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Abstract.

We shall give a survey of the most important

results of the theory of n-valued groups and

their applications. Main directions

of advanced research will be discussed.

We start with the basic definitions. Further

exposition follows a sequence of instructive

examples that originated from various

branches of Mathematics: Topology, Analysis,

Algebra, and Dynamical Systems.

The talk will be accessible to a broad

audience.
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Introduction.

In various fields of research one encounters a
natural multiplication on a space, say, X
under which
the product of a pair of points is a subset of
X
(e.g., a finite subset).

The literature on multivalued groups and
their applications is very large and includes
titles from
19th century, mainly in the context of
hypergroups.

In 1971 S. Novikov and the author introduced
a construction, suggested by the theory of
characteristic classes of vector bundles, in
which the product
of each pair of elements is an n-multiset,
the set of n points with multiplicities.

The construction lead to the notion of
n-valued group.
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The condition of n-valuedness is in fact very

strong, so, initially it seemed that the supply

of interesting examples of n-valued groups is

not very rich.

Soon after the author developed the theory of

formal, or local, n-valued Lie groups, which

appeared to be rich of contents and have

found important applications.

Since 1990, E. Rees and the author

collaborate

on the topological and algebraical theory of

n-valued groups. The methods of the theory

lead in particular

to the solution of the problem about the ring

of functions on a symmetric powers of a

space.

The theory of n-valued groups has seminal

connections with a number of classic and

modern fields of research.
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Symmetric product of a space.

If X is a topological space, let (X)n denote
its n-fold symmetric product, i.e.,
(X)n = Xn/Σn where
the symmetric group Σn acts by permuting
the co-ordinates.

An element of (X)n is called an n-subset of X
or just an n-set; it is a subset with
multiplicities of total cardinality n.

Example. The spaces (C)n = Cn/Σn and Cn
are identified using the map

S : Cn → Cn

whose components are given by

(z1, z2, . . . , zn) → er(z1, z2, . . . , zn), 1 ≤ r ≤ n,

where er is the rth elementary symmetric
polynomial.

The projectivisation of the map S induces
a homeomorphism between (CP1)n and CPn.

5



n-valued group structure.

An n-valued multiplication on X is a map

µ : X ×X → (X)n.

µ(x, y) = x ∗ y = [z1, z2, . . . , zn], zk = (x ∗ y)k.

Associativity. The n2-sets:

[x ∗ (y ∗ z)1, x ∗ (y ∗ z)2, . . . , x ∗ (y ∗ z)n],
[(x ∗ y)1 ∗ z, (x ∗ y)2 ∗ z, . . . , (x ∗ y)n ∗ z]

are equal for all x, y, z ∈ X.
Unit. An element e ∈ X such that

e ∗ x = x ∗ e = [x, x, . . . , x]

for all x ∈ X.
Inverse. A map inv : X → X such that

e ∈ inv(x) ∗ x and e ∈ x ∗ inv(x)

for all x ∈ X.

The map µ defines an n-valued group
structure on X

if it is associative, has a unit and an inverse.
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First results

Lemma. For each m ∈ N, an n-valued group

on X, with the multiplication µ, can be

regarded as

an mn-valued group by using as the

multiplication

the composition

X ×X
µ−→ (X)n

(D)m−→ (X)mn,

where D is diagonal.

Definition. A map f : X → Y is a

homomorphism

of n-valued groups if

f(eX) = eY , f(invX(x)) = invY (f(x)))

for all x ∈ X and

µY (f(x), f(y)) = (f)nµX(x, y)

for all x, y ∈ X.
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Lemma. Let f : X → Y be a homomorphism

of n-valued groups. Then

Ker(f) = {x ∈ X | f(x) = eY }

is an n-valued group.



A 2-valued group structure on Z+.

Consider the semigroup of nonnegative
integers Z+.

Define the multiplication

µ : Z+ × Z+ → (Z+)2

by the formula

x ∗ y = [x+ y, |x− y|].

The unit: e = 0.

The inverse: inv(x) = x.

The associativity:

one has to verify that the 4-subsets of Z+

[x+ y+ z, |x− y − z|, x+ |y − z|, |x− |y − z||]

and

[x+ y+ z, |x+ y − z|, |x− y|+ z, ||x− y| − z|]

are equal for all nonnegative integers x, y, z.
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Additive n-valued group structure on C.

Define the multiplication

µ : C× C → (C)n

by the formula

x ∗ y = [( n
√
x+ εr n

√
y )n, 1 ≤ r ≤ n],

where ε is a primitive nth root of unity.

The unit: e = 0.

The inverse: inv(x) = (−1)nx.

The multiplication is described by the
polynomials

pn =
n∏

k=1

(z − (inv(x) ∗ inv(y))k).

It turns out that pn are symmetric in x, y, z.
For instance,

p1 = x+y+z, p2 = (x+y+z)2−4(xy+yz+zx).
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For small n:

p3 = e31 − 33 e3,

p4 = e41 − 23 e21 e2 + 24 e22 − 27 e1 e3,

p5 = e51 − 54 e21 e3 + 55 e2 e3,

p6 = e61 − 22 · 3 e41 e2 + 24 · 3 e21 e22 − 26 e32
− 2 · 34 · 17 e31 e3 − 23 · 34 · 19 e1 e2 e3

+ 33 · 193 e33,

p7 = e71 − 5 · 74 e41 e3 + 2 · 76 e21 e2 e3 − 77 e22 e3

+ 78 e1 e23,

where

e1 = x+ y+ z,

e2 = xy+ yz + zx,

e3 = xyz.
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Coset groups.

Let G be a (1-valued) group with the

multiplication µ0.

Let A be a group of automorphisms of G with

#A = n.

Let π : G→ X be the quotient map. Define

µ : X ×X → (X)n

by the formula

µ(x, y) = [π(µ0(u, v
ai)], 1 ≤ i ≤ n, ai ∈ A,

where u ∈ π−1(x) and v ∈ π−1(y).

Theorem. µ defines an n-valued group

structure

on the orbit space X = G/A called a coset

group with:

the unit eX = π(eG)
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the inverse

invX(x) = π(invG(u)),

where u ∈ π−1(x).



Examples of the coset groups.

(1) The 2-valued group on Z+.

(2) The additive n-valued group on C.

(3) Let G be the infinite dihedral group

G = {a, b | a2 = b2 = e}.

The interchange of a and b generates the
automorphism group A, #A = 2. Then

X = G/A = {u2n, u2n+1}, n ≥ 0,

where

u2n = {(ab)n, (ba)n},
u2n+1 = {b(ab)n, a(ba)n}.

Then the multiplication is given by the
formula

uk ∗ u` = [uk+`, u|k−`|].

Thus X is isomorphic to the 2-valued group
on Z+.
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(4) Let G be a finite group, #G = n.

Let A = G acts by inner automorphisms

ga = a−1ga, g ∈ G, a ∈ A.

We have

X = G/A.

Thus the set of characters of G is an

n-valued

coset group.

Consider G = Σ3.

Then X = {e, x1, x2} is a 6-valued group:

x1 ∗ x1 = [e, e, e, x1, x1, x1],

x1 ∗ x2 = x2 ∗ x1 = [x2, x2, x2, x2, x2, x2],

x2 ∗ x2 = [e, e, x1, x1, x1, x1].

Note, that this 6-valued group on three

elements

is impossible to reduce to a group of lesser

multiplicity.
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The n-valued deformations

of a finite group.

Let G be a finite group, #G = m.

Denote by X the set of elements of G:

X = {x0 = e, x1, . . . , xm−1}; X0 = X\e.

Lemma. Let ` ∈ N and k ∈ Z+.

Set n = `+ k(m− 1).

Using the group operation xixj ∈ G, define

xi ∗ xj = [xixj, . . . , xixj︸ ︷︷ ︸
`

, X0, . . . , X0︸ ︷︷ ︸
k

].

Then we obtain an n-valued group on X, with

unit e and inv(xj) = x−1
j , which is denoted by

X(G, `, k)

and called the n-valued deformation of G.

Clearly, X(G,1,0) = G.

Also note that X(G, r`, rk) is obtained from

X(G, `, k) by diagonal map (D)r.
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Example. X(Z3,1,1) is the 3-valued coset

group Z7/A. Here A is generated by

multiplication by 2

on Z/7 and #A = 3.



A family of non-coset groups.

Consider the (2k+ 1)-valued group
X(Z3,1, k).

The multiplication is given by the formulae

x1 ∗ x1 = [x1, . . . , x1︸ ︷︷ ︸
k

, x2, . . . , x2︸ ︷︷ ︸
k+1

],

x1 ∗ x2 = x2 ∗ x1 = [e, x1, . . . , x1︸ ︷︷ ︸
k

, x2, . . . , x2︸ ︷︷ ︸
k

],

x2 ∗ x2 = [x1, . . . , x1︸ ︷︷ ︸
k+1

, x2, . . . , x2︸ ︷︷ ︸
k

].

Theorem. Suppose that 4k+ 3 = p q, where
q > p

are prime numbers. Then the above
(2k+ 1)-valued group is non-coset.

Note, that any pair of twin primes,
like (3,5), (5,7), (11,13), (17,19), . . . ,
defines a non-coset group from the family.
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Proof.

Suppose X(Z3,1, k) = G/A with #A = 2k+1.

Since the (2k+ 1)-set xi ∗ xi, i = 1,2, does
not contain e, the orbit π−1(xi) does not
contain simultaneously g and g−1 for all
g ∈ G\e.

Since the (2k+ 1)-set x1 ∗ x2 contains only
one e,
all elements of the orbit π−1(xi) have
multiplicity one.

Thus

#G = 1 + (2k+ 1) + (2k+ 1) = 4k+ 3 = p q.

Since q > p, by Sylow theorem, the
q-subgroup of G
is normal and invariant with respect to all
automorphisms of G.

Thus, q − 1 = 2k+ 1, which implies that q is
even.
The contradiction.
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Local 2-valued groups on C.

Consider the equation

z2 −Θ1(x, y)z + Θ2(x, y) = 0

with respect to z, where Θ1(x, y) and Θ2(x, y)

are formal series in (x, y) near (0,0) ∈ C× C.

Suppose:

(1) Θ1(x,0) = 2x and Θ2(x,0) = x2.

(2) There exists a series ϕ(x) such that

Θ2(x, ϕ(x)) = 0.

(3) Let z+(x, y) and z−(x, y) be symbols such

that

z+(x, y) + z−(x, y) = Θ1(x, y),

z+(x, y) · z−(x, y) = Θ2(x, y).

Set X± = z±(u, v) and Y± = z±(v, w).

17



(3 continued)

The following equalities of formal series in

u, v, w hold:

Θ1(u, Y+) + Θ1(u, Y−) =

Θ1(X+, w) + Θ1(X−, w);

Θ2(u, Y+)+Θ2(u, Y−)+Θ1(u, Y+)Θ1(u, Y−) =

Θ2(X+, w)+Θ2(X−, w)+Θ1(X+, w)Θ1(X−, w);

Θ2(u, Y+)Θ1(u, Y−) + Θ1(u, Y+)Θ2(u, Y−) =

Θ2(X+, w)Θ1(X−, w)+Θ1(X+, w)Θ2(X−, w);

Θ2(u, Y+)Θ2(u, Y−) = Θ2(X+, w)Θ2(X−, w).

Definition. When the conditions 1–3 are

satisfied,

we say that the equation

z2 −Θ1(x, y)z + Θ2(x, y) = 0

defines a formal 2-valued group law on C.
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Relation to the classic formal group law.

Suppose that the equation

z − F (x, y) = 0,

where F (x, y) is a formal series, defines the

classic formal group law.

This means that the series F (x, y) satisfies

the conditions:

(1) F (x,0) = x.

(2) F (x, F (y, z)) = F (F (x, y), z).

Then the equation

z2 − 2F (x, y)z + F (x, y)2 = 0

defines a formal 2-valued group law on C.
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Suppose the equation

(∗) z2 −Θ1(x, y)z + Θ2(x, y) = 0

defines a formal 2-valued group law on C.

Theorem. If the series z = z(x, y) is a

solution of (∗) satisfying the condition

z(x,0) = x,

then

Θ1(x, y) = 2z(x, y), Θ2(x, y) = z(x, y)2,

and the equation

z − z(x, y) = 0

defines the classic formal group law.
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The type of a 2-valued group.

Consider the 2-valued group law

z2 −Θ1(x, y)z + Θ2(x, y) = 0.

Lemma.
∂2Θ2(x, y)

∂x∂y

∣∣∣∣
(0,0)

= ±2.

Definition. A formal 2-valued group is called
a 1st type group when

∂2Θ2(x, y)

∂x∂y

∣∣∣∣
(0,0)

= −2;

and is called a 2nd type group otherwise.

The elementary 2-valued groups.

1st type: z2 − 2(x+ y)z + (x− y)2 = 0.

It is precisely the equation p2 = e21 − 4e2 = 0.

z±(x, y) = (
√
x±√

y)2.

2nd type: (z − (x+ y))2 = 0.

z±(x, y) = x+ y.
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The strong isomorphism.

Consider the 2-valued group laws

z2 −Θ1(x, y)z + Θ2(x, y) = 0,(A)

z2 − Θ̂1(x, y)z + Θ̂2(x, y) = 0.(B)

Definition. The group laws (A) and (B) are
strongly isomorphic if there exists a power
series

ψ(x) = x(1 +O(x))

(the regular change of coordinate) such that

z±(x, y) = ψ−1(ẑ±(ψ(x), ψ(y))).

Lemma. Strong isomorphism preserves the
type.

Note, that an irregular coordinate change

Ψ(x) = x2(1 +O(x))

takes a 1st type group law to the 2nd type.
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The exponential and the logarithm of a

2-valued group.

Definition. The series

ψ(x) = x(1 +O(x))

defining the strong isomorphism of a 2-valued

group with the elementary group is called

the logarithm of the group.

The inverse series

ψ−1(x) = x(1 +O(x)),

that is ψ−1(ψ(x)) = x, is called

the exponential of the group.

Theorem. Each 2-valued formal group on C
has the logarithm.
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Sketch of a proof.

Consider the differential operator

Dx = α1(x)
d

dx
+ α2(x)

d2

dx2
,

where α1(x), α2(x) ∈ C[[x]] and α1(0) = 1,

α2(0) = 0.

Lemma. Let ϕ(x) ∈ C[[x]].

Then the problems

Dxu(x, y) = Dyu(x, y)

u(x,0) = ϕ(x)

Dxu(x) = 1

u(x) = 0

have unique solutions

u(x, y) ∈ C[[x, y]] and u(x) ∈ C[[x]]

iff −
1

α′2(0)
/∈ N .
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Generalized shift.

Suppose −
1

α′2(0)
/∈ N.

Then the linear map

T yx : C[[x]] → C[[x, y]]

is defined by the formula

T yxϕ(x) = u(x, y), where u(x,0) = ϕ(x).

Lemma. The operator T yx is a generalized
shift,
that is:

(1) the operator T0
x is identity;

(2) the operator

T zyT
y
x − T yxT

z
x : C[[x]] → C[[x, y, z]]

is zero.
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Consider the equation

(∗) z2 −Q1(x, y)z +Q2(x, y) = 0.

From the axioms of 2-valued group follows,

that for (∗) to define a 2-valued group it is

necessary that

Q1(x, y) = 2(x+ y) + higher terms,

Q2(x, y) = (x± y)2 + higher terms.

Define Pk(x, y), k ∈ Z+, by the generating

function∑
k≥0

Pk(x, y)

tk+1
=

2t−Q1(x, y)

2(t2 −Q1(x, y)t+Q2(x, y))
.

Introduce a linear map

Lyx : C[[x]] → C[[x, y]]

by the formula L
y
xx
k = Pk(x, y).
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Let α1(x) = φ1(x)/2 and α2(x) = φ2(x)/8,
where

φ1(x) =
∂ Q1(x, y)

∂y

∣∣∣∣
y=0

,

φ2(x) =
∂ (Q1(x, y)

2 − 4Q2(x, y))

∂y

∣∣∣∣
y=0

.

By the above necessary conditions we have

α1(0) = 1, α2(0) = 0,

α′2(0) =

2, 1st type

0, 2nd type

So, the generalized shift T yx is defined.

Theorem. If

Q1(x, y) = 2(x+ y) + higher terms,

Q2(x, y) = (x± y)2 + higher terms.

Then z2 −Q1(x, y)z +Q2(x, y) = 0
defines a 2-valued group iff

Lyxx
k = T yxx

k

for k = 1,2,3,4.
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The 1st type case.

Consider the 1st type 2-valued group law

z2 −Θ1(x, y)z + Θ2(x, y) = 0.

Lemma.

φ2(x) = 8

x∫
0

φ1(x)dx,

and φ2(0) = 0, φ′2(0) = 16.

Introduce Φ(x) =
φ2(x)

16x
= 1 +O(x).

Theorem. The formula

ψ(x) =
( √

x∫
0

dt√
Φ(t2)

)2

defines the series ψ(x) = x(1 +O(x)) such

that

Dψ(x) = 1.

The series ψ(x) is the logarithm.
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The 2nd type case.

Consider the 2nd type 2-valued group law

z2 −Θ1(x, y)z + Θ2(x, y) = 0.

Theorem. The formula

ψ(x) = 2

x∫
0

dt

φ1(t)

defines the series ψ(x) = x(1 +O(x)) such

that

Dψ(x) = 1.

The series ψ(x) is the logarithm.
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An algebraic 2-valued group structure

on C.

Consider the series

ϕ(x) = −
1

℘(
√
−x; g2, g3)

= x(1 +O(x)),

where ℘(z; g2, g3) is the Weierstrass elliptic

function with the invariants g2 and g3.

Theorem. ϕ(x) is the exponential of the

2-valued group on C defined by the equation(
x+ y+ z +

g2
4
xyz

)2
−

(4 + g3xyz)(xy+ yz + zx) = 0.
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Action on a space

An n-valued group X acts on a space Y

if there is a mapping

φ : X × Y → (Y )n,

also denoted x ◦ y = φ(x, y),

such that the two n2-subsets of Y

x1 ◦ (x2 ◦ y) and (x1 ∗ x2) ◦ y

are equal for all x1, x2 ∈ X and y ∈ Y ;

and also

e ◦ y = [y, y, . . . , y]

for all y ∈ Y .
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The coset construction of an action.

Let G be some (usual) group; and A a finite
group
of automorphisms of G, #A = n.

Suppose that G and A act on some space V

such that

a(g(v)) = a(g)(a(v)),

a ∈ A, g ∈ G, v ∈ V

In other words; the action of G on V is
equivariant with respect to the action of A
on V and the diagonal action of A on G× V .

Let us consider the canonical projections

π : G→ X = G/A and p : V → Y = V/A.

As we know already X has the structure
of an n-valued group.

Proposition. There is a natural action of
an n-valued group X on the space Y .
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Algebraic action

For a given action

φ : X × Y → (Y )n,

define Γx, the graph of the action of an

arbitrary element x ∈ X, as the subset of

Y × Y , which consists of the pairs (y1, y2)

such that y2 ∈ φ(x, y1).

Definition. The action of an n-valued

group X on an algebraic variety M is called

algebraic if the action

of any element of X is determined by an

algebraic correspondence, i.e., its graph is an

algebraic subset in M ×M .
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Multivalued dynamics

Any equation T (x, y) = 0, where T is an order

n polynomial in y defines an n-valued map

(or a multivalued dynamics) C → C under

which

x is taken to the set of roots [y1, y2, . . . , yn] of

T (x, y).

In general case the number of different

images

of a point grows exponentially with the

number

of iterations of the map. In exceptional cases

the growth is polynomial.

The following picture demonstrates the

difference between exceptional and general

situations.
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The Euler-Chasles correspondence.

The polynomial

T (x, y) = Ax2y2 +Bxy(x+ y)

+ C(x2 + y2) +Dxy+ E(x+ y) + F.

defines the 2-valued dynamics, in which the

number

of different images after the kth iteration is

k+ 1,

but not 2k as one could expect.

The picture explains this fact as the curve

T (x, y) = 0 describes the geometric situation

in the famous Poncelet porism for two conics

on the plane.
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It is known that for Euler-Chasles
correspondence there exists an even elliptic
function f(z)
of the degree 2, such that if x = f(z) then
[y1, y2] = [f(z + a), f(z − a)] for some a.

This means that the Euler-Chasles
correspondence
is the projection of the mapping z → z + a
of the elliptic curve E into itself
to the projective line CP1 which is a coset
space E/Z2, where Z2 is acting on E as
z → −z.

Thus, we have the representation of the
two-valued group Z+ = Z/Z2 with the
multiplication

x ∗ y = [x+ y, |x− y|].
Theorem. All algebraic actions of the
two-valued group Z+ on CP1 are generated
either
by the Euler-Chasles correspondence
or by a reducible correspondence.
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Main directions
of advanced research.

• n-valued groups as deformations of usual
groups;

• group algebras of n-valued groups
as combinatorial algebras;

• n-Hopf algebras, their duals and
n-quantum algebras;

• representations of n-valued groups on
graphs;

• algebraic representations of n-valued
groups;

• functional-algebraic theory
of symmetric products of spaces.
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