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2 Numerical Linear Algebra in
Statistical Computing
N. J. HIGHAM and G. W. STEWART

ABSTRACT

Some of the factors to be considered when applying the
techniques of numerical linear algebra to statistical problems
are discussed with reference to three particular examples: the
use of the normal equations in regression problems; the use of
perturbation theory to assess the effects of errors in regres­
sion matrices; and the phenomenon of benign degeneracy, in which
the numerical problem becomes more difficult even as the asso­
ciated statistical problem becomes easier.

1. INTRODUCTION

Although statistics contains a wealth of problems for the

practitioner of numerical linear algebra, their solution is not

as straightforward as it might at first seem. Some of the veri­

ties of our field appear in a curious light when we attempt to

adapt them to the realities of the statistical world. In this

paper we shall give three examples, each pertaining to the clas­

sical linear regression model

where

1i. = X£ + ~ , (1. 1)

Y E lR
n

, X E JR
nxp

,,: £E RP , n ~ P ,

and the random vector ~ E lR
n

is normally distributed according

to
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where

(2. I)min
b

Ilxll ~ C~ ._, XiJ)~ ~ Ipllxll
i j

We shall also make use of the matrix condition number, defined

by

where X+ is the pseudo-inverse of X.

(2.2a)

2. THE NORMAL EQUATIONS

For the regression problem(I.I) the least squares estimate
A

of the regression coefficients is the unique vector b satisfy-

ing

There are two methods commonly used for solving the least

squares problem (2. I) • The first is based on the readily

derived normal equations, which were known to Gauss,

T T
A = XX, c = XY • ( 2 •2b)

Since X has full rank, the cross-product matrix A =XTX is

symmetric positive definite. Hence the normal equations may be

solved by computing a Choleski decomposition

T
A = T T ,

where T is upper triangular with positive diagonal elements

(Golub and Van Loan, 1983, p. 88), and performing a forward

substitution followed by a backward substitution.

The second popular approach is to make use of a QR factori­

sation of the matrix X,
or the induced matrix norm,

T AIlxll = max IIXxl1 = p(X X)2 ,
Ilxll = 1 -

X is referred to as the regression matrix and b the vector of

regression coefficients.

In Section 2 we appraise the role of the normal equations

in regression problems and offer some explanations as to why the

normal equations method has been used very satisfactorily by

statisticians for a long time, despite its shortcomings when com­

pared to the orthogonalisation methods preferred by numerical

analysts.

In Section 3 we consider the use of perturbation theory to

assess the effects of errors in the regression matrix on the

regression coefficients. Standard perturbation results tend to

be too crude in the context of statistical problems and their

sensitivity to the scaling of the problem is unsatisfactory. We

indicate how finer bounds can be obtained and show that certain

"collinearity coefficients" can provide useful information about

the sensitivity of a regression problem.

It is not uncommon in statistics to find the phenomenon of

benign degeneracy, in which the numerical problem becomes more

difficult even as the associated statistical problem becomes

easier. This phenomenon is examined in Section 4, using the

Fisher discriminant for illustration.

Throughout this paper we will assume that the regression

matrix X in (I. I) has full rank. Pertinent discussions concern­

ing rank deficient regression problems may be found in Stewart

(1984) and Hammarling (1985).

We shall use 11·11 to denote the vector 2-norrn,

T 1

II~II = (~ ~)2 ,

where p denotes the spectral radius (the largest eigenvalue in

modulus). Some feel for the size of II Xii may be obtained from

the relation

nxn pxv . . 1where QE lR is orthogonal and R E:IR ~ 1S upper tr1angu ar.

Since rank (R) = rank (X), and



triangular part of the matrix product. Although up to twice as

expensive as the Householder approach for full matrices, the

rotations. A Givens rotation is an orthogonal matrix which dif­

fers from the identity matrix only in one submatrix of order 2,

which takes the form

11~-x£1I ~ IIQT(~_{:})II II [~J ~ A [: ] £II
where Q= [Ql' Q2] , the least squares estimate b is obtained by

solving the nonsingular triangular system

i k

i [-: :] c 2 + 8
2 = 1.

k

The reduction of X to upper triangular form may be accomplished

by pre-multiplying X by a sequence of Givens rotations, each of

which is chosen so as to introduce one new zero into the lower

45

(2.4)
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Givens QR reduction has two redeeming features. First, zeros

are introduced in a selective fashion, so that a sui tably

tailored implementation can be more efficient on sparse or struc­

tured problems. Second, the rows of X can be processed one at

a time, which is desirable if X is too large to fit into main

storage, or if X is generated row-wise, as is often the case in

statistical computations.

Other techniques of interest for historical reasons, though

of less practical importance nowadays, are the Gram-Schmidt and

modified Gram-Schmidt algorithmR.

A relationship between the normal equations and the QR

factorisation methods can be seen by noting that

1!..+[ = (X+E)£+~,

where the perturbations t. and E are bounded by

IIEII ~ <PI (n ,p)EMIIXII ,

II [II ~ <P 2 (n , p) EM II ~ \I ,

T T T T T. (. ( »)2 RX X = R Q QR = R R = R dl.ag sl.gn Y'ii ,

so that R is the Choleski factor of XTX up to scaling of each

row by ±1. It is interesting to note that equation (2.3) can be

derived by substituting X = Q
I
R into the normal equations (2.2)

.. -T
and pre-multl.plyl.ng by R •

The normal equations method is almost universally used by

statisticians while the QR factorisation method is almost uni­

versally recommended by numerical analysts. On the surface the

numerical analysts would seem to have the better of it. In the

first place the QR equations have a favourable backward error

analysis which the normal equations do not. For the QR factori­

sation method using Householder transformations it can be shown

(Stewart, 1973, p. 240) that the solution ~ computed in floating

point arithmetic with rounding unit EM is the true least

squares estimate for the perturbed regression equation

= 1 ,

8 = min {n - 1 ,p} ,
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H
k

and where the first k - 1 components of '!:!:k are zero. The last

n-k+ 1 components of 1:ik are chosen so that pre-multiplication

by Hk creates zeros below the diagonal in the kth column of

the partially triangularised matrix H
k

-1 ••• HI X •

An alternative elimination technique is one based on Givens

Golub (1965). The reduction takes the form

H H·· • H X = l~RJ
8 8-1 1 0'

where the Householder matrix H
k

satisfies

T
= I -21:ik1J.k '

Rb Q~~. (2.3)

The QR factorisation may be computed in several ways which

we now surrrrnarise; for further details see Golub and Van Loan

(1983, Chapters 3 and 6). The preferred approach for general

problems is orthogonal reduction of X to triangular form using

Householder transformations, as first described in detail by
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where 4>1 and 4>2 are low degree polynomials in nand p. Thus

the QR factorisation method solves a "nearby" regression problem,

and if the computed solution is unsatisfactory, the blame can be

placed on the provider of the problem rather than the numerical

method.

From the backward error analysis for the Choleski decompo­

sition (Golub ann Van Loan, 1983, p.89) it follows that the com­

puted solution ~ for the normal equations method satisfies

form, we get

W.h .. + h ..W· = g. . , (2.6)
1, l,J Jl, J l,J

where HI = (h . .), G= (g . .). Since we require the smallest solu-
l,J l,J

tion we minimise h~. + h~. subject to (2.6). Remembering that
l,J Jl,

G is symmetric, the solution is easily seen to be

h ..
l,J

(A + G)~ = £ ' (2.5) which for i = j = p reduces to

where

c being a small constant depending on p. Here, for simplicity,
p

we have assumed that the normal equations are formed exactly.

It is possible to translate this backward error result

into one of the form of (2.4), but inevitably the perturbation

G is magnified in the process. To see this, assume A + G is

symmetric positive definite and consider the equation

T
(X + H) (X + H) = A + G ,

h
pp

Thus, to first order, part of the error is magnified by a factor

proportional to W- 1
• Since IIGII is proportional to Ilxil 2

, this

means that IIHII/lfxll will be proportional to K(X) =Wl/Wp •

Clearly, then, the QR method is superior from the point of

view of backwards stability.

Turning to the forward error, E-~, a bound for the normal

equations may be obtained directly from (2.5) on using standard

perturbation theory for square linear systems (Golub and Van Loan,

X = [~] ,

where the smallest of the many solutions H is to be determined

(the one that minimises 7~ h~j' say). By passing to the sin-

1 1 d
.. J

gu ar va ue ecompos~t~on we may assume that X has the form
(2.7)

(2.9)

We have

(
Ilull) il~11 2

~ E K(X) 1 + Ilxll-II~11 + EK(X)2 Ilxll II~II +O(E ),
IIE~~11

II~II

1983, p.27).

where

K(A) K(XTX) = K(X)2 • (2.8)

A forward error bound for the QR method can be obtained by mak­

ing use of standard least squares perturbation theory. From Golub

and Wilkinson (1966), provided X + E has full rank,

W ~.··~W >0.
1 P

where

\{I = diag (W 1 ' • • • , 1J!p) ,

Parti tioning H conformally as

the equation to solve becomes

Ignoring second order terms and wri ting the equation in scalar I
where

_ {IIEII 11[11 L
E - max lTXiT' II Y.-II f '

; Y.--X~ •
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Comparing (2.7) and (2.9) we see that while both bounds contain

the term K(X)2, in (2.9) a small residual vector mitigates the

effect of this term. Hence the bounds suggest that the QR

method will produce more accurate solutions than the normal

equations method for ill-conditioned problems that have a small

residual.

A consequence of the condition squaring effect (2.8) is

the fact that while the condition K(X) EM < 1 is sufficient to

ensure that the QR procedure does not break down with a singu­

lar computed R-factor, one must impose the mueh stronger condi­

tion K(X) 2 EM < 1 to guarantee that the normal equations method

runs to completion. Indeed, merely forming the normal equations

may cause valuable information to be lost when X is ill­

conditioned, unless the evaluation is done and the results are

stored in extended precision arithmetic.

In view of the above comparisons of error and stability

properties it is natural to ask why statisticians continue to

use the normal equations and why they are generally satisfied

with the results. We identify several reasons.

In practical statistical problems the residual vector is

usually not very small, so the comparison of the forward error

bounds is not strongly in favour of the QR method. Moreover,

in many problems the elements of the regression matrix are con­

taminated by errors of measurement, which are large compared

with the rounding errors contemplated by the numerical analyst.

If the normal equations are formed and solved ~n a reasonable

precision, the effects of rounding errors will be insignificant

compared with the effects of measurement errors. In other words,

the problem becomes statistically intractable before it becomes

numerically intractable.

To make this assertion precise, let ED denote the norm­

wise relative error in the regression matrix. Then, as in the

perturbation result (2.9), the data errors alone can induce a

perturbation in the regression vector b of order K (xl S ED' where,

roughly, s= 1 or 2 according as the residual vector is very small

or not. Solution via the normal equations introduces a relative
2

error of order K (X) EM' by (2.7). Thus as long as

2-s
K(X) EM ~ ED '

the rounding errors in the normal equations method will play an

insignificant role compared with the errors in the regression

matrix. For example, if E = 10-7 (as, for example, in IEEEM
standard arithmetic), E = 10-3 2 b

D
and K(X) = 10 , then will

have at best one correct figure, because of errors in the data,

yet the normal equations method will provide three or more cor­

rect figures to the machine problem. However, modifying the

example slightly so that ED = 10-5 and K(X) = 104 shows that the

normal equations method can fail to solve a meaningful problem.

The conclusion is that if one works to high precision

(relative to the accuracy of the data) and takes certain elemen­

tary precautions (such as computing estimates of the condition

number K( X) (Cline, Moler, Stewart and Wilkinson, 1979)), then

one can safely use the normal equations. On the other hand, if

one is constructing transportable software which must run on

machines with a 32-bit floating point word, then one should use

the QR factorisation.

An additional feature which works in favour of the normal

equations for statistical problems is that in regression models

wi th a constant term (so that x. = 1 for all i) statisticians
1-1 '

often "centre their data" by subtracting the means from the

columns of X (Graybill, 1976, p.252; Seber, 1977, p.330). This

transformation leads to better conditioned normal equations of

order one less (Golub and Styan, 1974). To see this, write

X = [£ , X
2

]

where e = [ 1 , 1 , • • • , 1 ~ T. Suotract{ng the :means from the columns

of X2 is equivalent to forming
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One can show that if A has Choleski factor

-T -1 Twhere ~ = n ~ X
2

• The new cross-product matrix is

which gives reduced normal equations of order p-1 with the

coefficient matrix

x X X X X X 0 0 X 0

0 X X X X 0 0 0 0 0

0 0 X X X
T

0 0 0~~6 0 0

0 0 0 X X X 0 0 X 0

0 0 0 0 X 0 0 0 0 0

( X 0 0 X o ) .T
~6

equations will be far more efficient than computation of the QR

factorisation, because of intermediate fill-in in the course of

computing the R-factor. For example, if p = 5 and if the rOWSf:

of X are being processed one at a time, then one may find mat­

rices of the form

-Tl-x- -T
= [e, X -ex ]

- 2 --
Ip-U

_[I
X = X Q

then A has Choleski factor Rp - 1 • It follows that

-) 2 2K(A = K(R
p

_
1

) ~ K(R
p

) = K(A) •

This potential improvement of the condition can be expected to

lead to more accurate computed solutions provided that A and

the corresponding right-hand side vector are computed using

extra precision, or perhaps even in standard precision using

formulae of the type (Seber, 1977, pp.331, 333; Chan, Golub and

LeVeque, 1983)
n

aij = l' (Xki -Xi)(Xkj -Xj ) ,

k=l
where X2 = (X •• ), x= (x.) •

1.-J - 1.-

There is one case in which the normal equations are un-

doubtedly to be preferred, even when one must resort to high

precision. These problems arise in unbalanced analysis of

variance and the analysis of categorical data, where the regres­

sion matrix is large and sparse but the normal equations are

n
'\ TX.X.

-1.--1.-

i= 1

A

PERTURBATION THEORY

~s inexpensive to compute, as it has only four nonzero elements.

3.

We have observed that regression matrices often have errors

in their elements. It is natural to attempt to use perturbation

theory to assess the effects of these errors on the regression

coefficients. The results of such an attempt are generally dis­

appointing, for two reasons. First, the use of triangular and

submultiplicative inequalities in the course of deriving the

bounds reduces their sharpness. This is not a major concern to

numerical analysts, whose errors are typically very small and

can suffer some magnification without ill effect. The statis­

tician, on the other hand, with his larger errors must fear that

In the QR factorisation by Givens rotations the rotation in the

(1,6) plane which zeros the (1,6) element has the undesirable

effect of "filling in" the rest of the row, which makes subse­

quent treatment of this row as expensive as if it were a full

vector. In contrast, the contribution of the new row x T to_6

I

I
Here, formation of the normalrelatively small and dense.
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the weakness of the bounds will cause him to declare a good prob­

lem intractable.

The second reason why perturbation theory gives disappoint­

ing resul ts is that often it is impossible to arrive at a

suitable scaling of the problem. For the norm of a regression

matrix to represent the sizes of its columns, the columns must

be scaled so that they are roughly equal in norm. The same is

true of the error in the regression matrix. On the other hand,

for a bound on the norm of the vector of regression coefficients

to say something meaningful about all the coefficients, the prob­

lem must be scaled so that the coefficients are roughly equal.

This three way balancing act will in general be unsolvable be­

cause any permissible scaling of the regression matrix will scale

the error matrix identically and the regression coefficients in­

versely, as can be seen in the relation (for nonsingular S E m.Pxp
)

and its orthogonal complement respectively. On pre-multiplying
T

bye. , and using the bound
-J

I TT -1 / I T + +T +T +Te.(XX) e. = e.XX e.I~llx e./I·llx e.ll,-J -1-- -J -1-- -J -1--

we obtain

IbJ-bJI ~ lI~j+)lllbilll[111+II~j+)III1~~+)IIII~IIII[211+0(11[112)

J=I, ••• ,p, (3.2)

(+) +
where ~k denotes the transpose of the kth row of X . The

interpretation of this bound is clearly much less dependent on

the scaling of the problem than is the case for the bound (2.9).

In fact, a diagonal scaling S= diag(s.) of the form in (3.1)
1--

leaves (3.2) unchanged.

The above analysis leads naturally to the introduction of

the coZZinearity coefficients

II (X+E) £-~II = 11 (XS + ES)S-l ~-~II . (3.1) K. = IIx.1I Ilx~+) II
1-- -1-- -1--

i=I,···,p.

One cure is to produce finer bounds in terms of individual

coefficients and columns. A way of doing this is as follows.

Suppose X is perturbed in its ith column by a vector i, so

that the error matrix E is given by

T
E = fe.

--1--

where e. is the ith column of the p X P identity matrix, and
-1--

let b be the corresponding vector of perturbed regression coef-

ficients. Assume that X+ E has full rank. Using the expansion

we have

b (X+E)+~ = f-X+E~ + (XTX)-1ET(I-XX+)(~-xf) + O( IIEI1 2
)

= b- X+fe.Tb + (XTXf 1 e.1 (I-XX+) ~ + o( Ilf11 2
)

- __1-- - -1-- - -

= S - X+f b. + (XTx) -1 e . fTr + 0( II f II 2) ,
- _11- -1---2--

In addition to playing a key role in the perturbation bound (3.2)

the collinearity coefficients have at least two other important

properties. First, the reciprocal of K. is the smallest rela-
1--

tive perturbation in the ith column of X that makes X exactly

collinear (that is, rank deficient). This can be shown by using

the QR factorisation

I Rll

~pJX = Q[~] Q T R E:IR( p - 1 ) x (p - 1)0- 11 '

0 0 J
where·we can assume without loss of generality that the column of

interest is the last. Clearly, a perturbation

where f and f are the pro j ec t ions of f onto the range of X
_1 _2 -

to the last column of X makes X collinear, and II ~ II Ir I·pp
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(1986).

D = diag (d.) ,
1-

4. BENIGN DEGENERACY

! = L: -1 (~1 - ~2) ,

and to the N(!::2' L:) population otherwise. As the dispersion

matrix L: approaches singularity the problem of computing the

Fisher discriminant becomes increasingly ill-conditioned.

However, the numerical problem does not correspond to an

intrinsic statistical problem. To see this, let L: have the

spectral decomposition

where

and transform to the new coordinate system

The phenomenon of benign degeneracy is best illustrated by

an example. The Fisher discriminant function (Graybill, 1976,

Section 12.5) is a method for deciding whether a sample vector ~,

known to be drawn from one of two populations distributed accord­

ing to N(!:!.I' L:) and N( ~2 ' L: ) respectively, belongs to the first

or to the second. The Fisher discriminant classifies ~ as be­

longing to the N( jJ ,L:) population if
-1

Xl = Qx-.!. Q(jJ + jJ )
- - 2 -1 -2 '

in which the two populations are distributed according to

N(!::/l'D) and N(!::~,D) respectively, where !::~=-~~=~Q(!:I-~2)'

The Fisher discriminant declares Xl to belong to the first

population if

Qx + he
T

--p

Random errors in the regression matrix X tend to cause a

systematic reduction in the size of the regression coef;icients

when X is ill-conditioned, since such errors tend to increase

the size of small or zero singular values. Another use of the

collinearity coefficients is to measure the extent of this bias

in the regression coefficients; the analysis is fairly lengthy

and appears in Stewart (1986).

A desirable property of the numbers K. is that they are
1-

invariant to diagonal scalings of the columns of X, unlike the

standard condition number K(X). Some other interesting proper­

ties of the collinearity coefficients are discussed in Stewart

[

R- l _ (r R ) -1 r
11 pp 11 -

X+ = [R+ 0] Q+ =
aT r- l

- pp

T + -1 TQT d hso that e X = r e ,an ence-p pp-p

is collinear, then p = -rvv so that II ~ II ~ Ir pp I· Thus

Ir I/llx II is the size of the smallest relative perturbation to
pp -p

the last column of X that makes X collinear. But

Also it is easily seen that if

:~l ~+f+pl
pp

o q J

We mention in passing that Fletcher (1985) attempts to over­

come the two drawbacks discussed at the start of this section by

using a probabilistic perturbation analysis. This approach may

be of particular interest in the context of statistical computa-

tions.

( jJ I _ jJ I ) TD-l Xl > 0 •
... 1 ....2 -

In the new coordinate system the singularity of the dispersion

matrix corresponds to one or more of the components having zero

variance, and in the Fisher discriminant the inverse weights

these components infinitely. In other words, if a component

has zero variance, then it is sufficient to look at that compo­

nent alone to determine to which population a sample vector
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Stewart, G.W. (1986), "Scale invariant measures of the effects
of near collinearity", manuscript (submitted for publication).

belongs - as is clear intuitively. (If there are several compo­

nents with zero variance then any single one of these may be

considered.)

The question for the numerical analyst is how to evaluate

the Fisher discriminant. One possibility is to apply the above­

mentioned transformation to diagonalise the problem, after

which it is obvious what to do. An al ternative is to use the

original formula, no matter how ill-conditioned the dispersion

matrix. In the unlikely event that one is required to divide by

zero, the zero is replaced by a suitable small number. Whether

this seemingly risky procedure works is an open question!
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