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COMPUTING THE FRÉCHET DERIVATIVE OF THE MATRIX
EXPONENTIAL, WITH AN APPLICATION TO CONDITION

NUMBER ESTIMATION∗

AWAD H. AL-MOHY† AND NICHOLAS J. HIGHAM†

Abstract. The matrix exponential is a much-studied matrix function having many applica-
tions. The Fréchet derivative of the matrix exponential describes the first-order sensitivity of eA

to perturbations in A and its norm determines a condition number for eA. Among the numerous
methods for computing eA the scaling and squaring method is the most widely used. We show that
the implementation of the method in [N. J. Higham, The scaling and squaring method for the matrix
exponential revisited, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 1179–1193] can be extended to
compute both eA and the Fréchet derivative at A in the direction E, denoted by L(A, E), at a cost
about three times that for computing eA alone. The algorithm is derived from the scaling and squar-
ing method by differentiating the Padé approximants and the squaring recurrence, reusing quantities
computed during the evaluation of the Padé approximant, and intertwining the recurrences in the
squaring phase. To guide the choice of algorithmic parameters, an extension of the existing backward
error analysis for the scaling and squaring method is developed which shows that, modulo rounding
errors, the approximations obtained are eA+ΔA and L(A + ΔA, E + ΔE), with the same ΔA in
both cases, and with computable bounds on ‖ΔA‖ and ‖ΔE‖. The algorithm for L(A, E) is used
to develop an algorithm that computes eA together with an estimate of its condition number. In
addition to results specific to the exponential, we develop some results and techniques for arbitrary
functions. We show how a matrix iteration for f(A) yields an iteration for the Fréchet derivative
and show how to efficiently compute the Fréchet derivative of a power series. We also show that a
matrix polynomial and its Fréchet derivative can be evaluated at a cost at most three times that of
computing the polynomial itself and give a general framework for evaluating a matrix function and
its Fréchet derivative via Padé approximation.

Key words. matrix function, Fréchet derivative, matrix polynomial, matrix iteration, ma-
trix exponential, condition number estimation, scaling and squaring method, Padé approximation,
backward error analysis
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1. Introduction. The sensitivity of a matrix function f : Cn×n → Cn×n to
small perturbations is governed by the Fréchet derivative. The Fréchet derivative at
a point A ∈ Cn×n is a linear mapping

C
n×n L(A)−→ C

n×n

E �−→ L(A, E)

such that for all E ∈ Cn×n,

f(A + E)− f(A)− L(A, E) = o(‖E‖),(1.1)

and it therefore describes the first-order effect on f of perturbations in A. If we need
to show the dependence of L on f we will write Lf (A, E).
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1640 AWAD H. AL-MOHY AND NICHOLAS J. HIGHAM

It is desirable to be able to evaluate efficiently both f(A) and the Fréchet deriva-
tive in order to obtain sensitivity information or to apply an optimization algorithm
requiring derivatives. However, while the numerical computation of matrix functions
is quite well developed, fewer methods are available for the Fréchet derivative, and
the existing methods for L(A, E) usually do not fully exploit the fact that f(A) is
being computed [6].

The norm of the Fréchet derivative yields a condition number [6, Theorem 3.1]:

cond(f, A) := lim
ε→0

sup
‖E‖≤ε‖A‖

‖f(A + E)− f(A)‖
ε‖f(A)‖ =

‖L(A)‖‖A‖
‖f(A)‖ ,(1.2)

where

‖L(A)‖ := max
Z �=0

‖L(A, Z)‖
‖Z‖(1.3)

and the norm is any matrix norm. When evaluating f(A) we would like to be able
to efficiently estimate cond(f, A); (1.3) shows that to do so we need to approximately
maximize the norm of L(A, Z) over all Z of unit norm.

The main aim of this work is to develop an efficient algorithm for simultaneously
computing eA and L(A, E) and to use it to construct an algorithm for computing eA

along with an estimate of cond(exp, A). The need for such algorithms is demonstrated
by a recent paper in econometrics [8] in which the authors state that “One problem
we did discover, that has not been accentuated in the literature, is that altering the
stability properties of the coefficient matrix through a change in just one parameter
can dramatically alter the theoretical and computed matrix exponential.” If A = A(t)
depends smoothly on a vector t ∈ C

p of parameters then the change in eA induced by
small changes θh in t (θ ∈ C, h ∈ Cp) is approximated by θL(A,

∑p
i=1 hi ∂A(t)/∂ti),

since

f(A(t + θh)) = f

(
A + θ

p∑
i=1

∂A(t)
∂ti

hi + O(θ2)

)

= f(A) + L

(
A, θ

p∑
i=1

∂A(t)
∂ti

hi + O(θ2)

)
+ o(θ)

= f(A) + θL

(
A,

p∑
i=1

∂A(t)
∂ti

hi

)
+ o(θ).

Thus a single Fréchet derivative evaluation with h = ej (the jth unit vector) provides
the information that the authors of [8] needed about the effect of changing a single
parameter tj .

We begin in section 2 by recalling a useful connection between the Fréchet deriva-
tive of a function and the same function evaluated at a certain block triangular matrix.
We illustrate how this relation can be used to derive new iterations for computing
L(A, E) given an iteration for f(A). Then in section 3 we show how to efficiently
evaluate the Fréchet derivative when f has a power series expansion, by exploiting a
convenient recurrence for the Fréchet derivative of a monomial. In section 4 we show
that under reasonable assumptions a matrix polynomial and its Fréchet derivative
can both be evaluated at a cost at most three times that of evaluating the polyno-
mial itself. Then in section 5 we show how to evaluate the Fréchet derivative of a
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rational function and give a framework for evaluating f and its Fréchet derivative via
Padé approximants. In section 6 we apply this framework to the scaling and squaring
algorithm for eA [14], [17], and in particular to the implementation of Higham [5],
which is the basis of MATLAB’s expm function. We extend Higham’s analysis to
show that, modulo rounding errors, the approximations obtained from the new al-
gorithm are eA+ΔA and L(A + ΔA, E + ΔE), with the same ΔA in both cases—a
genuine backward error result. The computable bounds on ‖ΔA‖ and ‖ΔE‖ enable
us to choose the algorithmic parameters in an optimal fashion. The new algorithm
is shown to have significant advantages over existing ones. In section 7 we combine
the new algorithm for L(A, E) with an existing matrix 1-norm estimator to develop
an algorithm for computing both eA and an estimate of its condition number, and
we show experimentally that the condition estimate can provide a useful guide to the
accuracy of the scaling and squaring algorithm. Some concluding remarks are given
in section 8.

2. Fréchet derivative via function of block triangular matrix. The fol-
lowing result shows that the Fréchet derivative appears as the (1, 2) block when f is
evaluated at a certain block triangular matrix. Let D denote an open subset of R

or C.
Theorem 2.1. Let f be 2n−1 times continuously differentiable on D and let the

spectrum of X lie in D. Then

f

([
X E
0 X

])
=
[

f(X) L(X, E)
0 f(X)

]
.(2.1)

Proof. See Mathias [13, Theorem 2.1] or Higham [6, section 3.1]. The result is
also proved by Najfeld and Havel [15, Theorem 4.11] under the assumption that f is
analytic.

The significance of Theorem 2.1 is that given a smooth enough f and any method
for computing f(A), we can compute the Fréchet derivative by applying the method
to the 2n×2n matrix in (2.1). The doubling in size of the problem is unwelcome, but
if we exploit the block structure the computational cost can be reduced. Moreover,
the theorem can provide a simple means to derive, and prove the convergence of,
iterations for computing the Fréchet derivative.

To illustrate the use of the theorem we consider the principal square root function,
f(A) = A1/2, which for A ∈ Cn×n with no eigenvalues on R− (the closed negative
real axis) is the unique square root X of A whose spectrum lies in the open right
half-plane. The Denman–Beavers iteration

Xk+1 =
1
2
(
Xk + Y −1

k

)
, X0 = A,

Yk+1 =
1
2
(
Yk + X−1

k

)
, Y0 = I

(2.2)

is a Newton variant that converges quadratically with [6, section 6.3]

lim
k→∞

Xk = A1/2, lim
k→∞

Yk = A−1/2.(2.3)

It is easy to show that if we apply the iteration to Ã =
[

A
0

E
A

]
then iterates X̃k and

Ỹk are produced for which

X̃k =
[

Xk Fk

0 Xk

]
, Ỹk =

[
Yk Gk

0 Yk

]
,
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where

Fk+1 =
1
2
(
Fk − Y −1

k GkY −1
k

)
, F0 = E,

Gk+1 =
1
2
(
Gk −X−1

k FkX−1
k

)
, G0 = 0.

(2.4)

By applying (2.3) and Theorem 2.1 to Ã we conclude that

lim
k→∞

Fk = Lx1/2(A, E), lim
k→∞

Gk = Lx−1/2(A, E).(2.5)

Moreover, scaling strategies for accelerating the convergence of (2.2) [6, section 6.5]
yield corresponding strategies for (2.4).

The next result shows quite generally that differentiating a fixed point iteration
for a matrix function yields a fixed point iteration for the Fréchet derivative.

Theorem 2.2. Let f and g be n − 1 times continuously differentiable on D.
Suppose that for any matrix X ∈ Cn×n whose spectrum lies in D, g has the fixed
point f(X), that is, f(X) = g(f(X)). Then for any such X, Lg at f(X) has the fixed
point Lf (X, E) for all E.

Proof. Applying the chain rule to f(X) ≡ g(f(X)) gives the relation Lf(X, E) =
Lg(f(X), Lf(X, E)), which is the result.

The iteration (2.4) for computing the Fréchet derivative of the square root function
is new, and other new iterations for the Fréchet derivative of the matrix square root
and related functions can be derived, and their convergence proved, in the same way,
or directly by using Theorem 2.2. In the case of the Newton iteration for the matrix
sign function this approach yields an iteration for the Fréchet derivative proposed by
Kenney and Laub [10, Theorem 3.3] (see also [6, Theorem 5.7]) and derived using
Theorem 2.1 by Mathias [13].

In the rest of this paper we consider the situation in which the underlying method
for computing f(A) is based on direct approximation rather than iteration, and we
develop techniques that are more sophisticated than a direct application of Theo-
rem 2.1.

3. Fréchet derivative via power series. When f has a power series expansion
the Fréchet derivative can be expressed as a related series expansion.

Theorem 3.1. Suppose f has the power series expansion f(x) =
∑∞

k=0 akxk with
radius of convergence r. Then for A, E ∈ Cn×n with ‖A‖ < r, the Fréchet derivative

Lf (A, E) =
∞∑

k=1

ak

k∑
j=1

Aj−1EAk−j .(3.1)

Proof. See [6, Problem 3.6].
The next theorem gives a recurrence that can be used to evaluate (3.1).
Theorem 3.2. Under the assumptions of Theorem 3.1,

Lf(A, E) =
∞∑

k=1

akMk,(3.2)

where Mk = Lxk(A, E) satisfies the recurrence

Mk = M�1A
�2 + A�1M�2 , M1 = E,(3.3)
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with k = �1 + �2 and �1 and �2 positive integers. In particular,

Mk = Mk−1A + Ak−1M1, M1 = E.(3.4)

In addition,

‖f(A)‖ ≤ f̃(‖A‖), ‖Lf(A)‖ ≤ f̃ ′(‖A‖),(3.5)

where f̃(x) =
∑∞

k=0 |ak|xk.
Proof. Since the power series can be differentiated term-by-term within its radius

of convergence, we have

Lf(A, E) =
∞∑

k=1

akMk, Mk = Lxk(A, E).

One way to develop the recurrence (3.3) is by applying Theorem 2.1 to the monomial
xk = x�1+�2 . A more direct approach is to use the product rule for Fréchet derivatives
[6, Theorem 3.3] to obtain

Mk = Lxk(A, E) = Lx�1 (A, E)A�2 + A�1Lx�2 (A, E) = M�1A
�2 + A�1M�2 .

Taking �1 = k − 1 and �2 = 1 gives (3.4). It is straightforward to see that ‖f(A)‖ ≤
f̃(‖A‖). Taking norms in (3.1) gives

‖Lf(A, E)‖ ≤ ‖E‖
∞∑

k=1

k|ak|‖A‖k−1 = ‖E‖f̃ ′(‖A‖),

and maximizing over all nonzero E gives ‖Lf(A)‖ ≤ f̃ ′(‖A‖).
The recurrence (3.3) will prove very useful in the rest of the paper.

4. Cost analysis for polynomials. Practical methods for approximating f(A)
may truncate a Taylor series to a polynomial or use a rational approximation. Both
cases lead to the need to evaluate both a polynomial and its Fréchet derivative at the
same argument. The question arises “what is the extra cost of computing the Fréchet
derivative?” Theorem 3.2 does not necessarily answer this question because it only
describes one family of recurrences for evaluating the Fréchet derivative. Moreover,
the most efficient polynomial evaluation schemes are based on algebraic rearrange-
ments that avoid explicitly forming all the matrix powers. Does an efficient evaluation
scheme for a polynomial p also yield an efficient evaluation scheme for Lp?

Consider schemes for evaluating pm(X), where pm is a polynomial of degree m
and X ∈ Cn×n, that consist of s steps of the form

q
(k)
1 (X) = q

(k−1)
2 (X)q(k−1)

3 (X) + q
(k−1)
4 (X), k = 1: s,(4.1a)

deg q
(k)
i < m, i = 1: 4, k < s, deg q

(k)
i ≥ 1, i = 2: 3,(4.1b)

where the qi are polynomials, q
(k)
i , i = 2: 4, is a linear combination of q

(1)
1 , . . . , q

(k−1)
1 ,

and pm(X) = q
(s)
1 (X). This class contains all schemes of practical interest, which

include Horner’s method, evaluation by explicit powers, and the Paterson and Stock-
meyer method [16] (all of which are described in [6, section 4.2]), as well as more ad
hoc schemes such as those described below. We measure the cost of the scheme by the
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number of matrix multiplications it requires. The next result shows that the overhead
of evaluating the Fréchet derivative is at most twice the original cost.

Theorem 4.1. Let p be a polynomial and let πp denote the cost of evaluating
p(X) by any scheme of the form (4.1). Let σp denote the extra cost required to compute
Lp(X, E) by using the scheme obtained by differentiating the scheme for p(X). Then
σp ≤ 2πp.

Proof. The proof is by induction on the degree m of the polynomial. For m = 1,
p1(x) = b0+b1x and the only possible scheme is the obvious evaluation p1(X) = b0I+
b1X with π1 = 0. The corresponding Fréchet derivative scheme is Lp1(X, E) = b1E
and σ1 = 0, so the result is trivially true for m = 1. Suppose the result is true for
all polynomials of degree at most m − 1 and consider a polynomial pm of degree m.
By (4.1) the last stage of the scheme can be written pm(X) = q

(s−1)
2 (X)q(s−1)

3 (X) +
q
(s−1)
4 (X), where the polynomials qi ≡ q

(s−1)
i , i = 2: 4 are all of degree less than m.

Note that πpm = πq2 + πq3 + πq4 + 1 and by the inductive hypothesis, σqi ≤ 2πqi ,
i = 2: 4. Now Lpm(X, E) = Lq2(X, E)q3(X) + q2(X)Lq3(X, E) + Lq4(X, E) by the
product rule and so

σpm ≤ σq2 + σq3 + σq4 + 2 ≤ 2(πq2 + πq3 + πq4 + 1) = 2πpm ,

as required. This proof tacitly assumes that there are no dependencies between the
q
(k)
i that reduce the cost of evaluating p, for example, q

(s−1)
2 = q

(s−1)
3 . However, any

dependencies equally benefit the Lp evaluation and the result remains valid.
To illustrate the theorem, consider the polynomial p(X) = I + X + X2 + X3 +

X4 + X5. Rewriting it as

p(X) = I + X
(
I + X2 + X4

)
+ X2 + X4,

we see that p(X) can be evaluated in just three multiplications via X2 = X2, X4 = X2
2 ,

and p(X) = I + X(I + X2 + X4) + X2 + X4. Differentiating gives

Lp(X, E) = Lx(1+x2+x4)(X, E) + M2 + M4

= E(I + X2 + X4) + X(M2 + M4) + M2 + M4,

where M2 = XE + EX and M4 = M2X2 + X2M2 by (3.3). Hence the Fréchet
derivative can be evaluated with six additional multiplications, and the total cost is
nine multiplications.

5. Computational framework. For a number of important functions f , such
as the exponential, the logarithm, and the sine and cosine, successful algorithms for
f(A) have been built on the use of Padé approximants: a Padé approximant rm of f
of suitable degree m is evaluated at a transformed version of A and the transformation
is then undone. Here, rm(x) = pm(x)/qm(x) with pm and qm polynomials of degree
m such that f(x) − rm(x) = O(x2m+1) [2]. It is natural to make use of this Padé
approximant by approximating Lf by the Fréchet derivative Lrm of rm. The next
result shows how to evaluate Lrm .

Lemma 5.1. The Fréchet derivative Lrm of the rational function rm(x) = pm(x)/
qm(x) satisfies

qm(A)Lrm(A, E) = Lpm(A, E)− Lqm(A, E)rm(A).(5.1)
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Proof. Applying the Fréchet derivative product rule to qmrm = pm gives

Lpm(A, E) = Lqmrm(A, E) = Lqm(A, E)rm(A) + qm(A)Lrm(A, E),

which rearranges to the result.
We can now state a general framework for simultaneously approximating f(A)

and Lf(A, E) in a way that reuses matrix multiplications from the approximation of
f in the approximation of Lf .

1. Choose a suitable Padé degree m and transformation function g and set A←
g(A).

2. Devise efficient schemes for evaluating pm(A) and qm(A).
3. Fréchet differentiate the schemes in the previous step to obtain schemes for

evaluating Lpm(A, E) and Lqm(A, E). Use the recurrences (3.3) and (3.4) as
necessary.

4. Solve qm(A)rm(A) = pm(A) for rm(A).
5. Solve qm(A)Lrm(A, E) = Lpm(A, E)− Lqm(A, E)rm(A) for Lrm(A, E).
6. Apply the appropriate transformations to rm(A) and Lrm(A, E) that undo

the effect of the initial transformation on A.
In view of Theorem 4.1, the cost of this procedure is at most (3πm + 1)M + 2D,

where πmM is the cost of evaluating both pm(A) and qm(A), and M and D denote a
matrix multiplication and the solution of a matrix equation, respectively.

If we are adding the capability to approximate the Fréchet derivative to an existing
Padé-based method for f(A) then our attention will focus on step 1, where we must
reconsider the choice of m and transformation to ensure that both f and Lf are
approximated to sufficient accuracy.

In the next section we apply this framework to the matrix exponential.

6. Scaling and squaring algorithm for the exponential and its Fréchet
derivative. The scaling and squaring method for computing the exponential of A ∈
Cn×n is based on the relation

eA =
(
e2−sA

)2s

.(6.1)

For suitably chosen nonnegative integers s and m, this method approximates e2−sA

by rm(2−sA), where rm is the [m/m] Padé approximant to ex, and it takes eA ≈
(rm(2−sA))2

s

. A choice of the parameters s and m with a certain optimality property
is given in the following algorithm from [5], [6, Algorithm 10.20], which forms the
basis of MATLAB’s expm function.

Algorithm 6.1 (scaling and squaring algorithm for exponential). This algorithm
evaluates the matrix exponential X = eA of A ∈ Cn×n using the scaling and squaring
method. It uses the parameters θm given in Table 6.1. The algorithm is intended for
IEEE double precision arithmetic.

1 for m = [3 5 7 9]
2 if ‖A‖1 ≤ θm, evaluate X = rm(A) using (6.11) and (6.14), quit, end
3 end
4 A← 2−sA with s = �log2(‖A‖1/θ13)�
5 Evaluate r13(A) using (6.14) and the preceding equations.
6 X = r13(A)2

s

by repeated squaring.
Cost: (πm + s)M + D, where m is the degree of Padé approximant used and πm

(tabulated in [5, Table 2.2]) is the cost of evaluating pm and qm.
Our aim is now to adapt this algorithm to compute Lexp(A, E) along with eA.
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Table 6.1

Maximal values �m of ‖2−sA‖ such that the backward error bound (6.10) does not exceed u =
2−53, along with maximal values θm such that a bound for ‖ΔA‖/‖A‖ does not exceed u.

m 1 2 3 4 5 6 7 8 9 10

θm 3.65e-8 5.32e-4 1.50e-2 8.54e-2 2.54e-1 5.41e-1 9.50e-1 1.47e0 2.10e0 2.81e0
�m 2.11e-8 3.56e-4 1.08e-2 6.49e-2 2.00e-1 4.37e-1 7.83e-1 1.23e0 1.78e0 2.42e0

m 11 12 13 14 15 16 17 18 19 20

θm 3.60e0 4.46e0 5.37e0 6.33e0 7.34e0 8.37e0 9.44e0 1.05e1 1.17e1 1.28e1
�m 3.13e0 3.90e0 4.74e0 5.63e0 6.56e0 7.52e0 8.53e0 9.56e0 1.06e1 1.17e1

A recurrence for the Fréchet derivative of the exponential can be obtained by
differentiating (6.1). Note first that differentiating the identity eA = (eA/2)2 using
the chain rule [6, Theorem 3.4] along with Lx2(A, E) = AE + EA gives the relation

Lexp(A, E) = Lx2

(
eA/2, Lexp(A/2, E/2)

)
(6.2)

= eA/2Lexp(A/2, E/2) + Lexp(A/2, E/2)eA/2.

Repeated use of this relation leads to the recurrence

L̃s = Lexp(2−sA, 2−sE),

L̃i−1 = e2−iAL̃i + L̃i e
2−iA, i = s:−1: 1(6.3)

for L̃0 = Lexp(A, E). Our numerical method replaces Lexp by Lrm and e2−iA by
rm(2−sA)2

s−i

, producing approximations Li to L̃i:

Xs = rm(2−sA),
Ls = Lrm(2−sA, 2−sE),

Li−1 = Xi Li + Li Xi

Xi−1 = X2
i

}
i = s:−1: 1.(6.4)

The key question is what can be said about the accuracy or stability of L0 relative
to that of the approximation X0 = (rm(2−sA))2

s

to eA. To answer this question we
recall the key part of the error analysis from [5] (see also [6, section 10.3]), which
is summarized in the following result. We denote by log the principal logarithm of
A ∈ Cn×n, which is defined for A with no eigenvalues on R− and is the unique
logarithm whose eigenvalues all have imaginary parts in (−π, π).

Theorem 6.2. Suppose that

‖e−Arm(A) − I‖ < 1, ‖A‖ < min{ |t| : qm(t) = 0 }(6.5)

for some consistent matrix norm, so that gm(A) = log(e−Arm(A)) is guaranteed to
be defined. Then rm(A) = eA+gm(A) and ‖gm(A)‖ ≤ − log(1 − ‖e−Arm(A) − I‖). In
particular, if (6.5) is satisfied with A← 2−sA then

rm(2−sA) = e2−sA+gm(2−sA),(6.6)

so that rm(2−sA)2
s

= eA+2sgm(2−sA), where

‖2sgm(2−sA)‖
‖A‖ ≤ − log(1− ‖e−2−sA rm(2−sA)− I‖)

‖2−sA‖ .(6.7)
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Differentiating (6.6) gives, using the chain rule,

Ls = Lrm(2−sA, 2−sE)
= Lexp

(
2−sA + gm(2−sA), 2−sE + Lgm(2−sA, 2−sE)

)
.(6.8)

From (6.4), (6.6), and (6.8),

Ls−1 = rm(2−sA)Ls + Lsrm(2−sA)

= e2−sA+gm(2−sA) Lexp

(
2−sA + gm(2−sA), 2−sE + Lgm(2−sA, 2−sE)

)
+ Lexp

(
2−sA + gm(2−sA), 2−sE + Lgm(2−sA, 2−sE)

)
e2−sA+gm(2−sA)

= Lexp

(
2−(s−1)A + 2gm(2−sA), 2−(s−1)E + Lgm(2−sA, 2−(s−1)E)

)
,

where we have used (6.2) and the fact that L is linear in its second argument. Con-
tinuing this argument inductively, and using

Xi = X2s−i

s =
(
e2−sA+gm(2−sA)

)2s−i

= e2−iA+2s−igm(2−sA),

we obtain the following result.
Theorem 6.3. If (6.5) is satisfied with A← 2−sA then L0 from (6.4) satisfies

L0 = Lexp

(
A + 2sgm(2−sA), E + Lgm(2−sA, E)

)
.(6.9)

Theorem 6.3 is a backward error result: it says that L0 is the exact Fréchet
derivative for the exponential of a perturbed matrix in a perturbed direction. We
emphasize that the backward error is with respect to the effect of truncation errors in
the Padé approximation, not to rounding errors, which for the moment are ignored.

Theorems 6.2 and 6.3 show that X0 = eA+ΔA and L0 = Lexp(A + ΔA, E + ΔE)
with the same ΔA = 2sgm(2−sA). We already know from the analysis in [5] how to
choose s and m to keep ΔA acceptably small. It remains to investigate the norm of
ΔE = Lgm(2−sA, E).

Let g̃m(x) =
∑∞

k=2m+1 ckxk be the power series resulting from replacing the
coefficients of the power series expansion of the function gm(x) = log(e−xrm(x)) by
their absolute values. Using the second bound in (3.5) we have

‖ΔE‖
‖E‖ =

‖Lgm(2−sA, E)‖
‖E‖ ≤ ‖Lgm(2−sA)‖ ≤ g̃m

′(θ),(6.10)

where θ = ‖2−sA‖. Define �m = max{ θ : g̃m
′(θ) ≤ u }, where u = 2−53 ≈ 1.1× 10−16

is the unit roundoff for IEEE double precision arithmetic. Using MATLAB’s Symbolic
Math Toolbox we evaluated �m, m = 1: 20, by summing the first 150 terms of the series
symbolically in 250 decimal digit arithmetic. Table 6.1 shows these values along with
analogous values θm calculated in [5], which are the maximal values of θ such that a
bound on ‖ΔA‖/‖A‖ obtained from (6.7) does not exceed u. In every case �m < θm,
which is not surprising given that we are approximating Lrm by an approximation
chosen for computational convenience rather than its approximation properties, but
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the ratio θm/�m is close to 1. For each m, if θ ≤ �m then we are assured that

X0 = eA+ΔA, L0 = Lexp(A + ΔA, E + ΔE), ‖ΔA‖ ≤ u‖A‖, ‖ΔE‖ ≤ u‖E‖;
in other words, perfect backward stability is guaranteed for such θ.

In order to develop an algorithm we now need to look at the cost of evaluating
rm = pm/qm and Lrm , where rm is the [m/m] Padé approximant to ex. Higham [5]
shows how to efficiently evaluate pm(A) and qm(A) by using one type of scheme
for m ≤ 11 and another for m ≥ 12; the number of matrix multiplications, πm,
required to compute pm(A) and qm(A) is given in [5, Table 2.2]. As Theorem 4.1
suggests, the Fréchet derivatives Lpm and Lqm can be calculated at an extra cost of
2πm multiplications by differentiating the schemes for pm and qm. We now give the
details.

We consider the odd degree Padé approximants to the exponential function. Anal-
ogous techniques apply to the even degree approximants (which, as in Algorithm 6.1,
it will turn out we do not need). For m = 3, 5, 7, 9, we decompose pm =

∑m
i=0 bix

i

into its odd and even parts:

pm(x) = x

(m−1)/2∑
k=0

b2k+1x
2k +

(m−1)/2∑
k=0

b2kx2k =: um(x) + vm(x).(6.11)

It follows that qm(x) = −um(x) + vm(x) since qm(x) = pm(−x), and hence

Lpm = Lum + Lvm , Lqm = −Lum + Lvm .

We obtain Lum(A, E) and Lvm(A, E) by differentiating um and vm, respectively:

Lum(A, E) = A

(m−1)/2∑
k=1

b2k+1M2k + E

(m−1)/2∑
k=0

b2k+1A
2k(6.12)

Lvm(A, E) =
(m−1)/2∑

k=1

b2kM2k.(6.13)

The Mk = Lxk(A, E) are computed using (3.3).
For m = 13 it is more efficient to use the odd-even splitting p13 = u13+v13, where

u13(x) = xw(x), w(x) = x6w1(x) + w2(x), v13(x) = x6z1(x) + z2(x),
w1(x) = b13x

6 + b11x
4 + b9x

2, w2(x) = b7x
6 + b5x

4 + b3x
2 + b1,

z1(x) = b12x
6 + b10x

4 + b8x
2, z2(x) = b6x

6 + b4x
4 + b2x

2 + b0.

Differentiating these polynomials yields

Lu13(A, E) = ALw(A, E) + Ew(A),
Lv13(A, E) = A6Lz1(A, E) + M6z1(A) + Lz2(A, E),

where

Lw(A, E) = A6Lw1(A, E) + M6w1(A) + Lw2(A, E),
Lw1(A, E) = b13M6 + b11M4 + b9M2,

Lw2(A, E) = b7M6 + b5M4 + b3M2,

Lz1(A, E) = b12M6 + b10M4 + b8M2,

Lz2(A, E) = b6M6 + b4M4 + b2M2.
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Table 6.2

Number of matrix multiplications, ωm, required to evaluate rm(A) and Lrm(A, E), and measure
of overall cost Cm in (6.17).

m 1 2 3 4 5 6 7 8 9 10

ωm 1 4 7 10 10 13 13 16 16 19
Cm 25.5 12.5 8.5 6.9 5.3 5.2 4.4 4.7 4.2 4.7

m 11 12 13 14 15 16 17 18 19 20

ωm 19 19 19 22 22 22 22 25 25 25
Cm 4.4 4.0 3.8 4.5 4.3 4.1 3.9 4.7 4.6 4.5

Then Lp13 = Lu13 + Lv13 and Lq13 = −Lu13 + Lv13 . We finally solve for rm(A) and
Lrm(A, E) the equations

(−um + vm)(A)rm(A) = (um + vm)(A),(6.14)
(−um + vm)(A)Lrm(A, E) = (Lum + Lvm)(A, E) + (Lum − Lvm)(A, E)rm(A).(6.15)

We are now in a position to choose the degree m and the scaling parameter s.
Table 6.2 reports the total number of matrix multiplications, ωm = 3πm+1, necessary
to evaluate rm and Lrm for a range of m, based on [5, Table 2.2] and the observations
above. In evaluating the overall cost we need to take into account the squaring phase.
If ‖A‖ > �m then in order to use the [m/m] Padé approximant we must scale A by
2−s so that ‖2−sA‖ ≤ �m, that is, we need s = �log2(‖A‖/�m)�. From the recurrence
(6.4), we see that 3s matrix multiplications are added to the cost of evaluating rm

and Lrm . Thus the overall cost in matrix multiplications is

ωm + 3s = 3πm + 1 + 3 max(�log2 ‖A‖ − log2 �m�, 0).(6.16)

To minimize the cost we therefore choose m to minimize the quantity

Cm = πm − log2 �m,(6.17)

where we have dropped the constant terms and factors in (6.16). Table 6.2 reports
the Cm values. The table shows that m = 13 is the optimal choice, just as it is for
the scaling and squaring method for the exponential itself [5]. The ωm values also
show that only m = 1, 2, 3, 5, 7, 9 need be considered if ‖A‖ < �13. As in [5] we rule
out m = 1 and m = 2 on the grounds of possible loss of significant figures in floating
point arithmetic.

It remains to check that the evaluation of Lpm , Lqm , and Lrm is done accurately
in floating point arithmetic. The latter matrix is evaluated from (6.15), which involves
solving a matrix equation with coefficient matrix qm(A), just as in the evaluation of
rm, and the analysis from [5] guarantees that qm(A) is well conditioned for the scaled
A. It can be shown that for our schemes for evaluating Lpm we have

‖Lpm(A, E)− fl(Lpm(A, E))‖1 ≤ γ̃n2p′m(‖A‖1)‖E‖1 ≈ γ̃n2e‖A‖1/2‖E‖1,

where we have used the facts that pm has positive coefficients and pm(x) ≈ ex/2.
Here, γ̃k = cku/(1 − cku), where c denotes a small integer constant. At least in an
absolute sense, this bound is acceptable for ‖A‖ ≤ �13. An entirely analogous bound
can be obtained for Lqm , since qm(x) = pm(−x).

We now state the complete algorithm.
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Algorithm 6.4 (scaling and squaring algorithm for exponential and Fréchet
derivative). Given A, E ∈ Cn×n this algorithm computes R = eA and L = Lexp(A, E)
by a scaling and squaring algorithm. It uses the parameters �m listed in Table 6.1.
The algorithm is intended for IEEE double precision arithmetic.

1 for m = [3 5 7 9]
2 if ‖A‖1 ≤ �m

3 Evaluate U = um(A) and V = vm(A), using (6.11).
4 Evaluate Lu = Lum(A, E) and Lv = Lvm(A, E), using (6.12) and (6.13).
5 s = 0; goto line 26
6 end
7 end
8 s = �log2(‖A‖1/�13)�, the minimal integer such that ‖2−sA‖1 ≤ �13.
9 A← 2−sA and E ← 2−sE

10 A2 = A2, A4 = A2
2, A6 = A2A4

11 M2 = AE + EA, M4 = A2M2 + M2A2, M6 = A4M2 + M4A2

12 W1 = b13A6 + b11A4 + b9A2

13 W2 = b7A6 + b5A4 + b3A2 + b1I
14 Z1 = b12A6 + b10A4 + b8A2

15 Z2 = b6A6 + b4A4 + b2A2 + b0I
16 W = A6W1 + W2

17 U = AW
18 V = A6Z1 + Z2

19 Lw1 = b13M6 + b11M4 + b9M2

20 Lw2 = b7M6 + b5M4 + b3M2

21 Lz1 = b12M6 + b10M4 + b8M2

22 Lz2 = b6M6 + b4M4 + b2M2

23 Lw = A6Lw1 + M6W1 + Lw2

24 Lu = ALw + EW
25 Lv = A6Lz1 + M6Z1 + Lz2

26 Solve (−U + V )R = U + V for R.
27 Solve (−U + V )L = Lu + Lv + (Lu − Lv)R for L.
28 for k = 1: s
29 L← RL + LR
30 R← R2

31 end
Cost: (ωm + 3s)M + 2D, where m is the degree of Padé approximant used and ωm

is given in Table 6.2. The linear systems at lines 26 and 27 have the same coefficient
matrix, so an LU factorization can computed once and reused.

Since Lexp(A, αE) = αLexp(A, E), an algorithm for computing Lexp(A, E) should
not be influenced in any significant way by ‖E‖, and this is the case for Algorithm 6.4.
Najfeld and Havel [15] propose computing Lexp(A, E) using their version of the scal-
ing and squaring method for the exponential in conjunction with (2.1). With this
approach E affects the amount of scaling, and overscaling results when ‖E‖ 
 ‖A‖,
while how to scale E to produce the most accurate result is unclear.

To assess the cost of Algorithm 6.4 we compare it with Algorithm 6.1 and with
a “Kronecker–Sylvester scaling and squaring algorithm” of Kenney and Laub [11],
which is based on a Kronecker sum representation of the Fréchet derivative. In the
form detailed in [6, section 10.6.2], this latter algorithm scales to obtain ‖2−tA‖ ≤ 1,
evaluates the [8/8] Padé approximant to tanh(x)/x at the scaled Kronecker sum, and
then uses the recurrence (6.4) or the variant (6.3) that explicitly computes Xi = e2−iA
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in each step. It requires one matrix exponential, (17 + 3t)M , and the solution of 8
Sylvester equations if (6.4) is used, or s matrix exponentials, (18 + 2t)M , and the
same number of Sylvester equation solutions if (6.3) is used.

To compare the algorithms, assume that the Padé degree m = 13 is used in Algo-
rithms 6.1 and 6.4. Then Algorithm 6.4 costs (19+3s)M +2D and Algorithm 6.1 costs
(6+ s)M +D. Two conclusions can be drawn. First, Algorithm 6.4 costs about three
times as much as just computing eA. Second, since the cost of solving a Sylvester equa-
tion is about 60n3 flops, which is the cost of 30 matrix multiplications, the Kronecker–
Sylvester algorithm is an order of magnitude more expensive than Algorithm 6.4. To
be more specific, consider the case where ‖A‖ = 9, so that s = 1 in Algorithms 6.1
and 6.4 and t = 4, and ignore the cost of computing the matrix exponential in the less
expensive “squaring” variant of the Kronecker–Sylvester algorithm. Then the oper-
ation counts in flops are approximately 48n3 for Algorithm 6.4 (eA and Lexp(A, E)),
16n3 for Algorithm 6.1 (eA only), and 538n3 for the Kronecker–Sylvester algorithm
(Lexp(A, E) only). A further drawback of the Kronecker–Sylvester algorithm is that
it requires complex arithmetic, so the effective flop count is even higher.

Other algorithms for Lexp(A, E) are those of Kenney and Laub [9] and Mathias
[12] (see also [6, section 10.6.1]), which apply quadrature to an integral representa-
tion of the Fréchet derivative. These algorithms are intended only for low accuracy
approximations and do not lend themselves to combination with Algorithm 6.1.

We describe a numerical experiment, modeled on that in [5], that tests the accu-
racy of Algorithm 6.4. We took 74 test matrices, which include some from MATLAB
(in particular, from the gallery function), some from the Matrix Computation Tool-
box [3], and test matrices from the eA literature; most matrices are 10×10, with a few
having smaller dimension. We evaluated the normwise relative errors of the computed
Fréchet derivatives Lexp(A, E), using a different E, generated as randn(n), for each A.
The “exact” Fréchet derivative is obtained using (2.1) with the exponential evaluated
at 100 digit precision via MATLAB’s Symbolic Math Toolbox. Figure 6.1 displays
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Algorithm 6.4
Kronecker−Sylvester (exp)
Kronecker−Sylvester (squaring)

Fig. 6.1. Normwise relative errors in Fréchet derivatives Lexp(A, E) computed by Algorithm 6.4
and two variants of the Kronecker–Sylvester algorithm for 74 matrices A with a different random
E for each A, along with estimate of cond(Lexp, A)u (solid line).
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Algorithm 6.4
Kronecker−Sylvester (exp)
Kronecker−Sylvester (squaring)

Fig. 6.2. Same data as in Figure 6.1 presented as a performance profile.

the Frobenius norm relative errors for Algorithm 6.4 and for the Kronecker–Sylvester
algorithm in both “squaring” and “exponential” variants. Also shown is a solid line
representing a finite difference approximation to cond(Lexp, A)u, where cond(Lexp, A)
is a condition number defined in terms of the Jacobian of the map L regarded as a
function of A and E (we use (1.2) with a small, random E); this line indicates the
accuracy we would expect from a forward stable algorithm for computing the Fréchet
derivative. Figure 6.1 shows that all the methods are performing in a reasonably
forward stable manner but does not clearly reveal differences between the methods.

Figure 6.2 plots the same data as a performance profile: for a given α the cor-
responding point on each curve indicates the fraction p of problems on which the
method had error at most a factor α times that of the smallest error over all three
methods. The results show clear superiority of Algorithm 6.4 over the Kronecker–
Sylvester algorithm in terms of accuracy, for both variants of the latter algorithm.
Since Algorithm 6.4 is also by far the more efficient, as explained above, it is clearly
the preferred method.

7. Condition number estimation. We now turn our attention to estimating
the condition number of the matrix exponential, which from (1.2) is

κexp(A) =
‖Lexp(A)‖‖A‖

‖eA‖ .

Algorithm 6.4 can compute Lexp(A, E) for any direction E, but to obtain the norm
‖Lexp(A)‖ we need to maximize Lexp(A, E) over all E of unit norm.

For the moment we will consider general f . We can write

vec(L(A, E)) = K(A)vec(E),(7.1)

where K(A) ∈ Cn2×n2
is independent of E and vec(E) ∈ Cn2

denotes the vector
comprising the columns of E strung one on top of the other from first to last. We
refer to K(A) as the Kronecker form of the Fréchet derivative. From (7.1) we have
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‖L(A, E)‖F = ‖K(A)vec(E)‖2, and on dividing by ‖E‖F = ‖vec(E)‖2 and maximiz-
ing over all E it follows that

‖L(A)‖F = ‖K(A)‖2.(7.2)

Therefore we can compute ‖L(A)‖F exactly by forming K(A), whose columns are
vec(L(A, eie

T
j )) for i, j = 1: n, and then taking the 2-norm. This is a prohibitively

expensive computation, typically requiring O(n5) flops. However, in practice only an
estimate of the correct order of magnitude is needed. For this purpose it is appropriate
to use matrix norm estimation techniques.

The following algorithm is essentially the usual power method applied to K(A),
and exploits the relation (7.2) [6, section 3.4], [9].

Algorithm 7.1 (power method on Fréchet derivative). Given A ∈ Cn×n and
the Fréchet derivative L of a function f , this algorithm uses the power method to
produce an estimate η ≤ ‖L(A)‖F .

1 Choose a nonzero starting matrix Z0 ∈ Cn×n.
2 for k = 0:∞
3 Wk+1 = L(A, Zk)
4 Zk+1 = L�(A, Wk+1)
5 ηk+1 = ‖Zk+1‖F /‖Wk+1‖F
6 if converged, η = ηk+1, quit, end
7 end

Here, � denotes the adjoint, and for the exponential, L�
exp(A, W ) ≡ Lexp(A∗, W ).

We do not specify Algorithm 7.1 in any more detail because we prefer a 1-norm
variant of the power method. For the 1-norm there is no analogue of (7.2), but the
next lemma shows how ‖K(A)‖1 compares with ‖L(A)‖1.

Lemma 7.2 ([6, Lemma 3.18]). For A ∈ C
n×n and any function f ,

‖L(A)‖1
n

≤ ‖K(A)‖1 ≤ n‖L(A)‖1.(7.3)

The following algorithm, which again needs the ability to evaluate L(A, E) and
L�(A, E), is essentially [6, Algorithm 3.22]; it employs a block 1-norm estimation
algorithm of Higham and Tisseur [7], which for an n× n matrix carries out a 1-norm
power iteration whose iterates are n× t matrices, where t is a parameter.

Algorithm 7.3 (block 1-norm estimator for Fréchet derivative). Given a matrix
A ∈ Cn×n this algorithm uses a block 1-norm estimator to produce an estimate η of
‖L(A)‖1. More precisely, η ≤ ‖K(A)‖1, where ‖K(A)‖1 satisfies (7.3).

1 Apply Algorithm 2.4 from Higham and Tisseur [7] with parameter t = 2 to
the Kronecker matrix representation B := K(A) of L(A), noting that
By ≡ vec(L(A, E)) and B∗y ≡ vec(L�(A, E)), where vec(E) = y.

Key properties of Algorithm 7.3 are that it typically requires about 4t Fréchet
derivative evaluations and it almost invariably produces an estimate of ‖K(A)‖1 cor-
rect to within a factor 3. A factor n of uncertainty is added when we take η as an
estimate of ‖L(A)‖1, but just changing the norm from the 1-norm to the∞-norm can
introduce such a factor, so it is not a serious weakness. Overall, the algorithm is a
very reliable means of estimating ‖L(A)‖1 to within a factor 3n.

Returning to the exponential, our interest is in how to combine Algorithms 6.4
and 7.3 in the most efficient manner. We need to evaluate L(A, E) and L(A∗, E)
for a fixed A and several different E, without knowing all the E at the start of the
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Table 7.1

Matrices that must be computed and stored during the initial eA evaluation, to be reused during
the Fréchet derivative evaluations. “LU fact” stands for LU factorization of −um + vm, and B =
A/2s.

m

3 r3(A) LU fact. W3(A)
5 r5(A) A2 LU fact. W5(A)
7 r7(A) A2 A4 LU fact. W7(A)
9 r9(A) A2 A4 LU fact. W9(A)

13 r13(B)2
i
, i = 0: s − 1 B2 B4 B6 LU fact. W

computation. To do so we will store matrices accrued during the initial computation
of eA and reuse them in the Fréchet derivative evaluations. This of course assumes the
availability of extra storage, but in modern computing environments ample storage is
usually available.

In view of the evaluation schemes (6.11)–(6.13) and (6.15), for m ∈ {3, 5, 7, 9}
we need to store A2k, k = 1: d(m−1)/2, where d = [0 1 2 2], along with Wm(A) =∑(m−1)/2

k=0 b2k+1A
2k, rm(A), and the LU factorization of (−um +vm)(A). For m = 13,

the matrix A needs to be scaled, to B = A/2s. According to the scheme used in
Algorithm 6.4 we need to store B2k, k = 1: 3, W ≡ w(B), the LU factorization of
(−um + vm)(B), and rm(B)2

i

, i = 0: s− 1. Table 7.1 summarizes the matrices that
need to be stored for each m.

The following algorithm computes the matrix exponential and estimates its con-
dition number. Since the condition number is not needed to high accuracy we use the
parameters θm in Table 6.1 (designed for eA) instead of �m (designed for L(A, E)).
The bound in (6.10) for the Fréchet derivative backward error ‖ΔE‖/‖E‖ does not
exceed 28u for m ≤ 13 when we use the θm, so the loss in backward stability for
the Fréchet derivative evaluation is negligible. If the condition estimate is omit-
ted, the algorithm reduces to Algorithm 6.1. The algorithm exploits the relation
Lf (A∗, E) = Lf(A, E∗)∗, which holds for any f with a power series expansion with
real coefficients, by (3.1).

Algorithm 7.4 (scaling and squaring algorithm for the matrix exponential with
1-norm condition estimation). Given A ∈ Cn×n this algorithm computes X = eA by
the scaling and squaring method (Algorithm 6.1) and an estimate γ ≈ κexp(A) using
the block 1-norm estimator (Algorithm 7.1). It uses the values θm listed in Table 6.1.
The algorithm is intended for IEEE double precision arithmetic.

1 α = ‖A‖1
2 for m = [3 5 7 9]
3 if α ≤ θm

4 Evaluate U = um(A) and V = vm(A), using (6.11).
5 Solve (−U + V )X = U + V for X .
6 Store the needed matrices (see Table 7.1).
7 Use Algorithm 7.3 to produce an estimate η ≈ ‖Lexp(A)‖1.

. . . . . . To compute Lexp(A, E) for a given E:
8 Evaluate M2k = Lx2k (A, E), k = 1 : (m− 1)/2.
9 Lu ← A

(∑(m−1)/2
k=1 b2k+1M2k

)
+ EWm(A)

10 Lv ←
∑(m−1)/2

k=1 b2kM2k

11 Solve (−U + V )L = Lu + Lv + (Lu − Lv)X for L.
. . . . . . To compute L�

exp(A, E) for a given E:
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12 Execute lines 8–11 with E replaced by its conjugate
transpose and take the conjugate transpose of the result.

13 goto line 44
14 end
15 % Use degree m = 13.
16 s = �log2(α/θ13)�, the minimal integer such that 2−sα ≤ θ13.
17 A← 2−sA
18 A2 = A2, A4 = A2

2, A6 = A2A4

19 W1 = b13A6 + b11A4 + b9A2

20 Z1 = b12A6 + b10A4 + b8A2

21 W = A6W1 + b7A6 + b5A4 + b3A2 + b1I
22 U = AW
23 V = A6Z1 + b6A6 + b4A4 + b2A2 + b0I
24 Solve (−U + V )Xs = U + V for Xs

25 for i = s:−1: 1
26 Xi−1 = X2

i

27 end
28 X = X0

29 Use Algorithm 7.3 to produce an estimate η ≈ ‖Lexp(Ã)‖1,
where Ã denotes the original input matrix A.
. . . . . . To compute Lexp(Ã, E) for a given E:

30 E ← 2−sE
31 M2 = AE + EA, M4 = A2M2 + M2A2, M6 = A4M2 + M4A2

32 Lw1 = b13M6 + b11M4 + b9M2

33 Lw2 = b7M6 + b5M4 + b3M2

34 Lz1 = b12M6 + b10M4 + b8M2

35 Lz2 = b6M6 + b4M4 + b2M2

36 Lw = A6Lw1 + M6W1 + Lw2

37 Lu = ALw + EW
38 Lv = A6Lz1 + M6Z1 + Lz2

39 Solve (−U + V )L = Lu + Lv + (Lu − Lv)Xs for L.
40 for i = s:−1: 1
41 L← XiL + LXi

42 end
. . . . . . To compute L�

exp(Ã, E) for a given E:
43 Execute lines 30–42 with E replaced by its conjugate

transpose and take the conjugate transpose of the result.
44 γ = ηα/‖X‖1
The cost of Algorithm 7.4 is the cost of computing eA plus the cost of about 8

Fréchet derivative evaluations, so obtaining eA and the condition estimate multiplies
the cost of obtaining just eA by a factor of about 17. This factor can be reduced to
9 if the parameter t in the block 1-norm power method is reduced to 1, at a cost of
slightly reduced reliability.

In our MATLAB implementation of Algorithm 7.4 we invoke the function funm_
condest1 from the Matrix Function Toolbox [4], which interfaces to the MATLAB
function normest1 that implements the block 1-norm estimation algorithm of [7].

With the same matrices as in the test of the previous section we used Algo-
rithm 7.4 to estimate ‖K(A)‖1 and also computed ‖K(A)‖1 exactly by forming K(A)
as described at the start of this section. Figure 7.1 plots the norms and the estimates.
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Fig. 7.1. ‖K(A)‖1 and underestimation ratio η/‖K(A)‖1 , where η is the estimate of ‖K(A)‖1

produced by Algorithm 7.4.
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Fig. 7.2. Normwise relative error for computed exponential and error estimate comprising
condition number estimate times unit roundoff.

The worst underestimation ratio is 0.61, so the estimates are all within a factor 2 of
the true 1-norm.

Finally, we invoked Algorithm 7.4 on the same set of test matrices and computed
the “exact” exponential in 100 digit precision. Figure 7.2 plots the error in the
computed exponential along with the quantity γu: the condition estimate multiplied
by the unit roundoff, regarded as an error estimate. If the scaling and squaring
algorithm were forward stable and the condition estimate reliable we would expect
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the error to be bounded by φ(n)γu for some low degree polynomial φ. The overall
numerical stability of the scaling and squaring algorithm is not understood [6], but our
experience is that the method usually does behave in a forward stable way. Figure 7.2
indicates that the condition estimate from Algorithm 7.4 provides a useful guide to
the accuracy of the computed exponential from the algorithm.

8. Concluding remarks. The LAPACK Users’ Guide states [1, p. 77] that
“Our goal is to provide error bounds for most quantities computed by LAPACK.”
This is a desirable goal for any numerical algorithm, and in order to achieve it error
analysis must be developed that yields a reasonably sharp error bound that can be
efficiently estimated. For matrix function algorithms a complete error analysis is not
always available, and for the forward error a bound of the form cond(f, A)u is the
best we can expect in general. To date relatively little attention has been paid to
combining evaluation of f(A) with computation of the Fréchet derivative L(A, E)
and estimation of the condition number cond(f, A). We are currently applying and
extending the ideas developed here to other transcendental functions such as the
logarithm and the sine and cosine and will report on this work in a future paper.
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