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Abstract. We introduce a stochastic Galerkin mixed formulation of the steady-state diffu-
sion equation and focus on the efficient iterative solution of the saddle-point systems obtained by
combining standard finite element discretizations with two distinct types of stochastic basis func-
tions. So-called mean-based preconditioners, based on fast solvers for scalar diffusion problems, are
introduced for use with the minimum residual method. We derive eigenvalue bounds for the pre-
conditioned system matrices and report on the efficiency of the chosen preconditioning schemes with
respect to all the discretization parameters.
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1. Introduction. In the last few years, interest in stochastic finite element
methods (SFEMs) for solving partial differential equations (PDEs) with uncertain
data has risen sharply. There currently exists a large body of literature on the stochas-
tic Galerkin formulation of the standard (primal) formulation of the steady-state dif-
fusion equation in which the coefficient is a random field rather than a (deterministic)
function. Using SFEMs in the context of solving mixed variational problems, however,
is still a relatively new and unexplored field. Mixed formulations pervade in appli-
cations with rapidly varying material coefficients (e.g., when modelling groundwater
flow or semiconductor devices) and are the motivation for this work.

Our starting point is the following deterministic boundary value problem written
as a system of first-order PDEs along with boundary conditions:

(1.1)

T−1q + ∇u = 0,
∇· q = f in D ⊂ R

2,
u = g on ∂DD �= ∅,

n · q = 0 on ∂DN = ∂D\∂DD.

In the context of groundwater flow modelling, (1.1) consists of Darcy’s law, coupled
with a mass conservation constraint and provides a simplified model for single-phase
flow in a saturated porous medium (see, for example, [25, 10]). It is also the so-called
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mixed formulation of the steady-state diffusion problem

(1.2)
−∇·(T∇u) = f, in D ⊂ R

2,
u = g on ∂DD �= ∅,

n · T∇u = 0 on ∂DN = ∂D\∂DD.

In this setting the variables u and q = −T∇u denote the hydraulic head and volu-
metric flux, respectively. T is a strictly positive scalar function which is assumed to
be known at every point in space. Discretizing (1.1) via mixed finite element tech-
niques allows the simultaneous approximation of the scalar and vector unknowns and
is favored over the solution of (1.2) in the presence of rough coefficients when the flux
q is the variable of primary interest.

In many applications only limited information about the diffusion coefficient T
is actually available. A stochastic approach for modelling this data uncertainty is
to consider T to be a random field T = T (x , ω), i.e., a random function with index
variable x ∈ D, with respect to a probability space (Ω,A, P ), where Ω denotes the
abstract set of elementary events, A is a σ-algebra on Ω, and P is a probability
measure. If T (x , ω) is bounded and strictly positive, that is, if

(1.3) 0 < T1 ≤ T (x , ω) ≤ T2 <∞ a.e. in D × Ω,

then (1.1) and (1.2) are well-posed. For a fixed spatial location x ∈ D, T = T (ω)
is a random variable, whilst for a fixed realization ω ∈ Ω, T = T (x ) is a bounded
function in x only. As a consequence, the two solution components (q , u) of (1.1) will
themselves be random fields. We thus consider the problem of finding two random
fields q = q(x , ω) and u = u(x , ω) such that, P -almost surely,

(1.4)

T−1(x , ω)q(x , ω) + ∇u(x , ω) = 0,
∇· q(x , ω) = f(x ) in D × Ω,

u(x , ω) = g(x ) on ∂DD × Ω,
n · q(x , ω) = 0 on ∂DN × Ω.

In this paper, we prescribe only the second-order statistics of the reciprocal field
T−1, namely, its mean and covariance functions. We will also make the simplifying
assumption that T−1 possesses a finite separated expansion of the form

(1.5) T−1(x , ω) = t0(x ) +
M∑

m=1

tm(x )ξm(ω)

in terms of t0(x ), the expected value of T−1 at the point x , M specified functions tm,
and M independent random variables ξm, each having zero mean and unit variance.
Since the dependence of T−1 on these random variables is linear, we refer to (1.4)–
(1.5) as the stochastically linear formulation. A popular method for constructing such
a linear representation is a truncated Karhunen–Loève expansion. For groundwater
flow, see [6], a more realistic model is to assume a lognormal distribution for the
permeability field—leading to a stochastically nonlinear formulation, in which the
dependence on each ξm in (1.5) is nonlinear. This latter case will be the focus of a
subsequent paper, which builds on the theoretical results and the solver methodology
established herein. Note that the source term f and boundary data g can also be
treated as random fields in a straightforward manner, but we shall not consider these
cases in the present work.
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In the next section we extend the usual SFEM framework developed for the
stochastic version of the primal problem (1.2) to the mixed problem (1.4). In contrast
to traditional Monte Carlo methods, SFEMs discretize the probabilistic dimension of
the stochastic PDE directly. If a standard orthonormal basis is used for the stochastic
component, we are required to solve a single structured but extremely large saddle-
point system. Alternatively, the application of a certain so-called doubly orthogonal
stochastic basis requires the solution of multiple decoupled saddle-point systems, each
with the dimension of the chosen spatial basis. Details are given in section 3. A com-
parison of the efficiency of stochastic Galerkin methods and Monte Carlo methods in
computing moments of solutions can be found in [2]. It is clear from studies such as
this, that if stochastic Galerkin methods are to be competitive with popular sampling
techniques, such as Monte Carlo methods and stochastic collocation methods [1, 30],
which require multiple solves with small deterministic system matrices, then we need
fast and robust linear algebra techniques for solving stochastic Galerkin systems that
have optimal complexity. Many authors have studied this for positive definite prob-
lems (e.g., [20, 21]). Here we tackle an indefinite problem. Preconditioners based on
the mean value of the reciprocal field T−1 are constructed and discussed in section 4.
In addition, eigenvalue bounds that establish the efficacy of our preconditioning ap-
proach are derived. An attractive feature is that the building block of our mean-based
preconditioning is a scalar diffusion solve based on an algebraic multigrid V-cycle (see
[24, 28]). Numerical experiments that show the efficiency of our methodology are
discussed in section 5.

2. Stochastic Galerkin formulation. To define our SFEM, based on Galerkin
approximation of (1.4), we first recall the standard variational formulation of (1.1).
Following the usual framework for deterministic mixed approximation as given in
[5, 10, 23], we set

X := H0(div;D) × L2(D), with
H0(div;D) :=

{
r ∈ L2(D)2 : ∇· r ∈ L2(D),n · r |∂DN = 0

}
and seek (q , u) ∈ X such that

(2.1)
a(q , r) + b(r , u) = −(g,n · r)∂DD ∀r ∈ H0(div;D),

b(q , v) = −(f, v) ∀v ∈ L2(D),

with bilinear forms a(·, ·) and b(·, ·) defined by

a(q , r) :=
∫

D

T−1q · r dx , b(r , v)

:= −
∫

D

v(∇· r) dx , q , r ∈ H0(div;D), v ∈ L2(D).

To obtain the stochastic formulation of (2.1), we introduce the space L2
P (Ω) of all

random variables on the probability space (Ω,A, P ) with finite variance and we assume
that the input random field satisfies T−1(x , ·) ∈ L2

P (Ω) ∀x ∈ D. Moreover, we let 〈ξ〉
denote the expectation of a random variable ξ = ξ(ω) ∈ L2

P (Ω). Finally, introducing
the tensor product space

X ⊗ L2
P (Ω) = V ×W, V := H0(div;D) ⊗ L2

P (Ω), W := L2(D) ⊗ L2
P (Ω),
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we arrive at the stochastic variational problem of determining a pair of random fields
q ∈ V and u ∈ W such that

(2.2)
〈a(q , r)〉 + 〈b(r , u)〉 = −〈(g,n · r)∂DD 〉 ∀r ∈ V ,

〈b(q , v)〉 = −〈(f, v)〉 ∀v ∈ W.

The well-posedness of (2.2) can be established using the general framework for
the analysis of saddle-point problems given in [5, Chapter II]. To this end, note first
that under assumption (1.3), both 〈a(·, ·)〉 and 〈b(·, ·)〉 are continuous bilinear forms
on V ×V and V ×W , respectively, with respect to the norms

‖r‖V :=
〈
‖r‖2

H (div;D)

〉1/2

, r ∈ V and ‖v‖W :=
〈
‖v‖2

L2(D)

〉1/2

, v ∈W,

where, as usual, ‖r‖2
H (div;D) =

∫
D r ·r+(∇·r)2 dx . Next, we introduce the null-space

V0 := {r ∈ V : 〈b(r , w)〉 = 0 ∀w ∈ W}

associated with 〈b(·, ·)〉 and note that 〈(∇ · r ,∇ · r)〉 = 0 if r ∈ V0. Using (1.3) we
deduce that, for all r ∈ V0,

(2.3) 〈a(r , r)〉 =
〈(
T−1r , r

)〉
≥ T−1

1 〈(r , r)〉 = T−1
1 ‖r‖2

V

and hence that 〈a(·, ·)〉 is coercive on V0. Finally, to verify the inf-sup stability
condition in [5], we need to establish an intermediate result.

Lemma 2.1. For all w ∈ W , there exists a unique v ∈ V and a constant C such
that

‖v‖V ≤ C ‖w‖W .(2.4)

Proof. Given w ∈ W , there exists a unique s ∈ H1(D) ⊗ L2(Ω), which is the
solution to the stochastic right-hand side problem

−∇·∇s = w in D × Ω,(2.5a)
s = 0 on ∂DD × Ω,(2.5b)

n · ∇s = 0 on ∂DN × Ω(2.5c)

(see [7] or [2] and deterministic analysis in [5, p. 136]) and which satisfies

(2.6)
〈
‖s‖2

H1(D)

〉
≤ C

〈
‖w‖2

L2(D)

〉
,

with some constant C depending only on D. Setting v := −∇s, we note that v ∈
L2(D)2 ⊗ L2

P (Ω) since s ∈ H1(D) ⊗ L2
P (Ω). Moreover, ∇· v = w ∈ W because of

(2.5a) and n ·v = 0 on ∂DN ×Ω from (2.5c), and therefore, v ∈ V . Now, using (2.6)
gives

‖v‖2
V =

〈
‖∇s‖2

L2(D) + ‖w‖2
L2(D)

〉
≤ C

〈
‖w‖2

L2(D)

〉
= C ‖w‖2

W ,

yielding (2.4).
For any w ∈W with v ∈ V as in Lemma 2.1, it now follows that

(2.7) sup
r∈V

〈b(r , w)〉
‖r‖V

≥ 〈b(v , w)〉
‖v‖V

=
〈(∇· v , w)〉

‖v‖V
=

〈(w,w)〉
‖v‖V

=
‖w‖2

W

‖v‖V
≥ 1
C
‖w‖W .

Results (2.7) and (2.3) ensure that a solution to (2.2) exists and is unique.
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2.1. Finite-dimensional noise. Following a by now well-established approach
for the discretization of stochastic boundary value problems [2, 3, 11, 17, 18, 27], we
make the assumption that the input random field T−1(x , ω) can be represented as
a function of a finite number M ∈ N of independent random variables ξ1, . . . , ξM ∈
L2

P (Ω), which is often referred to as finite-dimensional noise. Although such a func-
tional dependence can take on many forms (see, e.g., [17, 18]), in this paper we focus
on the truncated Karhunen–Loève (KL) expansion [15, 27]

(2.8) T−1(x , ω) = t0(x ) + σ

M∑
m=1

√
λmtm(x )ξm(ω).

In (2.8), the random variables are uncorrelated and have zero mean and unit variance,
t0(x ) = 〈T−1(x , ·)〉 is the expected value of the random field at the point x ∈ D, and
{(λm, tm)}M

m=1 are the leading eigenpairs of the integral operator

C : L2(D) → L2(D), (Cu)(x ) =
∫

D

u(y)c(x ,y) dy , u ∈ L2(D),

whose kernel function c is given by

c(x ,y) =
1
σ2

〈(
T−1(x , ·) − t0(x )

) (
T−1(y , ·) − t0(y)

)〉
, x ,y ∈ D.

The parameter σ is a scalar measure of the fluctuation of T−1 around its mean value
t0(x ). If the variance of T−1 is constant on D, then it is equal to σ2 and in this case,
the kernel function c is simply the correlation function associated with T−1. If the
kernel function is continuous, then the self-adjoint nonnegative-definite operator C is
compact and the eigenvalues, assumed in decreasing order, are nonnegative and decay
to zero, with the decay rate depending on the smoothness of c. Assuming further that
t0(x ) ≡ μ and c(x ,x ) ≡ 1, which is the case, e.g., if the field is homogeneous, then with
the eigenfunctions normalized such that ‖tm‖L2(D) = 1, there holds

∑∞
m=1 λm = |D|,

and the truncation index M can be chosen such that the truncated KL expansion
retains a given amount of the field’s total variance σ2

∫
D
c(x ,x ) dx .

In geostatistics it is common to assume a given correlation structure, and we
mention the three popular choices:

c(x ,y) = exp
(
−|x1 − y1|

τ1
− |x2 − y2|

τ2

)
,(2.9a)

c(x ,y) = exp
(
− r

τ

)
,(2.9b)

c(x ,y) =
r

τ
K1

( r
τ

)
,(2.9c)

where r is the Euclidean distance between x and y , τ1, τ2, and τ are correlation
lengths, and K1 denotes the modified Bessel function of second kind and order one.
Many authors (e.g., [12]) use (2.9a) because explicit formulae for the eigenvalues
and eigenfunctions exist. For the other choices, the eigenproblem has to be solved
numerically. See [8] for further details.

To obtain well-posed Galerkin discretizations of the stochastic boundary value
problem (1.4), one could assume that two-sided bounds as in (1.3) hold also for the
truncated KL expansion (2.8). For a continuous covariance function, the KL expansion
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converges only in L∞(D) ⊗ L2
P (Ω), in the sense that

sup
x∈D

〈(
T−1 − T−1

M

)2〉→ 0 as M → ∞,

and such bounds will, in general, not hold without further assumptions. In [11] ad-
ditional regularity conditions on the covariance function are shown to assure uniform
convergence on D×Ω, which together with (1.3), yield a similar two-sided bound for
(2.8) for a sufficiently large truncation index M . An alternative approach proposed
in [18], which only requires (1.3) for the full (nontruncated) random field is to ob-
serve that coercivity of the continuous problem implies that of the discrete problem
obtained by Galerkin projection onto finite-dimensional subspaces. The orthogonal
polynomials we shall use to construct finite element subspaces will, by orthogonality,
yield the same Galerkin matrices for the full KL expansion as for its truncation after
M terms if the stochastic finite element space is based on these M random variables.
Therefore, uniform coercivity follows from (1.3) in this case.

Although the random variables occurring in the KL expansion of a random field
are, in general, only uncorrelated, we shall make the stronger assumption that they
are independent. These two properties are equivalent for Gaussian random fields.
For Gaussian fields, however, boundedness assumption (1.3) fails to hold. One may
achieve (1.3) by assuming that the random variables in (2.8) are independent with
given distributions, i.e., by introducing independence as a modelling assumption. A
simple choice is, e.g., M independent uniformly distributed random variables on the
interval [−

√
3,
√

3], which have mean zero and unit variance.
Having restricted the variability of the input data, and hence the solution (q , u)

of (2.2), to an M -dimensional random vector ξ = (ξ1, . . . , ξm), we may, in view of
the Doob–Dynkin lemma, introduce ξ as a new independent random variable in place
of ω and write T−1(x , ξ), q(x , ξ), and u(x , ξ). Moreover, setting Γm := ξm(Ω),
m = 1, . . . ,M , we denote by Γ := Γ1 × · · ·×ΓM the range of the random vector ξ. If,
furthermore, each random variable ξm possesses the density function ρm : Γm → R

+
0 ,

we may replace L2
P (Ω) by the weighted L2-space L2

ρ(Γ), where the weight function

(2.10) ρ(ξ) := ρ(ξ1) · · · ρM (ξM )

is the joint density function of the independent random variables ξ1, . . . , ξM . The
variational spaces in (2.2) thus become V = H0(div;D) ⊗ L2

ρ(Γ) and W = L2(D) ⊗
L2

ρ(Γ), with norms

‖r‖V =
(∫

Γ

‖r‖2
H (div;D) ρ(ξ)dξ

)1/2

, r ∈ V ,

‖v‖W =
(∫

Γ

‖v‖2
L2(D) ρ(ξ)dξ

)1/2

, v ∈W.

2.2. Galerkin approximation. The restriction of the stochastic variability to
finite-dimensional noise reduces the stochastic saddle-point problem (2.2) to a deter-
ministic saddle-point problem with the M -dimensional parameter ξ. The Galerkin
discretization is then obtained in the usual way by restricting trial and test functions
in (2.2) to suitable finite-dimensional subspaces of the tensor product spaces V and
W , constructed by selecting finite-dimensional subspaces of the component spaces
H0(div;D), L2(D), and L2

ρ(Γ). When choosing subspaces, we need to ensure that
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the discrete analogue of (2.7) holds. To this end, the first two subspaces must be
chosen in a compatible way to ensure inf-sup stability of the discrete deterministic
saddle-point problem. L2

ρ(Γ) may be discretized independently.
Thus, denoting these subspaces in terms of suitable bases

Φh := span{ϕi : i = 1, . . . , Nq} ⊂ H0(div;D),

Φh := span{φi : i = 1, . . . , Nu} ⊂ L2(D),

Ψp := span{ψi : i = 1, . . . , Nξ} ⊂ L2
ρ(Γ),

in which the subscripts h and p refer to discretization parameters, we arrive at

Vh,p =
{
r(x , ξ) ∈ span{ϕi(x )ψj(ξ) : i = 1, . . . , Nq ; j = 1, . . . , Nξ}

}
= Φh ⊗ Ψp,

Wh,p =
{
w(x , ξ) ∈ span{φi(x )ψj(ξ) : i = 1, . . . , Nu; j = 1, . . . , Nξ}

}
= Φh ⊗ Ψp,

resulting in a total number of degrees of freedom dim(Vh,p×Wh,p) = NqNξ+NuNξ =
NxNξ, where Nx := Nq + Nu denotes the total number of deterministic degrees of
freedom. We thus arrive at the discrete version of problem (2.2) and seek qh,p ∈ Vh,p

and uh,p ∈Wh,p such that

(2.11)
〈a(qh,p, r)〉 + 〈b(r , uh,p)〉 = −〈(g,n · r)∂DD 〉 ∀r ∈ Vh,p,

〈b(qh,p, w)〉 = −〈(f, w)〉 ∀w ∈Wh,p.

For the subspaces Φh and Φh, we will use the the lowest-order Raviart–Thomas mixed
approximation (see [23]) based on a partition Th of the spatial domain D into triangles
or rectangles of maximal diameter h > 0. More precisely, given a partition Th of D
into triangles, we set

Φh :=
{
q ∈ H0(div;D) : q |K ∈ P0(K)2 + xP0(K) ∀K ∈ Th

}
,

where P0(K) denotes the space of constant functions on element K. For rectangular
partitions, the corresponding Raviart–Thomas space is

Φh := {q ∈ H0(div;D) : q |K ∈ Q1,0(K) ×Q0,1(K) ∀K ∈ Th},

where Qj,k denotes polynomials of degree j in the first spatial variable and k in the
second. In both cases this amounts to constructing a vector field that is piecewise
linear in each component and which has a continuous normal component across the
edges of the elements of Th.

As subspaces Ψp of L2
ρ(Γ), we employ global M -variate polynomials on Γ. The

degree p of these polynomials can be chosen in a variety of ways, with implications for
the resulting number of degrees of freedom as well as the structure of the linear system
to be solved. Using tensor product polynomials, i.e., polynomials of degree at most p
separately in each of the M variables, results in dim Ψp = (p + 1)M , an exponential
growth of the number of degrees of freedom with M . The major advantage of tensor
product polynomials (which are discussed in [2, 3, 8, 14]) is that this space possesses
a basis with respect to which the global Galerkin system associated with (2.11) is
block-diagonal. It, therefore, decouples into Nξ systems of dimension Nx . Recently,
there have been attempts to reduce the large dimension Nξ of Ψp while retaining the
block diagonal structure of the global system matrix. Investigations based on exploit-
ing regularity of the solutions that involve adaptively choosing different polynomial
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degrees p1, . . . , pM in each of the M variables are presented in [3, 11, 16]. Stochastic
collocation methods, in which the number of stochastic degrees of freedom can be
even further reduced using the techniques of sparse grids and Smolyak quadrature
(cf. [30, 1]), are also becoming popular. However, performing stochastic collocation
on the mixed problem, with a particular choice of collocation points, leads to the same
set of decoupled saddle-point systems encountered in section 3.2. (See Remark 3.1.)
The mean-based preconditioner proposed in section 4.4 is suitable for stochastic col-
location systems under the same conditions presented below for decoupled stochastic
Galerkin systems.

An alternative to tensor product polynomials, that leads to only polynomial
growth in the number of stochastic degrees of freedom, is to employ complete poly-
nomials, i.e., polynomials in M variables of total degree p. In this case, we obtain
dim Ψp = (M+p

p ). As shown in [9], there is no basis of this space for which the
stochastic degrees of freedom decouple, and therefore, a global system involving all
NxNξ degrees of freedom must be solved. This is often perceived as a serious draw-
back. Our results in section 4 demonstrate, however, that preconditioning makes the
solution of such a coupled system feasible computationally.

3. Matrix properties. In this section we examine the structure of the linear
system of equations associated with stochastic Galerkin equations (2.11).

3.1. Kronecker product representation. Inserting representation (2.8) of
the input random field T−1 and the trial functions

(3.1) qh,p(x , ξ) =
Nξ∑
�=1

Nq∑
j=1

qj,� ϕj(x )ψ�(ξ), uh,p(x , ξ) =
Nξ∑
�=1

Nu∑
j=1

uj,� φj(x )ψ�(ξ)

as well as the basis of test functions r(x , ξ) = ϕi(x )ψk(ξ), i = 1, . . . , Nq ; k =
1, . . . , Nξ, and v(x , ξ) = φi(x )ψk(ξ), i = 1, . . . , Nu, k = 1, . . . , Nξ into stochastic
Galerkin equations (2.11) results in the matrix saddle-point problem

(3.2)
[
Â B̂�

B̂ 0

] [
q
u

]
=
[
g
f

]
,

in which the solution vector consists of the two block vectors

(3.3) q =

⎡
⎢⎣

q1

...
qNξ

⎤
⎥⎦ ∈ R

NqNξ , u =

⎡
⎢⎣

u1

...
uNξ

⎤
⎥⎦ ∈ R

NuNξ ,

of which each block, in turn, is the size of the corresponding deterministic block, i.e,
for k = 1, 2, . . . , Nξ, we have

[q�]j = qj,�, j = 1, . . . , Nq , [u�]j = uj,�, j = 1, . . . , Nu, � = 1, 2, . . . , Nξ.

An analogous representation holds for the two blocks f and g on the right-hand side
of (3.2), each comprising the Nξ subblocks

(3.4)
[gk]i = −〈ψk〉 (g,n ·ϕi)∂DD , i = 1, . . . , Nq , [fk]i = −〈ψk〉 (f, φi), i = 1, . . . , Nu.
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The block matrices Â and B̂ in (3.2) are, using the double-indexing for rows and
columns introduced in (3.1), given by

(3.5a)

[Â](i,k),(j,�) =
〈(
T−1ϕj ,ϕi

)
ψ�ψk

〉
= (t0ϕj,ϕi) 〈ψ�ψk〉 + σ

M∑
m=1

√
λm(tmϕj ,ϕi) 〈ξmψ�ψk〉 ,

i, j = 1, . . . , Nq , k, � = 1, . . . , Nξ

and

[B̂](i,k),(j,�) = −〈(∇·ϕi, φj)ψ�ψk〉 = −(∇·ϕi, φj) 〈ψ�ψk〉 ,

i = 1, . . . , Nq , j = 1, . . . , Nu, k, � = 1, . . . , Nξ.

(3.5b)

The bilinear structure implicit in (3.5), due to the fact that the integrals with respect
to ξ and x can be separated, which in turn is a consequence of the separation of these
two variables in expansion (2.8), allows these matrices to be expressed as sums of
Kronecker products

(3.6) Â = G0 ⊗A0 +
M∑

m=1

Gm ⊗Am, B̂ = G0 ⊗B,

the factors of which are given by

A0 ∈ R
Nq×Nq , [A0]i,j = (t0ϕj ,ϕi), i, j = 1, . . . , Nq ,

(3.7a)

Am ∈ R
Nq×Nq , [Am]i,j = σ

√
λm(tmϕj ,ϕi), i, j = 1, . . . , Nq , m = 1, . . . ,M,

(3.7b)

B ∈ R
Nu×Nq , [B]i,j = −(∇·ϕi, φj), i = 1, . . . , Nu, j = 1, . . . , Nq ,

(3.7c)

G0 ∈ R
Nξ×Nξ , [G0]k,� = 〈ψ�ψk〉 , k, � = 1, . . . , Nξ,

(3.7d)

Gm ∈ R
Nξ×Nξ , [Gm]k,� = 〈ξmψ�ψk〉 , k, � = 1, . . . , Nξ, m = 1, . . . ,M.

(3.7e)

Note that the matrices A0 and Am can be viewed as the (1, 1)-blocks of the Galerkin
discretization of the associated deterministic mixed problem (1.1) with a material
parameter characterized by T−1 = t0 and T−1 = σ

√
λmtm, respectively. The matrix

B is exactly the (2, 1)-block of the deterministic problem, since the input random
field does not occur in the bilinear form b(·, ·). The first term in Â in (3.6) as well as
the matrix B̂ represent the discretization of the mean problem, i.e., the deterministic
problem obtained by replacing the input random field T−1 with its expectation 〈T−1〉.

An equivalent representation of (3.2) is obtained by permuting the blocks of
unknowns q� and u� in (3.3) such that corresponding pairs q� and u� are adjacent. In
this case, the coefficient matrix of (3.2) becomes

(3.8) G0 ⊗ C0 +
M∑

m=1

Gm ⊗ Cm,
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with matrices C0, . . . , CM of dimension Nq +Nu given by

(3.9) C0 :=
[
A0 B�

B 0

]
, Cm :=

[
Am 0
0 0

]
, m = 1, . . . ,M.

Here, C0 is the saddle-point matrix associated with the mean problem, and Cm may
be viewed as the contributions of the stochastic fluctuations. The structure of the
Galerkin matrices G0 and Gm will depend on the basis chosen for the space Ψp used
to discretize the parameter space L2

ρ(Γ). We examine two such choices below.

3.2. Choice of stochastic basis. As discussed in section 2.2, the subspace
Ψp ⊂ L2

ρ(Γ) consists of polynomials of degree p in the M variables ξ1, . . . , ξM , and we
distinguish

Ψp = span{ξα : 0 ≤ αm ≤ p, m = 1, . . . ,M} (tensor product polynomials),(3.10)
Ψp = span{ξα : |α| ≤ p} (complete polynomials),(3.11)

where we have introduced the multi-index α = (α1, . . . , αM ) ∈ N
M
0 , the notation

ξα = ξα1
1 ξα2

2 · · · ξαM

M for the monomials in M variables, as well as |α| = α1 + · · ·+αM .
In either case, a basis of the space Ψp can be constructed from products of univariate
polynomials

ψα(ξ) = ψ(1)
α1

(ξ1)ψ(2)
α2

(ξ2) · · · ψ(M)
αM

(ξM ),

where each ψ
(m)
j , 0 ≤ j ≤ p, is a fixed polynomial of exact degree j in the variable

ξm, 1 ≤ m ≤M . Given two such polynomials ψα and ψβ, since the joint density ρ(ξ)
in (2.10) separates, the integrations in 〈ψαψβ〉 with respect to each variable ξm are
independent, and we obtain

〈ψαψβ〉 =
M∏

m=1

〈
ψ(m)

αm
ψ

(m)
βm

〉
,

revealing that an orthonormal basis of Ψp is obtained by choosing each of the M sets
of univariate polynomials {ψ(m)

j }p
j=0 to be the polynomials on the interval Γm that

are orthonormal with respect to the weight function ρm. In this case, the matrix G0,
which is the Grammian matrix of the basis {ψα} with respect to the inner product
(ψα, ψβ)L2

ρ(Γ) := 〈ψαψβ〉, is simply the identity matrix. For the space of tensor
product polynomials, it is shown in [2, 3] that it is possible to construct a basis of Ψp

whose elements, in addition to being orthonormal, also satisfy

(3.12) 〈ξmψαψβ〉 = ν(m)
αm

M∏
n=1

δαn,βn ,

in which δj,k denotes the Kronecker delta. The explicit construction of this basis,
sometimes referred to as doubly orthogonal polynomials, requires the solution of M
dense generalized eigenvalue problems of size p+1. This calculation can be performed
a priori, since it depends only on the distribution of the random variables chosen in
(2.8). In [9] it was shown that this construction can also be done by solving M
standard tridiagonal eigenvalue problems of size p + 1. When a doubly orthogonal
polynomial basis is used, (3.12) means that the matrices Gm are all diagonal. The
tensor product form of the basis also means that each Gm takes the form

Gm = I ⊗ · · · ⊗ I ⊗D(m) ⊗ I ⊗ · · · ⊗ I, m = 1, . . . ,M,
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where I denotes the identity matrix of dimension p+1 and D(m) is the diagonal matrix
D(m) = diag(ν(m)

0 , . . . , ν
(m)
p ). In this case, determining the solution of the stochastic

Galerkin problem (2.11), i.e., solving linear system (3.2), entails the solution of Nξ

deterministic saddle-point problems. More precisely, after permuting the Nξ blocks
of unknowns as in (3.8), the saddle-point problem with multi-index α is given by

(3.13)
[
A(�(α)) B�

B 0

] [
q�(α)

u�(α)

]
=
[
g�(α)

f�(α)

]
, A(�(α)) := A0 +

M∑
m=1

ν(m)
αm

Am,

where �(α) denotes the scalar index assigned to the multi-index α in some enumeration
of the (p+ 1)M multi-indices.

Remark 3.1. The saddle-point matrices in (3.13) are identical to the deterministic
saddle-point matrices that arise when the random variables in diffusion coefficient
(2.8) are sampled at the points {ξ�

1, . . . ξ
�
M} = {ν(1)

α1 , . . . , ν
(M)
αM }, � = 1 : (p+ 1)M and a

standard mixed finite element method is used to discretize each resulting variational
problem of the form (2.1). Hence, the preconditioning strategy described below can
be applied in a straightforward way to the saddle-point systems arising in traditional
sampling methods.

4. Iterative solution. In this section we address the solution of the linear sys-
tem of equations (3.2) by preconditioned Krylov subspace iteration. As the coefficient
matrix in (3.2) is symmetric and indefinite, a suitable Krylov subspace method is min-

res iteration [19], which minimizes the Euclidean norm of the residual at every step.
Ideally, we would like the iterative solver to be robust with respect to the many pa-
rameters in the problem, i.e., h, p, M , σ, and t0, and this necessitates an efficient
preconditioning scheme. For simplicity, in the analysis presented below, we assume
that the input random field T−1 is homogeneous, so that the mean t0(x ) is constant,
denoted μ, and so is the variance, denoted σ2.

4.1. Mean-based preconditioning. The preconditioning approach that we
adopt is based on the mean value t0 of the input random field T−1. This leads to
practical computations. If the fluctuations represented by the terms σ

√
λmtm(x )ξm

in (2.8) are small relative to t0, then it is to be expected that an efficient precondi-
tioner for the mean problem obtained for zero fluctuations will be effective also for
the full stochastic problem, and we refer to such a preconditioner as a mean-based
preconditioner. Note that, when using an orthonormal stochastic basis, the coefficient
matrix associated with the mean problem can be written as I⊗C0, with C0 defined in
(3.9). This is the first term in the sum of Kronecker products in (3.8) that represents
the global matrix. Basing a preconditioner for a stochastic Galerkin matrix on the first
term in its Kronecker product sum has been studied for primal formulation (1.2) in
[13, 20, 21]. In that case, mean-based preconditioning is exactly block-Jacobi precon-
ditioning. Here, we shall derive a preconditioning scheme for the stochastic Galerkin
matrix based on a block-diagonal preconditioner for the deterministic saddle-point
system C0.

4.2. Deterministic preconditioner. In this section we summarize earlier work
[22] on preconditioning saddle-point problems with coefficient matrices

(4.1) C :=
[
A B�

B 0

]
,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PRECONDITIONING LINEAR STOCHASTIC PDE PROBLEMS 1435

where A ∈ R
n×n is symmetric positive definite and B ∈ R

m×n, n ≥ m, has full rank.
Our approach uses block-diagonal preconditioners of the form

(4.2) P =
[
D 0
0 V

]
,

where D is a diagonal matrix with positive entries approximating A and V is a sym-
metric positive definite approximation to the matrix SD := BD−1B�, which may
be viewed as a sparse approximation of the Schur complement S := BA−1B�. As
both blocks of P are symmetric positive definite matrices, it is possible to use P as a
preconditioner for minres iteration. Bounds for the linear convergence rate of precon-
ditioned minres may be obtained from inclusion intervals for the negative and positive
components of the spectrum of the preconditioned matrix P−1C or equivalently, that
of the symmetric matrix P−1/2CP−1/2.

Theorem 4.1. Let αmin and αmax denote the extremal eigenvalues of D−1A, and
let θ and Θ be two real constants such that

0 < θ2 ≤ v�SDv

v�V v
≤ Θ2 ∀v ∈ R

m \ {0}.

Then the eigenvalues of the preconditioned matrix P−1C, with P as in (4.2) and C
as in (4.1) lie in the union of the intervals[

1
2

(
αmin −

√
α2

min + 4Θ2

)
,
1
2

(
αmax −

√
α2

max + 4θ2
)]

∪
[
αmin,

1
2

(
αmax +

√
α2

max + 4Θ2
)]
.

Proof. See [22, Corollaries 3.3 and 3.4].
Such preconditioners are known to be very effective when applied to discretiza-

tions of (1.1). In particular, in [22] we derive eigenvalue inclusion bounds which are
independent of the spatial mesh size h and robust with respect to the coefficient func-
tion T−1 when D is chosen as the diagonal of A and the action of V −1 on a vector is
defined as one V -cycle of algebraic multigrid (amg) applied to a linear system with
coefficient matrix SD. Using lowest-order Raviart–Thomas mixed approximation, the
constants θ2 and Θ2 are bounded independently of h because the matrix SD is equiv-
alent to a finite difference approximation of the operator ∇· (T∇) and, crucially, is an
M-matrix.

4.3. Preconditioning the stochastic Galerkin system. In the following, we
shall construct a preconditioner to the stochastic Galerkin equations (3.2) based on the
deterministic preconditioner in section 4.2. Specifically, we set D := D0 := diag(A0),
with A0 the so-called mean mass matrix defined in (3.7), and, as in [22], we define V
such that its inverse is effected by the action of a single amg V-cycle applied to the
sparse matrix SD0 = BD−1

0 B�, with B defined in (3.7). Thus, writing the coupled
system matrix from (3.2) in the form

Ĉ :=
[
Â B̂�

B̂ 0

]
=
[
G0 ⊗A0 +

∑M
m=1Gm ⊗Am, G0 ⊗B�

G0 ⊗B 0

]

and noting that G0 = I when using an orthonormal stochastic basis, our precondi-
tioner is of the form

(4.3) P̂ :=
[
D̂0 0
0 V̂

]
:=
[
I ⊗D0 0

0 I ⊗ V

]
.
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Our choice of V ensures the existence of spectral equivalence bounds θ and Θ inde-
pendent of h such that

(4.4) 0 < θ2 ≤ v�BD−1
0 B�v

v�V v
≤ Θ2 ∀v ∈ R

Nu \ {0}.

Using elementary properties of Kronecker products, we deduce that

v̂�B̂D̂−1
0 B̂�v̂

v̂�V̂ v̂
=

v̂�(I ⊗B)(I ⊗D0)−1(I ⊗B)�v̂

v̂(I ⊗ V )v̂
=

v̂�(I ⊗BD−1
0 B)�v̂

v̂ (I ⊗ V )v̂

for all nonzero v̂ ∈ R
NuNξ , showing that spectral equivalence bounds (4.4) also hold

for B̂D̂−1
0 B̂� and V̂ . Applying Theorem 4.1 now immediately yields spectral inclusion

bounds for stochastic Galerkin system (3.2) preconditioned by (4.3).
Corollary 4.2. Let α̂min and α̂max denote the extremal eigenvalues of D̂−1

0 Â,
and let θ and Θ be the constants in (4.4). Then the eigenvalues of the preconditioned
matrix P̂−1Ĉ lie in the union of the intervals[

1
2

(
α̂min −

√
α̂2

min + 4Θ2

)
,
1
2

(
α̂max −

√
α̂2

max + 4θ2
)]

∪
[
α̂min,

1
2

(
α̂max +

√
α̂2

max + 4Θ2
)]
.

The limits of the spectral inclusions in Corollary 4.2 are solely determined by the
eigenvalues of

(4.5) D̂−1
0 Â = I ⊗D−1

0 A0 +
M∑

m=1

Gm ⊗D−1
0 Am.

We bound the eigenvalues of the Kronecker product factors separately in the following
two lemmas.

Lemma 4.3. Assume that square or right-angled triangular lowest-order Raviart–
Thomas mixed approximation is used for spatial discretization, and let D0 = diag(A0)
and {Am}M

m=1 be as defined in (3.7). If the individual eigenfunction tm in (2.8) is
not strictly positive, then

−3σ
2μ

√
λm ‖tm‖L∞(D) ≤ r�Amr

r�D0r
≤ 3σ

2μ

√
λm ‖tm‖L∞(D) ∀r ∈ R

Nq \ {0} ,

where

(4.6) tmin
m := inf

x∈D
tm(x ), and tmax

m := ‖tm‖L∞(D).

Alternatively, if tm is uniformly positive, then

0 <
σ

2μ

√
λm tmin

m ≤ r�Amr

r�D0r
≤ 3σ

2μ

√
λm tmax

m ∀ r ∈ R
Nq \ {0} .

Proof. Given any q ∈ R
Nq \ {0}, we may define r ∈ Φh by r(x ) =

∑
qiϕi(x ). If

tm(x ) ≥ 0 on D, then

q�Amq = σ
√
λm

∫
D

tm(x )r · r dx ≤ σ

μ
tmax
m

√
λm

∫
D

μ r · r dx =
σ

μ
tmax
m

√
λm q�A0q ,

q�Amq = σ
√
λm

∫
D

tm(x )r · r dx ≥ σ

μ
tmin
m

√
λm

∫
D

μ r · r dx =
σ

μ
tmin
m

√
λm q�A0q ,
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where tmin
m and tmax

m are as defined in (4.6). Dividing through by q�A0q > 0 gives

(4.7) 0 <
σ

μ
tmin
m

√
λm ≤ q�Amq

q�A0q
≤ σ

μ
tmax
m

√
λm ∀q ∈ R

Nq \ {0} .

If tm also takes on negative values in D, we have

(4.8)
∣∣q�Amq

∣∣ =
∣∣∣∣σ√λm

∫
D

tm(x )
μ

μ r · r dx
∣∣∣∣ ≤ σ

μ
‖tm‖L∞(D)

√
λm q�A0q ,

leading to

(4.9) −σ
μ

√
λm‖tm‖L∞(D) ≤ q�Amq

q�A0q
≤ σ

μ

√
λm‖tm‖L∞(D) ∀ q ∈ R

Nq \ {0} .

Now, let A�
0 denote the element matrix associated with the mean matrix A0.

Using uniform square elements as a specific example, we have

A�
0 =

h2

6

⎡
⎢⎢⎣
2 1 0 0
1 2 0 0
0 0 2 1
0 0 1 2

⎤
⎥⎥⎦ ,

(
diag(A�

0

)−1

A�
0 =

1
2

⎡
⎢⎢⎣

2 1 0 0
1 2 0 0
0 0 2 1
0 0 1 2

⎤
⎥⎥⎦ ,(4.10)

and so

1
2
≤ q�A�

0 q

q� diag
(
A�

0

)
q

≤ 3
2

∀q ∈ R
4 \ {0} and all elements �.(4.11)

Using a standard result from [29], we thus arrive at

(4.12)
1
2
≤ q�A0q

q� diag(A0)q
≤ 3

2
∀ q ∈ R

Nq \ {0} .

Combining (4.12) with (4.7) and (4.9) gives the desired result.
Remark 4.4. Lemma 4.3 is readily extended to cover Raviart–Thomas mixed

approximation on general meshes. For equilateral triangles, the constants in (4.11)
are 1

3 and 2
3 .

The following result gives us a handle on the eigenvalues of the stochastic Galerkin
matrices Gm appearing in (4.5).

Lemma 4.5. Assume that Ψp consists of either complete or tensor product mul-
tivariate polynomials of degree p. The eigenvalues of each of the Gm are zeros of the
set of univariate polynomials of degree p + 1 or less that are orthogonal with respect
to the weight function ρm. In particular, if ρm has bounded support, the eigenvalues
are uniformly bounded with respect to p.

Proof. See Lemma 3.1 in [21] and [9].
Note that if the random variables ξm are Gaussian, then the support of the

associated density function is unbounded and the extremal eigenvalues of Gm are
bounded by the extremal roots of the univariate Hermite polynomial of degree p+ 1.
These grow like O(

√
p) as p→ ∞.

Combining Lemma 4.3 with Lemma 4.5 gives us a bound on the eigenvalues of
D̂−1

0 Â in (4.5).
Lemma 4.6. Assume that square or right-angled triangular lowest-order Raviart–

Thomas mixed approximation is used for the spatial discretization. If the random
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variables in (2.8) range over a real interval symmetric about zero, then the eigenvalues
of D̂−1

0 Â lie in the bounded interval

(4.13)
[
1
2
− cpτ,

3
2

+ cpτ

]
, where τ =

3σ
2μ

M∑
m=1

√
λm ‖tm‖L∞(D),

where σ and μ are the standard deviation and mean of the input random field T−1,
{(λm, tm)} are the eigenpairs of the correlation function, and cp > 0 is a constant
possibly depending on p.

Proof. The NξNq eigenvalues{α̂j} we are seeking satisfy(
I ⊗D−1

0 A0 +
M∑

m=1

Gm ⊗D−1
0 Am

)
q = α̂q .

Using (4.12) and elementary properties of the Kronecker product, notice first that

1
2

≤ q� (I ⊗ A0) q
q� (I ⊗D0) q

≤ 3
2

∀ q ∈ R
NqNξ \ {0} .(4.14)

If the random variables in (2.8) vary over a (bounded or unbounded) symmetric
interval, then their densities must have a support symmetric to zero and therefore,
by Lemma 4.5, the eigenvalues of Gm, m = 1, . . . ,M , belong to a symmetric interval
[−cp, cp]. By Lemma 4.3, the eigenvalues of each matrix D−1

0 Am belong to[
σ

2μ

√
λmt

min
m ,

3σ
2μ

√
λmt

max
m

]
or

[
−3σ

2μ

√
λm‖tm‖L∞(D),

3σ
2μ

√
λm‖tm‖L∞(D)

]

depending on the positivity of the eigenfunction tm. Denoting the minimum and
maximum eigenvalues of Gm ⊗D−1

0 Am by γmin
m and γmax

m , we have, in both cases,

α̂min ≥ 1
2

+
M∑

m=1

γmin
m ≥ 1

2
− cpτ, α̂max ≤ 3

2
+

M∑
m=1

γmax
m ≤ 3

2
+ cpτ,

where τ is as defined in (4.13).
Corollary 4.2 and Lemma 4.6 tell us that the convergence of preconditioned min-

res is independent of h but is likely to deteriorate when the ratio σμ−1 is increased.
Convergence is independent of p if bounded random variables are used. However, if
Gaussian random variables are used, then Â and D̂−1

0 Â become indefinite as p→ ∞.
Recall that the problem is not well-posed in that case. Finally, we note that the
boundedness assumption on KL expansion (2.8) means that τ in (4.13) converges to
a finite limit as M → ∞.

The cost of applying the preconditioner P̂ in each minres iteration amounts to one
solve with a diagonal matrix of dimension NξNq ×NξNq and Nξ multigrid V-cycles,
with the Nu × Nu matrix SD0 , where Nξ = (M+p

p ) or Nξ = (p + 1)M depending
on whether Ψp consists of complete polynomials or tensor product polynomials of
degree p, respectively. Since the cost of performing one amg V-cycle grows linearly
in Nu, (unlike traditional factorization methods), we have a computationally optimal
preconditioner. The set-up of the amg preconditioner only has to be performed
once on a deterministic matrix, so it is a relatively trivial component of the overall
computational cost.
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4.4. Preconditioning the decoupled system. The derivation of the eigen-
value inclusion intervals for the preconditioned stochastic Galerkin problem given
in Lemma 4.6 assumes only that an orthonormal set of stochastic basis functions are
used. In particular, the eigenvalue bounds also hold if Ψp is chosen as in (3.10). How-
ever, in that case, a doubly orthogonal basis, characterized by (3.12), exists for which
the (suitably reordered) stochastic Galerkin system decouples into the Nξ saddle-
point problems (3.13). It is prefereable then to solve these systems separately, and
we can derive somewhat sharper bounds in this case by applying the analysis of the
preceding section to each of the decoupled systems in turn.

The simplest approach to take is to solve the uncoupled linear systems in serial.
For computational efficiency, we would like to use the same preconditioner for each
system so as to minimize the set-up cost, and the strategy we advocate here is use
the mean-based preconditioner

P =
[
D0 0
0 V

]
,(4.15)

where, as in the previous section, D0 = diag(A0) and V −1 represents a V-cycle of amg

applied to the deterministic matrix S = BD−1
0 B�. If (4.4) holds and each A(�) :=

A(�(α)), � = 1, . . . , Nξ, is positive definite, we have the following result analogous to
Corollary 4.2 (see [22] and [26]).

Lemma 4.7. Let 0 < α
(�)
min ≤ α

(�)
max denote the extremal eigenvalues of D−1

0 A(�).
The eigenvalues of

P−1

[
A(�) B�

B 0

]
, � = 1, . . . , Nξ = (p+ 1)M

lie in the union of the intervals

[
1
2

(
α

(�)
min −

√
α

(�)
min

2
+ 4Θ2

)
1
2

(
α(�)

max −
√
α

(�)
max

2
+ 4θ2

)]

∪
[
α

(�)
min,

1
2

(
α(�)

max +

√
α

(�)
max

2
+ 4Θ2

)]
,

where θ2 and Θ2 are the constants appearing in (4.4).
We demonstrate the tightness of the above bounds using the following example.
Example 4.1. Consider decoupled system (3.13) arising from SFEM discretization

of (1.4) on D = [0, 1]× [0, 1], with f = 0, ∂DD = {0, 1}× [0, 1], and ∂DN = ∂D\∂DD.
We select covariance function (2.9a) with τ1 = τ2 = 1, use uniform random variables
in (2.8), and use doubly orthogonal Legendre polynomials for the basis of Ψp. For the
spatial discretization, we use square Raviart–Thomas elements with h−1 = 16. We
set p = 2 and M = 2 so that we have Nξ = 9 decoupled systems.

In Table 4.1 we present data corresponding to the specific case of μ = 1 and
σ = 0.1 so that the signal/noise ratio is 10. For each of the nine uncoupled systems,
we list the number of preconditioned minres iterations required to reach a specified
tolerance, together with a comparison of the extremal eigenvalues with the bounds
given in Lemma 4.7.

Table 4.2 gives the values α(�)
min, α(�)

max, θ2, and Θ2 that we used to compute
the bounds in Table 4.1. Note that the values θ2 and Θ2 are independent of all the
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Table 4.1

Computed and estimated extremal eigenvalues of preconditioned saddle-point matrices.

Iters � Bounds Computed eigenvalues
38 1 [−0.8087,−0.4842] ∪ [0.4278, 1.9542] [−0.8068,−0.4993] ∪ [0.4315, 1.8972]
39 2 [−0.7886,−0.4580] ∪ [0.4796, 2.0632] [−0.7876,−0.4716] ∪ [0.4817, 2.0076]
39 3 [−0.7710,−0.4324] ∪ [0.5260, 2.1828] [−0.7694,−0.4460] ∪ [0.5314, 2.1252]
38 4 [−0.8013,−0.4987] ∪ [0.4467, 1.8985] [−0.7999,−0.5039] ∪ [0.4521, 1.8594]
38 5 [−0.7808,−0.4728] ∪ [0.5000, 2.0000] [−0.7806,−0.4755] ∪ [0.5048, 1.9726]
39 6 [−0.7646,−0.4433] ∪ [0.5432, 2.1305] [−0.7624,−0.4492] ∪ [0.5562, 2.0929]
39 7 [−0.8087,−0.4842] ∪ [0.4278, 1.9542] [−0.8070,−0.4987] ∪ [0.4315, 1.8996]
39 8 [−0.7886,−0.4580] ∪ [0.4796, 2.0632] [−0.7879,−0.4711] ∪ [0.4817, 2.0089]
39 9 [−0.7710,−0.4324] ∪ [0.5260, 2.1828] [−0.7697,−0.4455] ∪ [0.5314, 2.1257]

Table 4.2

Maximal eigenvalues illustrating the efficiency of diagonal scaling and multigrid.

� α
(�)
min α

(�)
max θ2 Θ2

1 0.4278 1.4425 0.9328 1.0000
2 0.4796 1.5785 − −
3 0.5260 1.7247 − −
4 0.4467 1.3717 − −
5 0.5000 1.5000 − −
6 0.5432 1.6612 − −
7 0.4278 1.4425 − −
8 0.4796 1.5785 − −
9 0.5260 1.7247 − −

statistical parameters since μ is constant, so the only factor influencing the iteration
counts from system to system is the efficiency of the diagonal scaling. We can get a
tight theoretical handle on this. Notice that in the above example, α(�)

min is always a
perturbation from 0.5 and α(�)

max is a perturbation of 1.5. This is entirely predictable in
view of (4.12). Before analyzing the dependence of α(�)

min and α(�)
max on the parameters

M , p, h and μ, and σ, we first present a sufficient condition for all the matrices A(�)

in (3.13) to be positive definite.
Lemma 4.8. If the random variables in (2.8) are bounded on the interval [−γ, γ]

and if

(4.16)
μ

σ
> γ

M∑
m=1

√
λm ‖tm‖L∞(D),

then each matrix A(�) occurring in the sequence of saddle-point systems (3.13) is
positive definite.

Proof. If the random variables in (2.8) each vary on the interval [−γ, γ], then each
coefficient ν(�)

m := ν
(m)
αm from (3.13) lies in this interval. Hence, for each �, we have

μ+ σ

M∑
m=1

ν(�)
m

√
λmtm(x ) ≥ μ− σγ

M∑
m=1

√
λm‖tm‖L∞(D) =: κ(�) ∀x ∈ D.

Now associating with q ∈ R
Nq \ {0} the function r =

∑
qiϕi ∈ Φh, we obtain

(4.17) q�A(�)q =

((
μ+ σ

M∑
m=1

ν(�)
m

√
λmtm

)
r , r

)
≥ κ(�) (r , r) ≥ κ(�)c∗q�q ,
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where c∗ > 0 denotes the minimum eigenvalue of the mass matrix with unit coeffi-
cients, represented by the bilinear form (r , r). The result follows if κ(�) > 0, which is
assured if (4.16) holds.

We now return to Lemma 4.7 and assess the efficiency of the diagonal scaling
D−1

0 A(�).
Lemma 4.9. Assume that square or right-angled triangular lowest-order Raviart–

Thomas mixed approximation is used for spatial discretization and that piecewise con-
stant approximation is used for the eigenfunctions tm. If A(�) is positive definite, then
the constants α(�)

min and α(�)
max occurring in the eigenvalue bounds in Lemma 4.7 satisfy

1
2

(
1 +

σm(�)

μ

)
≤ α

(�)
min, α(�)

max ≤ 3
2

(
1 +

σM (�)

μ

)
,(4.18)

where μ and σ are the mean and standard deviation of the field T−1 and

(4.19)

m(�) := inf
x∈D

M∑
m=1

h(�)
m (x ), M (�) := sup

x∈D

M∑
m=1

h(�)
m (x ), with h(�)

m (x ) := ν(�)
m

√
λmtm(x ).

Proof. Each A(�) is a weighted mass matrix, hence it suffices to consider the
diagonally scaled element matrices (see [29]). Let A�

0 and A�
� denote the element

mass matrices associated with A0 and A(�), respectively. Using piecewise constant
approximation for the eigenfunctions, we have

A�
� =

(
1 +

σ

μ

M∑
m=1

ν(�)
m

√
λmt

�
m

)
A�

0 ,(4.20)

where t�m is the value of the mth eigenfunction tm in the element under consideration.
Hence,

v�A�
� q

q� diag
(
A�

0

)
q

=

(
1 +

σ

μ

M∑
m=1

ν(�)
m

√
λmt

�
m

)
q�A�

0 q

q� diag
(
A�

0

)
q
.(4.21)

Using square elements as a specific example, (4.11) holds and so using the standard
result from [29],

α
(�)
min ≥ min

�
q�A�

� q

q� diag
(
A�

0

)
q

≥ 1
2

min
�

(
1 +

σ

μ

M∑
m=1

ν(�)
m

√
λmt

�
m

)
,

α(�)
max ≤ max

�
q�A�

� q

q� diag
(
A�

0

)
q

≤ 3
2

max
�

(
1 +

σ

μ

M∑
m=1

ν(�)
m

√
λmt

�
m

)
,

and the result follows.
Example 4.2. To illustrate the sharpness of the bounds (4.18), consider Exam-

ple 4.1 but now with μ = 1, σ = 0.3, so that the signal/noise ratio is smaller than
previously and take p = 3 and M = 4.

In Table 4.3, we list the computed extremal eigenvalues of D−1
0 A(�) for the first

few systems in (3.13) together with the bounds from Lemma 4.9. Results are presented
for uniform random variables.
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Table 4.3

Computed and estimated values of α
(�)
min and α

(�)
max (Uniform random variables).

iters � α
(�)
min α

(�)
max

1
2

(
1 + σm(�)

μ

)
3
2

(
1 + σM(�)

μ

)
50 1 0.1794 1.7029 0.1586 1.7624
44 2 0.2848 1.9524 0.2612 2.0064
45 3 0.4131 2.2936 0.3897 2.3452
47 4 0.5033 2.5637 0.4833 2.6197
45 5 0.1973 1.5571 0.1746 1.6104

We observe that our bounds are tight. If Gaussian random variables are used,
however, A(1) and A(5) are not positive definite, and so the bounds are not valid.1

Note also that since the ratio σ
μ is larger compared to that in Table 4.1, the minres

iteration counts are slightly higher.
Lemmas 4.7 and 4.9 tell us that the convergence of preconditioned minres for all

systems in (3.13) is independent of h but will deteriorate when the ratio σ
μ is large.

Convergence, for the �th system, is ultimately determined by the constants m(�) and
M (�) in (4.19), and these can vary a great deal from system to system. Lemma 4.5
tells us that the set of coefficients {ν(�)

1 , . . . ν
(�)
M } that determine each m(�) and M (�)

are, again, just roots of orthogonal polynomials in ξ (see [9]). These are bounded
with respect to p if bounded random variables are used.

In the decoupled approach, the cost of applying P to each system, in each minres

iteration, now amounts to one solve with a diagonal matrix of dimension Nq × Nq

and one multigrid V-cycle with the Nu × Nu matrix SD0 . However, there are Nξ

systems to solve where, here, Nξ = (p + 1)M . Again, set-up is a trivial cost, and
we have a computationally optimal preconditioner for each system. However, Nξ

grows unacceptably large for increasing M and p. For example, if M = 6 and p = 4,
the dimension of the complete polynomial space is 210 compared to Nξ = 15,625
for the tensor product polynomial space. Comparing the results in Lemma 4.6 and
Corollary 4.2 with those in Lemma 4.9 and Lemma 4.7, we see that the number of
preconditioned minres iterations required to solve the large coupled system (when
complete polynomials are employed) is likely to deteriorate at the same rate, with
respect to p and the ratio σ

μ , as the highest number of iterations required to solve
any of the small decoupled systems associated with the tensor product polynomials.
If the decoupled systems are simply solved in serial and if (p + 1)M is significantly
larger than (M+p

p ), then the coupled approach is almost certainly cheaper overall.

5. Numerical results. We now present numerical results for two test prob-
lems, employing both the set of tensor product polynomials and the correspond-
ing set of complete polynomials for the stochastic solution space Ψp. In the first
case, we solve a sequence of (p + 1)M decoupled saddle-point systems of dimension
(Nq +Nu) . In the second case, we solve a single large saddle-point system of dimen-
sion (M+p

p ) (Nq +Nu) . We employ uniform random variables for the stochastic input
and construct the stochastic bases using Legendre polynomials.

To compare the methods, we record the number of minres iterations required to
reduce the Euclidean norm of the preconditioned relative residual error to 10−8 when
zero initial guesses are prescribed. In addition, we list set-up and solve times (in

1The discrete problem is not well-posed in this case (since (1.3) does not hold), and so the solution
is meaningless.
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Table 5.1

Example 5.1: Numerical results obtained with tensor product polynomials.

p 1 2 3 4
Nξ 64 729 4,096 15,625
Nξ(Nq + Nu) 786,432 8,957,952 50,331,648 192,000,000

σ
μ

= 0.1 avg. iters. 40 40 40 40

max. iters. 42 43 43 44
NV 2,568 29,317 165,223 630,825
set-up time 0.56s 0.46s 0.46s 0.50s
avg. solve time 0.40s 0.41s 0.46s 0.47s

σ
μ

= 0.2 avg. iters. 43 43 43 43

max. iters. 46 49 50 51
NV 2,723 31,287 177,484 678,832
set-up time 0.57s 0.49s 0.54s 0.46s
avg. solve time 0.45s 0.51s 0.52s 0.51s

σ
μ

= 0.3 avg. iters. 46 47 47 48

max. iters. 50 57 63 66
NV 2,954 34,028 193,785 743,509
set-up time 0.61s 0.54s 0.55s 0.48s
avg. solve time 0.49s 0.52s 0.56s 0.57s

seconds) and the total number NV of black-box amg V-cycles performed on a system
with the coefficient matrix SD0 . The amg code we use is a MATLAB version of the
code HSL MI20 [4]. NV , the total number of diffusion solves, is the basic work unit and
can be used to compare the costs of the two approaches. All reported experiments
were performed in serial on a modest single processor Linux machine with 2 GB RAM
and on a more powerful two-processor dual-core Linux machine with 16 GB RAM.
The timings reported below were obtained using the second machine.

Remark 5.1. The dominant components of our Krylov subspace solver method-
ology are the matrix multiply of the coefficient matrix and the action of the inverse of
the preconditioner which must be done once per iteration. Using either tensor prod-
uct or complete polynomials, both these components are completely straightforward
to parallelize over the number of stochastic degrees of freedom.

Example 5.1. Consider system (3.2) arising from the SFEM discretization of
(1.4) with D = [0, 1] × [0, 1], f = 0, ∂DD = {0, 1} × [0, 1], and ∂DN = ∂D\∂DD.
We set n · q = 0 on the horizontal boundaries, u = 1 on {0} × [0, 1], and u = 0
on {1} × [0, 1]. We select covariance function (2.9c) (which is discussed in [31]) with
τ = 1 and the constant mean 〈T−1〉 = μ = 1. With this choice of τ , M = 6 random
variables are required to capture 98% of the variance of the input random field. For
the spatial discretization, we select square elements on a uniform grid with h−1 = 64,
yielding Nq = 8,192 and Nu = 4,096.

Iteration counts and timings obtained with varying p and σ
μ are listed in Tables 5.1

and 5.2. As expected, the iteration counts deteriorate for increasing σ
μ . The means

and variances of uh,p and those of the x and y components of qh,p, for the partic-
ular case p = 3 and σ

μ = 0.2, are plotted in Figures 5.1 and 5.2. In the decoupled
case, we solve 4,096 saddle-point systems of dimension 12,288. Each system requires
on average 43 preconditioned minres iterations, corresponding to a total of 177,484
multigrid V-cycles. In the coupled case, we solve one saddle-point system of dimension
1,032,192. A total of 59 preconditioned minres iterations are required, corresponding
to only 4,956 multigrid V-cycles. Thus, solving (2.11) using (3.11) rather than (3.10)
requires approximately one thirty-sixth of the number of fast diffusion solves. Al-
though tensor product space (3.10) is richer than the space of complete polynomials
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Table 5.2

Example 5.1: Numerical results obtained with complete polynomials.

p 1 2 3 4 5
Nξ 7 28 84 210 462
Nξ(Nq + Nu) 86,016 344,064 1,032,192 2,580,480 5,677,056

σ
μ

= 0.1 total iters. 43 45 46 48 48

NV 301 1,260 3,864 10,080 22,176
set-up time 0.56s 0.47s 0.47s 0.47s 0.47s
total solve time 3.27s 14.0s 45.35s 119.01s 262.04s

σ
μ

= 0.2 total iters. 49 55 59 62 63

NV 343 1,540 4,956 13,020 29,106
set-up time 0.54s 0.47s 0.49s 0.47s 0.47s
total solve time 3.79s 17.18s 58.51s 154.82s 379.01s

σ
μ

= 0.3 total iters. 55 66 74 80 86

NV 385 1,848 6,216 16,800 39,732
set-up time 0.47s 0.48s 0.48s 0.47s 0.48s
total solve time 4.08s 20.66s 72.97s 199.75s 486.74s
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Fig. 5.1. Example 5.1: Computed means
〈
uh,p

〉
,
〈
qy

h,p

〉
, and

〈
qx

h,p

〉
(left to right) for p = 3,

σ
μ

= 0.2.
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Fig. 5.2. Example 5.1: Computed variances V ar(uh,p), V ar(qy
h,p), and V ar(qx

h,p) (left to right)

for p = 3, σ
μ

= 0.2.

(3.11), the solutions obtained in each case are observed to be qualitatively the same.
Using (3.10), the maximum recorded values of the variances of uh,p, q

x
h,p, and qy

h,p are
6.1332 × 10−4, 0.0445, and 7.9302 × 10−4, respectively. Using (3.11), we obtain the
corresponding values 6.1329× 10−4, 0.0444, and 7.9113× 10−4.

Example 5.2. Consider the same test problem as above but now with a piecewise
constant mean. LetD1 = [0, 0.5]×[0, 0.5], D2 = [0.5, 1]×[0, 0.5], D3 = [0.5, 1]×[0.5, 1],
and D4 = [0, 0.5]× [0.5, 1] and set

〈
T−1

〉
= μ =

{
1 in D1 and D4,

103 in D2 and D3.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PRECONDITIONING LINEAR STOCHASTIC PDE PROBLEMS 1445

Table 5.3

Example 5.2: Numerical results obtained with tensor product polynomials.

p 1 2 3 4
Nξ 64 729 4,096 15,625
Nξ(Nq + Nu) 583,872 6,650,667 37,367,808 142,546,875
avg. iters. 43 44 44 44
max. iters. 46 49 51 53
NV 2,773 31,824 179,974 688,085

Table 5.4

Example 5.2: Numerical results obtained with complete polynomials.

p 1 2 3 4
Nξ 7 28 84 210
Nξ(Nq + Nu) 63,861 255,444 766,332 1,915,830
total iters. 48 55 58 62
NV 336 1,540 4,872 13,020

Fig. 5.3. Example 5.2: Contours of
〈
uh,p

〉
(left) and streamlines of

〈
qh,p

〉
(right), p = 3.

Note that T takes small values in D2 and D3 so most “flow” occurs in D1 and D4. We
choose correlation function (2.9c) with τ = 1. In addition, we fix σ = 0.2 and vary p.
For the spatial discretization, we select a locally adapted mesh of triangular elements
yielding Nq = 5,474 and Nu = 3,649.

minres iteration counts obtained for the decoupled and coupled systems, with
varying p are listed in Tables 5.3 and 5.4, respectively. The contours of the expected
head 〈uh,p〉 and the streamlines of the expected flow-field 〈qh,p〉 for the case p = 3 are
plotted in Figure 5.3. Again, the solutions obtained are qualitatively the same using
either (3.10) or (3.11) for the stochastic solution space with a fixed p. When p = 3,
choosing Ψp as in (3.10) requires the solution of 4,096 saddle-point systems, and our
preconditioning strategy requires a total of 179,974 fast diffusion solves. In contrast,
using complete polynomials to construct Ψ3 requires the solution of one saddle-point
system of dimension 766,332, and our mean-based solver requires only 4,872 multigrid
V-cycles with the deterministic matrix SD0 .

6. Conclusions. In this study we have developed a mean-based preconditioner
for linear algebra systems that arise from a stochastic Galerkin mixed formulation of
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the steady-state diffusion equation with random data. If stochastic Galerkin methods
are to be competitive with traditional deterministic methodologies based on sampling
techniques, then we need fast and robust linear algebra techniques to solve the large
indefinite systems that arise. Our approach uses a black-box algebraic multigrid on
the spatial component of the problem, and we have demonstrated that this gives an
effective way of solving the extremely large coupled and decoupled systems that arise
when the fluctuations in the data are not too large relative to their mean value. We
intend to extend our methodology to cover stochastically nonlinear formulations of
diffusion problems in future publications.
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