
An Improved Arc Algorithm for Detecting
Definite Hermitian Pairs

Guo, Chun-Hua and Higham, Nicholas J. and Tisseur,
Françoise

2008

MIMS EPrint: 2008.115

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

AN IMPROVED ARC ALGORITHM FOR DETECTING DEFINITE
HERMITIAN PAIRS∗

CHUN-HUA GUO† , NICHOLAS J. HIGHAM‡ , AND FRANÇOISE TISSEUR‡

Abstract. A 25-year old and somewhat neglected algorithm of Crawford and Moon attempts
to determine whether a given Hermitian matrix pair (A, B) is definite by exploring the range of the
function f(x) = x∗(A + iB)x/|x∗(A + iB)x|, which is a subset of the unit circle. We revisit the
algorithm and show that with suitable modifications and careful attention to implementation details
it provides a reliable and efficient means of testing definiteness. A clearer derivation of the basic
algorithm is given that emphasizes an arc expansion viewpoint and makes no assumptions about the
definiteness of the pair. Convergence of the algorithm is proved for all (A, B), definite or not. It is
shown that proper handling of three details of the algorithm is crucial to the efficiency and reliability:
how the midpoint of an arc is computed, whether shrinkage of an arc is permitted, and how directions
of negative curvature are computed. For the latter, several variants of Cholesky factorization with
complete pivoting are explored and the benefits of pivoting demonstrated. The overall cost of our
improved algorithm is typically just a few Cholesky factorizations. Applications of the algorithm are
described to testing the hyperbolicity of a Hermitian quadratic matrix polynomial, constructing con-
jugate gradient methods for sparse linear systems in saddle point form, and computing the Crawford
number of the pair (A, B) via a quasiconvex univariate minimization problem.

Key words. definite pair, pencil, Hermitian generalized eigenvalue problem, direction of neg-
ative curvature, Crawford number, hyperbolic quadratic eigenvalue problem, saddle point linear
system

AMS subject classifications. 15A18, 65F15, 65F30

1. Introduction. For given Hermitian matrices A,B ∈ C
n×n, the pair (A,B)

is said to be a definite pair if x∗(A + iB)x 6= 0 for all nonzero x ∈ C
n, and otherwise

indefinite. It is known that (A,B) is definite if and only if there exists a real number
t such that the matrix

B(t) = A sin t + B cos t(1.1)

is positive definite [1], [25]. If (A,B) is definite then both theoretical and computa-
tional advantages accrue. In the associated generalized eigenvalue problem Ax = λBx
the eigenvalues are real, A and B are simultaneously diagonalizable, and if t is known
then the eigenvalues can be computed via those of an associated pair (A(t), B(t)),
where

A(t) + iB(t) ≡ A cos t−B sin t + i(A sin t + B cos t) = eit(A + iB),(1.2)

by methods that exploit the definiteness of B(t) [9].

Interest in definite pairs also arises in contexts other than the generalized eigen-
value problem. For an n × n Hermitian quadratic matrix polynomial with positive

∗Version of November 28, 2008. This work was supported by a Royal Society-Wolfson Research
Merit Award to the second author.

†Department of Mathematics and Statistics, University of Regina, Regina, SK S4S 0A2, Canada
(chguo@math.uregina.ca, http://www.math.uregina.ca/˜chguo/). The research of this author was
supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada.

‡School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK
(higham@ma.man.ac.uk, http://www.ma.man.ac.uk/˜higham/, ftisseur@ma.man.ac.uk,
http://www.ma.man.ac.uk/˜ftisseur/). The work of both authors was supported by Engineering
and Physical Sciences Research Council grant EP/D079403.

1

definite leading coefficient matrix, hyperbolicity is equivalent to definiteness of a re-
lated 2n× 2n Hermitian matrix pair, so testing for hyperbolicity of the quadratic can
be done by testing for definiteness of the pair. The question of definiteness of a pair
also arises with saddle point linear systems, for which the coefficient matrix is sym-
metric but indefinite. Liesen and Parlett [18] show that if a certain pair of symmetric
matrices is definite then there exists a well-defined conjugate gradient iteration for
the saddle point system.

Unfortunately, determining whether a given pair is definite is not straightforward.
What is required is an efficient algorithm that takes as input a Hermitian pair (A,B)
and finds a real number t such that B(t) is positive definite or determines that no such
t exists. To the best of our knowledge, the first such algorithm was suggested by Moon
[21], and this algorithm was later refined by Crawford and Moon [7]. The algorithm of
Crawford and Moon has received relatively little attention in the literature, perhaps
due to a lack of clarity in the derivation and statement of the algorithm and in the
explanation of its properties. In particular, the presentations in [6] and [7] can lead
the reader to interpret the algorithm as a linearly convergent bisection procedure that
potentially requires n iterations each of O(n3) flops cost.

In this work we re-examine the algorithm of Crawford and Moon, emphasiz-
ing the mechanism by which it performs arc expansion on the unit circle until the
(in)definiteness of the pair (A,B) is determined. We give a clearer derivation that
makes no assumptions about the definiteness of the pair and formulate an improved
algorithm that is better suited to floating point arithmetic. We prove convergence of
the algorithm for all (A,B), definite or not, and justify the algorithm’s determina-
tions using backward error analysis. We compute the midpoint of an arc in a more
numerically reliable way and allow the arc to shrink to compensate for the effects of
rounding errors. We also improve on the Cholesky-based implementation proposed in
[7] and realized in [6] of the computation of directions of negative curvature. We show
that the suitable use of complete pivoting, possibly with a different choice of nega-
tive curvature direction, leads to faster convergence of the algorithm. Overall, our
modifications improve the efficiency of the Crawford–Moon algorithm—often at least
halving the number of iterations—and greatly improve the reliability of the algorithm
in floating point arithmetic.

The outline of the paper is as follows. The modified algorithm is derived and
analyzed in Section 2, where a description of our improvements is given along with
a justification of the algorithm via backward error analysis. How to test definiteness
of a matrix and compute directions of negative curvature is considered in Section 3.
Section 4 treats the application of the algorithm to hyperbolic quadratic matrix poly-
nomials and sparse linear systems in saddle point form. In this section it is also shown
that once the algorithm has determined that a pair is definite the Crawford number
(which measures how far a definite pair is from the nearest indefinite one [16]) can
be computed via a quasiconvex univariate minimization problem. Detailed numerical
experiments on a variety of problems are given in Section 5, followed by conclusions
in Section 6.

2. A modification of the Crawford–Moon algorithm. We first derive a
modified version of the Crawford–Moon algorithm and then explain how it differs
from the original algorithm. For a Hermitian pair (A,B) with A and B not both zero
we define

f(x) =
x∗(A + iB)x

|x∗(A + iB)x|
, x ∈ C

n, x∗(A + iB)x 6= 0.(2.1)

2

Thus f(x) lies on the unit circle. The range of f is described in the following result.
Lemma 2.1 ([1], [2]). The range of f is of one of the following types:

(i) A closed arc on the unit circle of length less than π.

(ii) Two diametrically opposite points on the unit circle.

(iii) The whole unit circle.

(iv) A half circle with or without one or both endpoints.

If (A,B) is definite then (i) is the only possibility, while if (A,B) is indefinite any of

(i)–(iv) can hold.

For any complex numbers a and b on the unit circle such that a 6= −b, we denote
by arc[a, b] the shorter arc on the unit circle connecting a and b. The length of the
arc, or equivalently the angle subtended by the arc at the origin, is denoted by θ[a, b].
When a = −b, we define θ[a, b] = π and arc[a, b] can be understood as either of the
two arcs connecting a and b. For a definite pair we will denote the range of f in (2.1)

by arc[ã, b̃], where θ[ã, b̃] < π by Lemma 2.1.
In [6] and [7] the Crawford–Moon algorithm is viewed as a bisection-like search for

the midpoint of arc[ã, b̃], assuming (A,B) is definite. This viewpoint is not conducive
to understanding the algorithm’s behavior for indefinite pairs (A,B), and indeed [6]
and [7] give an incomplete description of what happens for such pairs. We take a
different viewpoint in deriving and analyzing our modified algorithm.

We start with a modified statement of [7, Lem. 2.5]. Recall that B(t) is defined
in (1.1).

Lemma 2.2. Let c = sin t + i cos t. Assume that B(t) is not positive definite and

take x 6= 0 such that x∗B(t)x ≤ 0. If x∗(A + iB)x 6= 0 then for d = f(x) we have

θ[c, d] ≥ π/2.

Proof. It suffices to note that the inner product of the two nonzero vectors d̂ =
[x∗Ax, x∗Bx]T , ĉ = [sin t, cos t]T ∈ R

2 is

d̂
T
ĉ = (x∗Ax) sin t + (x∗Bx) cos t = x∗B(t)x ≤ 0.

In the statement and proof of Lemma 2.5 in [7] it is implicitly assumed that the
pair (A,B) is definite. The definiteness is not needed in our revised lemma.

We can now explain the algorithm. To determine the definiteness of the pair we
start with any point c = sin t+i cos t in the range of f . If the conditions of Lemma 2.2
do not both hold then the (in)definiteness of (A,B) is determined immediately. Oth-
erwise, Lemma 2.2 produces another point d on the unit circle such that θ[c, d] ≥ π/2.
Let a = c and b = d. If b = −a, then the pair (A,B) is indefinite by Lemma 2.1. Oth-
erwise, arc[a, b] must be part of the range of f , by Lemma 2.1 again. We then apply
Lemma 2.2 with c = sin t + i cos t the midpoint of arc[a, b]. Unless a determination of
definiteness is made at this time, a point d outside arc[a, b] is found, and the arc is
extended (in the range of f) by replacing the closer endpoint by d. If the length of
the new arc is π or greater, the pair (A,B) is indefinite by Lemma 2.1. Otherwise,
the above process can be repeated on the new arc.

As the experiments in Section 5 will show, it is often the case that a positive
definite B(t), or an arc exceeding π in length, is produced after just a few iterations.

The reasoning above leads to the following modified version of the algorithm of
Crawford and Moon. Figure 2.1 illustrates the main loop of the algorithm. We denote
by ei the ith column of the identity matrix, and u denotes the unit roundoff.

Algorithm 2.3. Given Hermitian A,B ∈ C
n×n and a convergence tolerance

tol this algorithm determines whether the pair (A,B) is definite and, if it is, returns

t ∈ R such that B(t) in (1.1) is positive definite.

3

b

−b a

−a

c

Fig. 2.1. The figure depicts the unit circle in the complex plane and the situation during the
main loop of Algorithm 2.3. The point c = sin t + i cos t is the midpoint of arc[a, b]. If B(t) is
positive definite then (A, B) is definite. Otherwise, if indefiniteness is not detected on line 17 then
Lemma 2.2 implies that f(x) lies at an angle at least π/2 from c. If f(x) is located in the arc
corresponding to the gray shaded sector then (A, B) is not definite, by Lemma 2.1. If f(x) lies
on one of the arcs shown as thick black lines then the pair is possibly definite and the algorithm
continues with a or b replaced by f(x).

% Starting phase

1 Take x with ‖x‖2 = 1, say x = e1.
2 if x∗(A + iB)x = 0, quit (pair is indefinite), end
3 a = f(x) = sin t + i cos t.
4 if B(t) is positive definite, quit (pair is definite), end
5 Find x with ‖x‖2 = 1 such that x∗B(t)x ≤ 0.
6 if x∗(A + iB)x = 0, quit (pair is indefinite), end
7 b = f(x) % We have θ[a, b] ≥ π/2 by Lemma 2.2.
8 if b = −a
9 quit (pair is indefinite) % By Lemma 2.1.

10 else
11 θ = θ[a, b], and interchange a and b if necessary so that b = aeiθ.
12 end
13 if θ ≥ π − tol, quit (pair is within distance tol of an indefinite pair), end

% Main loop
14 c = aeiθ/2 = sin t + i cos t % c is the midpoint of arc[a, b].
15 if B(t) is positive definite, quit (pair is definite), end
16 Find x with ‖x‖2 = 1 such that x∗B(t)x ≤ 0.
17 if x∗(A + iB)x = 0, quit (pair is indefinite), end
18 d = f(x) % We have θ[c, d] ≥ π/2 by Lemma 2.2.
19 θ = θ/2 + θ[c, d]
20 if θ ≥ π − tol
21 quit % (pair is indefinite if θ ≥ π by Lemma 2.1,

or otherwise within distance tol of an indefinite pair)
22 elseif θ[a, d] < θ[b, d]
23 a = d, goto line 14

4

24 else
25 b = d, goto line 14
26 end
The changes we have made to the original algorithm of Crawford and Moon, as

presented in [7], include the following.

1. The original algorithm starts by finding a 6= b in arc[ã, b̃]. Thus there is an

assumption that the pair is definite, so that ã and b̃ are defined. But even if the
pair is definite it may not be possible to find a 6= b in arc[ã, b̃]. A simple example
is A = B = I, for which the arc is a single point. Our revised algorithm makes no
assumptions on the definiteness of the pair and correctly determines (in the starting
phase) that the pair (I, I) is definite. The code attached to [6] does not assume the
definiteness of (A,B) to start with. However, it first generates a point on the unit
circle that is not necessarily in the range of f . In our revised algorithm we start
with the generation of a point on the unit circle that is in the range of f , which is
immediately used in the expansion of an arc in the range of f .

2. When a nonzero vector x is generated (as on our lines 5 and 16), the original
algorithm proceeds with the computation of f(x). Here again the pencil is implic-
itly assumed to be definite so that f(x) is defined. Our revised algorithm tests for
indefiniteness by checking whether x∗(A + iB)x = 0.

3. We terminate on line 13 or 21 when θ[a, b] is at least π− tol. As shown later
in this section this implies the pair is within distance tol of an indefinite pair and so,
assuming tol is approximately the maximum of the unit roundoff and the uncertainty
in the data, iterating further will not provide any more useful information.

4. The original algorithm computes the midpoint c of arc[a, b] as c = (a+b)/|a+
b|. However, as a approaches −b this formula loses more and more significant digits,
thereby bringing existing errors in a and b into prominence, and when a = −b the
formula breaks down. The solution is to work with the arguments of the complex
numbers. Algorithm 2.3 does this and obtains c by rotating a or b through θ[a, b]/2.

5. The way we update arc[a, b] on lines 22–25 is equivalent to that in [7] in
exact arithmetic. In floating point arithmetic, however, the algorithm in [7] declares
failure whenever arc[a, b] is not expanded (due to rounding errors). In our algorithm
we allow arc[a, b] to shrink now and expand later. We return to this point at the end
of Section 3.

6. We have left open how to implement lines 4, 5, 15, and 16 and consider this
in detail in Section 3.

While Crawford and Moon state that there is no guarantee of convergence (in
exact arithmetic) when (A,B) is indefinite, it is easy to show that the sequence
arc[ak, bk], where ak and bk are generated after the kth test of the positive definiteness
of B(t), is always convergent in Algorithm 2.3. We need the following lemma.

Lemma 2.4. On the kth step of Algorithm 2.3, θ[ak, bk] ≥ π(1− 2−k), regardless

of whether the pair (A,B) is definite or not.

Proof. In the first step we have θ[a1, b1] ≥ π/2. By Lemma 2.2 and the procedure
in the algorithm, we know that

θ[ak, bk] ≥
π

2
+

1

2
θ[ak−1, bk−1] ≥ . . .

≥
π

2

(
1 +

1

2
+ · · ·+

(1

2

)k−2)
+

(1

2

)k−1

θ[a1, b1]

≥
π

2

(
1 +

1

2
+ · · ·+

(1

2

)k−1)
= π(1− 2−k).

5

The convergence of arc[ak, bk] can now be seen as follows. Unless the algorithm
converges in a finite number of steps, we have arc[ak, bk] ∈ [π(1 − 2−k), π] for all k.
But in this case the sequence is clearly convergent to π and the pair is not definite.

To explore further the implications of Lemma 2.4, consider the two possible cases
for (A,B), first that it is not definite. If the range of f is of type (ii) in Lemma 2.1,
the indefiniteness of the pair is detected in the starting phase (on the first step) of
Algorithm 2.3. If a determination is not made on the kth step of Algorithm 2.3 then
the range of f must be an arc on the unit circle of length J ≥ θ[ak, bk] ≥ π(1− 2−k),
by Lemma 2.4, regardless of whether the pair (A,B) is definite or not. Thus the
statement at the end of Section 3 in [7] that no information is gained in the indefinite

case is incorrect. In the second case, where (A,B) is definite, ã and b̃ are defined and

π > θ[ã, b̃] ≥ θ[ak, bk] ≥ π(1− 2−k).

So if we need to carry out k steps of the algorithm, we must have

π − θ[ã, b̃] ≤ 2−kπ.

This is essentially [7, Thm. 3.2].
The possibility of Algorithm 2.3 failing to terminate cannot be ruled out in floating

point arithmetic. But whenever a determination is made it is numerically stable in
the sense that it is correct for a perturbed pair (A + ∆A,B + ∆B) with

‖ [∆A ∆B] ‖2 ≤ cnu‖ [A B] ‖2,(2.2)

where cn is a modest constant. We now justify this claim. Suppose the pair is
determined to be definite on line 4 or 15 and that positive definiteness is checked in
a numerically stable way, that is, the correct answer is returned for B(t) + E with
‖E‖2 ≤ cnu‖B(t)‖2. We can write

B(t) + E = (A + E sin t) sin t + (B + E cos t) cos t =: (A + ∆A) sin t + (B + ∆B) cos t,

where

‖ [∆A ∆B] ‖2 = ‖E [sin tI cos tI] ‖2 = ‖E‖2 ≤ cnu‖B(t)‖2

= cnu

∥∥∥∥[A B]

[
sin tI
cos tI

]∥∥∥∥
2

≤ cnu‖ [A B] ‖2.

Thus the test is numerically stable for the pair. If the pair is determined to be
indefinite on line 2, 6, or 17 then standard error analysis for complex arithmetic [14,
Chap. 3] can be used to show that (A + ∆A,B + ∆B) is indefinite for a perturbation
(∆A,∆B) satisfying (2.2). If the pair is deemed to be indefinite or within a distance
tol of an indefinite pair on line 13 or 21 we justify the decision as follows. Suppose
the pair is actually definite. Then we must have θ[ã, b̃] ≥ π − max(c′nu, tol), since
the computed ak and bk are points on the unit circle (up to machine precision) and
θ[ak, bk] can be computed accurately for the computed ak and bk. We now need

to explain why θ[ã, b̃] close to π implies nearness of the definite pair (A,B) to an
indefinite pair.

Higham, Tisseur, and Van Dooren [16, Thm. 2.2] show that the distance

d(A,B) = min
{
‖ [∆A ∆B] ‖2 : z∗

(
A + ∆A + i(B + ∆B)

)
z = 0, some z 6= 0

}
(2.3)

6

from a Hermitian pair (definite or indefinite) to the nearest indefinite pair is equal to
the Crawford number

γ(A,B) = min
z∈Cn

‖z‖2=1

|z∗(A + iB)z|,(2.4)

which is the distance from the origin to the field of values F (A+iB) =
{

z∗(A+iB)z :

z ∈ C
n, ‖z‖2 = 1

}
. Suppose that (A,B) is definite with θ[ã, b̃] = π − δ > 0 and that

ã =
z∗1(A + iB)z1

|z∗1(A + iB)z1|
, b̃ =

z∗2(A + iB)z2

|z∗2(A + iB)z2|

with ‖z1‖2 = ‖z2‖2 = 1 and z1 6= z2. From the convexity of the field of values

the line connecting |z∗1(A + iB)z1|ã and |z∗2(A + iB)z2|b̃ is in F (A + iB). Since
|z∗k(A + iB)zk| ≤

√
‖A‖22 + ‖B‖22 =: α, γ(A,B) is at most the distance from the

origin to the line connecting αã and αb̃. The latter distance is α sin(δ/2). Thus

γ(A,B) ≤ α sin(δ/2) ≤
1

2
αδ =

1

2

√
‖A‖22 + ‖B‖22 (π − θ[ã, b̃])

≤ 2−1/2‖ [A B] ‖2 (π − θ[ã, b̃]),(2.5)

and so the relative distance from (A,B) to the nearest indefinite pair is bounded by

2−1/2(π−θ[ã, b̃]). We conclude that the algorithm can wrongly diagnose indefiniteness
only when (A,B) is close in a normwise relative sense to an indefinite pair.

In the next section we consider how to implement the definiteness tests and the
computation of the vectors x, and we introduce further improvements over [6] and [7].

3. Testing definiteness and computing a direction of negative curva-
ture. Critical to Algorithm 2.3 is the ability to test whether C ≡ B(t) is positive
definite and, if it is not positive definite, to compute a nonzero vector x such that
x∗Cx ≤ 0. This task arises commonly in Newton methods for optimization, with
C a Hessian matrix, and in this context such an x is called a direction of negative
curvature1 of the underlying function [10], [22].

A vector x that gives the greatest arc expansion in the current step is one for
which

[sin t, cos t]

[
x∗Ax
x∗Bx

] /
d(x) = x∗Cx/d(x)(3.1)

is minimized, where d(x) =
(
(x∗Ax)2 + (x∗Bx)2

)1/2
satisfies γ(A,B) ≤ d(x)/‖x‖2 ≤(

‖A‖22 + ‖B‖22
)1/2

. However, this minimization problem is too expensive to solve in
the context of our problem and so we will pursue the less ambitious aim of developing
an inexpensive procedure to find a unit vector x such that x∗Cx is small.

The idea we explore is to run the Cholesky algorithm until it either completes, in
which case C is declared positive definite, or it encounters a negative or zero pivot,
in which case C is declared not positive definite. It can be shown that this test is
numerically stable, in the sense described in the previous section [13]. When non-
definiteness is declared the partial factorization is used to compute a direction of
negative curvature.

1Strictly speaking we should write “nonpositive curvature”, since we are allowing x∗Cx = 0.

7

Suppose that k steps of the outer product form of Cholesky factorization have
been successfully completed, optionally with symmetric pivoting. Then we have

PT CP =

[
R∗

11

R∗
12

] [k n−k

R11 R12

]
+

[k n−k

k 0 0
n−k 0 Sk

]
,(3.2)

where P is a permutation matrix, R11 is upper triangular with real, positive diagonal
elements, and Sk is a Schur complement. Suppose also that P incorporates inter-

changes for the next step and that the (1,1) element s
(k)
11 of Sk is nonpositive, so that

the factorization breaks down. Then a vector x such that x∗Cx = s
(k)
11 ≤ 0 can be

constructed as

x = PZe1, Z =

[
R−1

11 R12

−I

]
.(3.3)

This is a well-known technique (see, e.g., [14, Prob. 10.9]), and it is used by Crawford
and Moon with P = I.

Two nontrivial choices of P are of interest. First, complete pivoting, in which at
each stage the pivot is chosen as the largest diagonal element in the active part of
the matrix. With this choice the factorization continues as long as possible. When
the factorization terminates early because no positive pivot is available we bring the
smallest diagonal element into the pivot position prior to computing x from (3.3).
The second choice is a modified form of complete pivoting that we will call early-exit
complete pivoting. This is the same as complete pivoting except that if there are any
nonpositive diagonal elements in the active part of the matrix then the smallest one
is brought to the pivot position; thus the factorization is terminated as soon as the
diagonal reveals that the matrix is not positive definite.

Note that x in (3.3) is built solely from information on the diagonal of Sk. Another
choice of x is possible that incorporates information from the off-diagonal elements.
For notational simplicity write Sk ≡ S = (sij) ∈ C

(n−k)×(n−k). Define

y =

{ ep, p = q,
1√
2
(ep − sign(spq)eq), p 6= q,(3.4a)

|spq| := max{ |sij | : i 6= j, or i = j and sii ≤ 0 },(3.4b)

where p = q is chosen if the maximum is attained for both a diagonal element and
an off-diagonal element. That y is a direction of negative curvature when p 6= q
follows from y∗Sy = 1

2 (spp + sqq − 2|spq|) ≤ 0. This choice is used by Forsgren, Gill,
and Murray [10] in conjunction with Cholesky factorization with complete pivoting in
modified Newton methods. The following lemma shows that when sii ≤ 0 for all i, as is
the case when complete pivoting terminates, y is a nearly optimal direction of negative
curvature for S, in the sense that it nearly achieves min{ z∗Sz : z∗z = 1 } = λmin(S).

Lemma 3.1. If λmin(S) ≤ 0 and sii ≤ 0 for all i then y in (3.4) satisfies y∗Sy ≤
λmin(S)/(n− k).

Proof. If p = q in (3.4) then y∗Sy = spp = −maxi,j |sij |, and otherwise, y∗Sy =
1
2 (spp+sqq−2|spq|) ≤ −|spq| = −maxi,j |sij |. But max(−λmin(S), λmax(S)) = ‖S‖2 ≤
(n− k) maxi,j |sij |, so −maxi,j |sij | ≤ λmin(S)/(n− k).

The actual direction of negative curvature is

x = PZy,(3.5)

8

where Z is given in (3.3), and so unfortunately the bound of the lemma worsens when
translated for x if Z has large norm.

The potential benefit of (3.5) over (3.3) is easy to see. For example if C =
[
0
1

1
0

]

then (3.3) returns zero curvature whereas (3.5) yields (optimal) curvature of −1.
Two aspects need to be considered when choosing from among the options above.

First is the effect the choice of x has on the number of iterations required by Al-
gorithm 2.3. As noted above we would really like to minimize (3.1), and it is hard
to predict which of the above options comes closest to achieving this aim; the nu-
merical experiments in Section 5 shed light on this. The second aspect is the ef-
fect of rounding errors—and this is subtle. The algorithm aims to expand the arc
on each iteration and it guarantees to achieve this if, for the computed quantities,
[sin t, cos t][x∗Ax, x∗Bx]T /d(x) = x∗Cx/d(x) ≤ 0. Although the above choices of x
ensure this inequality holds in exact arithmetic, in practice rounding errors in com-
puting x could vitiate the inequality. We will consider the effects such an event may
have on the algorithm shortly, but first we investigate what can be said about the
accuracy of x.

We begin by noting that R11 is the Cholesky factor of the positive definite matrix
C̃11 = (PT CP)11, and while the eigenvalues of C̃11 interlace those of C, this does not

constrain the conditioning of C̃11 when C is indefinite, even if pivoting is used. Hence
R11 can be arbitrarily ill conditioned, while R12 is arbitrary. In computing x in (3.3)
or (3.5) we need to solve a triangular system of the form R11w = b. We know from
the rounding error analysis for triangular systems [14, Sec. 8.2] that the computed ŵ
satisfies

‖w − ŵ‖∞
‖w‖∞

≤
cond(R11)γn

1− cond(R11)γn

, cond(R11) = ‖ |R−1
11 ||R11| ‖∞,(3.6)

where γn = nu/(1− nu). For a general triangular matrix U , cond(U) is unbounded.
However, for R11 = (rij) from complete pivoting it holds that [14, Sec. 10.3]

r2
ii ≥

min(j,k)∑

ℓ=i

r2
ℓj , j = i + 1: k, i = 1: k(3.7)

which implies [14, Lem. 8.6] that cond(R11) ≤ 2k−1, and this bound is approximately
attainable [14, Sec. 8.3]. Hence, for complete pivoting the error is small if k is small,
but nevertheless can still potentially be large unless n is small. However, in practice
triangular systems tend to be solved to higher accuracy than the bounds predict [14,
p. 140].

An alternative approach for computing x is to use the eigensystem of C. We
first unitarily reduce C to Hermitian tridiagonal form: Q∗CQ = T , which requires
4n3/3 flops. Then we compute the smallest eigenvalue λn and its corresponding unit
2-norm eigenvector x by the bisection method and inverse iteration applied to T ,
which costs just O(n2) flops. If λn > 0 then C is positive definite, otherwise x is
a direction of negative curvature with x∗Cx = λn ≤ 0. This approach is backward
stable [17]. However, Cholesky factorization costs only n3/3 flops, and in practice the
Cholesky factorization has a flop count advantage of more than a factor 4 because
for non-positive definite matrices Cholesky may break down well before n steps have
been completed.

We now return to the effect of an inaccurate x on Algorithm 2.3. As already
noted, the main danger is that the arc does not expand, or indeed shrinks, and this

9

is most likely when arc[ak, bk] is close to π. In this circumstance we can regard the
algorithm as restarting with a different arc. In our experience (see Section 5) non-
expansion of the arc is rare, and when it happens the algorithm recovers if allowed to
continue; therefore we do not test for it in Algorithm 2.3.

4. Applications. In this section we discuss the application of Algorithm 2.3 to
three quite different problems.

4.1. Testing hyperbolicity of Hermitian quadratics. A Hermitian quadratic
matrix polynomial Q(λ) = λ2A + λB + C, where A,B,C ∈ C

n×n are Hermitian and
A is positive definite is said to be hyperbolic if [11], [15]

(x∗Bx)2 > 4(x∗Ax)(x∗Cx) for all nonzero x ∈ C
n.

It is well known that Q is hyperbolic if and only if Q(µ) < 0 for some µ ∈ R [20,
Lem. 31.15]. It is also known [16, Thm. 3.6] that Q is hyperbolic if and only if the
pair (A1, B1) is definite, where

A1 =

[
−C 0
0 A

]
, B1 = −

[
B A
A 0

]
.(4.1)

The equivalence of these two characterizations of hyperbolicity is seen through the
congruence

αA1 + βB1 =

[
−αC − βB −βA
−βA αA

]
(4.2)

=

[
I −(β/α)I
0 I

] [
−αQ(β/α) 0

0 αA

] [
I 0

−(β/α)I I

]
.(4.3)

Algorithm 2.3 can be used to test the hyperbolicity of Q and, in the case of a positive
test result, compute µ ∈ R so that Q(µ) < 0. The key part of the algorithm is
to determine whether B(t) ≡ αA1 + βB1 is positive definite, where α = sin t and
β = cos t, and, when B(t) is not positive definite, find a nonzero vector x such that
x∗B(t)x ≤ 0. For efficiency, we would prefer to carry out this task by working only
with n× n matrices, instead of working directly on the 2n× 2n matrix B(t); how to
do so was mentioned briefly by us in [11] and we now give more details.

The structure of A1 and B1 implies that if α ≤ 0 then B(t) is not positive
definite, and in this case ej is a direction of negative curvature for j = n + 1: 2n. We
can therefore assume that α > 0 and in view of (4.3) the question is then whether
−Q(β/α) is positive definite. Suppose the answer is “no” and that a direction of
negative curvature y for−Q(β/α) is obtained. The corresponding direction of negative
curvature for B(t) is

x =

[
I 0

−(β/α)I I

]−1 [
y
0

]
=

[
I 0

(β/α)I I

] [
y
0

]
=

[
y

(β/α)y

]
.

The algorithm then computes

v = x∗(A1 + iB1)x = y∗(−C + (β/α)2A
)
y + iy∗(−B − 2(β/α)A

)
y

and thence f(x) = v/|v|. If |β/α| ≫ 1 then v is dominated by A and the contributions
from B and C are small. Yet it is clear from (4.2) that the contribution from B is still
important when |β/α| ≫ 1. Hence this approach could have numerical instability

10

problems through loss of significance in floating point arithmetic. The underlying
reason is the use of a potentially ill conditioned congruence transformation. Note
that the congruence can be avoided by working with the 2n×2n pair (A1, B1), but at
a significant increase in cost. However the chance that β/α is very large is relatively
small in practice. We will return to the behavior of the congruence approach in
Experiment 5 of Section 5.

4.2. Linear systems in saddle point form. The matrix of a linear system in
saddle point form has the block structure

A =

[
A BT

B −C

]
,(4.4)

where A = AT ∈ R
n×n is positive definite, B ∈ R

m×n with m ≤ n and C = CT ∈
R

m×m is positive semidefinite. The matrix A is usually large and sparse and is easily
shown to be indefinite with n positive eigenvalues and rank(C + BA−1BT) (which is
typically close to m) negative eigenvalues. In practice the indefiniteness of A tends to
slow down iterative solvers for linear systems (e.g., Krylov subspace methods). Liesen
and Parlett [18] show that if a real scalar µ is known such thatM(µ) = A−µJ with
J =

[
In

0
0

−Im

]
is positive definite then one can construct a conjugate gradient (CG)

iteration for solving the linear system JAx = J b. They prove [18, Thm. 2.2] that
M(µ) is positive definite if and only if

λmin(A) > µ > λmax(C) and ‖(µI − C)−1/2B(A− µI)−1/2‖2 < 1.(4.5)

Finding a µ satisfying these two conditions can be difficult in practice when the
matrices are large. Liesen and Parlett show that if λmin(A) > λmax(C) then M(µ̃)
with µ̃ =

(
λmin(A) + λmax(C)

)
/2 is positive definite if

2‖B‖2 < λmin(A)− λmax(C),(4.6)

which is a sufficient condition that is easier to check but is often too restrictive, as
illustrated by numerical examples in [18].

We note that checking whether A−µJ is positive definite for some µ ∈ R∪{∞} is
equivalent to checking whether A sin t+J cos t is positive definite for some t ∈ [0, 2π].
In other words, Algorithm 2.3 armed with a sparse Cholesky factorization routine to
test definiteness and to compute directions of negative curvature can be used to test
if the pair (A,J) is definite and to find µ = − cos t/ sin t such that M(µ) is positive
definite, thus avoiding the need to work with (4.5) or the sufficient condition (4.6).
Experiment 6 in Section 5 shows the effectiveness of this approach.

4.3. Computing the Crawford number. Once Algorithm 2.3 has been ap-
plied to (A,B) we know that the pair is indefinite, in which case γ(A,B) = 0, or
that it is definite, in which case we know that γ(A,B) is positive but do not know
its value. We now consider how to compute γ(A,B) efficiently for a definite pair by
making use of the information provided by Algorithm 2.3.

To compute γ(A,B) for definite (A,B) it is useful to reformulate (2.4) as a single
variable optimization problem (see, e.g., [16, Sec. 2.2]):

γ(A,B) = max
−π≤θ≤π

g(θ), g(θ) = λmin(A cos θ + B sin θ).(4.7)

For definite pairs Algorithm 2.3 provides upper bounds for γ(A,B) for free since it
computes f(x) = x∗(A + iB)x/d(x) with d(x) = |x∗(A + iB)x| and by definition,

11

γ(A,B) ≤ d(x). We can simply return the smallest bound at the end of the com-
putation. Note that once t is known such that B(t) is positive definite, λmin(B(t))
provides a lower bound for γ(A,B), although this requires extra computation.

In the rest of this section we show that Algorithm 2.3 can be used to simplify
the univariate non-convex optimization problem over [−π, π] in (4.7) into one that is
quasiconvex on a smaller interval (t1, t2) of length less than π and thereby easier to
solve numerically. The following result of Veselić [27, Thm. A1] is needed.

Theorem 4.1. Suppose that the Hermitian pair (A,B) is definite, where B ∈
C

n×n is nonsingular with m positive eigenvalues and n−m negative eigenvalues. Then

there exists a nonsingular matrix Z such that

Z∗AZ =

[
Λ+ 0
0 −Λ−

]
, Z∗BZ =

[
Im 0
0 −In−m

]
,(4.8a)

Λ+ = diag(λ+
1 , . . . , λ+

m), Λ− = diag(λ−
1 , . . . , λ−

n−m),(4.8b)

λ+
1 ≥ · · · ≥ λ+

m, λ−
1 ≥ · · · ≥ λ−

n−m.(4.8c)

Moreover for µ ∈ R, A− µB is positive definite if and only if

λ+
m > µ > λ−

1 ,(4.9)

with the convention that λ−
1 = −∞ when m = n and λ+

m = +∞ when m = 0.
Proof. Since (A,B) is definite there exists a nonsingular Z1 ∈ C

n×n such that
Z∗

1AZ1 = D1 and Z∗
1BZ1 = D2, where D1 and D2 are diagonal and the first m

diagonal elements of D2 are positive and the last n−m diagonal elements are negative.
The ordering of the entries of Λ+ and Λ− is arbitrary, so we can assume (4.8c). Setting
Z = Z1|D2|

1/2 we have (4.8). Then Z∗(A− µB)Z = diag(Λ+ − µIm,−Λ− + µIn−m),
and this matrix is positive definite if and only if the inequalities (4.9) hold.

Under the conditions of Theorem 4.1 the Hermitian matrix A − µB is positive
definite precisely when µ ∈ (λ−

1 , λ+
m) or, equivalently, A cos θ + B sin θ > 0 with

cos θ = 1/
√

1 + µ2 and sin θ = −µ/
√

1 + µ2 precisely when θ is in the interval (t1, t2)
with endpoints − tan−1(λ−

1) and − tan−1(λ+
m). Hence it follows that

γ(A,B) = max
−π≤θ≤π

g(θ) = max
t1<θ<t2

g(θ).

If t is the particular angle at which all the eigenvalues of A cos θ + B sin θ become
positive then these eigenvalues become all negative at t + π since A cos(t + π) +
B sin(t + π) = −(A cos t + B sin t). Hence the length of (t1, t2) is at most π.

We now show that on the interval (t1, t2) the function g(θ) is quasiconcave (or
equivalently that −g(θ) is quasiconvex or unimodal) [5, Sec. 3.4], [8, Sec. 6.4], that is,
each sublevel set

Sξ = {θ ∈ (t1, t2) : g(θ) ≥ ξ}, ξ ∈ R

is an interval. We just need to consider Sξ for ξ ∈ (0, γ(A,B)] since g(θ) = λmin(A cos θ+
B sin θ) > 0 for t ∈ (t1, t2) so that Sξ = (t1, t2) for all ξ ≤ 0 and, because g(θ) ≤
γ(A,B), Sξ = ∅ for all ξ > γ(A,B). Now for ξ ∈

(
0, γ(A,B)

)
, there exists an angle

θξ ∈ (t1, t2) at which all n eigenvalues of the Hermitian matrix A cos θ+B sin θ−ξI =
B(π

2 −θ)−ξI become positive. Higham, Tisseur, and Van Dooren [16, Sec.2.2] studied
the eigenvalues of A cos θ + B sin θ− ξI as a function of θ and in particular how these
eigenvalues cross the zero line. They showed that when the pair (A,B) is definite the

12

matrix A cos θ+B sin θ−ξI has exactly n consecutive strictly increasing zero crossings
followed by n consecutive strictly decreasing zero crossings in [θξ − π, θξ + π). Hence
for each level ξ ∈

(
0, γ(A,B)

)
the n eigenvalues of A cos θ + B sin θ− ξI have exactly

two zero crossings. In particular g(θ) = λmin(A cos θ + B sin θ) crosses the ξ level at
an increasing crossing for some θ ∈ (t1, θξ) followed by a decreasing crossing for some
θ ∈ (θξ, t2), with no other crossing, so that the sublevel Sξ is always an interval. Note
that for ξ = γ(A,B), Sξ is reduced to a single point topt. Hence we conclude that
−g(θ) is quasiconvex on (t1, t2).

This makes possible an efficient calculation of the Crawford number γ(A,B) upon
termination of Algorithm 2.3. Indeed if t is known such that B(t) > 0 then the
computation of λ+

m and λ−
1 requires 10n3/3 operations assuming that the Cholesky

factorization of B(t) is returned at the end of Algorithm 2.3. This can be done as
follows. First form the definite pencil A(t)− µB(t) and then compute its eigenvalues
by transforming it to a Hermitian standard eigenvalue problem Hv = µv [9] by using
the Cholesky factorization of B(t). Then tridiagonalize H and compute its eigenvalues
µj with the bisection algorithm. The eigenvalues λj are then given by

λj =
µj cos t + sin t

cos t− µj sin t

and it is easy to identify λ+
m and λ−

1 . As shown above, the endpoints of the interval
(t1, t2) are given by − tan−1(λ−

1) and − tan−1(λ+
m). Experiment 7 in Section 5 shows

that the length of (t1, t2) can be much less than π.

The quasiconcavity of g on (t1, t2) implies that g(θ) increases from 0 at θ = t1 to
γ(A,B) at θ = topt and then decreases towards 0 as θ approaches t2. This property
can be used to further reduce the length of (t1, t2). Indeed Algorithm 2.3 returns t
such that B(t) = A cos t̃ + B sin t̃ with t̃ = π

2 − t is positive definite and the sign
of the derivative of g(θ) at θ = t̃ determines whether g increases or decreases for
θ > t̃. If g(t̃) is a simple eigenvalue with normalized eigenvector v, the derivative of
the eigenvalue is given by

∂

∂θ
g(θ)|t̃ = v∗ ∂

∂θ
(A cos θ + B sin θ)|t̃v = v∗(−A sin t̃ + B cos t̃)v

and then

γ(A,B) = max
θ∈I

g(θ) = −min
θ∈I
−g(θ), I =

{
(t1, t̃], if ∂

∂θg(θ)|t̃ ≤ 0,
[t̃, t2), otherwise.

(4.10)

The minimum in (4.10) can be found using, for example, a combination of golden
section search and parabolic interpolation [8, Chap. 6] or bundle trust methods [23].

5. Numerical experiments. We now describe a comprehensive collection of
numerical experiments designed to give insight into Algorithm 2.3, the implementation
issues, its performance in floating point arithmetic, and its behavior on the applica-
tions described in Section 4. Our computations were done in MATLAB 7.6 (R2008a)
under Windows XP (SP3) with a Pentium E6850, for which u = 2−53 ≈ 1.1× 10−16,
and we set tol = nu in Algorithm 2.3. In our tests we obtained our reference an-
swer of whether a pair (A,B) is definite by computing the global maximum over
t ∈ [0, 2π] of the function λmin(A sin t + B cos t); the pair is definite if and only

13

Table 5.1
Results for 10× 10 pair (A, B) in Experiment 1.

iterations curvatures (3.1)
PDFIND 8 −1.84e-16, 1.33e-17, −1.91e-1, −3.33e-16, −1.60e-16, −1.63e-16,

−3.12e-3, −2.50e-1
Chol 6 2.67e-17, −3.83e-1, −6.11e-16, −3.64e-2, −6.33e-3, −4.93e-1

Chol(cp) 2 −9.97e-1, −4.68e-1
Chol(cp2) 2 −9.97e-1, −4.68e-1
Chol(ecp) 2 −9.97e-1, −2.37e-1

eig 2 −9.75e-1, −1.95e-1

if the maximum is positive. A very convenient way to obtain the global maxi-
mum is with the Chebfun package [3], [26], using the statement max(chebfun(@(t)

min(eig(sin(t)*A+cos(t)*B)),[0 2*pi])).

We compare several variants of Algorithm 2.3 differing in how they carry out the
definiteness test and compute the direction of negative curvature:

Chol: Cholesky without pivoting and (3.3),
Chol(cp): Cholesky with complete pivoting and (3.3),
Chol(cp2): Cholesky with complete pivoting and (3.4), (3.5),
Chol(ecp): Cholesky with early exit complete pivoting and (3.3),
eig: MATLAB’s eig function (which implements the QR algorithm), taking as di-

rection an eigenvector of B(t) corresponding to the smallest eigenvalue.

We also use PDFIND from [6].

Experiment 1. Our first example is a 10 × 10 indefinite pair generated by the
subroutine GETMAT provided with [6], with parameter KPAR equal to 6. Table 5.1
shows the number of iterations and the values of the curvature (3.1) on successive
iterations. PDFIND and Chol require 3 or 4 times as many iterations as the other
methods and the curvature values reveal why: whereas the other methods achieve
curvature of almost −1 on the first iteration, immediately obtaining an arc of length
close to π, PDFIND and Chol only gradually expand the arc beyond length π. The
difference is entirely due to the way in which the direction of negative curvature is
generated.

Experiment 2. Our next example concerns a class of pairs suggested by Moon [21,
Example 3.0, p. 80], which is most easily defined by the MATLAB code that generates
the n× n instance, (An, Bn):

V = gallery(’triw’,n,1,2);

theta = zeros(n,1);

for i = 2:n, theta(i) = theta(i-1) + pi/2^(i-1); end

A = V’*diag(sin(theta))*V;

B = V’*diag(cos(theta))*V;

An is positive semidefinite and singular, Bn is singular and indefinite, and the pair
(An, Bn) is definite. Figure 5.1 plots the field of values F (A50 + iB50) as well as

the unit circle. It is clear that arc[ã, b̃], which is the projection of the field of values
onto the unit circle, is an arc of length approximately π, and indeed (An, Bn) is
within distance of order u of an indefinite pair for n ≥ 54. This is a problem where
the tolerance tol in Algorithm 2.3 plays a key role. Table 5.2 shows the numbers of
iterations for n = 64 and n = 80 with tol = 0 and with tol = nu. An iteration count
of 100 indicates that the algorithm had not converged after 100 iterations, and in the
four such cases there were many instances of positive curvature and arc shrinkage.
In all other cases an indefinite pair was signalled. Each variant of Algorithm 2.3

14

−4 −2 0 2 4 6 8
−10

−8

−6

−4

−2

0

2

4

Fig. 5.1. Field of values for A50 + iB50 in Experiment 2 and the unit circle.

Table 5.2
Number of iterations for the pair (An, Bn) in Experiment 2 with tol = 0 and tol = nu.

PDFIND Chol Chol(cp) Chol(cp2) Chol(ecp) eig
n = 64, tol = nu 21 38 2 2 2 5
n = 64, tol = 0 21 43 100 100 3 18

n = 80, tol = nu 21 38 2 2 2 4
n = 80, tol = 0 21 43 8 8 100 100

terminated on line 21 in the cases where tol = nu. This example illustrates clearly
the difficulties that floating point arithmetic causes to the logic of the algorithm when
tol = 0 and, once again, the benefit of pivoting.

This example also illustrates the possibly negative effect of rounding errors on
the computation of the direction of negative curvature predicted by the analysis of
Section 3. We repeated the computation with the direction of negative curvature for
Chol computed in quadruple precision. The numbers of iterations required by Chol
with tol = nu reduced from 38 to 34 for n = 64 and from 38 to 33 for n = 80,
and the number of instances of positive curvature reduced in both cases from 2 to 0.
The condition number cond(R11) in (3.6) had maximum value 100, and it seems this
mild ill conditioning induces a loss of accuracy enough to delay convergence of the
algorithm.

Experiment 3. We consider a 200×200 pair (A1, B1) generated from (4.1), where
Q(λ) = λ2A + λB + C with 100× 100 coefficient matrices

A = I, B = β

20 −10

−10 30
. . .

. . .
. . .

. . .
. . . 30 −10

−10 20

, C =

15 −5

−5 15
. . .

. . .
. . . −5
−5 15

 ,(5.1)

where β > 0 is a real parameter. This quadratic can be generated using the NLEVP

15

Table 5.3
Number of iterations for the pair (A1, B1) defined by (4.1) and (5.1) for β =

0.51961524227066xy, where “xy” denotes the 15th and 16th decimal places of β.

xy 20 22 24 26 28 30 32 34 36 38 40
PDFIND 26 26 27 27 27 28 25 25 25 25 25

Chol 27 26 26 26 26 27 26 24 24 24 24
Chol(cp) 17 17 18 18 17 17 19 18 18 18 17
Chol(cp2) 17 17 18 18 17 17 19 18 18 18 17
Chol(ecp) 18 19 19 20 21 19 19 19 17 19 17

eig 18 18 18 18 18 19 20 19 18 20 20

Table 5.4
Number of iterations for the pair (A1, B1) defined by (4.1) and (5.1).

β 0.500 0.504 0.508 0.512 0.516 0.520 0.524 0.528
PDFIND 7 7 7 7 8 3 3 3

Chol 6 6 6 6 7 2 2 2
Chol(cp) 2 2 2 2 2 2 2 2
Chol(cp2) 2 2 2 2 2 2 2 2
Chol(ecp) 6 5 5 5 5 5 2 2

eig 3 3 3 4 4 5 2 2

MATLAB toolbox [4] via nlevp(’spring’,100,1,10*ones(100,1)). We know that
the definiteness of (A1, B1) changes for some β near 0.51961524227066. So we take
β = 0.51961524227066xy, where the last two digits xy are to be specified (and we note
that rounding causes our actual β values to be tiny perturbations of these). Table 5.3
reports the number of iterations taken by each method.

The methods all correctly determined that the pair is indefinite for the first six
β and definite for the last five β,

Shrinkage of the arc occurred for eig for two different values of β, once for each
β, but not at all for the Chol variants. The number of times a positive value of (3.1)
was observed was 3 for PDFIND, 4 for Chol, 1 each for Chol(cp) and Chol(cp2), none
for Chol(ecp), and 4 for eig, with the value of (3.1) being at most of order 10−7.

We note that the behavior of PDFIND is very sensitive to the computing environ-
ment: under MATLAB 7.5 (R2007b) on a Windows XP (SP3) machine with Athlon
X2 processor PDFIND aborts with failure for three of the eleven values of β.

The main points to note from this test are
1. The three Chol variants using Cholesky with pivoting require significantly

fewer iterations than that using no pivoting.
2. The maximum values of the condition number cond(R11) in (3.6) are of order

108 for Chol and 10 for the other Chol variants. Thus the triangular systems that
are solved to obtain the direction of negative curvature are much better conditioned
when pivoting is used.

3. Eig requires a comparable number of iterations to the Cholesky with pivoting
variants but is much more expensive overall, since one iteration of the eig variant costs
as much as four or more iterations of the Cholesky variants.

Table 5.4 reports the results for several β not close to a point where the definite-
ness of (A1, B1) changes. These results are more representative of the typical behavior
of the algorithms. There were no arc shrinkages or instances of positive curvature,
and the possible benefits of pivoting in the Cholesky factorization are again apparent.

Experiment 4. Our next example shows a small improvement brought by Chol(cp2)’s

16

Table 5.5
For the pair (A1, B1) defined by (4.1) and (5.1) along with the scaling A ← α2A, B ← αB,

α = 10−7, determinations of definiteness (1 = definite, 0 = indefinite, −1 = failure), with number
of iterations in parentheses.

β Chol Chol* Chol-cong Chol-cong* PDFIND-cong PDFIND
0.51965 1 (2) 0 (2) 1 (1) 0 (5) 0 (7) 0 (7)
0.51966 1 (2) 0 (2) 1 (1) 0 (5) 0 (7) −1(7)
0.51967 1 (2) 0 (2) 1 (1) 1 (6) 0 (7) 0 (7)
0.51968 1 (2) 0 (2) 1 (1) 0 (5) 0 (7) 0 (7)
0.51969 1 (2) 0 (2) 1 (1) 0 (5) 0 (7) −1(7)
0.51970 1 (2) 0 (2) 1 (1) 0 (6) 0 (7) −1(7)
0.51971 1 (2) 0 (2) 1 (1) 0 (5) 1 (3) 1 (3)

choice of direction of negative curvature. Let

R =

[
2 −1/3 −1/3 −1/3
0 1 −1/3 −1/3

]
, A = R∗R+

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 , B = diag(0, 1, 1, 1).

For this A and B, the first few lines of Algorithm 2.3 form a = 1 = sin(π/2)
and attempt to Cholesky factorize B(π/2) = A, which is an indefinite matrix with
λmin(A) = −1. In exact arithmetic the factorization terminates at the start of stage 3
with remaining Schur complement S =

[
0
1

1
0

]
. In floating point arithmetic we obtain

a zero computed ŝ11, but the computed x̂ for Chol, Chol(cp), and Chol(ecp) is such
that positive curvature on the order of 10−17 is generated; nevertheless, each vari-
ant correctly identifies definiteness in 3 iterations without any shrinkages occurring.
Chol(cp2), by contrast, generates curvature of −0.7 and converges in 2 iterations; eig
behaves in exactly the same way. Here, the Crawford number γ = 0.75, so the pair
is safely definite. If our main goal was to generate directions of negative curvature—
perhaps for use in a Newton algorithm for optimization, say—then the use of (3.4)
might be important. However, in our testing we have not seen any significant advan-
tage of (3.4) over (3.3) in the context of Algorithm 2.3.

Experiment 5. In [11] we showed experimentally on some scaled quadratic matrix
polynomials Q that yield ill-conditioned congruences in (4.3) that the code PDFIND
from [6] is unreliable as a means for testing for hyperbolicity of Q, whether it is used
on the 2n× 2n pair (A1, B1) or in conjunction with the congruence. We repeated the
experiments of [11, Sec. 5.2] with Algorithm 2.3 and a modification of Algorithm 2.3
that exploits the congruence to work only with the quadratic Q. We found that these
algorithms return the correct determination on these experiments. To gain insight we
consider a particular example in detail. We take the same problem as in Experiment 3
but we scale A ← α2A, B ← αB with α = 10−7, and β takes 7 equally spaced
values from 0.51965 to 0.51971. We run the Chol variant of Algorithm 2.3 with the
use of the congruence (denoted Chol-cong) and without the congruence, PDFIND,
and PDFIND modified to use the congruence (denoted PDFIND-cong). We also
run modified versions of Algorithm 2.3 with and without the use of the congruence,
denoted Chol-cong* and Chol*, that compute the midpoint by c = (a + b)/|a + b| on
line 14 of the algorithm.

The results, given in Table 5.5, are striking. Chol and Chol-cong give the correct
result of “definite” in every case, but Chol* and Chol-cong* give the incorrect result
in all but one case. It is easily checked that θ[a, b] approaches π in this example. Thus
the use of the midpoint formula c = (a + b)/|a + b| can clearly destroy the reliability

17

Table 5.6
Results for 834× 834 pair (A(α),J) from Stokes equations.

α definite pair iterations stage at which Cholesky terminates
0.1 no 5 579 56 56 57 57
0.5 no 8 579 75 111 161 230 580 264 581
1.0 yes 5 579 82 129 200 834
5.0 yes 2 579 834
10.0 yes 2 579 834

of Algorithm 2.3. PDFIND suffers from the use of this formula in this example, and
has additional problems causing it to abort with failure 3 times when applied to the
pair.

Experiment 6. We now consider a saddle point system with a matrix A of the
form (4.4) generated by the MATLAB package Incompressible Flow Iterative Solu-
tion Software (IFISS), version 2.2 [24]. The sparse matrices A, B, and C are con-
structed by running the MATLAB script file stokes testproblem. We used the
default options, which set up a stabilized discretization of a Stokes equation model
problem. The matrix A is of dimension n = 578 and C is of dimension m = 256.
We find that λmin(A) = 0.0764 > λmax(C) = 0.0156 and that ‖B‖2 = 0.2476, so
that the sufficient condition (4.6) for definiteness of A− µ̃J with J =

[
In

0
0

−Im

]
and

µ̃ = (λmin(A) + λmax(C))/2 = 0.046 is not satisfied, as already noticed in [18]. Our
MATLAB implementation of Algorithm 2.3 with definiteness test and direction of
negative curvature computed with an attempted sparse Cholesky factorization (us-
ing MATLAB’s chol function, without pivoting for sparsity) detects that the pair is
definite in 5 iterations and returns µ = 0.0589.

Let α > 0 be a real parameter and consider the scaled matrices

A(α) =

[
α2A αBT

αB −C

]
=

[
αIn 0
0 −Im

] [
A BT

B C

] [
αIn 0
0 −Im

]
.

Note that the sufficient condition (4.6) guarantees that the pair (A(α),J) is defi-
nite for α >

(
‖B‖2 +

√
‖B‖22 + λmin(A)λmax(C)

)
/λmin(A) ≈ 6.52. Table 5.6 reports

the output of the definiteness test, the number of iterations and the stage at which
the sparse Cholesky factorization terminates (i.e., the values of k in (3.2)) for sev-
eral values of α. Note that the sparse Cholesky factorizations often terminate at a
stage k ≪ n + m = 834, which means that the iterations are often executed at low
computational cost.

Experiment 7. We now consider the computation of the Crawford number of 25×
25 definite pairs (Ak, Bk), k = 1: 4 generated by the subroutine GETMAT of [6]
with parameter KPAR ranging from 1 to 4. The plots of gk(θ) = λmin(Ak cos θ +
Bk sin θ) in Figure 5.2 illustrate the nonconvexity of −gk(θ) over θ ∈ [−π, π] and
its unimodality on the interval where gk(θ) is positive. Table 5.7 displays γ(A,B)
and the corresponding optimal angle topt, lower and upper bounds γℓ and γu for
γ(A,B) that can easily be computed via a small modification of Algorithm 2.3 as
explained in Section 4.3, and the reduced interval I in (4.10). Note that in three of
the examples (γℓ, γu) provides a good estimate of the magnitude of γ(A,B) and that
the length of the reduced interval I is much smaller than 2π in each case, showing
that Algorithm 2.3 enables the interval of maximization to be greatly reduced.

We used MATLAB’s function fminbnd and the Fortran code BTCLC from [28]
which implements a bundle trust method, both with tolerance 10−5, to compute the
Crawford number γ(A,B) by minimizing over the reduced interval I. Both approaches

18

−2 0 2
−4

−3

−2

−1

0

1

2
KPAR = 1

g
1
(θ)

θ

−2 0 2
−25

−20

−15

−10

−5

0

5

10
KPAR = 2

g
2
(θ)

θ

−2 0 2
−10

−8

−6

−4

−2

0

2
KPAR = 3

g
3
(θ)

θ

−2 0 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1
KPAR = 4

g
4
(θ)

θ

Fig. 5.2. Plots of gk(θ) = λmin(Ak cos θ + Bk sin θ) for the definite pairs (A, B) in Experiment 7.

Table 5.7
For the definite pairs (A, B) in Experiment 7, Crawford number γ(A, B), optimal angle topt,

bounds γℓ and γu on γ(A, B), reduced interval I, and number of evaluations of g(θ) needed by
fminbnd and BTCLC when called on the reduced interval.

KPAR γ(A, B) topt (γℓ, γu) I # g(θ) # g(θ)
fminbnd BTCLC

1 1.4 0.79 (1.4,1.4) (0.79,1.3) 24 3
2 6.0 −0.79 (5.5,8.1) (−0.84,−0.54) 23 5
3 7e-9 1.6e-8 (4.7e-9,5.9e-2) (0.0, 9.4e-8) 1 1
4 1.0 2.7e-13 (0.71,1.0) (−0.47,0.79) 25 7

return the Crawford number with at least 5 correct significant digits, but the number
of evaluations of g(θ) = λmin(A cos θ + B sin θ) required by BTCLC is much smaller
for KPAR = 1, 2, 4 than that required by fminbnd. For the 834 × 834 matrix pair
(A,J) associated with the saddle point system in Experiment 6, fminbnd and BTCLC

find that γ(A,J) = 0.0124 using 18 function evaluations for the former and only 8
function evaluations for the latter.

Finally, we assess how the arc algorithm compares with other methods for testing
definiteness of a Hermitian pair. Higham, Tisseur, and Van Dooren [16] present
a bisection algorithm and a level set algorithm, both of which determine whether
a Hermitian pair (A,B) is definite and also compute the Crawford number γ(A,B).
Each iteration of the bisection algorithm requires the solution of a quadratic eigenvalue
problem and up to 2n Hermitian eigenproblems, so this algorithm is much more
expensive than Algorithm 2.3 and the procedure for calculating γ(A,B) described
in Section 4.3. For testing definiteness, the level set algorithm needs to compute
the eigensystem of a (single) non-Hermitian generalized eigenvalue problem, which

19

costs about 46n3 flops if done by the QZ algorithm. This corresponds to the cost of
at least 138 iterations of Algorithm 2.3, so again Algorithm 2.3 is clearly the more
efficient approach to testing definiteness. Another test can be based on Veselić’s J-
orthogonal Jacobi algorithm [27], but this is based on hyperbolic transformations and
so is potentially unstable.

6. Conclusions. In this work we revisited the algorithm of Crawford and Moon
for testing whether a Hermitian pair (A,B) is definite. By reworking the derivation
and emphasizing the arc expansion mechanism we have obtained a fuller understand-
ing of its behavior—in particular for indefinite pairs. Moreover, we have shown that
the details of how the algorithm is initialized and terminated, how the angles are
computed, and how directions of negative curvature are computed are all crucial to
the efficiency of the algorithm and its behavior in floating point arithmetic. Our mod-
ified algorithm incorporates improvements to all the above aspects, and our backward
error analysis justifies the algorithm’s determination of whether the pair is definite
or not. Our recommended implementation is Algorithm 2.3 with Chol(cp)—Cholesky
decomposition with complete pivoting. This combination has performed well in all
our tests and has the advantage over the Chol(ecp) early-exit variant that the efficient
code that is available in LAPACK Version 3.2 [12], [19] can be used without change.

In summary, Algorithm 2.3 with Chol(cp) is remarkably efficient in general, the
computational cost being just a few (partial) Cholesky factorizations. The efficiency
stems from the fact that the algorithm can quickly find a t for which B(t) is definite,
or determine that the range of f is an arc of length greater than π, well before it has
accurately determined the range of f .

20

REFERENCES

[1] Y.-H. Au-Yeung, A theorem on a mapping from a sphere to the circle and the simultaneous
diagonalization of two Hermitian matrices, Proc. Amer. Math. Soc., 20 (1969), pp. 545–
548.

[2] , Some theorems on the real pencil and simultaneous diagonalization of two Hermitian
bilinear functions, Proc. Amer. Math. Soc., 23 (1969), pp. 246–253.

[3] Z. Battles and L. N. Trefethen, An extension of MATLAB to continuous functions and
operators, SIAM J. Sci. Comput., 25 (2004), pp. 1743–1770.

[4] T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder, and F. Tisseur, NLEVP: A col-
lection of nonlinear eigenvalue problems. http://www.mims.manchester.ac.uk/research/
numerical-analysis/nlevp.html.

[5] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cam-
bridge, UK, 2004.

[6] C. R. Crawford, ALGORITHM 646 PDFIND: A routine to find a positive definite linear
combination of two real symmetric matrices, ACM Trans. Math. Software, 12 (1986),
pp. 278–282.

[7] C. R. Crawford and Y. S. Moon, Finding a positive definite linear combination of two
Hermitian matrices, Linear Algebra Appl., 51 (1983), pp. 37–48.

[8] G. Dahlquist and Å. Björck, Numerical Methods in Scientific Computing, vol. I, Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.

[9] P. I. Davies, N. J. Higham, and F. Tisseur, Analysis of the Cholesky method with iterative
refinement for solving the symmetric definite generalized eigenproblem, SIAM J. Matrix
Anal. Appl., 23 (2001), pp. 472–493.

[10] A. Forsgren, P. E. Gill, and W. Murray, Computing modified Newton directions using a
partial Cholesky factorization, SIAM J. Sci. Comput., 16 (1995), pp. 139–150.

[11] C.-H. Guo, N. J. Higham, and F. Tisseur, Detecting and solving hyperbolic quadratic eigen-
value problems, MIMS EPrint 2007.117, Manchester Institute for Mathematical Sciences,
The University of Manchester, UK, Sept. 2007. Revised August 2008. To appear in SIAM
J. Matrix Anal. Appl.

[12] S. Hammarling, N. J. Higham, and C. Lucas, LAPACK-style codes for pivoted Cholesky and
QR updating, in Applied Parallel Computing. State of the Art in Scientific Computing.
8th International Workshop, PARA 2006, B. K̊agström, E. Elmroth, J. Dongarra, and
J. Waśniewski, eds., no. 4699 in Lecture Notes in Computer Science, Springer-Verlag,
Berlin, 2007, pp. 137–146.

[13] N. J. Higham, Computing a nearest symmetric positive semidefinite matrix, Linear Algebra
Appl., 103 (1988), pp. 103–118.

[14] , Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, second ed., 2002.

[15] N. J. Higham, D. S. Mackey, and F. Tisseur, Definite matrix polynomials and their lin-
earization by definite pencils, MIMS EPrint 2007.97, Manchester Institute for Mathemat-
ical Sciences, The University of Manchester, UK, Apr. 2008. Revised September 2008. To
appear in SIAM J. Matrix Anal. Appl.

[16] N. J. Higham, F. Tisseur, and P. M. Van Dooren, Detecting a definite Hermitian pair and
a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems,
Linear Algebra Appl., 351–352 (2002), pp. 455–474.

[17] I. C. F. Ipsen, Computing an eigenvector with inverse iteration, SIAM Rev., 39 (1997), pp. 254–
291.

[18] J. Liesen and B. N. Parlett, On nonsymmetric saddle point matrices that allow conjugate
gradient iterations, Numer. Math., 108 (2008), pp. 605–624.

[19] C. Lucas, LAPACK-style codes for level 2 and 3 pivoted Cholesky factorizations, Numerical
Analysis Report No. 442, Manchester Centre for Computational Mathematics, Manchester,
England, Feb. 2004.

[20] A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, American
Mathematical Society, Providence, RI, USA, 1988.

[21] Y.-S. Moon, On the Numerical Solution of the Definite Generalized Eigenvalue Problem, PhD
thesis, University of Toronto, Toronto, Canada, Feb. 1979.

[22] J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, New York, sec-
ond ed., 2006.

[23] H. Schramm and J. Zowe, A version of the bundle idea for minimizing a nonsmooth func-
tion: Conceptual idea, convergence analysis, numerical results, SIAM J. Optim., 2 (1992),
pp. 121–152.

21

[24] D. J. Silvester, H. C. Elman, and A. Ramage, Incompressible flow and iterative solver
software (IFISS) version 2.2. http://www.maths.manchester.ac.uk/~djs/ifiss/.

[25] G. W. Stewart, Perturbation bounds for the definite generalized eigenvalue problem, Linear
Algebra Appl., 23 (1979), pp. 69–85.

[26] L. N. Trefethen, R. Pachón, R. B. Platte, and T. A. Driscoll, Chebfun version 2.
http://www.comlab.ox.ac.uk/chebfun/.

[27] K. Veselić, A Jacobi eigenreduction algorithm for definite matrix pairs, Numer. Math., 64
(1993), pp. 241–269.

[28] J. Zowe, M. Kocvara, J. Outrata, and H. Schramm, Bundle trust methods: Fortran codes
for nondifferentiable optimization. User’s guide, Preprint No. 259, Institute of Applied
Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2000.

22

