a). So we have

r
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where Γ0(c + d) = {c, d′, d}. We first prove part (i). Since d ∈ ∆2
3(a), by The-

orem 4 b ∈ ∆1
2(d). Because l = x + y ∈ α3(x, x + c,−), X /∈ Γ3(x + y). So, in

particular, X /∈ T (c, y). In Ωc we have

(c + b) ∩ T (c, y) ⊆ (c + b) ∩ (c + x) = {X},

whence we deduce that (c+ b)∩T (c, y) = ∅. Since T (d, b) ⊆ c+ b and T (d, x) =

T (c, y), (in Ωc)

T (d, b) ∩ T (d, x) ⊆ (c + b) ∩ T (c, y) = ∅.

From Theorem 4.13(iv), in Ωd, |(d+c)∩O(d, a)| = 4 and O(d, a)∩T (d, b) = ∅. So

d+c = ((d+c)∩O(d, a))∪̇T (d, b). Then T (d, x) ⊆ d+c and T (d, b)∩T (d, x) = ∅
force T (d, x) ⊆ O(d, a). Consequently |(d + y) ∩ O(d, a)| = 4. From X(d, a) ∈
T (d, b), T (d, b) ⊆ d + c and T (d, b) ∩ T (d, x) = ∅ (in Ωd) we also note that

y /∈ Γ0(X(d, a)). Therefore y ∈ ∆3
4(a) by definition (see (2.15)(xi)). Since

d′ ∈ ∆2
3(a) by Theorem 4 and y′ ∈ ∆1(d′) by Lemma 3.10, similarly we have

y′ ∈ ∆3
4(a), and this proves part (i).

For part (ii), as c+x /∈ Γ1(X(c, a)), by Lemma 3.11(ii) we may suppose d is

chosen so that Γ3(a, d) 6= ∅. By assumption d /∈ ∆2
3(a) and hence, by Theorem

4 we may assume, without loss of generality, that d ∈ ∆3
3(a) and d′ ∈ ∆4

3(a).
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From Γ3(a, x) = ∅ and Lemma 3.6 we see that y, y′ /∈ Γ0(X(d, a)) because

X(d, a) = X(c, a). Using Lemma 3.10, y ∈ ∆6
4(a) and y′ ∈ ∆5

4(a) by definition

(see (2.15)). This completes the proof of the lemma.

By Lemma 5.7 we can distinguish between the two G∗xax-orbits of size 40

on Γ1(x) by observing the configuration at c. The set of lines in α3(x, x +

c,−) satisfying part (i) of Lemma 5.7 will be labelled α
(1)
3 (x, x + c,−) and the

remaining lines in α3(x, x+c,−), (satisfying part (ii)) will be labelled α
(2)
3 (x, x+

c,−).

6 A first look at ∆1
4(a)

In this section we begin our investigation of the point distribution of lines in

Γ1(x) for x ∈ ∆4(a). Some of this comes as easy corollaries of results about

lines incident with points in ∆3(a).

For the whole of this section we assume x ∈ ∆1
4(a). By definition (see (2.15))

∆1(x) ∩∆1
3(a) 6= ∅. We first show that this set has a unique point.

Lemma 6.1. |∆1(x) ∩∆1
3(a)| = 1.

Proof. For a contradiction assume that d1, d2 ∈ ∆1(x) ∩ ∆1
3(a) with d1 6= d2.

Hence D(a, d1) ∩ D(a, d2) = ∅ by Lemma 5.3(i). Let X ∈ Γ3(a, d1) and

Y ∈ Γ3(a, d2). So, in Ωa, X is an element of D(a, d1) and Y is an element of

D(a, d2). If τ := τ(X) then xτ 6= x by Lemma 3.2. Since τ ∈ Q(a), dτ
2 ∈ Γ0(Y )

and we have

r

r

r

r

r HHHHHHHH

©©©©©©©©

HHHHHHHH

©©©©©©©© x

xτ

d2

d1

dτ
2

where d2 6= dτ
2 by Lemma 3.4. Furthermore dτ

2 ∈ ∆1(d2) by Lemma 4.1 because
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x, xτ /∈ Γ0(Y ). If Γ0(d2 + dτ
2) = {d2, c, d

τ
2} then c ∈ ∆1

2(a) by Lemma 4.16

and [3;Appendix 1]. However Lemma 3.10 implies that c ∈ ∆1(d1) and so, in

Ωa, D(a, d1) ∪ D(a, d2) ⊆ T (a, c) by Theorem 4.13(iii). But then D(a, d1) ∩
D(a, d2) 6= ∅, a contradiction.

Lemma 6.2. (i) |∆1
4(a)| = 213.3.5.11.23.

(ii) G∗aax ∼ L3(2).2 and Q(a)x
∼= 2.

Proof. By Lemma 6.1 we have {d} = ∆1
3(a) ∩ ∆1(x) for some d ∈ Γ0. Then

|∆1(d) ∩∆1
4(a)| = 240 by (2.4) and (2.15). Taking this together with Lemmas

4.8(i) and 6.1 we get

|∆1
4(a)| = 240× 29.11.23 = 213.3.5.11.23.

For part (ii), Lemma 6.1 implies that Gax ≤ Gad. By Lemma 4.8(i) Q(a)d
∼=

22. In fact, Q(a)d = Q(d)a = 〈τ(Y1), τ(Y2)〉 where {Y1, Y2} = Γ3(a, d). Also

xτ(Yi) 6= x by Lemma 3.2 because x /∈ Γ0(Yi) (i = 1, 2). However τ(Y1)τ(Y2) ∈
Gax, whence Q(a)x = 〈τ(Y1)τ(Y2)〉 ∼= 2. Since [Gad : Gax] = 240 we then have

[G∗aad : G∗aax] = 120. Examining the maximal subgroups of G∗aad (∼ L3(4)2) using

[1] we see that G∗aax ∼ L3(2).2 is the only possibility.

The next result shows that x is collinear with points in other ∆3(a) Ga-

orbits.

Lemma 6.3. (i) |∆1(x) ∩∆2
3(a)| = 7.

(ii) Let e ∈ ∆1(x) ∩∆2
3(a). Then e + x ∈ α2,0(e,O(e, a), X(e, a)).

Proof. Let {d} = ∆1(x) ∩∆1
3(a). By considering the set of 21 heptads {d + c |

c ∈ ∆1
2(a)∩∆1(d)} in Γd we see there exists c ∈ ∆1

2(a)∩∆1(d) with c ∈ ∆1
2(x).

Since Γ3(a, x) = ∅, T (c, a) ∩ T (c, x) = ∅ in Ωc. Hence there exists e ∈ {c, x}⊥
such that |(c + e) ∩ T (c, a)| = 1 or 3 in Ωc. Since x ∈ ∆4(a) we must have

|(c + e) ∩ T (c, a)| = 1 by Theorem 3, whence, again by Theorem 3, e ∈ ∆2
3(a).

Thus ∆1(x) ∩∆2
3(a) 6= ∅.
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Let e be any point in ∆1(x)∩∆2
3(a). Then we have e+x ∈ αi,0(e,O(e, a), X(e, a))

for some i = 0, 2 or 4 by (2.5) because Γ3(a, x) = ∅. Moreover, by Lemma 3.2

τ(X(e, a)) interchanges the two points in Γ0(e+x)\{e}. If e+x ∈ α0,0(e, O(e, a), X(e, a)),

then we may use (2.5) and Lemma 5.6 to show that x + e lies in a Gax-orbit on

Γ1(x) of size
2.8.|∆2

3(a)|
|∆1

4(a)| =
16.28.3.5.11.23
213.3.5.11.23

=
1
2

which is clearly impossible. Similarly if e + x ∈ α4,0(e, O(e, a), X(e, a)), then

x + e lies in a Gax-orbit of size

2.56.|∆2
3(a)|

|∆1
4(a)| =

112.28.3.5.11.23
213.3.5.11.23

=
7
2

which is again untenable. Therefore e+x ∈ α2,0(e,O(e, a), X(e, a)) which proves

part (ii). Part (i) now follows from part (ii) using Lemmas 4.8(ii) and 6.2(i).

Lemma 6.4. a ∈ ∆1
4(x).

Proof. By Lemma 6.3 we can choose e ∈ ∆2
3(a) ∩ ∆1(x) and we have e + x ∈

α2,0(e,O(e, a), X(e, a)). Let e+x =

× × × ×
×
×
×

with O(e, a) and X(e, a)

as in (2.5) (with e playing the part of x there). Examining the MOG in [2]

and using Theorem 4.13(iv) we see that there exists a heptad e + c with c ∈
∆2

2(a) ∩ ∆1(e) ∩ ∆1
2(x) and |T (c, x) ∩ O(e, a)| = 1 in Ωe. ( In fact, there are

exactly two such heptads, namely

× × × × ×
×
×
×

and

× × × ×
×
×
×

.)

Put {b} = {a, c}⊥. Then b ∈ ∆1
2(e) by Theorem 4 and T (e, b) ∩ O(e, a) = ∅ in

Ωe by Theorem 4.13(iv). Hence |T (e, b)∩ T (c, x)| = 2 in Ωe, which implies that

b ∈ ∆1
3(x) by Lemma 4.14(i). Since d(a, x) = 4, the result now follows from

Theorem 5.
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The following result gives an explicit geometric description of the group G∗xax.

Lemma 6.5. Let b ∈ ∆1(a) ∩∆1
3(x) and d ∈ ∆1

3(a) ∩∆1(x). Then D(x, b) ∩
(x + d) = ∅ in Ωx and G∗aax is the stabilizer in G∗xx (∼= M23) of the heptad x + d

and the duad D(x, b).

Proof. First we note that b and d are the unique points in ∆1(a) ∩∆1
3(x) and

∆1
3(a)∩∆1(x) respectively by Lemmas 6.1 and 6.4. Therefore G∗xax is contained in

the stabilizer of x+d and D(x, b) in G∗xx . Let Γ0(x+d) = {x, x′, d}. Assume that

D(x, b)∩ (x + d) 6= ∅ and let D(x, b) = {X1, X2}. Suppose that X1 ∈ Γ3(x + d)

and X2 /∈ Γ3(x + d). Then τ := τ(X1)τ(X2) fixes a and interchanges d and x′

by Lemma 3.2. However x′ ∈ ∆1
4(a) by definition (see (2.15)), which gives a

contradiction. Hence X1, X2 ∈ Γ3(x + d). So Theorem 5 implies that either

d ∈ ∆1
2(b) or x′ ∈ ∆1

2(b). Since x′ ∈ ∆4(a) we must have d ∈ ∆1
2(b). By

Theorem 3 |Γ3(a, b, d)| = |Γ3(x, b, d)| = 2 because a ∈ ∆1
3(d) and x ∈ ∆1

3(b).

Therefore Γ3(a, x) 6= ∅ because |Γ3(b, d)| = 3. We now have a contradiction

to Lemma 5.1(ii) and thus we conclude that D(x, b) ∩ (x + d) = ∅. In M23

the stabilizer of a heptad and a duad disjoint from the heptad is isomorphic to

L3(2).2. Therefore the result now follows by Lemma 6.2(ii).

We are now in a position to describe the Gax-orbits of Γ1(x) by their

intersection with D(x, b) (denoted by DUAD) and the heptad x + d (where

{d} = ∆1
3(a)∩∆1(x) and {b} = ∆1(a)∩∆1

3(x)). These orbits are listed in (2.9)

(with b there playing the role of d).

Lemma 6.6. Let {d} = ∆1
3(a) ∩∆1(x) and {b} = ∆1(a) ∩∆1

3(x).

(i) If l ∈ α3,2(x, x+d, DUAD), then |Γ0(l)∩∆2
3(a)| = 1 and |Γ0(l)∩∆1

4(a)| =
2.

(ii) Let e ∈ ∆2
3(a) ∩∆1(x). Then e + x ∈ α2,0(e, O(e, a), X(e, a)) if and only

if x + e ∈ α3,2(x, x + d, DUAD).

(iii) If l ∈ αL
3,0(x, x+d, DUAD), then |Γ0(l)∩∆6

3(a)| = 1 and |Γ0(l)∩∆1
4(a)| =

2.

(iv) If l ∈ α1,2(x, x+d, DUAD), then |Γ0(l)∩∆6
3(a)| = 1 and |Γ0(l)∩∆1

4(a)| =
2.
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Proof. Let e ∈ ∆2
3(a) ∩ ∆1(x). For y ∈ ∆1

4(a) ∩ ∆1(e) we have e + y ∈ α2,0

(e, O(e, a), X(e, a)) by Lemma 6.3(ii). So, by Lemma 3.2, |Γ0(e+y)∩∆2
3(a)| = 1

and |Γ0(e + y) ∩ ∆1
4(a)| = 2 and therefore, by (2.5), ∆1(e) ∩ ∆1

4(a) is a Gae-

orbit. Consequently, using Lemma 5.4, ∆1(x) ∩ ∆2
3(a) is a Gax-orbit whence,

by Lemma 6.3(i) and (2.9), {x + e′ | e′ ∈ ∆2
3(a)} = α3,2(x, x + d, DUAD). This

proves parts (i) and (ii).

For (iii), let c ∈ ∆1
2(a) ∩ ∆1(d). Since Γ3(a, x) = ∅, there exist e1, e2 ∈

{c, x}⊥\{d} with e1 ∈ ∆6
3(a) and e2 ∈ ∆2

3(a). We have

r
r

r
r

r
r

r

r
r

((((((hhhhhh((((((hhhhhhaaaaaaaaaa¢
¢
¢
¢

aaaaaaaaaa

¢
¢
¢
¢

a c

d′

d

x

e′1

e1

e2

where Γ0(c+d) = {c, d′, d} and Γ0(x+e1) = {x, e′1, e1}. Since (x+e1)∩(x+d) =

T (x, c) = (x + e2) ∩ (x + d), (x + d) ∩ DUAD = ∅ and |(x + e2) ∩ DUAD| = 2

in Γx, x + e1 ∈ αL
3,0(x, x + d, DUAD) by definition (see (2.9)). We have

e′1 ∈ ∆1(d′) by Lemma 3.10. Therefore Theorem 4.13 and (2.15) imply that

e′1 ∈ ∆1
2(a) ∪∆1

3(a) ∪∆3
3(a) ∪∆1

4(a) because d′ ∈ ∆1
3(a). However e1 ∈ ∆6

3(a)

and x ∈ ∆1
4(a) which means that e′1 /∈ ∆1

2(a) ∪∆1
3(a) ∪∆3

3(a) by Lemmas 4.15

and 5.1(ii). This proves part (iii).

Finally we turn to part (iv). Let c ∈ ∆1
2(x) ∩ ∆1(b) (c exists by Theorem

4.13(iii)). For each y ∈ {c, x}⊥, y ∈ ∆1
2(b) and the heptad x + y contains

D(x, b) (= DUAD) in Ωx. Therefore a ∈ ∆i
3(y) for i = 1,2 or 6 and using

symmetry (see Lemma 4.12) y ∈ ∆i
3(a) for i = 1,2 or 6. Since Γ3(a, x) = ∅,

Γ3(T (c, x)) ∩ Γ3(a) = ∅. Thus there exists y ∈ {c, x}⊥ with y ∈ ∆6
3(a). By

(2.9) and part (i), x + y ∈ α1,2(x, x + d, DUAD) because x + y contains DUAD

in Ωx. Let Γ0(x + y) = {x, y′, y}. Then b ∈ ∆1
3(y

′). Note that Γ3(a, y′) = ∅,
for otherwise we have X ∈ Γ3(a, y′) with X /∈ Γ3(y′ + x). But then τ(X)

interchanges y and x by Lemma 3.2, which is impossible as y ∈ ∆3(a) and

x ∈ ∆4(a). Hence a ∈ ∆1
4(y

′) by the definition of ∆1
4(y

′). Appealing to Lemma

6.4 completes the proof of part (iv) and hence of the lemma.
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We return, temporarily, to the orbit ∆5
3(a) – the information given in our

next result is required in Lemma 6.8.

Lemma 6.7. Let z ∈ ∆5
3(a) and l ∈ α3(z, z+c, +) (where {c} = ∆1(z)∩∆2

2(a)).

Then |Γ0(l) ∩∆1
4(a)| = |Γ0(l) ∩∆3

4(a)| = 1.

Proof. We have

r
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r

r
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z
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where Γ0(l) = {z, y′, y} and {b} = {a, c}⊥. Since Γ3(a, z) = ∅ we must have

X(c, a) /∈ Γ3(T (c, y)). Let X = X(z, b). By definition y, y′ ∈ Γ0(X) and

so X ∈ Γ3(T (c, y)). Hence, of the 5 heptads in Γ1(c, T (c, y)), one lies in

Γ1(X(c, a)) ∩ α3(c, c + b), two lie in α3(c, c + b)\Γ1(X(c, a)) and two lie in

α1(c, c+ b)\Γ1(X(c, a)). Therefore {c, y}⊥ consists of one point d in ∆2
3(a), two

points in ∆6
3(a) and two points in ∆5

3(a) (including z).

In Ωd, |(d + c)∩O(d, a)| = 4 and T (d, b)∩O(d, a) = ∅ by Theorem 4.13(iv).

Since z + y ∈ α3(z, z + c, +), X ∈ Γ3(z + y). Hence X ∈ Γ3(b, c, d, z, y) by

Lemmas 3.6 and 4.3. Therefore T (d, z) ∩ T (d, b) 6= ∅ in Ωd, whence T (d, z) *

O(d, a). Also X(d, a) (= X(c, a)) /∈ Γ3(T (d, z)) because T (d, z) = T (c, y).

Thus there exists z1, z2 ∈ {d, z}⊥\{c} with d + z1 ∈ α4,0(d,O(d, a), X(d, a))

and d + z2 ∈ α2,0(d,O(d, a), X(d, a)). So, by (2.15) and Lemma 6.3(ii), we

have z1 ∈ ∆3
4(a) and z2 ∈ ∆1

4(a). However X ∈ Γ3(T (z, d)) implies that z +

zi ∈ α3(z, z + c, +) for i = 1, 2. We have ∆1
4(a) 6= ∆3

4(a) by Lemma 6.3(ii)

and (2.15)(xi) because α2,0(d,O(d, a), X(d, a)) and α4,0(d,O(d, a), X(d, a)) are

13



distinct Gad-orbits. Since α3(z, z + c, +) is a G∗zaz-orbit on Γ1(z) by (2.7) it

follows that |Γ0(l) ∩∆1
4(a)| = |Γ0(l) ∩∆3

4(a)| = 1, as required.

Before considering ∆1
4(a) again we summarize current progress on Theorem

9. Lemma 4.11(i) gives the size of ∆5
3(a) and the structure of Gaz (z ∈ ∆5

3(a)).

In Lemmas 5.7 and 6.7 the point distribution for α
(1)
3 (z, z+c,−), α

(2)
3 (z, z+c,−)

and α3(z, z + c, +) is elucidated (where {c} = ∆1(z) ∩ ∆2
2(a)). It remains to

examine α1(z, z + c,+) and α1(z, z + c,−) and this will be done in, respectively,

Lemmas 9.6(i),(ii) and 13.5(i), when we have learned more about ∆5
4(a) and

∆6
4(a).

Lemma 6.8. Let {d} = ∆1
3(a) ∩ ∆1(x) and {b} = ∆1(a) ∩ ∆1

3(x). For l ∈
α1,1(x, x + d, DUAD) we have that

(i) |Γ0(l) ∩∆5
3(a)| = |Γ0(l) ∩∆3

4(a)| = 1; and

(ii) if e ∈ Γ0(l)∩∆5
3(a), then l ∈ α3(e, e + c, +) (where {c} = ∆2

2(a)∩∆1(e)).

Proof. Let y ∈ ∆5
3(a) and k ∈ α3(y, y+c′, +) where {c′} = ∆2

2(a)∩∆1(y). Then,

by Lemma 6.7, |Γ0(k) ∩ ∆1
4(a)| = |Γ0(k) ∩ ∆3

4(a)| = 1. If z ∈ Γ0(k) ∩ ∆1
4(a),

then by Lemmas 4.11(i), 5.5 and 6.2(i) we have that k lies in a Gaz-orbit on

Γ1(z) of size 42. Hence k ∈ α1,1(z, z +d′,DUAD) (where {d′} = ∆1(z)∩∆1
3(a))

by (2.9). Since ∆1
4(a) is a Ga-orbit and α1,1(x, x + d, DUAD) is a Gax-orbit we

have part (i). Appealing to Lemma 5.5 again yields part (ii).

The point distribution of the remaining Gax-orbits will be dealt with in

Sections 8 and 12.

7 A first look at ∆2
4(a)

In this short section we study some of the points distance one from a point

in the Ga-orbit ∆2
4(a). Let x ∈ ∆2

4(a) be fixed for the whole of this section.

More specifically, in this section, after pinning down |∆2
4(a)| and Gax, we will

determine the point distribution for lines in α0(x, 0(x, a)) and α4(x, 0(x, a)).

14



The remaining line orbit α2(x, 0(x, a)) must await the verification, in Lemma

8.4, that ∆4
4(a) 6= ∆6

4(a), and so is dealt with in Lemma 8.12.

Our first two results are used in the identification of Gax.

Lemma 7.1. |∆1(x) ∩∆2
3(a)| ≥ 15

Proof. Let d ∈ ∆1(x)∩∆2
3(a) with d+x ∈ α0,0(d,O(d, a), X(d, a)). By (2.5) we

we may assume that d+x =

×
× ×
× ×
× ×

where O(d, a) =

◦ ◦
◦ ◦
◦ ◦
◦ ◦

and X(d, a) =

◦

For all c ∈ ∆1
2(a) ∩ ∆1(d) we have d + c ∈

α0,1(d,O(d, a), X(d, a)) by Theorem 4.13(iv) and α0,1(d,O(d, a), X(d, a)) con-

sists of the heptads

×
× ×
× ×
× ×

× × ×
× × × ×

×
× ×

× ×
× ×

× × ×

× × × ×

×
× ×

× ×
× ×

× × ×

× × × ×

×
× ×
× ×

× ×

So we have d+c ∈ α3(d, d+x) for all c ∈ ∆1
2(a)∩∆1(d). Fix c ∈ ∆1

2(a)∩∆1(d).

Then c ∈ ∆1
2(x) and T (c, a)∩T (c, x) = ∅ in Ωc because Γ3(a, x) = ∅ by Lemma

5.1(ii). Using Lemma 3.11(ii) either

(1) there exists y ∈ {c, x}⊥ with |(c + y) ∩ T (c, a)| = 2 in Ωc; or

(2) there exists y1, y2 ∈ {c, x}⊥\{d}, y1 6= y2 with |(c + yi) ∩ T (c, a)| = 1 for

i = 1,2 in Ωc.
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If (1) holds, then y ∈ ∆1
3(a) by (2.15)(iii). However Theorem 5 and x ∈

∆4(a) imply that x ∈ ∆1
4(a) which contradicts Lemma 6.3(ii) because d +

x ∈ α0,0(d,O(d, a), X(d, a)). So (2) holds and y2 ∈ ∆2
3(a) by Lemma 4.14(ii).

Since |∆1
2(a) ∩ ∆1(d)| = 7, to prove the lemma it is enough to show that if

c′ ∈ ∆1
2(a) ∩∆1(d) and c′ 6= c, then c′ /∈ ∆1(y1) ∪∆1(y2). Assume c′ ∈ ∆1(yi)

for some i = 1, 2. Then c, c′ ∈ {yi, d}⊥ and c, c′ ∈ Γ0(X(d, a)) by Theorem

4.13(iv). Therefore Lemma 3.6 yields yi ∈ Γ0(X(d, a)), whence x ∈ Γ0(X(d, a))

by Lemma 3.6 again. We now have a contradiction to Lemma 5.1(ii) and so the

lemma is proved.

Lemma 7.2. If Gax ∼ 24.L3(2), then for any d ∈ ∆1(x) ∩ ∆2
3(a) we have

|∆1(d) ∩∆2
4(a)| = 16.

Proof. We assume the result is false and argue for a contradiction. By (2.5),

(2.15) and Lemmas 3.2 and 6.3(ii) we must have |∆1(d)∩∆2
4(a)| = 16+112 = 128

and ∆2
4(a) = ∆3

4(a). Also, Gax ∼ 24.L3(2) together with Lemma 5.2 imply that

|∆2
4(a)| = |∆3

4(a)| = 211.3.5.11.23. Using (2.7), Lemmas 5.7(i) and 6.7 there

exists e ∈ ∆5
3(a) ∩ ∆1(x) with |∆1(e) ∩ ∆3

4(a)| ≥ 140. Furthermore, for each

line l ∈ α
(1)
3 (e, e + c,−) ∪ α3(e, e + c,+) (where {c} = ∆2

2(a) ∩∆1(e)), we have

|Γ0(l)∩∆5
3(a)| = 1. Therefore, since ∆3

4(a) and ∆5
3(a) are Ga-orbits we have at

least n lines in Γ1(x), incident with a point in ∆5
3(a) where

n ≥ 140.|∆5
3(a)|

|∆3
4(a)| =

140.212.3.7.11.23
211.3.5.11.23

= 392.

This contradicts the fact that Γ1(x) = 253, so proving the lemma.

Lemma 7.3. (i) Gax
∼= A8 with Q(a)x = 1 and Q(x)a = 1. Further G∗xx is

the stabilizer in M23 of an octad of Ωx.

(ii) |∆2
4(a)| = 212.11.23.

(iii) |∆1(x) ∩∆2
3(a)| = 15 and, for e ∈ ∆1(x) ∩∆2

3(a), |∆1(e) ∩∆2
4(a)| = 16.

Proof. By the definition of ∆2
4(a) (see (2.15)) there exists d ∈ ∆1(x) ∩ ∆2

3(a)

such that

d + x ∈ α0,0(d,O(d, a), X(d, a)).
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Recall that Gad ∼ [27]L3(2), G∗dad ∼ 23L3(2) and Q(a) ∩ Q(d) = 〈τ(X(a, d))〉.
From (2.5) the stabilizer of d+x in G∗dad is isomorphic to L3(2). Since τ(X(d, a)) /∈
Gx by Lemma 3.2, we conclude that

(7.3.1) Gadx ∼ 23L3(2) with Gadx ∩Q(d) ∼= 23 and Gadx ∩Q(a) ∩Q(d) = 1.

Lemmas 4.13(iv) and 6.3(ii) and (2.5) imply that for y ∈ ∆1(d) ∩∆2
4(a) we

have

d + x ∈ α0,0(d,O(d, a), X(d, a)) ∪ α4,0(d,O(d, a), X(d, a)).

Hence, as ∆2
4(a) is a Ga-orbit, Lemma 3.2 and (2.5) give

(7.3.2) |∆1(d) ∩∆2
4(a)| = 16 or 128.

We now show that Q(a)x = 1. For g ∈ Q(a)x we have that g fixes X(a, d),

whence dg = d by Lemma 5.3(i). Thus Q(a)x ≤ Gadx and therefore, as Q(a)x E
Gadx, we get Q(a)x ≤ Q(d). So Q(a)x ≤ Gadx ∩Q(a) ∩Q(d) = 1 by (7.3.1).

Using [1] to examine the subgroups of G∗aa
∼= M23 which can contain a

subgroup of the shape 23L3(2) we deduce that

(7.3.3) the shape of Gax is one of 23L3(2), 24L3(2), 24A7, A8, M22 and M23.

Set n = |∆1(x) ∩∆2
3(a)|.

Suppose Gax has shape 24A7, M22 or M23. Then, by Lemma 5.2, we have,

respectively, |∆2
4(a)| = 211.11.23, 211.23 and 211. Thus |∆2

4(a)| ≤ 211.11.23.

Combining (7.3.2) and Lemma 4.8(ii) yields

28.3.5.11.23.16 ≤ |∆2
4(a)|.n ≤ 211.11.23.n.

Thus n ≥ 30 which is impossible by Lemma 5.3(ii). So Gax is not of shape

24A7, M22 or M23.

Now assume that Gax ∼ 23L3(2). Then |∆2
4(a)| = 212.3.5.11.23. Using

(7.3.2) and Lemma 4.8(ii) gives

28.3.5.11.23.128 ≥ |∆2
4(a)|.n = 212.3.5.11.23.n,

whence n ≤ 8. This situation is ruled out by Lemma 7.1.

Next we consider the case Gax ∼ 24L3(2). So |∆2
4(a)| = 211.3.5.11.23 and,

by Lemma 7.2, |∆1(d) ∩∆2
4(a)| = 16 which then yields

28.3.5.11.23.16 = |∆2
4(a)|.n = 211.3.5.11.23.n.
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But then n = 2, contrary to Lemma 7.1. Therefore, in view of (7.3.3), Gax
∼=

A8 is the only possibility. Clearly we then get that Q(x)a = 1. Consulting [1]

we further conclude that G∗xax is the stabilizer in M23 of an octad in Ωx. Also

|∆2
4(a)| = 218.32.5.7.11.23

26.32.5.7
= 212.11.23

If |∆1(d) ∩ ∆2
4(a)| = 128, then we see that n = 120, against Lemma 5.3(ii).

Thus, by (7.3.2), |∆1(d)∩∆2
4(a)| = 16 and then we obtain part (iii), so proving

the lemma.

We will use O(x, a) to denote the octad of Ωx stabilized by G∗xax (∼= Gax
∼=

A8). Referring to (2.10) we see that Gax has 3 orbits on Γ1(x).

Corollary 7.4. Let d ∈ ∆1(x) ∩∆2
3(a). Then

(i) x + d ∈ α0(x,O(x, a));

(ii) d + x ∈ α0,0(d,O(d, a), X(d, a)); and

(iii) Γ0(d + x)\{d} ⊆ ∆2
4(a).

Proof. Parts (i) and (ii) follow from (2.5), (2.10) and Lemmas 5.4 and 7.3(iii).

Now part (ii) and (2.15) give part (iii).

Lemma 7.5. Let l ∈ α4(x,O(x, a)). Then |Γ0(l)∩∆6
3(a)| = |Γ0(l)∩∆3

4(a)| = 1.

Proof. Let d ∈ ∆1(x) ∩∆2
3(a); so d + x ∈ α0,0(d,O(d, a), X(d, a)) by Corollary

7.4(ii). We may choose c ∈ ∆1(d) with c ∈ ∆1
2(a) ∩ ∆1

2(x). If Γ0(c + d) =

{c, d′, d}, then d′ ∈ ∆2
3(a) by Lemma 4.6(i). Since X(d, a) /∈ Γ3(T (d′, x)),

y /∈ Γ0(X(d, a)) for each y ∈ {d′, x}⊥\{d} by Lemma 3.6. Moreover, by Theorem

4.13(iv), the heptad d′+d has empty intersection with the octad O(d′, a) in Ωd′ ,

which means that T (d′, x) ∩O(d′, a) = ∅ in Ωd′ . Therefore either,

(1) |{d′, x}⊥ ∩∆1
4(a)| = 4; or

(2) |{d′, x}⊥ ∩∆2
4(a)| = 2 and |{d′, x}⊥ ∩∆3

4(a)| = 2.
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Assume (1) holds. By Lemma 3.10 c is collinear with the point in Γ0(x +

y)\{x, y} for each y ∈ {d′, x}⊥. Using Lemma 3.11(ii) we can choose y′ ∈ {c, x}⊥
with y′ 6= d and Γ3(a, y′) 6= ∅, and, by Lemma 3.10, y′ ∈ Γ0(x + y)\{x, y} for

some y ∈ {d′, x}⊥. Let X ∈ Γ3(a, y′). Then x, y /∈ Γ0(X), whence xτ(X) = y

by Lemma 3.2. Since τ(X) ∈ Ga we must have ∆2
4(a) = ∆1

4(a). This clearly

contradicts Lemmas 6.2(i) and 7.3(ii). Thus (1) cannot hold and we are in case

(2).

We now examine {c, x}⊥. By Theorem 5, if e ∈ ∆1
3(a), then ∆1(e)∩∆4(a) ⊆

∆1
4(a). Hence {c, x}⊥ ∩ ∆1

3(a) = ∅. Furthermore T (c, x) ∩ T (c, a) = ∅ in

Ωc because Γ3(a, x) = ∅. Therefore we must have |{c, x}⊥ ∩ ∆2
3(a)| = 3 and

|{c, x}⊥ ∩∆6
3(a)| = 2. Let y ∈ {c, x}⊥ and Γ0(x + y) = {x, y′, y}. If y ∈ ∆2

3(a),

then y′ ∈ ∆2
4(a) by Corollary 7.4(iii). So by (2), if y ∈ ∆6

3(a) we must have

y′ ∈ ∆3
4(a). Assume z ∈ ∆6

3(a) ∩ {c, x}⊥ and Γ0(x + z) = {x, z′, z}. So

z′ ∈ ∆3
4(a).
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In Ωx, (x + y) ∩ O(x, a) = ∅ for all y ∈ ∆2
3(a) ∩ {c, x}⊥ because x + y ∈

α0(x, O(x, a)) by Corollary 7.4(i). Hence T (x, c) ∩ O(x, a) = ∅ and |(x + z) ∩
O(x, a)| = 4 in Ωx. Therefore x + z ∈ α4(x,O(x, a)) and since α4(x,O(x, a)) is

a Gax-orbit, the lemma is proved.
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8 A first look at ∆4
4(a)

We delay the exploration of ∆3
4(a) until Section 11 and turn our attention instead

to ∆4
4(a). For the whole of Section 8, we let x be a fixed point in ∆4

4(a).

Recall from (2.15)(xii) that ∆1(x) ∩ ∆3
3(a) 6= ∅. We show that, in fact,

|∆1(x)∩∆3
3(a)| = 11. This is done in several stages. The set Yd, which we now

define, plays an important role in these arguments. For d ∈ ∆1(x)∩∆3
3(a) with

d + x ∈ α1,0(d, d + c,X(d, a)) (where {c} = ∆1(d) ∩∆2
2(a)), we put

Yd := {y ∈ ∆3
3(a) ∩∆1(x) ∩∆1

2(d)| there exists z ∈ {y, d}⊥ ∩∆1
3(a)}.
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(zi ∈ ∆1
3(a), Yd = {y1, y2, ..., yr})

Lemma 8.1. Suppose d ∈ ∆1(x) ∩ ∆3
3(a) with d + x ∈ α1,0(d, d + c,X(d, a))

(where {c} = ∆1(d) ∩∆2
2(a)). Then

(i) Yd is a Gadx-orbit and |Yd| = 10;

(ii) |∆1(x) ∩∆3
3(a)| ≥ 11; and

(iii) there exists a Gax-orbit in ∆1(x) ∩∆3
3(a) of size at least 10.

Proof. Parts (ii) and (iii) follow from part (i). For part (i), by (2.3), without

loss of generality we may assume d + x =

× × ×
× ×

×
×

, where d + c =
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×
× ×
× ×
× ×

and X(d, a) =

◦

in Ωd. Using Appendix A

we see there are exactly 10 heptads intersecting d + c in just X(d, a) and d + x

in three elements of Ωd (namely h1, h2, h3, h4, h5, h6, h9, h11, h14, h15). There-

fore there are 10 lines l ∈ Γ1(d) with l ∈ α1,1(d, d + c, X(d, a)) ∩ α3(d, d + x).

Furthermore |Γ0(l) ∩∆1
3(a)| = 1 for each such l by Lemma 4.15 and so the set

S := ∆1(d) ∩ ∆1
3(a) ∩ ∆1

2(x) contains exactly 10 points. By Lemma 4.8(iii),

Gad ∼ 25A6 and Gad is transitive on {y ∈ ∆1(d)|d + y ∈ α1,0(d, d + c,X(d, a))}
by (2.3) and Lemma 3.2. Hence Gadx

∼= A5 and S is a Gadx-orbit. Moreover

S ⊆ Γ0(X(d, a)).

Fix z ∈ S. Since Γ3(a, x) = ∅ by Lemma 5.1(ii) we must have Γ3(a, y) = ∅
for at least three points y ∈ {z, x}⊥. By considering the possible heptads in

Γz together with (2.15) we conclude that {z, x}⊥\{d} consists of one point

e ∈ ∆3
3(a) and three points in ∆1

4(a). For example, without loss of generality

we may suppose that

z +d =

× × × ×
×
×
×

where D(z, a) =

◦

◦

by (2.4) and

Lemma 4.15. Then T (z, x) ∩ D(z, a) = ∅ in Ωz because Γ3(a, x) = ∅. So, for

example, T (z, x) =

× × ×

and we get z + e =

× × ×
×

×
× ×

in this case.

To prove |Yd| = 10 it is enough to show that e is not collinear with any point

in S\{z}. Assume z′ ∈ S ∩ ∆1(e) with z′ 6= z, and argue for a contradiction.

Then z, z′ ∈ Γ0(X(d, a)), whence Lemma 3.6 implies that e ∈ Γ0(X(d, a)).

However this gives d, e ∈ Γ0(X(d, a)) ∩∆1(x) with d 6= e, contrary to Lemma

5.3(i). So |Yd| = 10. The fact that Yd is a Gadx-orbit follows because S is a

Gadx-orbit and the proof of part (i) is complete.
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Lemma 8.2. Let Bx be a Gax-orbit on Γ1(x) and suppose there exists l ∈ Bx

and d ∈ Γ0(l)∩∆3
3(a) with l ∈ α1,0(d, d+c,X(d, a)) (where {c} = ∆1(d)∩∆2

2(a)

). Let Dx = {y ∈ ∆1(x) ∩∆3
3(a)|x + y ∈ Bx}.

(i) If y ∈ ∆1(x) ∩ ∆3
3(a) with y + x ∈ α1,0(y, y + c′, X(y, a)) (for {c′} =

∆1(y) ∩∆2
2(a)), then y ∈ Dx.

(ii) Yd ⊆ Dx.

(iii) For each y ∈ Dx, Gayx
∼= A5.

Proof. We first show part (i) holds. Let y be as given in part (i), and set

L = {(α1,0(d, d+c,X(d, a)))g| g ∈ Ga}. By (2.3) α1,0(d, d+c,X(d, a)) is a Gad-

orbit which contains l = d+x. Also, by Lemma 3.2, τ(X(d, a)) interchanges the

two points in Γ0(d+x)\{d}. Employing Lemma 5.6 with ∆3
3(a), ∆4

4(a), d, x and

Bx playing, respectively, the roles of Λ , Λ′, x, x′ and ϑ′x′ yields Γ1(x)∩L = Bx.

Now ∆3
3(a) being a Ga-orbit and α1,0(y, y+c′, X(y, a)) being a Gay-orbit implies

that y + x ∈ L. Therefore x + y ∈ Γ1(x) ∩ L = Bx, whence y ∈ Dx.

Turning to (ii), since Yd is a Gadx-orbit, either Yd ⊆ Dx or Yd ∩ Dx = ∅.
We assume the latter and argue for a contradiction. Then for all d1 ∈ Yd,

d1 + x ∈ α3,0(d1, d1 + c1, X(d1, a)) (where {c1} = ∆1(d1) ∩ ∆2
2(a)) by part(i)

and Lemma 5.1(ii). Fix d1 ∈ Yd and let e ∈ ∆1
3(a)∩{d, d1}⊥. Since Γ3(a, x) = ∅,

d + e ∈ α1,1(d, d + c,X(d, a)) and d1 + e ∈ α1,1(d1, d1 + c1, X(d1, a)), we have

T (d, d1) ∩ (d + c) = ∅ in Ωd and T (d1, d) ∩ (d1 + c1) = ∅ in Ωd1 . Therefore

Lemma 3.11(ii) implies that {d + x′ | x′ ∈ {d, d1}⊥\{e}} consists of three

lines in α1,0(d, d + c,X(d, a)) and one line in α3,0(d, d + c, X(d, a)). Similarly

{d1 + x′ | x′ ∈ {d, d1}⊥\{e}} consists of three lines in α1,0(d1, d1 + c1, X(d1, a))

and one line in α3,0(d1, d1+c1, X(d1, a)). Thus there exists x1 ∈ {d, d1}⊥\{e, x}
with d + x1 ∈ α1,0(d, d + c, X(d, a)) and d1 + x1 ∈ α1,0(d1, d1 + c1, X(d1, a)).

Since Gad is transitive on α1,0(d, d+ c, X(d, a)) and τ(X(d, a)) /∈ Gx by Lemma

3.2, there exists h ∈ Gad with xh
1 = x. Moreover eh ∈ ∆1

3(a) ∩ {d, dh
1}⊥ and

thus dh
1 ∈ Yd, whence dh

1 + x ∈ α3,0(dh
1 , dh

1 + ch
1 , X(dh

1 , a)). However dh
1 + x =

(d1 + x1)h ∈ α1,0(dh
1 , dh

1 + ch
1 , X(dh

1 , a)) by the flag-transitivity of G. From this

contradiction we conclude that (ii) holds.

From Lemma 4.8(iii) Gad ∼ 25A6 with Gad ∩Q(d) = 〈τ(X(d, a))〉. Combin-
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ing (2.3) and Lemma 3.2 yields H ∼= A5. Since Dx is a Gax-orbit and, by part

(i), d ∈ Dx, we obtain (iii).

Lemma 8.3. Let Dx be the Gax-orbit described in Lemma 8.2. Then |Dx| 6= 12.

Proof. Let d ∈ ∆1(x)∩∆3
3(a) with d+x ∈ α1,0(d, d+c,X(d, a)) ({c} = ∆1(d)∩

∆2
2(a)). Supposing |Dx| = 12, we seek a contradiction. Then, by Lemmas 8.1(i)

and 8.2, Dx = {d}∪Yd∪{e}. Put H = Gadx. By Lemma 8.2(iii) H ∼= A5.Again

by Lemma 8.1(i), Yd is H-invariant and therefore H ≤ Gaex. Now Dx is a Gax-

orbit and so dg = e for some g ∈ Gax. Hence Gaex = H = Hg for some g ∈ Gax.

Suppose eg 6= d. Then eg ∈ Yd and H fixes eg. This contradicts Lemma 8.1(i).

Therefore we must have eg = d and hence g2 ∈ H. Thus H E 〈H, g〉 with

|〈H, g〉| = 23.3.5. Since |CM23(ϑ)| = 15 for any 5-element ϑ of M23 (see [1]) we

conclude that 〈H, g〉 ∼= S5. Now H E Gax yields the untenable H ≤ Gad′x for

all d′ ∈ Dx and so as [Gax : 〈H, g〉] = 6 we deduce that Gax
∼= S6.

Consulting [1] we see that Gax
∼= G∗ax is contained in a subgroup of G∗aa

isomorphic to either a group of shape L3(4)2 or A8. These subgroups of G∗aa are,

respectively, the stabilizer of a duad and an octad of Ωa. Consequently G′ax
∼= A6

fixes at least two hyperplanes in Γ3(a). Now A5
∼= H = Gadx (≤ G′ax) fixes

at most three hyperplanes, two of which are X(a, d) and X(a, e). So without

loss of generality we have that G′ax fixes X(a, d). Since X(a, d′) 6= X(a, d) for

any d′ ∈ (∆1(x) ∩ ∆3
3(a))\{d} by Lemma 3.6, we conclude that G′ax ≤ Gadx.

This contradicts the fact that [Gax : Gadx] = |Dx| = 12 and so the proof of the

lemma is complete.

Lemma 8.4. Let d ∈ ∆3
3(a) with {c} = ∆1(d) ∩∆2

2(a).

(i) If d ∈ ∆1(x), then d + x ∈ α1,0(d, d + c,X(d, a)).

(ii) If l ∈ α1,0(d, d + c,X(d, a)), then |Γ0(l) ∩∆4
4(a)| = 2.

(iii) If l ∈ α3,0(d, d + c,X(d, a)), then |Γ0(l) ∩∆6
4(a)| = 2.

(iv) ∆4
4(a) 6= ∆6

4(a).

(v) ∆1(d) ∩ ∆4
4(a) and ∆1(d) ∩ ∆6

4(a) are Gad-orbits of length 192 and 160

respectively.
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Proof. Let d ∈ ∆3
3(a). For any l ∈ αi,0(d, d + c, X(d, a)) (i = 1, 3), l /∈

Γ1(X(d, a)). Therefore τ(X(d, a)) interchanges the two points in Γ0(l)\{d}
by Lemma 3.2. Hence the two points in Γ0(l)\{d} lie in the same Ga-orbit.

By (2.5) and (2.15), to prove the lemma it is enough to show that for all

l ∈ α3,0(d, d + c,X(d, a)), Γ0(l) ∩∆4
4(a) = ∅.

Suppose, for a contradiction, that there exists l ∈ α3,0(d, d + c,X(d, a)) and

y ∈ Γ0(l)∩∆4
4(a). Since τ(X(d, a)) interchanges y and the point in Γ0(l)\{d, y}

we may appeal to Lemma 5.6 to show that d lies in a Gay-orbit D1 on ∆1(y) of

size

n1 =
2.|α3,0(d, d + c, X(d + a))|.|∆3

3(a)|
|∆4

4(a)| .

Using (2.3) and Lemma 4.8(iii) we get

n1 =
2.80.210.7.11.23

|∆4
4(a)| =

215.5.7.11.23
|∆4

4(a)| .

However, by definition there exists e ∈ ∆1(y) ∩∆3
3(a) with e + y ∈ α1,0(e, e +

c′, X(e, a)) ({c′} = ∆1(e)∩∆2
2(a)). By a similar argument to the above we can

show that e lies in a Gay-orbit D2 on ∆1(y) of size

n2 =
2.|α1,0(d, d + c,X(d, a))|.|∆3

3(a)|
∆4

4(a)

=
216.3.7.11.23
|∆4

4(a)| .

Hence D1 6= D2 and n1/n2 = 5/6. Since, for all z ∈ ∆1(d) ∩ ∆4
4(a) , d + z ∈

αi,0(d, d+c,X(d, a)) for i = 1, 3, we must have |∆1(y)∩∆3
3(a)| = n1 +n2. Then

Lemma 5.3(ii) implies that n1 +n2 = 11 or 22. However n1 +n2 6= 11 otherwise

n1 = 5 and n2 = 6, contrary to Lemma 8.1(iii). Therefore n1 = 10 and n2 = 12.

However we now have a Gay-orbit D2 on ∆1(y) of size 12 with e ∈ D2 where

e ∈ ∆3
3(a) and e + y ∈ α1,0(e, e + c′, X(e, a)). This contradicts Lemma 8.3 and

so the proof is complete.

Set n:= |∆1(x) ∩∆3
3(a)|.

Lemma 8.5. Let d ∈ ∆1(x) ∩∆3
3(a). Then,

(i) [Gax : Gadx] = n;

(ii) Gax acts transitively on ∆1(x) ∩∆3
3(a); and
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(iii) n = 11, 14, 16, 21, 22 or 23.

Proof. By Lemma 5.2 ∆4
4(a) is a Ga-orbit, and so

|∆4
4(a)| = 21832.5.7.11.23

|Gax| .

Counting edges, and using Lemma 4.8(iii), also gives

|∆4
4(a)| = |∆3

3(a)|.96.2
n

=
216.3.7.11.23

n
.

Therefore |Gax| = 22.3.5.n and hence, by Lemma 8.2(iii), [Gax : Gadx] = n,

which proves (i).

Part (ii) follows from part (i).

Since ∆4
4(a) is an integer, n must divide 216.3.7.11.23. By (ii) and Lemma

8.3, n 6= 12. Furthermore 11 ≤ n ≤ 23 by Lemmas 5.1(ii) and 8.1(ii). This

yields the list of possible values for n in part (iii).

Lemma 8.6. n 6= 16

Proof. We show that n = 16 leads to a contradiction. Let d ∈ ∆1(x) ∩∆3
3(a).

Appealing to Lemmas 8.2(iii) and 8.5 we have [Gax : Gadx] = 16, G∗xx
∼= Gax

and Gadx
∼= A5. By examining possible minimal normal subgroups of Gax and

using the fact that |CM23(ϑ)| = 15 for any 5-element ϑ in M23, we deduce that

Gax ∼ 24A5 with N = O2(Gax) an elementary abelian subgroup of order 16.

Since M23 has only two conjugacy classes of elementary abelian subgroups of

order 16, we infer that G∗xx is a subgroup of either 24A7 (the stabilizer of a

heptad) or 24(3×A5) : 2 (the stabilizer of a triad).

We consider the former possibility first. Then G∗xax ≤ G∗xxl for some l ∈ Γ1(x).

Since N acts transitively upon {x + d′ | d′ ∈ ∆1(x) ∩ ∆3
3(a)}, all the heptads

x+d′ in this set must intersect in a common element of the heptad l in Ωx. That

is all the lines x+ d′ (d′ ∈ ∆1(x)∩∆3
3(a)) are in Γ1(X) for some hyperplane X.

Since |Yd| = 10 by Lemma 8.1(i), there are 10 points in the set

S := {z ∈ ∆1
3(a) ∩∆1

2(x) ∩∆1(d) | there exists d′ ∈ ({z, x}⊥\{d}) ∩∆3
3(a)}.

Therefore Lemma 3.6 implies that z ∈ Γ0(X) for each z ∈ S. However, using

the Appendix A, we see that

(d + x) ∩
⋂

z∈S

(d + z) = ∅.
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This contradiction rules out the case when G∗xax is a subgroup of 24A7.

In the other case we have that G∗xax (∼ 24A5) is contained in the pointwise sta-

bilizer of two elements of Ωx which is isomorphic to L3(4). So G∗xax is isomorphic

to a parabolic subgroup of L3(4), whence G∗xax acts transitively (by conjugation)

upon (N∗x)#. Since N acts regularly upon {x + d′ | d′ ∈ ∆1(x) ∩∆3
3(a)}, the

conjugation action of G∗xadx (∼= A5) on (N∗x)# is permutation isomorphic to

Gadx acting on (∆1(x)∩∆3
3(a))\{d}. However Yd is a Gadx-orbit and |Yd| = 10

by Lemma 8.1(i). With this contradiction we have established Lemma 8.6.

We are now in a position to show that n = 11.

Lemma 8.7. (i) |∆1(x) ∩∆3
3(a)| = 11.

(ii) |∆4
4(a)| = 216.3.7.23.

(iii) Gax
∼= L2(11) and Gax ∩Q(x) = 1.

Proof. (i) Suppose n 6= 11. Then from Lemmas 8.5(iii) and 8.6, n ∈ {14, 21, 22, 23}.
Considering possible minimal normal subgroups of Gax yields the existence of

elements of orders 5 × 7, 5 × 11 or 5 × 23 in M23, which is impossible. Thus

n = 11.

(ii)Combining part (i) with (2.3), (2.15)(xii) and Lemma 4.8(iii),

|∆4
4(a)| = |∆3

3(a)|.192
n

= 216.3.7.23

(iii) From part (i) and Lemmas 8.2(iii) and 8.5(ii), Gax∩Q(x) = 1 with G∗xax

containing a subgroup of index 11 isomorphic to A5. A perusal of [1] now yields

(iii).

Using [1] we see that G∗xax is the stabilizer of an 11-element set called an

endecad (the symmetric difference of a heptad and an octad, intersecting in two

elements of Ωx) and an element X of Ωx disjoint from the endecad. The orbits

of G∗xax (∼= L2(11)) are described in (2.12). The next few results give the point

distribution for lines in some of these G∗xax-orbits.
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Lemma 8.8. Let d ∈ ∆1(x)∩∆3
3(a). Then x+d ∈ α1(x, END,−) with |Γ0(x+

d) ∩∆3
3(a)| = 1 and |Γ0(x + d) ∩∆4

4(a)| = 2.

Proof. By Lemma 8.7(i) |∆1(x) ∩ ∆3
3(a)| = 11. Therefore (2.12) implies that

{x + y | y ∈ ∆1(x)∩∆3
3(a)} is equal to one of α1(x, END,−), α1(x, END, +) or

α5(x, END, +). Suppose {x+y | y ∈ ∆1(x)∩∆3
3(a)} equals one of α1(x,END, +)

and α5(x, END, +). Then the 11 lines in {x+y | y ∈ ∆1(x)∩∆3
3(a)} are incident

with the same hyperplane X ∈ Γ3(x). By Lemma 8.1(i) for each of the 10 points

y ∈ (∆1(x) ∩∆3
3(a))\{d} there exists z ∈ ∆1

3(a) ∩ {d, y}⊥, whence, by Lemma

3.6, d+y ∈ Γ1(X) for each y ∈ Yd. However, consulting Appendix A reveals that

the 10 heptads h1, h2, h3, h4, h5, h6, h9, h11, h14, h15 (see Lemma 8.1) have empty

intersection. Thus we deduce that {x+y | y ∈ ∆1(x)∩∆3
3(a)} = α1(x, END,−).

By (2.15) we have Γ0(d + x)\{d} ⊆ ∆4
4(a), and we have the lemma.

Lemma 8.9. (i) Let l ∈ α3(x, END,−). Then |Γ0(l) ∩ ∆1
4(a)| = 1 and

|Γ0(l) ∩∆4
4(a)| = 2.

(ii) Let l ∈ α3(x, END,+). Then |Γ0(l) ∩∆1
4(a)| = |Γ0(l) ∩∆4

4(a)| = |Γ0(l) ∩
∆6

4(a)| = 1.

(iii) If l ∈ α3(x, END,−)∪α3(x, END,+) with {y} = Γ0(l)∩∆1
4(a) and {e} =

∆1(y) ∩∆1
3(a), then e ∈ ∆1

2(x).

Proof. Let d1, d2 ∈ ∆1(x) ∩ ∆3
3(a) with d1 6= d2. Then Lemmas 8.1(i), 8.4(i)

and 8.7(i) imply that there exists e ∈ ∆1
3(a) ∩ {d1, d2}⊥. We have
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where z ∈ {e, x}⊥\{d1, d2}. Then z /∈ Γ0(X(di, a)) (i = 1, 2) by Lemma

3.6 because Γ3(a, x) = ∅. Therefore Γ3(a, z) = ∅, otherwise for any X ∈
Γ3(a, z) we would have X ∈ Γ3(e) by Lemma 4.15(i), which is impossible

because Γ3(a, e) = {X(a, d1), X(a, d2)} by Lemma 4.3(ii). Thus z ∈ ∆1
4(a)
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by definition ( see (2.15)(ix)). However x + d1, x + d2 ∈ α1(x, END,−) by

Lemma 8.8 and, as heptads in Ωx, x + d1 and x + d2 intersect END in differ-

ent elements. Thus T (x, e) and END have empty intersection in Ωx. Hence

x + z ∈ α1(x, END, +) ∪ α3(x, END, +) ∪ α3(x, END,−) by (2.12) because

x + z contains the triad T (x, e) in Ωx. However Lemma 3.11(ii) implies that

|(x+ z)∩END| = 3 for each z ∈ {e, x}⊥\{d1, d2} and x+ z contains the unique

element of Ωx fixed by Gax for precisely one z ∈ {e, x}⊥\{d1, d2}. Therefore we

may assume {e, x}⊥\{d1, d2} = {z1, z2, z3} where x + z1 ∈ α3(x, END, +) and

x + z2, x + z3 ∈ α3(x, END,−).

Let Γ0(e + d1) = {e, d, d1}. Then d ∈ ∆3
3(a) by Lemma 4.15(i) and d ∈

∆1(f) for each f ∈ ⋃{Γ0(x + y)\{x, y} | y ∈ {e, x}⊥\{d1}} using Lemma 3.10.

Since Γ3(a, x) = ∅ , X(d, a) /∈ Γ3(T (d, x)). Considering the 5 heptads in Γd

incident with T (d, x) together with (2.15)(xii) and (xiv) yields that ∆3
3(a) ∩

{d, x}⊥ = {d1}, |∆4
4(a)∩{d, x}⊥| = 3 and |∆6

4(a)∩{d, x}⊥| = 1. We know that

Γ0(x + d2)\{x, d2} ⊆ ∆4
4(a) by Lemma 8.8. This, together with the fact that

α3(x, END,−) and α3(x, END,+) are Gax-orbits forces Γ0(x + z1)\{x, z1} ⊆
∆6

4(a) and Γ0(x+zi)\{x, zi} ⊆ ∆4
4(a) for i = 2, 3. This proves parts (i) and (ii).

Part (iii) follows because {e} = ∆1
2(x)∩∆1

3(a)∩∆1(z) for each z ∈ ∆1
4(a)∩

{e, x}⊥ by Lemma 6.1, together with the fact that α3(x, END,−) and α3(x, END, +)

are Gax-orbits on Γ1(x).

In the next lemma we reconsider a point in ∆1
4(a).

Lemma 8.10. Let y ∈ ∆1
4(a), l ∈ Γ1(y) and {d} = ∆1(y) ∩ ∆1

3(a). Suppose

there exists z ∈ Γ0(l) ∩∆4
4(a).

(i) If l ∈ α3(z, END, +), then l ∈ αL
c

3,0(y, y + d, DUAD) and |Γ0(l)∩∆1
4(a)| =

|Γ0(l) ∩∆4
4(a)| = |Γ0(l) ∩∆6

4(a)| = 1.

(ii) If l ∈ α3(z, END,−), then l ∈ α3,1(y, y+d, DUAD) with |Γ0(l)∩∆1
4(a)| = 1

and |Γ0(l) ∩∆4
4(a)| = 2.

Proof. Since Γ0(l)∩∆4
4(a) 6= ∅, l ∈ α1,0(y, y+d, DUAD)∪αL

c

3,0(y, y+d, DUAD)∪
α3,1(y, y+d, DUAD) by (2.9) and Lemmas 6.6 and 6.8. Assume l ∈ α3(z, END, +)∪
α3(z, END,−). Then by Lemma 8.9(iii), d ∈ ∆1

2(z). Hence, since y ∈ {d, z}⊥, y+
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z = l ∈ α3(y, y+d). Therefore we must have l ∈ αL
c

3,0(y, y+d, DUAD)∪α3,1(y, y+

d, DUAD).

Let DUAD = {X1, X2} where X1, X2 ∈ Γ3(y). Then X1, X2 ∈ Γ3(b) where

{b} = ∆1(a) ∩∆1
3(y) by Lemma 6.5. Since X1, X2 /∈ Γ3(a), Lemma 3.2 yields

that τ := τ(X1)τ(X2) ∈ Ga ∩Q(y). If l ∈ α3,1(y, y + d, DUAD), then zτ 6= z by

Lemma 3.2 because exactly one of X1 and X2 lies in Γ3(z). Thus Γ0(l)\{y} ⊆
∆4

4(a). Therefore l ∈ α3(z, END,+) implies that l ∈ αL
c

3,0(y, y + d, DUAD) by

Lemma 8.9(ii) and part (i) follows from Lemma 8.9(ii) again.

So we may assume that l ∈ α3(z, END,−). If l ∈ αL
c

3,0(y, y + d, DUAD),

then appealing to part (i) and Lemma 5.5 we get that l ∈ α3(z, END,+). This

contradicts (2.12). Therefore we must have l ∈ α3,1(y, y + d, DUAD) and now

Lemma 8.9(i) yields (ii).

In our next two lemmas we consider y ∈ ∆2
4(a) and α2(y, O(y, a)), the line

orbit of Gay that has yet to receive our attention.

Lemma 8.11. If l ∈ Γ1(y) and l ∈ α2(y, O(y, a)), then Γ0(l) ∩∆6
4(a) = ∅.

Proof. We assume the result is false and seek a contradiction. Thus we have

f ∈ ∆6
4(a) such that y + f ∈ α2(y,O(y, a)). Further, from (2.10), we have that

(8.11.1) Gayf contains a subgroup A isomorphic to A5.

Let d ∈ ∆1(f) ∩∆3
3(a); by definition of ∆6

4(a) such a d exists.

(8.11.2) |Gaf | = 23.32.5, 24.32.5 or 25.32.5.

Set n = |∆1(f)∩∆3
3(a)|. Combining Lemmas 5.4 and 8.4(v) gives n = [Gaf :

Gadf ]. From Lemmas 4.8(iii) and 8.4(v) we have that |Gadf | = 23.32. Hence,

using (8.11.1) and the order of M23, we deduce that 5|n and 3 - n. Consequently

n = 5, 10 or 20 by Lemma 5.3(ii). Since |Gaf | = |Gadf |.n = 23.32.n, this yields

the possibilities listed in (8.11.2).

(8.11.3) |Q(f) ∩Gfa| ≤ 2.

Clearly Q(f)∩Gaf fixes the line f + y and [Q(f)∩Gaf : Q(f)∩Gafy] ≤ 2.

Now Q(f) ∩ Gafy is a subgroup of Gay
∼= A8 (by Lemma 7.3(i)) which, by
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(8.11.1), is normalized by A ∼= A5. Therefore Q(f)∩Gafy = 1 by the structure

of A8, whence we have (8.11.3).

Put Gaf = G∗faf , and use the usual bar notation for the subgroups of Gaf .

Let N be a minimal normal subgroup of Gaf . Then we must have either A ≤ N

or A ∩N = 1. Suppose the former holds. Then N must be a direct product of

isomorphic non-abelian simple groups. The possible orders for Gaf in (8.11.2)

then force N to be isomorphic to either A5 or A6. If N ∼= A6, then N contains

all the elements of Gaf of order 3. So, together (8.11.3) and (2.3) imply that

N (∼= A6) contains a subgroup isomorphic to 3×A4, which is impossible. Thus

A = N ∼= A5 and, since 32||Gaf |, we conclude that an element of Gaf of order

3 centralizes A.

Now we consider the possibility N ∩ A = 1. By (8.11.2) |N | = 3 or N is a

2-group of order at most 23. Hence [A, N ] = 1. Since CM23(ϑ) = 15 for ϑ an

element of M23 of order 5, we deduce that N = 3. Therefore we conclude that,

in either case, A ≤ NGaf
(〈ζ〉) where ζ ∈ Gaf has order 3. Consulting (2.14) we

observe that A does not fix any line in Γ1(f), yet we have that A fixes f + y.

With this contradiction, the proof of Lemma 8.11 is complete.

Lemma 8.12. Let l ∈ α2(y,O(y, a)). Then |Γ0(l) ∩∆4
4(a)| = 2.

Proof. Let d ∈ ∆1(y)∩∆2
3(a) and choose z ∈ ∆1(y) such that y+z ∈ α2(y, O(y, a))∩

α3(y, y+d) (by examining the MOG in [2] we see that such a heptad y+z exists).

Let Γ0(y + z) = {y, z′, z}. Since d + y ∈ α0,0(d, O(d, a), X(d, a)) by Corollary

7.4(ii), we have T (d, z) ∩O(d, a) = ∅ in Ωd. Thus either,

(1) there exists c ∈ ∆1(d) ∩∆1
2(a) with d + c ∈ Γ1(T (d, z)); or

(2) {d, z}⊥\{y} consists of one point in ∆3
3(a) and three points in ∆1

4(a).

If case (1) holds, then one of z or z′ lies in ∆2
3(a)∪∆6

3(a). Now |α2(y,O(y, a))| =
168 and Lemma 7.3(iii) rules out either of z and z′ ∈ ∆2

3(a). So we have

z ∈ ∆6
3(a). Hence, using Lemma 7.5, |∆1(y) ∩∆6

3(a)| = 70 + 168i (i = 1 or 2).

From Lemmas 4.11(ii) and 7.3(ii) 5 | |∆6
3(a)| and 5 - |∆2

4(a)| and therefore, by

counting edges between ∆2
4(a) and ∆6

3(a), 5 | |∆1(y) ∩ ∆6
3(a)|. This is clearly
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impossible, so case (2) holds and we have
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where e ∈ ∆3
3(a) and Γ0(d + e) = {d, e′, e}. Applying Lemma 4.15 to d + e we

get that e′ ∈ ∆3
3(a) and X(e, a) = X(d, a). Since z ∈ ∆1(e) and z′ ∈ ∆1(e′)

by Lemma 3.10 we must have z, z′ ∈ ∆i
3(a) ∪ ∆j

4(a) for i ∈ {1, 2, 3, 4} and

j ∈ {4, 6}. If z ∈ ∆i
3(a) (i ∈ {1, 2, 3, 4}), then Γ3(a, z, d) 6= ∅ by Lemma 4.15.

In this case Γ3(a, y) 6= ∅ contrary to Lemma 5.1. Similarly we get a contra-

diction if z′ ∈ ∆i
3(a) (i ∈ {1, 2, 3, 4}). Therefore z, z′ ∈ ∆4

4(a) ∪ ∆6
4(a) and

appealing to Lemma 8.11 we get z, z′ ∈ ∆4
4(a), as required.

At this stage we remark that we have proved Theorem 12.

Recall that x is a fixed point in ∆4
4(a).

Lemma 8.13. Let l ∈ α1(x, END,+). Then |Γ0(l) ∩ ∆2
4(a)| = 1 and |Γ0(l) ∩

∆4
4(a)| = 2.

Proof. Since ∆4
4(a) is a Ga-orbit, there exists y ∈ ∆1(x) ∩∆2

4(a) with y + x ∈
α2(y,O(Y, a)) by Lemma 8.12. Appealing to Corollary 7.4(i) and the MOG in

[2] we can choose d ∈ ∆1(y)∩∆2
3(a) with y + d ∈ α3(y, y +x). Thus d ∈ ∆1

2(x).

In Ωd, T (d, x)∩O(d, a) = ∅ because d+y ∈ α0,0(d,O(d, a), X(d, a)) by Corollary

7.4(ii). Since x ∈ ∆4(a), {d, x}⊥ ∩∆1
2(a) = ∅, whence {d, x}⊥\{y} must consist

of three points in ∆1
4(a) and one point in ∆3

3(a). Letting {e} = {d, x}⊥∩∆3
3(a),

we have
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Lemma 8.8 implies that x+e ∈ α1(x, END,−). Also |(x+y)∩END| = 1 or 5 in

Ωx by (2.12) and Lemma 8.9. However |(x+y)∩(x+e)| = 3 in Ωx and so we must

have |(x + y) ∩ END| = 1. Hence x + y ∈ α1(x, END, +) by (2.12) and Lemma

8.8. Since y + x ∈ α2(y, O(y, a)), Lemma 8.12 yields |Γ0(y + x) ∩ ∆2
4(a)| = 1

and |Γ0(y + x) ∩∆4
4(a)| = 2. The result now follows because α1(x,END, +) is

a Gax-orbit.

Finally in this section we prove a symmetry result.

Lemma 8.14. a ∈ ∆4
4(x).

Proof. Let d ∈ ∆1(x) ∩ ∆3
3(a) and e ∈ ∆1

3(a) ∩ ∆1
2(x) ∩ ∆1(d) (d and e exist

by Lemmas 8.1, 8.7(i) and 8.9(iii)). We have e + d ∈ α1(e,D(e, a)) by Theorem

5. Since Γ3(a, x) = ∅, D(e, a) ∩ T (e, x) = ∅ in Ωe. Let D be a duad of Ωe

contained in the triad T (e, x) and let l be the unique heptad in Ωe containing

D ∪D(e, a). Since T (e, x) ⊆ e + d and |(e + d)∩D(e, a)| = 1, T (e, x) * l in Ωe.

By Theorem 5 again, there exists c ∈ Γ0(l) with c ∈ ∆1
2(a). Since D ⊆ T (e, x)

in Ωe, |Γ3(c, x)| ≥ 2 by Lemma 4.1. Hence c ∈ ∆1
2(x)∪∆1

3(x) by Theorem 4.13.

If c ∈ ∆1
2(x), then , since e ∈ ∆1

2(x) we must have T (e, x) ∈ Γ2(e + c), contrary

to T (e, x) * l. Therefore c ∈ ∆1
3(x) and D = D(c, x).

In Ωc, T (c, a)∩D(c, x) = ∅ because Γ3(a, x) = ∅. Therefore Lemma 3.11(ii)
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implies there exists b ∈ {a, c}⊥ with (c+ b)∩D(c, x) = ∅ in Ωc. Then b ∈ ∆1
4(x)

by definition (see (2.15)(ix)). Hence Lemmas 6.6(i),(iii) and 8.10(i),(ii) imply

a ∈ ∆i
3(x)∪∆j

4(x) for i = 2 or 6 and j = 1, 4 or 6 because G is transitive on Γ0

and b + a ∈ α3(b, b + c). Since x ∈ ∆4(a), a /∈ ∆3(x). If a ∈ ∆1
4(x) holds, then

x ∈ ∆1
4(a) by Lemma 6.4, which is impossible by Lemmas 6.2(i) and 8.7(ii).

So a /∈ ∆1
4(x). If a ∈ ∆6

4(x), then |∆4
4(a)| = |∆6

4(a)| and Gay
∼= L2(11) for all

y ∈ ∆6
4(a). Appealing to Lemmas 8.4(v) and 8.7(ii) then yields

|∆1(y) ∩∆3
3(a)| = 160.210.7.11.23

216.3.7.23
/∈ Z

which is untenable. Therefore a ∈ ∆4
4(x) and the lemma is proved.
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